[ Equivariant and Coordinate Independent Convolutional Networks ]

What is the appropriate geometric structure for neural networks that process spatial sig-
nals on Euclidean spaces or more general manifolds? This question takes us on a journey
which leads to a gauge field theory of convolutional networks.

Feature vector fields: The spatial signals we are interested in are fields of feature vectors.
Feature fields allow to describe data like images, audio, videos, point clouds, or tensor
fields, such as fluid flows and electromagnetic fields.

Equivariant networks commute with actions of some symmetry group on their feature
spaces. The relevant group actions in this work are geometric transformations of
feature fields, like translations, rotations, or reflections of images.

Equivariant models generalize everything they learn over the considered group of
transformations. This property makes them significantly more data efficient, interpre-
table, and robust in comparison to non-equivariant models.

Convolutional Neural Networks (CNNs) are the most common network architecture for
processing feature fields. Conventional CNNs operate on Euclidean spaces and are
translation equivariant, i.e. position independent. This work explains how to extend
CNNs to be equivariant under more general symmetries of space.

Coordinate independence: Manifolds are in general not equipped with a canonical cho-
ice of coordinates. Feature fields and neural network layers are hence required to be
coordinate independent, that is, expressible relative to different frames of reference.

The ambiguity of local frames represents the gauge freedom of our neuradl field theory:.
We show that the demand for coordinate independence requires CNNs to be equiv-
ariant under local gauge transformations.
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To offer an easy entry, the first part of this work focuses on the representation theory
of equivariant convolutional networks on Euclidean spaces.

The insights gained in the Euclidean setting are subsequently leveraged to develop the
full gauge theory of coordinate independent CNNs on Riemannian manifolds.

In the last part, we turn to a discussion of practical applications on specific manifolds.
A comprehensive literature review demonstrates the generality of our theory by showing
for more than 100 models from the literature how they can be understood as specific
instantiations of “‘Equivariant and Coordinate Independent CNNS’.
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Summary

In this book, Equivariant and Coordinate Independent Convolutional Networks, we develop
a gauge theory of artificial neural networks for processing spatially structured data like im-
ages, audio, or videos. The standard neural network architecture for such data are convolu-
tional networks, which are characterized by their position-independent inference. Generaliz-
ing whatever they learn over spatial locations, convolutional networks are substantially more
data efficient and robust in comparison to non-convolutional models. This characteristic is
especially important in domains like medical imaging, where training data is scarce.

The independence from spatial locations is formally captured by the networks’ translation
group equivariance, i.e. their property to commute with translations of their input signals.
We show that the convolutional network design is not only sufficient for translation equiv-
ariance but is actually a necessary condition — convolutions can therefore be derived by de-
manding the model’s equivariance. The first part of this work leverages this insight to define
generalized convolutional networks which are equivariant under larger symmetry groups.
Such models generalize their inference over additional geometric transformations, for in-
stance, rotations or reflections of patterns in images. We demonstrate empirically that they
exhibit a significantly enhanced data efficiency, convergence rate, and final performance in
comparison to conventional convolutional networks. Our publicly available implementation
found wide use in the research community.

In the second part, we extend convolutional networks further to process signals on Rieman-
nian manifolds. Beyond flat Euclidean images, this setting includes, e.g., spherical signals
like global weather patterns on the earth’s surface, or signals on general surfaces like artery
walls or the cerebral cortex. We show that convolution kernels on manifolds are required to
be equivariant under local gauge transformations if the networks’ inference is demanded to
be coordinate independent. The resulting coordinate independent networks are proven to be
equivariant with respect to the manifolds’ global symmetries (isometries).

Our objective is not to propose yet another equivariant network design for a narrow applica-
tion domain, but to devise a unifying mathematical framework for convolutional networks.
The last part of this book demonstrates the generality of our differential geometric formula-
tion of convolutional networks by showing that is able to explain a vast number of equivariant
network architectures from the literature.

"still a lizard"|

—Jtransform

Convolutional neural networks (CNNs) process data in a position-independent manner.
Having learned to detect a pattern at one specific location, they will detect it at any other
location as well. This work develops a theory of generalized equivariant CNNs which
extend this property to 1) further geometric transformations and 2) arbitrary manifolds.
(Lizards adapted under the Creative Commons Attribution 4.0 International|license|by courtesy of Twitter.)
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v Preface: A visual introduction

Why Equivariant & Coordinate Independent Convolutional Networks ?

A visual introduction

The gauge theory of “Equivariant and Coordinate Independent CNNs” describes neural net-
works for processing spatially structured data like audio, images, videos, or more general
signals on more general spaces. Why should such networks be equivariant, coordinate
independent, or convolutional, and why are they described by a gauge theory? The fol-
lowing paragraphs aim to give an informal and intuitive motivation for these properties and
the content of this work. A more technical introduction and full overview of this book’s
content is given in Chapter [T}

Why equivariant neural networks ?

To motivate the merits of an equivariant network design, consider the simple application of
image classification. The goal is to partition the space of images into various classes:

(Animal photos adapted under the free license by courtesy of [Freepik])

To solve this task, the network has to become invariant to the intra-class variability of each
class. For instance, there are many different appearances of fox images, and all of them
should be mapped to the same class label ‘‘fox’’. The intra-class variabilities are partly due
to images showing truly different instances, e.g. the red and the arctic fox. In addition, “one
and the same” image can occur in different appearances:

original illumination translation (shift) reflection

In this work, we are focusing specifically on geometric transformations of spatial signals,
like, for instance, translations, rotations, reflections, scaling, or other affine transformations.
Such transformations are mathematically described by group actions of the corresponding
symmetry groupEl

! An introduction to groups, actions, representations, and equivariant maps is found in Appendix


https://www.freepik.com/

Why equivariant neural networks? v

Being invariant to a geometric transformation means that the network’s prediction does not
change when its input is being acted on by the transformation group. This property is visu-
alized by the following commutative diagram:

classify

cat"

classify

To motivate equivariance, consider an image segmentation task (pixel-wise classification)
instead of image classification. The network’s output should transform here in the same way
as its input. The commutativity of the diagram below captures this requirement graphically:

segment
ﬁ

reflect l l reflect

—_—
segment

A function f: X — Y which commutes in such a way with group actions on its domain X
and codomain Y is said to be group equivariant:

X —f—Y
foactiony = actiony o f  or, diagrammatically,  action Xi lactiony
X —f—Y

The visualized segmentation task is therefore reflection equivariant, in this specific case with
the same reflection group action on its input and output. Probably somewhat surprisingly,
the invariant classification task fits under the umbrella of equivariance as well. The dif-
ference here is that the label space is “transformed” by the trivial reflection group action
(actiony = identity), which acts by “doing nothing”, and may therefore be collapsed in the
diagram. Invariant functions are hence a special case of equivariant functions, such that we
can talk without loss of generality about equivariant functions only. For rigorous definitions
of invariance and equivariance, and their mutual relation, we refer to Appendix [B.4]

Why should we be interested in studying the equivariance properties of neural networks?
In principle, a neural network would /earn to be invariant or equivariant whenever this is
desirable for the task it is being trained on. However, a naive network would have to learn
this explicitly, that is, it would need to be shown samples in every possible geometric pose
before it would understand their equivalence. This approach is clearly undesirable, as it leads
to long training times and yields non-robust predictions.
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LECTURE | LECTURE 2 EXARN DAY
THIS iS A LOBST£R : "AMOTHER” LOBSTER : WHAT {S THiS ?

'y ,
You didn't
teach mel!

(Vector graphics adapted under the Apache|license|2.0 by courtesy of Google and the free license by courtesy of [Freepik})

A more sensible approach is to design the networks such that they are by construction con-
strained to be equivariant. Instead of having to learn over and over again how to process
essentially the same image, such networks automatically generalize their knowledge over
all considered transformations. Equivariance reduces the models’ complexity and number
of parameters, which frees learning capacity, accelerates the training process, and leads to
an improved performance.

FIRST & LAST LECTURE

THIS iS A LOBSTER : Due to equivariance,
all of these are
lobsters as well!

This work explains in a fairly general setting how to construct invariant and equivariant
convolutional neural networks (equivariant CNNs).

Why do we need a gauge theory of neural networks ?

With respect to which specific group of transformations should a convolutional network be
made equivariant? The answer to this question depends of course on the symmetries present
in the distribution of data under consideration. Most obvious are global transformations,
acting on signals as a whole.

For instance, aerial images do usually not
exhibit a preferred origin or orientation. To
process such data, it is hence reasonable to
employ networks that are equivariant under
the action of global isometries (i.e. transla-

tions, rotations and reflections of images). isometries

In sets of photos that are not taken from an
aerial view, the gravitational field imposes a
preferred directionality, breaking the rota-
tional symmetry at the global scale. Networks
for processing such images should hence only
be equivariant under translations and reflec-
tions, but not under (global) rotations.

translations
& reflections



https://github.com/googlefonts/noto-emoji/blob/main/LICENSE
https://www.freepik.com/free-vector/world-teacher-s-day-background-with-owl-blackboard_2887650.htm

Why do we need a gauge theory of neural networks? vii

In both of these examples, we argued based on the signals’ content at their global scale,
however, the distribution of local patterns may differ from this analysis. To give an exam-
ple, the image of the hedgehog below exhibits a preferred directionality at the global scale
(#%8. but hopefully not ), while local patterns like the spines occur in arbitrarily rotated

poses (all of é,w,%m may appear):

[ "hedgehog spines"

[ "hedgehog spines"

["hedgehog spines"

(Hedgehog adapted under the free license by courtesy of |Freepik})

When processing such signals, the model should not only generalize everything it has learned
over global transformations of the full signal (global equivariance), but also over indepen-
dent transformations of local patterns, called “gauge transformations”El

global transformation local gauge transformations
| ¥
f‘["pond with lobsters"]'\ f N
* i i

Due to global equivariance,
this is also a pond with lobsters

And due to local gauge equivariance,
this is yet another pond with lobsters !

Our gauge theory of convolutional networks formalizes such local gauge transformations
and explains how to construct gauge equivariant network layers. The neural activations (fea-
ture vectors) of gauge equivariant networks will thereby be guaranteed to encode the same
content (e.g. "hedgehog spines") in different poses (e.g. ®.E.@)[’| while the features
of non-equivariant networks would be entirely unrelated. We find empirically that local rota-
tion and reflection equivariance is essentially always beneficial, since low level features like
edges or corners usually appear in arbitrary orientations.

2Gauge transformations and gauge equivariant layers are more thoroughly introduced below.
3Mathematically, such feature vectors with “poses” are elements of a group representations space.


https://www.freepik.com/free-photo/hedgehog-walking-concrete-road_9867255.htm
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How to construct equivariant models ?

How can we guarantee the equivariance of a machine learning model? As a conceptually
simple example, let’s consider a linear regression task (curve fitting), and assume that the
ground truth f : R — R is either known to be symmetric or known to be antisymmetric (i.e.
invariant or equivariant w.r.t. multiplications with —1

symmetric: f(-z) = f(z) antisymmetric: f(-z) = - f(z)

>

f(x) 4

AN

fa) A

]Y
A

A naive (non-equivariant) approach would be to fit an ordinary polynomial

N
y(x) = anx"
n=0

of some degree N € N, where the w,, € R are N 41 trainable parameters. However, this
general polynomial model would ignore our prior knowledge on the functions’ symmetry
properties — they would have to be learned from the training data.

To take advantage of the symmetries, we can constrain the polynomial model to respect the
symmetries a-priori. Doing so forces either the odd or even terms to zero, leaving us with
equivariant models

Yoymm (Z) = Z wpa" (since (-z)" = 2" for even n € N)

and Yanti () = Z W x" (since (-z)" = —(a™) for odd n € N) ,

which are by design symmetric and antisymmetric, respectively. Note that, in comparison
to unconstrained polynomials, these equivariant models have approximately half the number
of parameters. Furthermore, they generalize over reflections: having seen training data for
x > 0 only, they are automatically fitted for all z < 0 as well.

On an abstract level, we started with some space of generic machine learning models, which
is subsequently restricted to a subspace of equivariant models:

. . symmetry .
equivariant models C generic models
constraint

The layers of equivariant neural networks may similarly be defined as symmetry-constrained
instances of common network operations (e.g. linear maps or bias summations). Specifi-
cally for the translation group, the subspaces of equivariant network operations correspond
exactly to convolutional network layers.

*We encourage the reader to visualize the defining constraints f(—x) = % f(x) of (anti)symmetric
functions by drawing two commutative diagrams similar to those on page Hint: all nodes are R, the
blue transformation arrows are multiplications with —1, and the gray function arrows are labeled by f.
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Why convolutional neural networks ?

Convolutional neural networks (CNNs) are the standard network architecture for spatially
structured signals. They differ from plain, fully connected networks in two respects: firstly,
they usually have a local neural connectivity, and secondly, they share synapse weights (e.g.
a convolution kernel) between different spatial locations:

local connectivity weight sharing
| v v
neural
neural 3
connections i \\\ / \ \ / \ \
A 0 « A\

o

== S

w
=
o]
=]
ol
=

fully connected (MLP) locally connected convolutional (CNN)

The weight sharing requirement applies to any type of operation employed in convolutional
networks, enforcing, for instance, that one and the same bias vector or nonlinearity is to be
used at every spatial position. CNNs owe their name to so-called convolution operations,
which are exactly those linear maps that share weights. Intuitively, convolutions can be
thought of as sliding a template pattern — the convolution kernel — across space, matching it
at each single position with the signal to produce a response field.

Both the local connectivity and weight sharing reduce the number of model parameters (vi-
sualized by the number and color of the synapse weights in the graphics above), which makes
CNN s less hungry for training data in comparison to fully connected networks. The local
connectivity implies in addition that each neuron is associated with a specific spatial location
(the center of its receptive field), such that they are naturally arranged in “feature maps”.

More important for us is, however, that the spatial weight sharing implies the translation
equivariance of convolutional networks:

spatial weight sharing == translation equivariance

To see that this is indeed the case, note that any translation of a network’s input shifts patterns
to other neurons’ receptive fields. Given that the neural connectivity is shared, these neurons
are guaranteed to evoke the same responses as those at the previous location.

convolution
(with arbitrary kernel)

éﬂ C
translation translation
—&—

convolution

(Lizards adapted under the Creative Commons Attribution 4.0 International [license|by courtesy of Twitter.)
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Instead of defining convolutional networks as sharing weights, and subsequently observing
that they happen to be equivariant, we show in this work that one can reverse the implication
arrow and derive weight sharing by demanding their equivariance:

spatial weight sharing <= translation equivariance

We define conventional CNNss therefore equivalently as those neural networks that are trans-
lation equivariant.

Generalized equivariant CNNs & steerable kernels

The mutual implication “weight sharing <= translation equivariance” suggests the gener-
alization of convolutional networks by means of requiring their equivariance under extended
groups of (global) transformations. A quite general family of symmetry groups, covering
most practically relevant transformations of Euclidean space, are affine groups Aff(G). They
always contain translations, but augment them with additional transformations in the so-
called structure group G < GL(d)P| The additional transformations in G allow to model,
for instance, rotations, reflections, or the scaling and shearing of signals.

As for conventional CNNs, we prove a mutual implication between the networks’ equivari-
ance and weight sharing, however, now over affine transformations:

affine weight sharing <= affine group equivariance
Recall that affine groups consist of 1) translations and 2) additional G-transformations. The
generalized affine weight sharing constraint splits accordingly into requirements for
1. spatial (or translational) weight sharing — just as for conventional CNNs — and
2. so-called “G-steerability” constraints on the shared neural connectivity.
The latter are additional G-equivariance requirements that any shared operation, e.g. any
shared kernel, bias, or nonlinearity, needs to satisfy. For instance, a G-steerable kernel

guarantees that any G-transformation of its input results in a corresponding G-transformation
of its response feature vector.

G-transform of
(FLobster (9 - (T )

response feature vector
kernel response

G-steerable kernel ———

. ! G-transform of
input feature vector field —— - =
input field

Since the responses are vector valued features, steerable kernels comprise in general multiple
channe]sﬂ Some clarifying examples follow shortly.

> Affine groups Aff(G) := (R%4) x G are a semidirect product x of translations (R?, +) and
some matrix subgroup G < GL(d) of general linear transformations (e.g. rotations in SO(d)).

®Steerable kernels are actually matrix-valued, having cou X cin channels when their input is a feature
vector field of cin-dimensional feature vectors and their response is a coui-dimensional feature vector.
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Applied at one single location, a kernel produces a single response feature vector, as shown
above. Convolutions apply the kernel at every point of space, and result therefore in a whole
feature vector field. Since convolutions are translation equivariant, and steerable kernels are
G-equivariant, any convolution with a steerable kernel is jointly translation and G-equiv-
ariant — they are hence Aff(G)-equivariant, as desired.

steerable convolution

(with G-steerable kernel) @

affine group | action aﬂine group action

[=—<@8—=(S

steerable convolution

The main challenge in constructing Aff(G)-equivariant CNNss is to solve for and to param-
eterize the subspaces of G-steerable convolution kernels. These subspaces are characterized
by the specific G-symmetries that their constituent kernels have to satisfy. The particular
details of the kernels’ symmetries depend thereby on the choice of transformation laws (G-
actions) according to which their input and output feature vectors are supposed to transform.

To build a more concrete intuition for steerable kernels, we turn to some specific examples.

Reflection steerable kernels: The simplest non-trivial example is the one where G is the
reflection group, such that Aff(G) consists of translations and reflections.

Assume the convolution input to be a scalar field, modeling, for instance, a grayscale image.
Let the convolution kernel be symmetric, i.e. invariant under reflections. When being applied
to a reflected input such a kernel is guaranteed to produce exactly the same responses as for
the original input, however, now located at spatially reflected positions. As the output field
transforms in this example just like the input field, it is of scalar type as well.

scalar field convolution with scalar field
symmetric kernel

reﬂect

m

Note that general, non-symmetric kernels would not satisfy this equivariance diagram. Their
two response fields on the right-hand side would rather be mutually unrelated.
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Next, let us consider antisymmetric kernels, which negate under reflections. Due to this
property, the response field to a spatially reflected scalar input field will not only appear
spatially reflected, but will additionally change its sign. This transformation behavior is a
valid reflection group action, corresponding to so-called pseudoscalar fields.

scalar field convolution with pseudoscalar field
antisymmetric kernel

In both examples, we assumed a specific input field type and reflection steerable kernels to
be given, from which the output field type followed:

input field type, steerable kernel = output field type

Our formulation of Aff(G)-equivariant convolutions is, conversely, starting from the input
and output field types, and derives subsequently the corresponding subspaces of steerable
kernels that map equivariantly between them:

input & output field types == steerable kernels

Specifically for scalar inputs and scalar or pseudoscalar outputs, these subspaces contain
exactly symmetric and antisymmetric kernels, respectively.

Rotation steerable kernels: For our next example, consider the group G = SO(2) of ro-
tations in two dimensions. In general, SO(2)-steerability imposes some rotational symmetry
constraint on the kernels’ angular part, but does not affect their radial part.

A natural basis to expand such kernels are circular harmonics, which are the Fourier basis of
the kernels’ angular parts in polar coordinates. This basis is complete, that is, any (including
non-steerable) kernel can be constructed from it. SO(2)-steerability constrains the basis to
subsets of admissible angular frequencies, which depend on the specific types of feature
fields considered.

circular harmonics angular parts
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As feature field types, the visualization below considers scalar and vector ﬁeldsﬂ In con-
trast to the previous examples, tangent vectors are not one-dimensional features, but com-
prise multiple channels. Steerable kernels for mapping between such field types are hence
accordingly matrix-valued. They can be viewed as spatially extended counterparts of well-
known differential operators, like the Laplacian (scalar — scalar), gradient (scalar— vector),
divergence (vector — scalar), or gradient of the divergence (vector — vector).

9,
rad = | | =
¢ (ay) (@)
. . .
/ \ vector field gradodiv

_ aam aacy ~
a?lz ayy B

~——

scalar field
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More general solutions than those visualized here exist: for instance, the mapping (vector —
vector) allows in addition for rotationally invariant kernels, and the radial parts are only
exemplary and get optimized during the training process. More expressive steerable kernel
spaces, which allow for higher circular harmonic frequencies and the mixing of different
frequencies, require more complex field types, e.g. general tensor fields. A full overview of
the complete solution spaces of SO(2)-steerable kernels is given in Table

Note that the resemblance to common differential operators in the example above is no coin-
cidence — it is a direct consequence of the rotational symmetries of the laws of nature, which
necessitate steerable partial differential operators [137]].

General steerable kernels: Although they are often formulated differently, any equivari-
ant convolutional network assumes some types of feature fields and applies corresponding
G-steerable kernels. Our contribution is to present a unified formulation, which describes all
of these models in a single coherent framework.

We furthermore found a complete characterization of G-steerable ker- ‘
nel spaces, which explains in general how they may be constructed
from harmonic basis functions of G. For instance, the angular @ e ‘)

parts of SO(3)-steerable kernels will always be assembled —

from (subsets of) spherical harmonics, shown on the right. @ @ @ @ @
Gauge equivariance: As mentioned above, G-steerability ensures kernel responses to
transform in a G-equivariant manner with their input. Recall that CNNs usually have a local
connectivity, i.e. apply kernels of finite spatial extent. Convolutions with G-steerable kernels

that have such narrow receptive fields are automatically gauge equivariant w.r.t. independent
G-valued gauge transformations of the kernels’ fields of view at different locations.

This claim is intuitively plausible, however, to put it on a formal basis, we need to introduce
the gauge theoretic framework of coordinate independent CNNs, which we do next.

"Note that this diagram is in contrast to the previous ones not commutative. For instance, div is
not the inverse of grad.
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Why coordinate independent neural networks ?

So far, we have only considered active transformations of signals. Passive transformations
do not act on signals themselves, but rather on the coordinate systems used to describe them:

active passive
- —_—
transform transform

How is this relevant for equivariant networks? Equivariant CNNs are guaranteed to respond
equivalently to actively transformed variants of the same signal. However, the perception of
a network depends only on its relative alignment towards the signal. We can therefore equiv-
alently think about keeping the signal fixed, and passively transforming the network’s view-
point. A network’s viewpoint can be identified with its internal frame of reference, which
justifies our interpretation as passive coordinate transformationsﬂf

| |

~ITP T L
observer B
observer A ‘ \
E
NeaaN
(Lizards adapted under the Creative Commons Attribution 4.0 International |license| by courtesy of Twitter.)

The fact that active and passive transformations are indistinguishable from the observer’s
viewpoint implies that the predictions of equivariant networks transform in a well defined
manner when passively changing their viewpoint — equivariant networks and their features
are hence coordinate independent, i.e. obey the principle of covariance. Conversely, a
requirement for equivariance follows when demanding coordinate independenceﬂ

The equivalence of the active and passive interpretation holds not only for global coordinate
charts, but also for local frames of reference (gauges), which we leverage next to formalize
the networks’ local gauge equivariance. This local viewpoint becomes actually strictly nec-
essary when extending CNNs to general manifolds, as they do in general neither come with,
nor admit global coordinates.

8The network takes on the same role as an observer in special relativity.
This statement assumes crucially that the network is co-moving with frames and their passive
coordinate transformations. It would not be true if the network was held in fixed relation to the signal.
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Why coordinate independent neural networks? XV

Manifolds, local frames & gauge symmetries: This work covers not only CNNs on Eu-
clidean spaces, but generalizes them to arbitrary Riemannian manifolds, including, for in-
stance, spheres or other curved surfaces, as shown below.

On Euclidean spaces, we defined convolutional networks by demanding their equivariance
and leveraging the implication “weight sharing < equivariance”. However, manifolds are
in general asymmetric, that is, there exist in general no (global) transformations w.r.t. which
we could demand equivariance, such that this strategy does no longer apply. Instead, we
define CNNs on manifolds immediately as coordinate independent networks with spatially
shared synapse weights. It turns out that this requires, once again, equivariance constraints
(G-steerability constraints), however, now in a local gauge theoretic sense.

To motivate gauges and local gauge transformations, assume you are given a convolution
kernel, which should be applied at each spatial location of a manifold (weight sharing).
In contrast to Euclidean spaces, it is unclear how to do this, since there exists in general
no preferred reference direction (e.g. rotation or reflection) along which the kernel should
be aligned. A specific choice of alignment, which can be identified with a choice of reference
frame, is what we call a “gauge”@

geometric
kernel alignment

— choice of

= = auge
local reference frame gaug

Local gauge transformations are, accordingly, passive transformations between reference
frames and kernel alignments.

gauge A gauge B

> & passive >

gauge transformation

Above, we interpreted neural networks — as a whole — as global observers, whose geometric
alignment relative to the signal was identified with a global coordinate chart. Their coor-
dinate independence (viewpoint independence) was in one-to-one relation to their equivari-
ance under global coordinate transformations.

In the gauge theoretic interpretation, we are instead viewing every single neuron — whose
synapses (e.g. kernels) form a local sub-network — as an independent local observer. Their
geometric alignment is described by a local reference frame (gauge) of the correspond-
ing tangent space. Demanding the network’s (local) coordinate independence requires the
shared kernel’s equivariance under local gauge transformations. This gauge equivariance
constraint is exactly the G-steerability constraint discussed above.

local coordinate independence <=  gauge steerable kernels

Intuitively, a kernel’s steerability regulates G-ambiguities of reference directions by guaran-
teeing that their responses in different alignments differ merely by some G-transformation.
Steerable kernel responses therefore encode both the gauge independent content of the signal
in their field of view, and its geometric pose relative to the chosen gauge.

"Mathematically, gauges are formalized as local trivializations of the tangent bundle.
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The active counterpart of passive local gauge transformations are independent active trans-
formations of signal patches in each kernel’s local field of view (keeping the gauges fixed).
As in the passive case, the kernel’s GG-steerability ensures that their responses transform
equivariantly, i.e. encode the same content in a different pose.
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active

=
gauge transformation

(Lizards and butterflies adapted under the Creative Commons Attribution 4.0 International license| by courtesy of Twitter.)
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Theoretical and practical significance XVii

As mentioned above, we can in general not assume Riemannian manifolds to have non-
trivial symmetries (called isometries). However, if a manifold happens to have a non-trivial
isometry group, it is natural to ask for the network’s isometry equivariance, i.e. the property
to commute with isometry group actions on signals. Our coordinate independent CNNs
satisfy this property by construction (the details depend on the choice of structure group G).

coordinate

independent
_—

convolution \\

isometry l action isomctryl action

coordinate

independent
é

\ convolution

(Lizards adapted under the Creative Commons Attribution 4.0 International [license|by courtesy of Twitter.)

This result closes the loop to our Euclidean steerable CNNs above, which were defined by
requiring the networks’ global transformation equivariance. In fact, the gauge theoretic for-
mulation of coordinate independent CNNs reduces on Euclidean spaces to steerable CNNSE

Theoretical and practical significance

The primary theoretical contribution of the gauge theory of “Equivariant and Coordinate In-
dependent CNNs” is that it represents a unified theory of convolutional networks, which is
capable of explaining many independently proposed CNN architectures in one single frame-
work. To substantiate this claim, we review more than 100 different models from the liter-
ature, showing for each single one how it can be viewed as a specific instantiation of our
general formulation. An overview of these models — ranging from Euclidean CNNs over po-
lar, spherical, icosahedral and Mobius CNNs to convolutional networks on general surfaces
and meshes — is given in Table[T4.T|on page 273]

The reformulation of these networks as coordinate independent CNNs does not only clarify
their mutual relations, but implies in addition that all of them are actually equivariant under
local gauge transformations. This insight is remarkable, since these models were usually
conceived with solely global transformations in mind.

Applications: Above, we were mainly considering image processing tasks as exemplary
applications, however, coordinate independent CNNs are applicable to arbitrary types of
signals or fields (including e.g. vector or tensor fields) on any Riemannian manifold.

""'The networks are on Euclidean spaces not only isometry equivariant, but Aff(G)-equivariant.
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Classically, equivariant networks were proposed for applications with
global symmetries, where they were shown to be up to 10x more data
efficient than non-equivariant models [329]. They are of particular im-
portance for biomedical imaging tasks, where training data is typically
scarce and accurate results are of greatest societal relevance.

A probably less expected result is that equivariant CNNs outperform non-equivariant models
even in applications without global symmetries. For instance, we find that replacing conven-
tional CNN layers with their rotation steerable counterparts reduces the error rate in image
classification tasks with globally preferred directionality by up to 25%; see Section
The filter bank on the left shows convolution kernels of a non-
steerable CNN which was trained in a similar setting. It is ap-
parent that the kernels learned to respond to oriented patterns
in any possible direction — gauge equivariant layers incorporate
such symmetries of the neural connectivity by design, alleviating
the model from the burden of having to learn it explicitly.

Our theory explains CNNs
on manifolds of arbitrary L el lll"'lﬂmmmmn“ R e e
dimensionality d. For in-
stance, audio signals are sampled on d = 1 time axis. Translation equivariance makes the net-
works generalize over different points in time, while scale equivariance makes them genera-
lize over (local) pitch-shifts. Typical examples for d =3 dimen-
sions are videos, point clouds, or voxel images like fMRI scans of
the brain. Specifically for the latter, one could alternatively think
about processing signals directly on the d = 2-dimensional curved
surface of the cerebral cortex. Coordinate independent CNNs would
describe all of these approaches in a common language.

A particularly exciting new application area is “Al for
science”, which employs neural networks as computa-
tional tools in the physical and life sciences. The rele-
vant laws of nature are usually characterized by a rich set
of a-priori known symmetries (e.g. Lorentz invariance),
which should be incorporated into the models. Once
again, gauge symmetries play an important role: for in-
stance, local patterns in molecules, like the highlighted
---N-CHs, reappear multiple times in different poses.

Equivariant CNNs have also proven useful in reinforcement learning. For
example, the game board and rules of “Go” are invariant under reflec-
tions and rotations by /2. This implies a corresponding equivariance
requirement on the learned policy in the sense that a transformed state
should result in accordingly transformed actions. Our implementa-

tion of steerable CNNs has already been used for multiple reinforcement

learmng and robotic control tasks [216} 314} 360, 312 129 (138, (188l 313 B13].

As these examples demonstrate, there is a wide variety of applications that rely on pro-
cessing spatial signals. Symmetries, whether global or local, abound in such tasks. In all
of these cases, “Equivariant and Coordinate Independent CNNs” explain how convolutional
networks can be constructed, and how the tasks’ symmetries can be taken into consideration.
The unified formulation enables thereby to transfer insights between different applications.
(Graphics on this page adapted from Kim et al. [T49]], Krizhevsky et al. [[66l|, Winkler et al. [330]l,[Freepik| and Rabich [237].)
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CHAPTER 1

Introduction

Computational methods became in the recent decades more and more relevant for a wide
range of applications. The underlying algorithms are classically hardcoded, that is, the pro-
grammer specifies explicitly how the algorithms process data. While this approach is suitable
for tasks with tightly controlled input and output spaces, it becomes quickly infeasible for
more complicated tasks like computer vision or speech recognition, where the data to pro-
cess exhibits substantial variability. Machine learning algorithms aim to resolve this issue
by replacing hardcoded algorithms with adaptive models that are fitted to data.

While the machine learning paradigm takes the burden of hardcoding an algorithm from the
programmer, the issue with tasks of increasing complexity remains — it manifests here in an
increased demand for training data, which quickly becomes infeasible as well. A large part of
machine learning research is focused on easing this issue by incorporating prior knowledge
about the learning task into the machine learning model. One of the arguably most successful
approaches is that of group equivariant models. Equivariant learning algorithms hardcode
symmetry properties or invariances of the learning task directly into the space of models to
be optimized over, which greatly enhances their data efficiency.

A prototypical example of this design principle are convolutional neural networks (CNNs)
[175,[166]. Conventional CNNs process signals on Euclidean spaces — for instance images —
and exploit their spatial structure via a local neural connectivity with spatially shared
synapse weights. Since the same convolution kernel (neural connectivity) is applied at each
point in space, convolutions are translation equivariant maps — any translation of their input

Figure 1.1: Convolutions
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(b) Aerial image (c) Equivariance diagram of a generalized Euclidean CNN

Figure 1.2: Left: Microscopy and aerial images are examples of signals that do not exhibit a preferred
notion of directionality. Patterns like cell boundaries or streets occur therefore not only at different
locations, but also in different rotations and reflections. Right: Neural networks processing such data
should generalize their inference over these additional geometric transformations. Formally, this is
captured by demanding that they are equivariant under (commute with) the extended group of symme-
tries. Conventional CNNs are merely translations equivariant, but disregard other transformations.
(Lizards adapted under the Creative Commons Attribution 4.0 International|license|by courtesy of Twitter.)

results in a corresponding translation of their output, as visualized by the commutative di-
agram in Fig. [[.LI] As a consequence, convolutional networks generalize their inference
automatically over spatial positions, that is, they do not explicitly need to relearn how to
process a given pattern when it reappears at a different location. Due to their improved data
efficiency and robustness, convolutional networks are nowadays de-facto the standard mod-
els for processing spatially structured data like audio, images, volumetric signals or videos.

Given the considerable empirical success of conventional Euclidean CNNs, there is a great
interest in extending convolutional models to

1. be equivariant under larger symmetry groups, and > Fig.[1.2]

2. process signals on more general domains. > Fig.[T4]

This work presents a gauge theory of Equivariant and Coordinate Independent Convolu-
tional Networks on Riemannian manifolds which addresses both of these points. To offer an
easy entry, and following the historic development, Part[l|begins by introducing equivariant
convolutions on Euclidean spaces (“steerable CNNs”), before Parts |lI| and develop the
full differential geometric formulation. Part[[V] demonstrates the generality of this formu-
lation by explaining a vast array of convolutional networks from the literature as specific
instantiations of coordinate independent CNNs; see Table[T4.1] on page[273]

The remainder of this introductory section is accordingly split into a high level overview of
the Euclidean and Riemannian formulations of coordinate independent CNNs, and applica-
tions thereof. A detailed outline of this work’s contents follows on page [I5] The preface
offers a less technical but more visual introduction and motivation.
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(a) Rotation steerable kernels (b) Reflection steerable kernels

Figure 1.3: Simple examples of steerable convolution kernels, which guarantee an equivariant mapping
between feature fields of different types (i.e. with different transformation laws). For simplicity, all
examples assume scalar input fields, such that the multiplicity of kernel channels is determined by the
output feature vector dimensionality. Left: SO(2)-steerable kernels obey a rotation equivariance con-
straint on their angular part; their radial part is unconstrained. A mapping from scalar to scalar fields
requires isotropic kernels, while a mapping to vector fields requires a circular harmonic angular part
of frequency one. Higher order circular harmonics result in feature vectors that transform according to
higher order irreducible representations of SO(2). Note that the first two examples correspond in the
infinitesimal limit to the Laplace and gradient operator [137]. Right: Reflection steerable kernels ex-
hibit some kind of reflectional symmetry. Symmetric and antisymmetric kernels map scalar input fields
to scalar or pseudoscalar output fields, respectively, the latter defined by a negation of their sign under
reflections. A mapping to fields transforming according to the two-dimensional regular representation
of the reflection group is performed by a convolution with a kernel whose two channels are reflected
copies of each other. Regular representations explain the widely used group convolutions [52, [162]
from a representation theoretic perspective; see Theorem@

Equivariant CNNs on Euclidean spaces > Part

In many applications, characteristic patterns in the signal appear not only at arbitrary loca-
tions, but also in arbitrary directions or scale; see for instance Figs. [[.2a] and [T.2b] While
generalizing over translations, conventional CNNs disregard such additional geometric fac-
tors of variation, that is, they need to explicitly learn over and over again how to process
a given pattern in any single geometric pose it may appear in. Quite some effort has been
made to alleviate this shortcoming by extending the equivariance properties of convolutional
networks to larger symmetry groups, as visualized in Fig. Such generalized equivariant
CNN s are guaranteed to share their inference over the extended group of symmetries, which
makes them even more data efficient and robust as compared to conventional CNNSs.

In recent years, the research community made major progress in developing equivariant
Euclidean CNNs and demonstrated their superior empirical performance. However, while a
plethora of equivariant model architectures has been proposed, most publications considered
very specific settings and came up with their own nomenclature, notation and formulation,
making it increasingly hard to keep an overview and understand how different models relate
to each other. The first part of this work presents the theory of Euclidean steerable CNNs
[531 13231 1322} [173] [137, [40], which unifies many of the proposed models in a common
representation theoretic framework. Different architectures are shown to differ mainly in
the considered symmetry groups and feature field types, i.e. the specific transformation laws
(group representations) of their feature spaces. A geometrically consistent mapping between
fields of different types is guaranteed by some form of equivariant convolution operation.
‘We show that all of these operations can be abstractly described as conventional convolutions
with symmetry-constrained “group steerable” kernels, some examples of which are shown

in Fig. [[3]

Motivation
& overview
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To cover a wide range of settings, we consider affine groups Aff(G) := (R, +) x G, which
consist of translations (R?, 4-) of R? and transformations in some choice of structure group
(or stabilizer subgroup) G < GL(d) The latter describes for instance rotations, reflections,
shearing or scaling, and controls the desired level of equivariance. Conventional CNNs,
which are merely translation equivariant, are covered for the trivial group G = {e}.

The feature spaces of steerable CNNs consist of feature vector fields, i.e. fields of feature
vectors that are attached to each point of Euclidean space. Feature fields differ from conven-
tional feature maps in that they are equipped with an affine group action. The specifics of
the action depend on their field type — common examples are scalar, vector or tensor fields,
visualized in Fig. or pseudoscalar and regular feature fields, shown in Fig. Formally,
field types are G-representations p (Def.[B.5.1), and the feature spaces (spaces of feature fie-

1ds) are Aff(G)-representations IndgH(G)p that are induced from the field types (Def. .

Any layer (network operation) of a steerable CNN is required to be equivariant, which means
that it needs to ensure that any transformation of its input field results in a corresponding
transformation of its output field. A common approach to introduce novel equivariant net-
work layers is to first specify their function definition, and subsequently prove their equiv-
ariance. The issue with this approach is that the operations are found heuristically instead of
being derived from first principles, which makes it hard to assess their generality and does
not cast light on how further equivariant operations could be found. We adopt therefore a
different strategy, which proceeds instead by 1) assuming a flexible ansatz for the layer (e.g.
linear maps), 2) fixing desired transformation laws (field types) of its input and output, and
3) solving the implied equivariance constraint on the ansatz. This approach applies to arbi-
trary groups and field types, and allows hence to solve for a whole class of equivariant layers
simultaneously, resulting in a general theory of equivariant Euclidean convolutions.

A central result following from this approach is that Aff (G)-equivariant layers rely generally
on an Aff(G)-invariant neural connectivity. In particular, the translational subgroup requires
spatial weight sharing, while the structure group G constrains this shared connectivity to be
G-steerable (i.e. G-equivariant). Specifically for linear maps as ansatz for the layer, spatial
weight sharing implies that it is necessarily a convolution, while G-steerability imposes
an equivariance constraint on the convolution kernel; see Fig. [I.3] As a consequence, all
that is required to extend convolutions to be affine group equivariant is to ensure that the
convolution kernel satisfies the steerability constraint.

Intuitively, G-steerable kernels summarize the features in their field of view such into an out-
put feature vector that any G-transformation of their field of view results into a corresponding
G-transformation of the summarizing feature vector. A convolution with a G-steerable ker-
nel results thus in a whole field of output feature vectors with the correct transformation law.
Steerable kernels are formally equivalent to representation operators from quantum mechan-
ics (e.g. scalar, vector or tensor operators). A generalization of the Wigner-Eckart theorem
describes their construction from harmonic basis functions like circular or spherical har-
monics (Figs[5.2]and[5.3) and Clebsch-Gordan coefficients. The latter imply transition rules
between feature field types, similar to the state transition rules in quantum mechanics.

As steerable kernels perceive only a local field of view, it is intuitively clear that steerable
CNNss are not only equivariant w.r.t. global Aff(G)-transformations of the signal, but also
w.r.t. independent local G-transformations — “gauge transformations” — of patterns; see
Fig.[I.9b] This property can not be described in the classical Euclidean theory of steerable
CNN:s, but is proven in their differential geometric generalization, which is introduced next.

'GL(d) is the general linear group of R, consisting of all invertible d xd matrices, and G < GL(d)
means that G is some subgroup of it (Def.[B.2.T). x denotes semidirect products (Def.[B.2.3).
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Figure 1.4: Characteristic patterns in sig-
nals on general Riemannian manifolds oc-
cur commonly at different locations and in
arbitrary orientations. Convolutional net-
works address the former via their spa-
tial weight sharing. We show that the
latter requires convolution kernels to be
equivariant under local gauge transforma-
tions. If the manifold has global sym-
metries (isometries), e.g. rotations of the

(a) Cosmic microwave (b) Wall shear stress on sphere S 2, the network can be designed to
background on S? [296]] an artery surface be equivariant w.r.t. these isometries.
Coordinate independent CNNs on Riemannian manifolds > Parts @ &

A related line of research investigates the generalization of convolutional networks to
more general domains like Riemannian manifolds. Figs. [I.4a] and [I.4D] shows the cos-
mic microwave background on the sphere and the wall shear stress of an artery’s sur-
face as exemplary signals on non-Euclidean spaces that have been processed by con-
volutional models 291]. As in the Euclidean case, distinctive patterns of fea-
tures are usually appearing at different locations, implying that spatial weight sharing
—1i.e. a convolutional architecture — is still desirable.

A major complication in comparison to flat spaces is that manifolds do not come with a
preferred choice of reference direction, along which a convolution kernel could be aligned to
measure features; see Fig. E} Since no reference direction is preferred, the kernel needs to
be aligned arbitrarily on the manifold. The central theme of Parts [ and [[TT] of this work is
to regulate this arbitrariness by making the networks’ data processing independent from the
specific alignment of convolution kernels. As we will show, this requires kernels again to be
steerable, just as in the Euclidean setting. Since the response of a steerable kernel transforms
predictably when its alignment is changed, the extracted information content is guaranteed
to be the same for any (arbitrary) choice of alignment.

The use of steerable kernels makes the feature spaces of coordinate independent CNN's

1. covariant under (passive) coordinate transformations (gauge transformations), and

2. equivariant under active transformations of the input signal.

In contrast to the Euclidean case, we demand only the networks’ covariance (coordinate
independence), from which equivariance follows automatically.

To make these statements more precise and explain the necessity for steerable kernels, we
need to formalize the notion of “kernel alignment” on a manifold mathematically. We do so
by identifying the alignment of a kernel at some point p of the manifold M with a choice of
local reference frame — a gauge — of the corresponding tangent space 1, M. Gauge transfor-
mations are local passive transformations between choices of reference frames and, hence,
kernel alignments. Fig.[T.7]visualizes the concept of aligning kernels along reference frames.
Aligning a kernel relative to the canonical (uniquely preferred) reference frame field of the
Euclidean plane R2, shown in the top, results in the usual kernel field of Euclidean CNNs.
A different frame field, shown in the bottom, implies an alternative kernel field and thus
network. As stated above, the choice of frames is on most manifolds inherently ambigu-
ous, such that no specific kernel alignment is preferred. Fig. [I.5] visualizes this issue for the
sphere, where frames are only unique up to rotations.

Motivation
& overview
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Figure 1.5: Different observers A and B may perceive a pattern of features from a different “view-
point”. The satellites in our application are convolution kernels which summarize their local field of
view around p into a feature vector at p. Their “viewpoint” is a choice of local reference frame (gauge)
at p, along which the kernel is aligned. Since the observations from both viewpoints represent the
same pattern, the kernel responses should contain equivalent information, that is, the inference should
be coordinate independent. This constrains the convolution kernels to be steerable, i.e. equivariant
under local gauge transformations (changes of reference frames). The level of gauge equivariance is
determined by the structure group G, which depends both on the manifold and the application.

(Lizards adapted under the Creative Commons Attribution 4.0 International|license|by courtesy of Twitter.)

The level of ambiguity in the choice of frames depends on the geometric structure with which
the manifold is equipped. Such structure often allows to disambiguate reference frames up
to certain symmetry transformations (gauge transformations); see Fig.[T.6] This statement is
best explained with a few examples:

= anaked smooth manifold M does not come with any preference in the choice of frames.
Gauge transformations between general frames are arbitrary invertible linear maps, that
is, they take values in the general linear group G = GL(d), where d = dim(M).

= an orientation of the manifold allows to distinguish left-handed from right-handed
frames. Gauge transformations between frames of either handedness are orientation
. . _ JF . . . . .o,
preserving, i.e. they are elements of G = GL™ (d) (invertible linear maps with positive
determinant).

= avolume form allows to distinguish unit volume frames. Gauge transformations are then
volume preserving, that is, they take values in the special linear group G = SL(d).

= the metric structure of a Riemannian manifold allows to measure distances and angles
in the tangent spaces and therefore allows to distinguish orthonormal frames. Gauge
transformations between orthonormal frames are rotations and reflections in the orthog-
onal group G = O(d).

= together, an orientation and metric imply oriented orthonormal frames. Gauge trans-
formations are then only rotations in the special orthogonal group G = SO(d).

a frame field consists of a unique frame at every point of the manifold. Gauge transfor-
mations are in this case trivial, which is described by the frivial group G = {e}.

All of these geometric structures have in common that they define a preferred subset (sub-
bundle) of frames such that gauge transformations take values in some structure group
G < GL(d). To emphasize the central role of the structure group G, such structures are
denoted as G-structures GM . Visual examples of G-structures for different structure groups
G and manifolds M are given in Fig.[I.§


https://github.com/twitter/twemoji/blob/gh-pages/LICENSE-GRAPHICS
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Figure 1.6: Exemplary G-structures GM for different structure groups G and manifolds M. The
structure group G specifies which values gauge transformations can take, and therefore how “big” the
subset of distinguished frames at each point is. Fig. shows the canonical {e}-structure (frame
field) of R?, corresponding to conventional Euclidean CNNs. The G-structures in Figs.
andadd reflected (G = R), rotated (G = SO(2)) and scaled (G = &) frames, respectively. They
correspond to the Aff(G)-steerable CNNs from PartEl G-structures are usually not unique: Figs.
and show alternative G-structures on R? (corresponding to an alternative metric w.r.t. which
their frames are orthonormal). They might not be practically relevant but demonstrate the flexibility
of our framework. The G-structures in Figs. [[.6c| and [L.6f] correspond to polar coordinates and model
SO(2) and O(2)-equivariant (but not translation equivariant) CNNs. As G-structures are required to
be continuous, the singularity at the origin O is removed. Fig. shows the usual SO(2)-structure on
the 2-sphere S2, which is underlying SO(3)-equivariant spherical CNNs. Spherical coordinates, which
are singular at the (cut out) poles, imply the {e}-structure in Fig.[1.6kl Topological obstructions may
prevent continuous (non-singular) reductions of the structure group. For instance, topological spheres
as in Fig. require at least G = SO(2), while non-orientable manifolds, like the Mgbius strip in
Fig. require at least G = R to admit the G-structures’ continuity. G-steerable kernels are hence
strictly necessary for continuous convolution operations on topologically non-trivial manifolds.
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Figure 1.7: A key property of convolutions is
that they share weights over the manifold. The @ @ @
alignment of a convolution kernel is formal-

. 1
—
ized by identifying it with a choice of refer- L L L @ @ @

ence frame. Different frame fields imply there-
fore different (convolutional) kernel fields.

The choice of frames, called gauge, is often

not unique. The ambiguity in this choice is en- N ¢
= © @

coded in G-structures; shown in Fig.[T.6] To
account for the arbitrariness of frames, the ker- -

nels are then required to be G-steerable; see \/v A4 @ @ @
Figs.[I.3]and[I.§]

Given a manifold with G-structure, we are confronted with an inherent G-ambiguity in the
choice of frames. Facing the same issue during the development of his general theory of
relativity, Albert Einstein proposed the principle of (general) covariance [80,[79]:

“Universal laws of nature are to be expressed by equations
which hold good for all systems of coordinates,
that is, are covariant with respect to any substitutions whatever.”

Along the same lines, we formulate a principle of G-covariance for deep learning:

“Convolutional neural networks are to be expressed by equations
which hold good for arbitrary frames of the G-structure,
that is, are covariant with respect to any G-valued gauge transformations.”

An important difference to Einstein’s general covariance is that we allow for arbitrary struc-
ture groups G < GL(d), while general relativity is exclusively considering general linear
gauge transformations in G = GL(d). Our theory allows therefore to describe conventional
non-covariant CNNs (G = {e}), generally covariant CNNs (G = GL(d)) and the whole
spectrum of models in between.

The principle of G-covariance demands in particular the coordinate independence of the
networks’ feature spaces. Feature vectors are therefore necessarily associated with some
G-representation p, which determines their transformation law under gauge transformations.
The particular choice of group representation determines hereby the geometric type of a
feature vector field. Note that such fields are the direct differential geometric generalization
of the Euclidean feature fields of steerable CNNs, here defined with a focus on passive local
gauge transformations of individual feature vectors instead of active Aff(G) transformations
of the global field. The latter is in the differential geometric setting described by pushforward
actions on the feature field.

Any network layer is required to respect the features’ (passive) transformation laws, that is,
it needs to guarantee that its outputs transform as expected. Specifically for convolutions,
G-covariance demands that applying a shared kernel relative to different G-frames should
evoke the same response up to a gauge transformation, which requires the G-steerability
(gauge equivariance) of convolution kernels. In this context, one may think of G-steerable
kernels as measuring features relative to reference frames without introducing a dependence
on their absolute alignment, which would break the G-equivalence of gauges. Fig.[1.8]visu-
alizes the sharing of a reflection steerable kernel along different gauges, giving an intuition
on how the responses’ G-covariance comes about.
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Figure 1.8: Sharing of a reflection steerable kernel along two different gauges (red and green) of a
reflection G-structure. Due to the kernel’s reflection equivariance, the choice of gauge is in so far
irrelevant that it will affect the responses only by a predictable gauge transformation, guaranteeing the
features’ reflection covariance. Specifically, antisymmetric kernels map gauge invariant scalar fields to
pseudoscalar fields, which flip their sign under gauge transformations. A symmetric kernel (Fig.[T.3b}
left) would have resulted in a gauge invariant response, i.e. another scalar field.

B\ R

| NG

(a) Passive local gauge trafo (b) Active local gauge trafo (c) Active global isometry action

Figure 1.9: An overview of the types of transformations relevant for coordinate independent CNNs.
Left: Passive local gauge transformations are transformations between local reference frames of the
manifold’s tangent spaces. “Locality” refers to the fact that each tangent space has its own frame, and
therefore independent gauge transformation. “Passive” means that only the coordinate representations
of quantities like features change, while the actual geometric objects stay the same. “Active” transfor-
mations, by contrast, act on abstract geometric objects themselves. Middle: The active variant of local
gauge transformations transforms small patches of features independently from each other. A local
observer (e.g. convolution kernel) can’t distinguish between active and passive gauge transformations;
see Fig. Right: Isometries are the (distance preserving) symmetries of Riemannian manifolds.
They act via “pushforward” on feature fields, which can be thought as carrying the fields along with the
group action. The isometry group of a manifold may be trivial. All: The features of coordinate inde-
pendent CNNs are covariant under passive gauge transformations and equivariant under active gauge

transformations and isometry group actions on signals.
(Lizards and butterflies adapted under the Creative Commons Attribution 4.0 International|license|by courtesy of Twitter.)
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]

passive transformation active transformation

Figure 1.10: From the viewpoint of a local observer, passive gauge transformation of their own refer-
ence frame are equivalent to (inverse) active gauge transformation of the signal in their local field of
view. In other words, observers (kernels) perceive features relative to their own frame of reference.

(Lizards adapted under the Creative Commons Attribution 4.0 International|license|by courtesy of Twitter.)

Besides being covariant under passive gauge transformations, which transform between ref-
erence frames but keep the actual signals on the manifold fixed (Fig.[T.9a)), coordinate inde-
pendent CNNs are equivariant under active transformations of the signals themselves.

Gauge Firstly, steerable kernels respond by definition equivariantly to active G-transformations of
equivariance  featyres in their field of view. The networks as a whole are therefore equivariant under inde-
pendent “active gauge transformations” of local patterns, shown in Fig.[T.99] Fig.[T.T0|clari-
fies how this relates to the models’ G-covariance: a kernel’s response depends generally only
on its relative alignment towards the signal, such that passive transformations of the align-
ment and (inverse) active transformations of the signal result in the same change of kernel
response. If the kernel is in addition G-steerable, its responses change predictably, which is
in the passive and active case referred to as G-covariance and G-equivariance, respectively.

Isometry Secondly, the manifold may have global symmetries, which, in the case of Riemannian mani-
equivariance - fo]ds, are distance preserving maps, called isometries. These isometries act via pushforward
on feature fields, which can be thought of as “carrying features along” with the isometry
actionﬂ see Fig. We prove that a neural network is exactly then equivariant w.r.t. (a

subgroup of) isometries if their neural connectivity — or kernel field — is invariant:

isometry equivariant CNN <= isometry invariant kernel field

As visualized in Fig. [I.T1] this requires that the neural connectivity is 1) shared spatially
over the isometry orbits and 2) steerable under the isometry group’s stabilizer subgroups.

This result implies that the isometry equivariance of convolutions depends on the symme-
tries of their convolutional kernel field. Since we define convolutions as sharing kernels
along frames of the G-structure, their convolutional kernel fields inherit the symmetries of
their underlying G-structure; see Fig. for examplesﬂﬁ It follows as a corollary that
convolutions are equivariant w.r.t. that subgroup of isometries that are symmetries of the
G-structure. This result reduces the design of equivariant CNNs on manifolds to the design
of invariant G-structures. The reader is encouraged to revisit the exemplary G-structures in
Fig.[I.6]in regard to their symmetries and the implied equivariance properties.

Technically, this requires isometries that are principal bundle automorphisms of the G-structure.
3The specific choice of gauge is by the kernel’s G-steerability irrelevant.
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Figure 1.11: A neural network is isometry equivari-
ant if and only if its kernel field (neural connectivity)
is isometry invariant. This implies 1) spatial weight
sharing over the isometry orbits (colored rings) and
2) a constraint on the kernels to be steerable w.r.t.
their respective orbit’s stabilizer subgroup. The
SO(2) and O(2) actions on the egg have the same
orbits, on which — but not between which — kernels
are shared. While the stabilizers are for the SO(2)
action trivial (ignoring the poles), those for O(2) are
reflections, requiring an accordingly steerable con-
nectivity. Note that the notion of “invariance” de-
(a) SO(2)-invariant (b) O(2)-invariant pends here on the field types, and might for instance

kernel field kernel field imply antisymmetric kernels. The isometry equiv-

ariance of convolutions is discussed in Fig.[[.12}

Figure 1.12: Convolutional kernel fields are

constructed by aligning a convolution kernel VOV @ @ @
=

along (arbitrary) frames of a G-structure. They
are hence invariant under the G-structure’s L L L @ @ @
symmetries, and the implied convolution is
equivariant under the G-structure’s symme-
tries; cf. Fig.[T.I1} The top G-structure corre-
sponds therefore to a convolution that is equiv-
aIr)iant under horizontal (but not vertical) t(rlans— JL —H—~ <—n—'
lations, while the bottom G-structure implies a

=
fully translation and reflection equivariant con- Il Il |

volution operation.

Until now, we did not comment on why we consider Riemannian manifolds and isometries
instead of smooth manifolds and diffeomorphisms. The metric structure comes into play
since we consider spatially extended kernels, whose matching with features is performed
in geodesic normal coordinates. Specifically, the kernels are defined on flat space R?, and
shared along gauges over the manifold’s tangent spaces. To match them with features, the
feature fields are projected to the tangent spaces (or normal coordinates) by pulling (and
parallel transporting) them back along Riemannian exponential maps as shown in Fig. [0.1]
Since the exponential map depends on the manifold’s metric structure, this projection is de-
formed by non-isometric diffeomorphisms, which prevents the models’ full diffeomorphism
equivariance. To remedy this shortcoming, and extend the models to be diffeomorphism
equivariant, it would be necessary to replace the finite sized steerable kernels with steerable
partial differential operators, which model local interactions [[137]]. Due to the wide use of
spatially extended kernels in deep learning, we stick with this design choice throughout.

For Euclidean spaces M = R<, equipped with their canonical {e}-structure (Fig. ,
coordinate independent CNNs reduce to conventional Euclidean CNNs. Similarly, the
G-structures_in Figs. and recover the Aff(G)-steerable Euclidean CNNs
from Part [[I"| This claim holds in fact for general affine groups, not only for isometries,
i.e. G < O(d), since the Riemannian exponential map commutes on Euclidean spaces with
these more general symmetries. Note that coordinate independent CNNs allow to model
more general convolutions on Euclidean space than steerable CNNs since they allow for
alternative G-structures like those in Figs. [I.6b|or [T.6¢]

*There is a principal G-bundle isomorphism between these G-structures and Aff(G).

Difteo-
morphism
equivariance

Euclidean
CNNs
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Applications & literature review > Chapters @ & |10/and Part

The properties and practical utility of steerable and coordinate independent CNNs is demon-
strated in multiple chapters with an applied focus.

Chapter [0] presents an empirical evaluation of Euclidean steerable CNNs, verifying their
theoretically guaranteed generalization over affine transformations and showing their im-
proved data efficiency and convergence rates. Since they generalize in particular over local
gauge transformations, steerable CNNs are found to be highly useful even for natural images,
which have a globally preferred directionality imposed by the gravitational field. A bench-
mark study, which uses datasets with different global symmetries, clarifies which choices of
symmetry groups, field types and equivariant nonlinearities work best in practice.

Chapter[I0]describes and evaluates an exemplary implementation of coordinate independent
CNNs on the Mébius strip, equipped with the reflection group structure from Fig. [I.6]] The
model is empirically shown to be isometry equivariant and outperform a naive non-covariant
(and non-equivariant) implementation.

Part [[V] presents a comprehensive literature review on convolutional networks. It demon-
strates the generality of our differential geometric formulation of convolutional networks by
describing more than 100 models as specific instances of coordinate independent CNNs. As
coordinate independent CNNs allow for arbitrary structure groups, they explain even non-
covariant models (G = {e}) on manifolds, which fix some gauge heuristically, relative to
which they apply non-steerable ({e}-steerable) kernels. Chapter focuses specifically on
Aff(G)-equivariant convolutions on Euclidean spaces, proving in particular how coordinate
independent CNNs reduce in this setting to the classical formulation of steerable CNNs. Eu-
clidean convolutions that are based on polar or more general hyperspherical G-structures,
and are therefore rotation, but not translation equivariant, are discussed in Chapter[T6] Log-
polar coordinates result similarly in rotation and scale equivariant models. Chapter [17|de-
scribes O(3), SO(3), O(2) and SO(2)-equivariant spherical CNNs, and icosahedral approx-
imations thereof. Implementations on general surfaces are covered in Chapter [T8] Besides
describing the models in the literature, all of these chapters start by explaining the differ-
ential geometry and constructions like exponential maps or transporters on their specific
manifolds, which is helpful when implementing new models. An overview of the resulting
taxonomy of convolutional networks is given in Table[T4.T]on page 273

An implementation of G-steerable kernels and Euclidean steerable CNNs for arbitrary field
types of any structure group G < GL(d) is available in our PyTorch extension escnn [39]
(formerly e2cnn [38]]). The library is designed to abstract away most of the complicated
representation theory, such that the user only has to make basic choices like selecting the
symmetry group or feature field types. It has been widely used for tasks like aerial imag-
ing for object detection [116]], deforestation segmentation [214]], the processing of weather
data [[122] dendrite-core detection in material science [96], understanding the human ventral
visual stream [147]], fluid dynamics applications [317} 1341} 1225319]], molecular energy pre-
diction [40,353]], molecular recognition [14], fMRI imaging [[146], morphologic profiling of
cells and organelles [30], inverse problems [37], compressed sensing [168], reinforcement
learning, robotics and planning [216} (314} 360} 1312} [129, [138 [188, 1313} [315. 350]], pose
regression [219]], feature matching [227,19, 286 (176! [7], oriented keypoint detection [177],
object tracking [113]], symmetry detection [266], symmetry learning [313]], shape genera-
tion [305], 3d mesh generation from images [214], visual reasoning [208]], differential pri-
vacy [[123]], and other applications [354} 1260, 135, 143\ [137, 194, 331} 1145} 215} [104}, 189} [103}
104} 111419, 1241 190, 169} (155} 239, 218]].
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Figure 1.13: The invariance of the laws of nature under Poincaré (or Galilean) transformations implies,
and is implied by, the equivariance of the system’s time evolution. This mutual implication is analo-
gous to that between an equivariant neural network and its invariant neural connectivity; see Fig.
Similar to an observer in physics, an equivariant network may only perform relative measurements.
The deep learning analogue to the inertial frames in physics, related by Lorentz (or Poincaré) transfor-
mations, are frames of a G-structure, which are related by G-valued gauge transformations (or affine
group actions). The laws of nature and the inference of convolutional networks are both governed by
steerable (gauge equivariant) operators. (Trajectories generated with code from Kipf et al. [[1533].)

Relation to physics

Our formulation of Equivariant and Coordinate Independent Convolutional Networks shows
some striking similarities to theories in physics, which we briefly highlight here.

Field theories: First of all, the feature spaces of CNNs are spaces of feature fields, which
are similar to the fensor fields occurring all throughout physics. Mathematically, both are
formalized as associated bundle sections, and are hence described by gauge field theories.

Relativity: We find that equivariant predictions of convolutional networks are in one-to-
one correspondence with an invariant neural connectivity. Equivalently, invariant laws of
nature imply, and are implied by, an equivariant system dynamicsf|visualized in Fig.

Such invariances of physical laws are captured by the principle of relativity. The word “rel-
ativity” refers hereby to the fact that invariant laws of physics allow an experimenter only to
measure events relative to their frame of reference, but not in an absolute sense. Equivariant
CNN s have exactly the same property: they allow only for relative measurements of features,
but are constrained to be insensitive to their absolute pose. We can therefore claim to have
found a theory of relativity of neural networks.

In physics, one usually starts by studying the special theory of relativity, which considers flat
Minkowski spacetime and global Poincaré transformations between inertial frames. General
relativity generalizes this setting to curved spacetime and distinguishes local tetrad frames,
which are related by local Lorentz transformations. Similarly, we develop our theory of
equivariant CNNss first on flat Euclidean spaces, equipped with global affine group actions
that transition between affine charts (Def. [I5.1.1). Coordinate independent CNNs generalize

°Eq. (B-28) in Appendix [B.4|shows that this is a general property of equivariant maps.
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this setting to general Riemannian manifolds and local G-transformations between frames
of a G-structure. Note that all that is required to construct a relativistic neural network for
fields on spacetime is to choose the Lorentz group G = O(1,3) as structure group of a
coordinate independent CNN.

From a philosophical viewpoint, it was argued that the assumption of invariant laws of nature
is essential for our ability to discover them empirically. For instance, Eugene Wigner, a
Nobel prize winner who greatly contributed to the application of group theory in modern
physics, claimed in this context [328]:

“... if there were no phenomena which are independent of all but a
manageably small set of conditions, physics would be impossible.”

In a universe in which the laws of nature were not Poincaré (or Galilean) invariant, exper-
imental outcomes would depend on the experiment’s location, orientation and time, thus
preventing any reproducibility and being at odds with the scientific method itself. The situ-
ation in machine learning is remarkably similar: if we would not assume an invariant neural
connectivity (i.e. an equivariant network), the model would laboriously have to (re)learn
how to process a given pattern in every possible pose and location. Following Wigner’s
quotation, we retain:

If there was no inference which is independent of all but a
manageably small set of conditions, machine learning would be infeasible.

Differential operators & equations: A seeming difference between the two research ar-
eas is that the field equations in physics involve partial differential operators, while convo-
lutional networks are usually applying spatially extended kernels. We bridged this gap in
our publication [137], which augments convolutional networks with (steerable) partial dif-
ferential operators (PDOs). Interestingly, we found that common operators in physics, like
gradients, divergences, curl, or the Laplacian, are all examples of steerable PDOs — this
PDO steerability is actually necessary for the laws of nature to be invariantE]

Convolutions do furthermore play a great role in solving inhomogeneous, linear, translation
invariant partial differential equations (PDEs): their solutions may be given by convolutions
with Green’s functions, which are “impulse responses” of PDEs. Note the terms “linear” and
“translation invariant”, which are exactly the conditions from which we derive convolutional
network layers in Theorems [3.2.T)and .3.1] It would be interesting to investigate whether
convolutional network layers can be viewed as solving some linear neural PDE, whose in-
homogenity is given by the layer’s input feature map.

Representation operators: Finally, we found that our G-steerable kernels, which map
between feature fields, are mathematically equivalent to the representation operators from
quantum mechanics, which map between quantum states. Both are therefore described
by a Wigner-Eckart theorem [173]], which essentially identifies the admissible irreducible
G-representations that may be contained in the convolution kernel or quantum operator. The
implied state transition rules in quantum mechanics are therefore equivalent to the feature
transition rules in equivariant deep learning; see Fig.[5.4]

What is the reason for these similarities between physics and deep learning? The connection
is simply a consequence of both being geometric theories — all of the similarities are funda-
mental results of the underlying representation theory and differential geometry.

SFor these examples, invariant under Galilean instead of Poincaré transformations.
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1.1 Outline

This work is organized into four main parts and an appendix. Part|lj develops a theory of
affine group equivariant CNNs on Euclidean spaces. Feature spaces are formulated as group
representation spaces and network layers are equivariant maps between them. Convolutions,
or more general forms of weight sharing, are shown to follow from the requirement for group
equivariance. Parts[[l] and [ITI] generalize these models to Riemannian manifolds. Part[IT]in-
troduces this generalization in an easily accessible language, expressing feature fields and
network layers relative to local coordinates (fiber bundle trivializations). The demanded
coordinate independence (covariance) of the models requires features to be associated with
some transformation law. Network layers are required to guarantee the correct transforma-
tion behavior of features. Part [II] formalizes these coordinate independent neural networks
in terms of associated fiber bundles. This allows for a global, coordinate free formulation,
which is particularly useful when investigating the networks’ isometry equivariance. The
definitions from Part [l are recovered when expressing the coordinate free operations in lo-
cal bundle trivializations (coordinates). The reader not familiar with fiber bundles may skip
Part IT]] at a first pass. Part[IV]turns to applications on specific geometries. It provides in
particular a detailed review of convolutional networks from the literature and reformulates
them as instantiations of coordinate independent CNNs for specific manifolds, G-structures
and field types. The appendix covers mathematical background, discusses further details
omitted in the main parts, and gives long proofs.

Detailed Overview

Part[l: Chapter[2]gives a brief introduction to the general concept of invariant and equiv-
ariant models in machine learning. The basic design principle and advantages of such mod-
els are discussed in Section Section clarifies how equivariant neural networks may
be constructed as sequences of equivariant layers.

Chapter [3| reviews conventional Euclidean CNNs [175] from a group theoretic perspective.
The feature spaces of conventional CNNs are in Section formalized as regular transla-
tion group representations, consisting of feature maps that are equipped with a translation
group action. Section derives typical CNN layers, like convolutions, bias summation,
nonlinearities and pooling operations, from the requirement for the networks’ translation
equivariance. Such layers will generally exhibit some form of spatial weight sharing, which
means that they act by applying some shared local operation at each point of the space.

Chapter [4] generalizes these constructions and results to affine symmetry groups, resulting in
Euclidean steerable CNNs [5313231[322] 561137, [173,/40]. Affine groups Aff(G) are briefly
introduced in Section .1} The feature spaces of steerable CNNs are in Section 4.2] defined
as induced affine group representations. They consist of feature vector fields, which differ
from conventional feature maps in that they come with an affine group action instead of just a
translation group action. Affine group equivariant layers are derived in Section[d.3] Just like
conventional CNNs, these layers require spatial weight sharing, however, now with an addi-
tional G-steerability constraint on the shared neural connectivity. Section f.4] explains how
networks with a varying level of equivariance in different layers may be constructed and how
this approach can be useful. Section[d.5|comments on group convolution based networks and
proves that they are a special case of steerable CNNs for regular G-representations.

Steerable convolutions are ultimately just convolutions with G-steerable kernels, which are
the subject of Chapter[5} Section[5.1]argues that steerable kernels form a vector subspace of
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general convolution kernels and explains how these can be parameterized for learning. To
build an intuition on such kernels, Section [5.2] derives some of them for the simple example
of the reflection group. A general solution of the kernel constraint for arbitrary represen-
tations of compact groups G in terms of a generalized Wigner-Eckart theorem is presented
in Section[5.3] Section [5.4] gives an overview of some alternative approaches to solving the
steerability constraint and parameterizing steerable kernels.

Chapter [0] investigates the properties of steerable CNNs empirically and benchmarks differ-
ent design choices like e.g. symmetry groups, field types or equivariant nonlinearities.

Part[ll; The second part of this work formulates a gauge theory of convolutional networks
on Riemannian manifolds, expressed in local coordinates.

Chapter [7)introduces the underlying mathematical framework of gauges, gauge transforma-
tions and G-structures. Specifically, Section [7.1]defines gauges as choices of isomorphisms
TM = R? which associate numerical coefficients in R to tangent vectors in T, M.
A gauge determines not only how geometric quantities like tangent vectors are “measured”,
but implies also coordinate expressions for functions that map between them. Section
explains such induced coordinate expressions of functions mapping between tangent spaces.
As gauges are in one-to-one correspondence with choices of reference frames, a family of
geometrically distinguished gauges corresponds to a bundle of preferred frames. These so-
called G-structures are briefly discussed in Section [7.3]

The goal of Chapter |8 is to define coordinate independent feature spaces on Riemannian
manifolds. Section [8.1]introduces coordinate independent feature vector fields, which gen-
eralize the Euclidean feature fields from Part[[]to the differential geometric setting. As in the
case of tangent vectors, the numerical coefficients of feature vectors transform when transi-
tioning between reference frames. The gauge transformation laws (“field types”) of feature
vectors determine in particular their parallel transport and their pushforward when being
acted on by isometries, which are described in Sections [8.2]and [8.3] respectively.

Chapter [9] develops neural networks that map between feature fields. Pointwise operations,
like bias summation, 1x1-convolutions and nonlinearities, are discussed in Section[9.1} Sec-
tion focuses on coordinate independent convolutions with spatially extended kernels.
Each of these operations is initially introduced without the weight sharing assumption, that
is, allowing for instance for a different kernel at each point of the manifold. These ker-
nels (or biases or nonlinearities) are beyond the requirement for coordinate independence
not constrained in any way. However, when requiring spatial weight sharing, they become
constrained to be gauge equivariant (G-steerable) since only equivariant quantities can be
shared in a coordinate independent manner. Section[9.3]gives a concise proof of the isome-
try equivariance of coordinate independent convolutions in terms of local coordinate expres-
sions. The key idea here is that isometries can be viewed as inducing gauge transformations
(passive interpretation), which are explained away by the kernels’ gauge equivariance.

Chapter [I0] describes an implementation of orientation independent convolutions on the
Mobius strip. After reviewing the geometry of the Mobius strip in Section [10.1] multiple
types of feature fields are defined in Section[I0.2] The following Sections[10.3|and[T0.4] for-
mulate orientation independent CNNss analytically and describe their implementation. Sec-
tion[10.5]closes with an empirical evaluation of Mobius convolutions.

Part[[TlI: The third part formalizes and extends the content of Part[II] in the language of
associated fiber bundles.

Chapter [IT] defines the relevant associated bundles and their local trivializations. A general
introduction to fiber bundles is given in Section [II.1} Sections [I1.2] and [T1.3] introduce
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the tangent bundle 7'M, the frame bundle F'M, G-structures GM and G-associated feature
vector bundles 4. Feature fields are globally defined as sections of feature vector bundles.
Local bundle trivializations (gauges), which are discussed in Section [11.4] express these
bundles in coordinates, thereby recovering our definitions from Part [lI} We demonstrate in
particular how local trivializations of the different bundles induce each other, such that their
gauge transformations (transition maps) are synchronized. Section [TT.5]discusses parallel
transporters on G-bundles.

Chapter [T2] reformulates the coordinate independent networks from Chapter [0 in terms of
fiber bundles. 1x1-convolutions are in Section [I2.1] described as specific vector bundle
M-morphisms. Alternatively, they may be viewed as sections of a homomorphism bun-
dle. Section[I2.2]introduces coordinate free kernel fields and kernel field transforms. These
operations are similar to coordinate independent convolutions but are not required to share
weights, i.e. may apply a different kernel at each spatial location. Convolutional kernel fields
are constructed by sharing a GG-steerable (gauge equivariant) kernel over the whole manifold.
A Coordinate free formulation of convolutions is then defined as kernel field transforms with
convolutional kernel fields. When expressing the coordinate free formulation of convolutions
relative to local trivializations (gauges), we recover the coordinate expressions of convolu-
tions from Section

The isometry equivariance of convolutions is investigated in Chapter After introduc-
ing isometries, Section [T3.1] discusses their pushforward action on the fiber bundles. These
action may again be expressed in local trivializations, resulting in the formulation from Sec-
tion [8.3] Section [I3.2] defines the action of isometries on kernel fields and proves that the
isometry equivariance of a kernel field transform implies the isometry invariance of its ker-
nel field and vice versa. Coordinate independent convolutions are proven to be equivariant
under the action of those isometries which are bundle automorphisms (symmetries) of the
G-structure GM. Section [13.3]investigates isometry invariant kernel fields in greater detail
and proves that they are equivalent to kernel fields on quotient spaces of the isometry ac-
tion — intuitively speaking, isometry invariant kernel fields are required to share kernels over
the isometry orbits. This result implies in particular that isometry equivariant kernel field
transforms on homogeneous spaces are necessarily coordinate independent convolutions.

Part[IVE  The fourth part of this work demonstrates that a vast number of convolutional net-
works from the literature can be interpreted as applying coordinate independent convolutions
for some choice of G-structure and field types. It starts in Chapter [I4] with a general discus-
sion about the design choices of coordinate independent CNNs. Table [I4.1) on page
gives an overview and classification of the models that are reviewed. The reader is invited
to have a look at the G-structures that are visualized in Part[[V]as their symmetries give an
intuitive idea about the properties of the corresponding convolutions.

Chapter [15] describes a family of coordinate independent CNNs on Euclidean spaces which
corresponds exactly to the affine group equivariant Euclidean steerable CNNs from Part
As a preparation, Section [I5.1] describes the geometry of Euclidean spaces and constructs
Aff(G)-invariant G-structures from atlases of charts with Aff(G)-valued transition maps.
These G-structures are in Section shown to result in Aff(G)-equivariant convolutions,
whose coordinate expressions are steerable CNNs. Section [15.3] comments briefly on such
models found in the literature, which differ mainly in the assumed choices of structure groups
and group representations.

Chapter (16| covers CNNs on punctured Euclidean spaces E4\{0}, whose origin {0} was
removed. These models are rotation equivariant around the origin, however, they are not
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translation equivariant. They are based on GG-structures that correspond to polar coordinates,
log-polar coordinates or spherical coordinates.

Spherical CNNs are covered in Chapter Section discusses the geometry of the
(embedded) 2-sphere S2. Interpreting the tangent spaces as two-dimensional subspaces of
an embedding space R3, we derive closed form expressions of exponential and logarithm
maps, frames, gauges, transporters and isometry actions. Section reviews SO(3) and
O(3)-equivariant spherical CNNs. We prove in particular that our theory includes the gen-
eral formulation of spherical convolutions by Cohen et al. [56] as a special case. Spherical
CNNss that are merely SO(2) rotation equivariant around a fixed axis are described in Sec-
tion[I7.3] Section[I7.4|reviews icosahedral CNNs. The icosahedron approximates the sphere
but consists of locally flat faces which allow for an efficient implementation of convolution
operations.

A survey of convolutional networks on general two-dimensional surfaces is found in Chap-
ter [I8] Section provides a brief introduction to the classical differential geometry of
embedded surfaces and their discretization in terms of triangle meshes. The surface convo-
lutions in the literature are categorized in two classes: The first class, covered in Section[@
is based on G = SO(2)-steerable kernels. These models are independent from the specific
choice of right-handed, orthonormal frame. Section [I8.3] reviews the second category of
models, which are based on {e}-steerable, i.e. non-equivariant kernels. These models rely
explicitly on a choice of frame field. They differ therefore mainly in the heuristics that are
used to determine reference frames. Note that such models are necessarily discontinuous on
non-parallelizable manifolds like for instance topological spheres.

Appendix: The appendices cover mathematical background, additional information about
the theory of equivariant CNNs and long proofs. A list of all proofs and definitions is given
in Appendix [A]

The group and representation theory that is required to define steerable and coordinate inde-
pendent convolutions is discussed in Appendix [B

Appendix [Clintroduces the coordinate chart formalism of differential geometry, and explains
in detail how it relates to the fiber bundle formalism that we are using primarily. Charts are
shown to induce specific bundle trivializations, known as coordinate bases (or holonomic
bases). The gauge transformations between these trivializations are the well-known Jaco-
bians of chart transition maps. Table [C.T| gives an overview of the correspondences between
the two formalisms.

Coordinate independent convolutions are computed by expressing feature fields in geodesic
normal coordinates, where they are matched with G-steerable convolution kernels. This
process involves an integration over the tangent spaces which is described in Appendix

Appendix |[E| comments on equivariant MLPs, in particular how equivariant fully connected
network layers may be constructed and parameterized.

Kondor and Trivedi [162]], Cohen et al. [56] and Bekkers [10] proposed quite general theo-
ries of convolutions on homogeneous spaces. As these models share weights via the action
of some symmetry group, they are very similar to our isometry equivariant kernel field trans-
forms from Sections[I3.2]and[13.3] Appendix[Freviews these models and explains how they
relate to our coordinate independent convolutions.

Appendix [G|comments on the coordinate independence of kernels and weight sharing along
reference frames. A coordinate independent sharing of weights is only possible for G-
steerable kernels.
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The Wigner-Eckart theorem from Section [5.3|explains how steerable kernels are constructed
from harmonic basis functions, irrep endomorphisms and Clebsch-Gordan coefficients. To
give an intuition for the role of these ingredients, Appendix [H| introduces them step by step
along with a succession of increasingly general cases of kernel constraints.

The next four appendices give long proofs that were deferred in the main text.

Specifically, Appendix |I|asserts the well-definedness of our kernel field transforms and con-
volutions given that the underlying kernel field is smooth and consists of compactly sup-
ported kernels. Well-definedness means here that the defining integrals exist and that the
resulting feature fields are smooth.

Appendix [J|argues that feature fields which transform according to the regular representation
of the structure group G are equivalent to scalar fields on the G-structure. This is relevant
since some models, specifically group convolutions, take this viewpoint (cf. Section {.5).

Appendix proves that isometry invariant kernel fields on the manifold are equivalent to
kernel fields on quotient spaces of the isometry action. The special case of homogeneous
spaces, on which isometry equivariant kernel field transforms are equivalent to coordinate
independent convolutions, is covered in Appendix [K.2}

The spherical convolutions of Cohen et al. [56] are in Appendix [[]proven to be a special case
of our coordinate independent spherical convolutions — any spherical CNN that is covered
by their theory is therefore explained by our theory as well.

This book is based on the main author’s doctoral dissertation. Appendix [M] lists the main
research questions raised during the doctoral studies and summarizes brief answers. It fur-
thermore discusses some conclusions and directions for future research. As this appendix
provides an overview of the book’s content, it may be consulted as an alternative introduc-
tion.
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Introduction & overview

Spatially structured signals, like images, videos or audio, are nowadays most commonly
processed by convolutional neural networks (CNNs). A main characteristic of convolutional
networks is their translation equivariance, i.e. their property to produce feature maps that
move along when shifting the models’ input (Fig. [I.I). As we will show, the convolu-
tional network design is not just sufficient to produce an equivariant response, but is actually
necessary — in other words, CNNs are fully characterized by and can be derived from the
requirement for translation equivariance. Based on this insight, we generalize convolutional
networks on Euclidean spaces by defining them as neural networks that are equivariant under
an extended group of geometric symmetries.

Chapter [2] introduces the general idea and merits of invariant and equivariant neural net-
works. Chapter [3] formalizes conventional Euclidean CNNs in a representation theoretic
language, defining their feature spaces as translation group representations and deriving
their layers as equivariant maps between such representation spaces. This procedure is in
Chapter [ mirrored for more general affine symmetry groups, resulting in Euclidean steer-
able CNNs. Affine equivariant networks are found to rely on steerable convolution kernels,
which are investigated further in Chapter[5] Chapter|6|presents an empirical study and bench-
marking of steerable CNNs.

Euclidean steerable CNNs will be revisited in Part [[V] Chapter [I5] which explains how
they are recovered from their differential geometric generalization to Riemannian manifolds
from Parts [II] and [III} This alternative formulation clarifies the models’ independence from
choices of global affine coordinate charts, occurring in implementations as choices of pixel
grids. Appendix [F]is furthermore commenting on the generalization of steerable CNNs to
homogeneous spaces, like, for instance, the sphere.






CHAPTER 2

Invariant and equivariant models

Viewed abstractly, feed forward neural networks are sequences of parameterized functions,
denoted as layers. The most common approach to construct equivariant networks is, accord-
ingly, to compose them as a sequence of equivariant layers, each satisfying an individual
symmetry constraint.

An equivariant model design is twofold free lunch: On the one hand, it guarantees that the
model respects the symmetries of the learning task by construction, and generalizes whatever
it learned over group orbits, i.e. all inputs that are related by the symmetry group action. On
the other hand, the symmetry constraint reduces the number of model parameters, which
leads to a faster convergence and makes the models robust against overfitting.

Before discussing equivariant neural networks in Section we review general equivariant
models in machine learning and their reduced hypothesis spaces in Section [2.1]

2.1 Equivariant machine learning and quotient hypothesis spaces

The task in machine learning is typically to approximate some target function J : F. — J,

out
with a model 11l : . — F_ .. The domain F._ and codomain %, are the input and output
in out in out

feature spaces, respectively, for instance spaces of images and class labels. Denote the
unconstrained hypothesis space, i.e. the space of models under consideration during the
training process, by .

2.1.1 Invariant and equivariant target functions

Invariant and equivariant models are used in learning tasks where some symmetry group acts
on the feature spaces and the target function commutes with these actions. Let G therefore

be some symmetry group (Def.[B.1.1)) and consider some group action (Def[B.3.1))
> GXE = F, (g,2)—g> T 2.1
on the input feature space %, . The target function 7 is said to be G-invariant iff it satisfies

T(gp,z) = T(v) VgeG, veF . (2.2)
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This is visualized by the commutativity of the following diagramﬂ

in L
g DmJ > ‘Fc;ut (23)
L

n

Examples for invariant tasks are image classification, which is usually translation invari-
ant, or the classification of a set (as a whole), where the order (permutation) of elements is
irrelevant. These two examples are visualized in Figs. and [2.Ta] respectively.

While the output of an invariant function does not change when its input is transformed,
the output of an equivariant function responds with a corresponding transformation. We
consider therefore a second, potentially different group action

PG X Ry = T (959) = 9 By Y (2.4)

on the output feature space ]—:)m. A G-equivariant target function w.r.t. these group actions
satisfies a more general relation

T(g>, x) = gy T () YgeG, ze€F

out in’

(2.5)
which corresponds to a slightly modified commutative diagram:

F—T ,F

in out

9 DinJ{ J{g Doul (26)

By = T

Equivariant functions include invariant functions since the group action on £, may be cho-
sen to be trivial (invariant), as visualized in the diagram in Eq. (B.27). F1gs and [2.1b|
visualize examples of translation equivariant image segmentation and the permutatlon equiv-
ariant processing of set elements.

2.1.2 Quotient hypothesis spaces

Given that the target of a learning task is known to be invariant or equivariant, it is reasonable
to guarantee this behavior in the considered class of machine learning models by design.
Specifically, if T is invariant, Eq. (2.2), one restricts to a constrained hypothesis space

Hny = {m:};n—> |m g, r)=M(x) Vgeaq, xe};n} C Ha 2.7
consisting of invariant models only. Similarly, if 7 is equivariant, Eq. (2.5)), the hypothesis
space should be constrained to equivariant models:

Hequiv = {m cE = Fow ‘ M(g > x) = gD, Mx) Vgel, ze ]-:n} C Hra
2.8)

out

!'Diagrams give a visual overview of functions and the spaces between which they map. For ins-
X — f— Y tance, the diagram on the left implies that there are functions f : X — Y,
\ lg g:Y — Zand h : X — Z. If the compositions of functions along all paths
with the same start and endpoint agree, the diagram is said to be commutative.

Our example diagram is commutative if (and only if) A = g o f holds.
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E “ . E a . identify
. - —_—
classify dangerous
objects
ermute ermute ermute
p ﬂ p p

. a
classify a - identify
X . dangerous
objects
(a) Permutation invariant (b) Permutation equivariant
luggage classification. identification of dangerous objects.

classify

classify

segment
(c) Translation invariant (d) Translation equivariant
image classification. image segmentation.

Figure 2.1: Invariant classification (left) and equivariant segmentation (right) of sets (top) and images
(bottom). The elements of a set (or rather tuple) are acted on by the permutation group, while images
are acted on by geometric transformations like translations, rotations or reflections. Invariant models
are guaranteed to produce the same result when acting on their input. The outputs of equivariant
models, on the other hand, transform in a predictable way with the input — the model commutes with
the symmetry group actions on the input and output. Invariant maps are a special case of equivariant
maps, where the group action on the model output is trivial. Both invariant and equivariant models
generalize what they have learned over the symmetry group orbits, i.e. inputs that are related by the
group action. Fig. shows this in more detail for the case of the permutation invariant luggage
classification in Fig.%

(Vector graphics adapted under the Apache|license|2.0 by courtesy of Google.)
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Injecting this prior knowledge into the optimization problem can speed up training, regular-
ize it against overfitting and improve the model accuracy [322].

The hypothesis space of invariant models can be understood as a quotient hypothesis space.
To see this, note that invariant models assign the same response 771(x) to all elements on the

group orbit (Def.[B.3.3]and Fig.[B.3)
G ox = {gDA x|g€G} c E

in

(2.9)

of z in F . Such models can therefore be viewed as assigning a response to orbits as a whole,
instead of single elements. To make this precise, consider the guotient space (Def.[B.3.4)

G\F, = {G I>in:r:’ac€ in}, (2.10)
consisting of all G-orbits in %, and the corresponding guotient map
s, F,—G\E, =G> z, (2.11)

which sends elements in fin to their orbits. G-invariant models 1711 € #(;,, are then in one-
to-one correspondence to an unconstrained map 71+ : G\, — Fo, on the quotient space,

where 111 = 1M o qy.,- This relation is visualized by the following commutative diagram:

m

T =2 Fou
q%l - 2.12)

G\,

The hypothesis space of invariance constrained maps can thus be viewed as the quotient
hypothesis space
qe- = {mi (G\F, — Out} > Hiy - (2.13)

mnv

Figs. and visualize this concept at concrete examples, which make the benefit of
using symmetry constrained hypothesis spaces obvious.

A similar construction of quotient hypothesis spaces could be made for equivariant maps,
however, it would be more technical since we would be required to work with quotient
representatives (Def. [B.3.5). The interested reader is pointed to Section [I13.3] where we
make this construction in a slightly different setting explicit.

2.2 Equivariant neural networks

A (feed forward) neural network is a sequence LyoLy_j0...0LgoLyoL, of parameterized
layers Ly : F,_, — F,, mapping between adjacent feature spaces:

L1 L2 L3 LN—I ]__ LN

N-1

I

5 K 5 (2.14)
The feature spaces F, are usually defined to be vector spaces. The sequence of network
layers is often composed of blocks which comprise a linear map, a bias summation and a

nonlinearity

2Many other types of layers exist, including e.g. normalization layers or bilinear maps between
features.
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me C%)inv
.7':[1 s, > G\]—;n —mt—F,
(ordered tuples) (unordered multisets) (binary class)
(eesecccccccsccccccccscccccccccccccccnnan Y ) )

Figure 2.2: A detailed view on the permutation equivariant luggage inspection from Fig. |2.1a} visu-
alizing the concepts of group orbits and quotient spaces. The elements in the luggage are ordered
3-tuples (I, B, a), acted on by the permutation group G = S3. Whether a dangerous item is
present in the tuple is independent from the specific ordering of the tuple elements — the classifier
m . F — F, should therefore be Sz-permutation invariant, i.e. 11 € Ftiny. This is equiva-

out

lent to demanding that the model considers the luggage items as elements of an unordered (multi)set

{ ]‘x, S, a} Formally, these multisets correspond to group orbits Sz >, (]”, S, “) c £
(blue boxes) of tuples, and can therefore be viewed as elements of the quotient space S3\F, . The
space of Ss-invariant models 771 € #{i,y is equivalent to the quotient hypothesis space %ifw of uncon-
strained maps 117% : Ss \F, — Fou- Injecting such prior knowledge into the model by design greatly
simplifies the learning problem and leads to an improved performance.

(Vector graphics adapted under the Apache|license|2.0 by courtesy of Google.)
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The most common way to construct equivariant networks is to design its layers such that
they are individually equivariantﬂ Each feature space 7, is therefore to be equipped with its
own group action

I>l:G><]-;—>.7:

o (g2) =g . (2.15)

The actions I, and 1>, on the network’s input % and output .F; are thereby specified by the
learning task, while the intermediate actions >, for / = 1,..., N — 1 are hyperparameters
chosen by the user. Note that this is similar to the case of general neural networks, where the
input and output feature spaces ¥ and F,, are given by the task, but the intermediate feature
spaces F, forl =1,..., N — 1 are user-chosen.

If each individual layer L; : F,_, — J, is designed to be equivariant w.r.t. its input and

output group actions, i.e. satisfies Li(g >, ; ¥) = g >, Li(z) for any g € G and any
xz € F_,, the network is by induction equivariant as a whole. This is visualized by the
following diagram, which commutes for any g € G:

L1 L2 L3 LN—l LN
% %! % Iy — 7y
9P 9> 9Py 9PN 9Py (2.16)
‘7:(.) L1 ‘T.i Lo ‘7:2 L3 Ly_1 ‘FN—I Ly ‘FN

Invariant networks usually comprise 1) an equivariant subnetwork Ly o ... o Ly, 2) an

invariant map Li, and 3) an unconstrained subnetwork L M © ...o L, operating on the
resulting G-invariant features

L1 LN
7 Fe .
g5, g F_ L Lu_, 7 (217)
0 N R T
Linv
R o~ Py

An example are convolutional networks for translation invariant image classification, which
usually composed of 1) a convolutional subnetwork, 2) a global pooling operation, and 3) an
unconstrained MLP, operating on the resulting translation invariant features. A further vari-
ation are networks which become after some depth equivariant w.r.t. a subgroup of symme-
tries; see Section @.4]and [322].

3 An alternative approach is to use a non-equivariant network f, and feed any G-transformed input
through it. The |G| outputs [f (gr)]g cc; transform then according to the regular G-representation
(Def.[B.5.T8), i.e. are permuted when acting on the input. Invariant responses could then be computed
by taking the mean or the maximum over responses [174]. The disadvantage of this approach is that it
enforces equivariance post-hoc, and does not reduce the number of model parameters.

“This design is again a special case of the fully equivariant formulation in Eq. (2.16), assuming
trivial group actions for all layers L;, { = 0,..., M. One may therefore w.l.o.g. consider “fully
equivariant networks” as in Eq. 2.16).
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We discuss the specific design of equivariant MLPs in Appendix [E| The feature spaces are
here finite group representation spaces, that is, finite vector spaces that are equipped with
linear group actions (representations, Def. [B.5.1). Linear equivariant layers between such
representation spaces are intertwiners (Def. [B.5.7). Appendix [E] characterizes these inter-
twiner spaces by decomposing them into their irreducible components.

For completeness, we need to mention that there are alternative approaches to construct
equivariant networks. A simple approach is to use an unconstrained network and to train it
to be approximately equivariant — this is usually achieved by augmenting the dataset with
G-transformed samples. To give an example, one could use an MLP instead of a CNN
to process images, and train them by feeding in translated versions of the images. This
approach is clearly disadvantageous since the unconstrained network has a larger number of
parameters and is therefore more prone to overfitting [[106}1318]]. An equivariant network, on
the other hand, has a greatly reduced hypothesis space: instead of being required to learn the
correct mapping for each G-related feature individually, it generalizes automatically over
orbits in £ . Another approach to construct invariant networks was proposed by Laptev
et al. [174]]. The authors propose to use an unconstrained network, feed in all G-transformed
versions of the input explicitly, and take the maximum response over the resulting responses.
Since the G-action leads to a mere permutation of the responses, this design is G-invariant.
The approach is, however computationally expensive and does not lead to a reduced number
of parameters due to weight sharing.






CHAPTER 3

Translation equivariance & conventional Euclidean CNNs

Spatially structured signals, like audio, images, voxel data, videos or physical fields on a
flat spacetime, are with great success processed by Euclidean convolutional neural networks
(CNNGs) [175L1166]]. As the name suggests, these models process the signals (or feature maps)
by convolving them with some convolution kernel, the parameters of which are learned. The
central difference in comparison to general linear maps is that the convolution operation is in
addition translation equivariant — it commutes with translations of the feature maps. CNNs
are therefore equivariant neural networks in the sense introduced in the previous chapter.

To make this precise, we introduce feature maps in the following Section [3.1] as regular
representations of the translation group, i.e. equip them with a linear action of the translation
group. Typical translation equivariant layers between such feature spaces are convolutions,
bias summation, nonlinearities or local and global pooling layers. Instead of defining these
layers and subsequently proving their equivariance, we show in Section [3.2]how they can be
derived from the requirement for translation equivariance.

This formulation sets the stage for our definition of more general affine group equivariant
(steerable) CNNs in Chapter {] Fig. gives an overview of the design choices that dis-
tinguish non-equivariant fully and locally connected networks, translation equivariant CNNs
and affine group equivariant steerable CNNs. In a nutshell, translation equivariance requires
translational weight sharing (e.g. convolutions), while affine group equivariance requires the
shared neural connectivity additionally to be G-steerable (G-equivariant).

3.1 Euclidean feature maps as translation group representations

An Euclidean feature map in d dimensions with ¢ channels is a function
F:R? - R¢ (3.1

that assigns a c-dimensional feature vector F'(x) to each point z € R%; see Fig.[3.1} An
example are audio signals on d = 1 time dimension and with ¢ = 1 or 2 channels for
mono or stereo sources, respectively. Images on d = 2 spatial dimensions come usually
with ¢ = 1, 3,4 or more channels, and are then denoted as grayscale images, RGB images,
RGBA images or hyperspectral images, respectively. Volumetric data lives in d = 3 spatial
dimensions, while videos are feature maps on d = 2+ 1 spacetime dimensions. The number
of channels in intermediate layers of the network are user-chosen hyperparameters.
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Figure 3.1: Euclidean feature maps are func-
tions F: R? — R that assign c-dimensional
feature vectors F(x) € R° to each point
x € R, The regular representation of the trans-
lation group (R?, +) acts on feature maps by
shifting them spatially; see Eq. (3:3). Shown
here is a ¢ = 3 channel RGB image in d = 2
spatial dimensions, discretized on a pixel grid.
Feature fields, visualized in Figs. i3] and {4}
generalize feature maps by equipping them with |
an affine group action. r e R4

The shift of an audio signal in time or of an image in space is modeled by an action of
the translation group of the corresponding dimensionality. In d dimensions, the translation
group is defined as the tuple (R, +), i.e. the set R? with addition + : R? x RY — R,
(t,s) — t + s as binary operation. The inverse of t € R is accordingly —¢ and the identity
element is 0 € R%.

The translation group acts naturally on the Euclidean space R? by shifting its points:
RY, ) xR R, (tx) sz +t (3.2)

It acts furthermore on Euclidean feature maps F' : R? — R€ by sending them to shifted
feature maps [t > F] : R? — R, defined by

[t>F|(z) = F(z—1). (3.3)
The feature spaces of translation equivariant Euclidean CNNs are spaces of such feature

maps, which we formalize in the following definition. Since we want to apply convolutions,
we require the feature maps in addition to be square integrable.

Definition 3.1.1 (Euclidean feature maps as regular translation group representations).
The feature spaces of translation equivariant Euclidean CNNs are vector spaces

/Rddx 1F@)|* < oo} (G4)

of square integrable c-channel feature maps in d dimensions, equipped with the trans-
lation group action

> (R +) x L*(RYRY) — L*(RYRY), (4, F)—t>F (3.5)
defined by

I2RLRY) = {F:R! 5 R

[t>F|(z) = F(z—1t). (3.6)

This action corresponds, in fact, to a linear representation (Def. (RE, 4+) —
GL(L?(R?,R¢)) of the translation group, which is known as regular representatiorﬂ
(Def.

Note that such defined feature maps do not have a well defined behavior under other geo-
metric transformations like rotations, reflections, scaling or shearing. This shortcoming will
be alleviated in Chapter [d] where we define Euclidean feature fields, which are affine group
representations.

"More precisely, for ¢ channels, this would be a direct sum of ¢ regular representations.
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Figure 3.2: Architectural design choices that turn a fully connected network (MLP) into a convolu-
tional network. Left: Each neuron of an unconstrained MLP connects with its own weights to each
pixel of the input image. If there are M input pixels and N hidden neurons, this requires O(M N)
parameters. Fully connected networks have no equivariance guarantees. Middle left: Restricting each
neuron’s connectivity to a local receptive field reduces the number of parameters to O(M). Being
associated to a specific region in the input image, the hidden neurons are naturally organized in a fea-
ture map. However, this network design still does not guarantee any equivariance properties. Middle
right: Convolutional networks share synapse weights over spatial locations, which can be thought of as
convolving the image with a convolution kernel. The translational weight sharing ensures the model’s
translation equivariance. The parameter cost is independent of the image size, i.e. O(1) (it still scales
with the number of channels and kernel size). Right: If the convolution kernel itself is additionally
G-equivariant (steerable), where G < GL(d) could for instance model rotations, reflections, scaling
or shearing, the resulting steerable CNN is equivariant under the affine group Aff(G) = (R%, +) x G,
i.e. simultaneous translations and G-transformations. The G-steerability constraint on the kernels can
be viewed as a form of weight sharing over G-transformations and reduces the model’s parameter cost
further. Chapter[3|derives the convolutional network design from the requirement for translation equiv-
ariance. Chapter% derives the additional G-steerability constraint on the kernels from the requirement
for Aff(G)-equivariance. Note that the local connectivity (local kernel support) is not actually required
for the model’s equivariance, but is rather an empirical design choice. We are furthermore modeling
CNNs on continuous spaces R, instead of discrete pixel grids Z¢ visualized above.

3.2 Translation equivariant layers and convolutions

Translation equivariant network layers between feature maps with ¢;, input channels and cqy,
output channels are functions L : L*(R? R%) — L*(R? R%) such that the following

diagram commutes for arbitrary translations ¢t € (R?, +):
L2 (Rd, Rci“) L L2 (Rd, RC"”‘)

¢, > 3.7)

n out

L2 (Rd, Rcin) 7 L2 (Rd, RC"”‘)

We derive in the following some of the most common CNN layers from the demand for
translation equivariance.
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3.2.1 Convolutions as translation equivariant linear maps

Linear translation equivariant functions between feature maps (regular translation group rep-
resentations) are necessarily convolutions. In the most general case, we would have to con-
sider distributional convolutions, including for instance the application of partial differential
operators [137]. For simplicity, we will here focus on convolutions with kernels that are con-
ventional functions (instead of general Schwartz distributions).

Our ansatz for an unconstrained linear map between feature maps is therefore given by an
integral transform

I.: L*(RYR) — L*(RY,R™) (3.8)
that is parameterized by a (square integrable) matrix-valued two-argument kernel
ko R x RY — REuXCin (3.9)
and defined byE]
1. [F](z) == [ dyns(z,y)F(y); (3.10)
Rd

see Fig.[3.3|for a visualization. The matrix-valued codomain of the kernel is thereby ensuring

that the ¢;, input channels are mapped to coy output channels. As proven in the following

theorem, such linear maps are necessarily convolutions if they are required to be translation
equivariant:

Theorem 3.2.1 (Regular translation intertwiners are convolutions). The integral trans-
form I, in Eq. (3.3) is translation equivariant w.r.t. the regular translation group action
on feature maps in Eq. (3.3), i.e. satisfies

Lfte F| = t>, L[F] Vte(®RL4), 3.11)

out ~K

if and only if the two-argument kernel satisfies k(x + t, y + t) = k(z,y) for any
z,y,t € R% Such kernels depend only on the relative distance between x and y and
are therefore equivalent to a one-argument kernel

K :R? — RewXe Az s K(Az) := k(Az, 0). (3.12)

The integral transform reduces thus to a convolution integral

L. [Fl(z) = [K*F|(z) = /dyK(:):—y)F(y). (3.13)

d

Proof: Writing out the left-hand side of Eq. (3.11)) yields

Lt Fl(z) = Rddy k(z,y) [t>, F(y)

= Rdyﬁ(w,y)F(y—t)

= | djn(z, §g+1)F), (3.14)
Rd

’In components, L [F]Z(m) = 20 Jeu Ay rij(z,y) Fj(y), where i = 1, ..., cou labels the
output channels.
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(a) General integral transform. (b) Translation equivariant integral transform.

Figure 3.3: The general integral transform I, in Eq. (3:8) maps a cip-channel input feature map linearly
to a cour-channel output feature map. Output feature vectors I, [F] () € R° atx € R? are thereby
computed by accumulating input feature vectors F'(y) € R" via a matrix-valued two-argument kernel

k1 R? x R — R integrating over all points y € R®. A-priori, the kernel values are entirely
unconstrained. However, when demanding franslation equivariance, the kernel values x(x,y) may
only depend on the relative distance x—y of the arguments; see Fig.[3:3b] As proven in Theorem[3.2.1]
this implies that the integral transform can be written as a convolution integral with a spatially shared
single (relative) argument kernel K : RY — Ruin_

while the right-hand side is given by

[t Do Ie[F] (z) = / dy k(x —t, y) F(y). (3.15)

d

Demanding both sides to be equal for any translation ¢ € (R?, +) and any feature map
Fel? (Rd, an) implies the translation invariance constraint

kKlz+t y+t) = k(z,y) Y,y teR? (3.16)

on the neural connectivity (spatial weight sharing) that was claimed in the theorem.

We can now w.l.o.g. choose ¢t = —y in Eq. (3.16)), resulting in x(z,y) = x(z —y, 0),
and define the one-argument kernel K (Az) := x(Ax, 0). This proves that the require-
ment for translation equivariance makes the integral transform a convolution. g

The convolution with a kernel K : RY — Ru«*¢n ig essentially applying this kernel at each
point to the image — is is therefore often thought of as a translational weight sharing of the
neural connectivity. Convolution kernels are in practice often compactly supported, such
that each neuron is only connected to a local receptive field; see Fig.[3.2} This design choice
is not strictly necessary for the network’s translation equivariance, but reduces its parameter
cost.

Theorem [4.3.T]in Section [4.3] generalizes these considerations to more general affine sym-
metry groups, resulting in an additional equivariance constraint on the convolution kernel
itself.
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3.2.2 Translation equivariant bias summation

After applying a linear operation, it is common to sum a learned bias to the network’s fea-
tures. While one could in principle sum an arbitrary bias field b : R — R to the feature
maps, the requirement for translation equivariance demands that this bias field is translation
invariant, i.e. spatially constant, as we will show in the following. Note that bias summation
operations preserve the number of feature channels, i.e. ¢, = cou =: ¢, and therefore in
particular the translation group action >, = > =: > on their input and output.

To derive the spatial bias weight sharing, consider an unconstrained bias summation opera-
tion

By : L*(RY,R°) — L*(RY,R°), F ~— F+b (3.17)
that is parameterized by a general square integrable bias field
b e L*(RY,R°). (3.18)

Theorem 3.2.2 (Translation equivariant bias summation). The bias summation layer in
Eq. (3.17) is translation equivariant w.r.t. the regular translation group action on fea-
ture maps in Eq. (3.3), i.e. satisfies

By[t> F| = t> By[F], (3.19)

if and only if the bias field is constant:
b(z) =b forsome beR® (3.20)

Proof: The left-hand side of Eq. (3.19) at € R¢ becomes
By[t> Fl(z) = [t>F|(z) + b(z) = F(z—t) + b(z), (3.21)
while the right-hand side is given by

[t> Be[F]](z) = [t> (F+b)](z) = Flz—1t) + bz —1). (3.22)
Equating the two expressions results in b(x) = b(z — t) for arbitrary z,t € RY — the
bias field is thus required to be translation invariant, i.e. constant. O

3.2.3 Translation equivariant local nonlinearities

Since any sequence of linear operations and bias summation collapses to a single affine
transformation, one alternates them with nonlinearities. The space of possible nonlinearities
is vast, however, convolutional networks usually rely on such nonlinearities that act locally,
i.e. individually on each feature vector F'(z) € R¢ at € R?. Similar to the general bias
fields above, these nonlinearities could again be position-dependent, but the requirement for
translation equivariance demands them to be translationally invariant.

To prove this claim, consider a spatially dependent localized nonlinearity ansatz
o: REX R — R (z,f) = ou(f), (3.23)

mapping a ci,-dimensional input feature vector f to a ¢,y -dimensional output feature vector.
Let its action on feature fields be given by the operation

&, : L*(R",R) — L*(R*R%), (3.24)
defined by
S, [F](z) = 0, (F(z)) (3.25)
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Theorem 3.2.3 (Translation equivariant local nonlinearities). The spatially dependent
localized nonlinearity operation in Eq. (3.24)) is translation equivariant w.r.t. the regu-
lar translation group action on feature maps in Eq. (3.5), i.e. satisfies

S, [t F|] =ty S.[F], (3.26)
if and only if the underlying field of localized nonlinearities is position-independent:
0y = 4 : R — R forany z € R? (3.27)
Proof: Again, we write out the left-hand side of the constraint in Eq. (3.26),
S, [t Fl(z) = ou([t>, Fl(z)) = 0o(F(z—1t)), (3.28)

and demand that it equals the right-hand side
[t > SolF]](z) = Go[Fl(x —t) = opei(F(x—1)) (3.29)

out

for any x,t € R?. This results in the claimed position dependence o, = 7,_; := 4 of
the underlying pointwise nonlinearity field. 0

3.2.4 Translation equivariant local pooling operations

Besides convolutions, bias summation and nonlinearities, most CNN architectures rely on
pooling operations. These pooling operations come in two flavors, namely local pooling
operations, which are (faithfully) translation equivariant, and global pooling operations,
which produce a translation invariant output, as required for instance for classification tasks.
We start with local max pooling and average pooling and discuss the global operations in the
next paragraph. Note that local pooling operations (with single pixel stride) are in discretized
implementations on pixel grids often followed by a s pixel stride subsampling step, which is
only partially equivariant as discussed below.

Local max pooling: Local max pooling is a nonlinear operation that produces a feature
field whose value at 2 € R? is given by the channel-wise maximum of feature values in
some pooling region R, C R% around 2 € R%:

local_max_pool : L? (Rd,RC) — L? (Rd,Rc), F max F(y) (3.30)
YER,

If the pooling regions at different points agree, this operation is translation equivariant:

Theorem 3.2.4 (Translation equivariance of local max pooling). The local max pooling
operation in Eq. (3.30) is translation equivariant, that is,

local_max_pool[t > F|(z) = (¢t local_max_pool[F])(x) 3.3

forany x € R% and any t € (R, +), if and only if the pooling windows are translation
invariant (spatially shared), i.e. satisfy

t7 'R, = Roy Yz eRY te®RY4), (3.32)
Proof: The statement follows by expanding the left-hand side
local_max_pool[t > F|(z) = max F(y —t) (3.33)
YER.
= max F(y)

yet—'R,
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and the right-hand side

(t > local_max_pool[F])(z) = local_max_pool[F](z —t) (3.34)
= F
Jmax F(y)
and demanding that they agree for any feature map F' € L? (IRd7 RC) and arbitrary
positions x € R? and translations ¢ € (R%, +). O

Local average pooling: Instead of taking the single maximal response in a pooling win-
dow, local average pooling computes their channel-wise average. If we allow for a weighted
average, this operation is just a (channel-wise) convolution

local_avg pool, : L?(R%R°) — L*(RLR°), F — hxF (3.35)

with a scalar weighting kernel £ : R4 — R.

Theorem 3.2.5 (Translation equivariance of local average pooling). The local average
pooling operation in Eq. (3:33) is by construction translation equivariant, that is,

local_avg pool[t> F|(z) = (t1>local_avg pool[F])(x) (3.36)

forany x € R% and any t € (R?, 4).
Proof: This is a special case of Theorem [3.2.1] applied to each channel individually. O

Subsampling: In practice, it is common to have sampled feature maps F : 7% — R? on
a pixel grid Z?, equipped with the regular action of the discrete translation group (Z%, +).
The local pooling operations are then usually followed by a subsampling operation with a
stride of s € N pixels,

subsample, : L*(Z% R¢) — L*(sZ%,R°), F s F (3.37)

sz )

given by a restriction of the domain and resulting in a feature map on the subgrid sZ<.
This operation is not fully (Z?,+) translation equivariant, but equivariant w.r.t. the sub-
group (sZ?, +) of translations by s pixels.
Theorem 3.2.6 (Translation subgroup equivariance of subsampling).
Let 1>, be the group action of the translation subgroup (sZ4,+) on L*(Z%,R) defined
by [t >, F|(x) := F(x —t) and let 1> ,, be its restriction to an action on subsampled
feature maps L*(sZ%,R¢). The subsampling operation in Eq. (3.37) commutes with
these actions, that is, for any x € sZ% and t € (sZ%,+) it holds that:

subsample, [t >, F|(z) = (¢ > ;. Subsample F)(z) (3.38)

Proof: This claim is obvious since subsample, is the restriction map and r>_,, is the corre-
spondingly restricted group action. ]
Note that a repeated subsampling by strides of s1, ..., sy pixels results in a network that is

as a whole only (ZHN s +)-equivariant. Zhang [348]] analyzes this issue empirically and
proposes to alleviate it by preceding the subsampling step with a low-pass filtering. The
exactly (Z?, +)-equivariant subsampling operation by Xu et al. [336] relies on choosing a
shifted subsampling grid, corresponding to a choice of coset t + sZ € Z/sZ (Def.[B.2.2),
in an equivariant (data-dependent) way.
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3.2.5 Translation invariant global pooling operations

Global max pooling and global average pooling result in translation invariant features.

Global max pooling: The former is defined by
global_max_pool : L? (Rd,RC) — R€, F max F(z), (3.39)
reR4

where the process of taking the maximum value is again understood to be taken indepen-
dently for each channel.

Theorem 3.2.7 (Translation invariance of global max pooling). The global max pooling
operation in Eq. (3.39) is translation invariant, that is,

global_max_pool[t > F|(z) = global_max_pool[F](z) (3.40)
forany x € R4 and t € (R4, +).

Proof: The maximum value depends obviously not on its specific location (argmax).
Global average pooling: Global average pooling is a map
global avg pool: L?(R% R) — R, F v [ dezF(x) (3.41)
Rd

which averages the feature map over the whole Euclidean space.

Theorem 3.2.8 (Translation invariance of global average pooling). The global average
pooling operation in Eq. .&1) is translation invariant, i.e. for any x € R and
t € (RY, +) one has

global_avg pool[t > F|(z) = global_avg pool[F](z). (3.42)

Proof: The translation invariance follows from a simple substitution,

global_avg pool[t>F| = [ deF(zx—t) = [ dzF(Z) (3.43)
Rd Rd

=global_avg pool(F),

where ¢t € (R?, +) is arbitrary. O






CHAPTER 4

Affine group equivariance & steerable Euclidean CNNs

There are many cases in which a signal processing task should not only be translation equiv-
ariant, but be equivariant under the action of affine groups Aff(G). Besides translations,
affine groups contain G-transformations, where the structure group G < GL(d) could for
instance model rotations, reflections, scaling or shearing of the signal. A prototypical use
case are medical or satellite imaging tasks, where the rotation or reflection of the image is
irrelevant; see Fig.[T.2]

In order to construct affine group equivariant network layers, we need to specify affine group
actions on the feature spaces. A natural and quite general choice are induced representa-
tions, acting on feature vector fields. In addition to moving feature vectors spatially over
RY, induced representations act on the feature vectors F'(x) € R® themselves via some G-
representation p : G — GL(c). Fig. shows scalar fields and vector fields as specific
examples of feature fields. Feature fields with a reflection group action are visualized in

Fig.

Steerable CNNs consist of Aff(G)-equivariant maps between such feature fields. Most no-
tably, linear equivariant maps between feature fields (induced representation intertwiners)
are shown to be convolutions with G-steerable kernels, i.e. matrix-valued kernels satisfying
a linear G-equivariance constraint; see Fig. d.I] More generally, the neural connectivity is
required to be shared over Aff(G)-transformations — in addition to a spatial weight sharing,
this requires a local GG-equivariance of the shared operations.

After briefly introducing affine groups in Section f.1} we define Euclidean feature fields in
Section [4.2] as induced affine group representations. Section [4.3] derives steerable convo-
lutions and other affine equivariant network layers like steerable bias summation, nonlin-
earities and pooling operations. While this section derives the G-steerability constraint on
convolution kernels, a review of their construction and implementation is deferred to the fol-
lowing Chapter[5] Sectiond.4]introduces an equivariance group restriction operation, which
allows to build networks with different levels of equivariance in different layers. Most work
on equivariant CNNss relies on regular group convolutions instead of general steerable convo-
Iutions. Section clarifies the relation between the two, showing that group convolutions
are a special case of steerable convolutions for regular inducing representations.
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Figure 4.1: Schematic idea of convolutions with G-steerable kernels as induced representation inter-
twiners. The feature fields F' : R? — R of steerable CNNs are affine group representations which are
induced from some G-representation p : G — GL(c). Given a group element tg € Aff(G), a feature
field F' transforms according to [Ind p(tg)] F = p(g) F(tg)™", that is, 1) a spatial transformation
of the domain R? by (tg)™"' and 2) a fiber action on the codomain R® by p(g) (mixing channels).
Theorem proves that the most general linear Aff (G)-equivariant integral transform (intertwiner)
between induced representations Ind p,, and Ind p,, is given by convolutions with G-steerable ker-
nels K : R* — R%*¢n_je. matrix-valued kernels subject to the linear G-equivariance constraint in
Eq. @I8). For simplicity, we visualized the case of a c¢i, = 1-dimensional scalar input field (trivial
representation p, ) and a cou = 2-dimensional output field, transforming according the SO(2)-irrep
with frequency 3 — requiring a SO(2)-steerable kernel of shape 2x 1 and angular frequency 3; see
Table[5.2] More generally, the input would have multiple channels and the matrix-valued kernel would
comprise Cout X Cin €lementary scalar kernels.

Lizards adapted under the Creative Commons Attribution 4.0 International |license|by courtesy of Twitter.)

An empirical evaluation of Euclidean steerable CNNs is presented in Chapter [§] For a
differential geometric formulation of affine equivariant steerable CNNs, which discusses in
particular their coordinate independence and local gauge equivariance, we point the reader
to Chapter T3]

The theory of Euclidean steerable CNNSs is largely understood, however, an implementation
supporting general field types requires quite some experience and effort. To take this burden
from the user, we provide the PyTorch extension e2cnn [38] and its successor escan [39],
which implement feature fields and equivariant layers for arbitrary representations p of com-
pact structure groups G < O(2) and G < O(d), respectively. The frontend is thereby
designed such that the user only has to select a symmetry group and its actions on feature
spaces (field types), while all of the representation theory is hidden in the backend.

4.1 Affine groups

Affine groups Aff(G) := (R? +) x G are semidirect products (Def. of translations
and some structure group G < GL(d). This includes for instance the Euclidean groups E(d),
i.e. isometries of R?, for G = O(d), or the special Euclidean groups SE(d) for G = SO(d).
Pure translations are covered for the trivial structure group G = {e}.

As usual for semidirect products, any group element tg € Aff(G) can be uniquely split into
factors, here a translation ¢t € (R?, +) and an element g € G. The affine group acts naturally
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Figure 4.2: Affine equivariant CNNs generalize whatever they learn over Aff (G)-orbits of images, i.e.
subsets of images that are related by translations and G-transformations. For instance, an Aff(SO(2))-
invariant classification model is guaranteed to assign the same (invariant) class label to any translated
or rotated version of the same image. It can therefore be viewed as effectively operating on the quotient
image space Aff(G)\Fin, as explained in Section[2.1]and Fig. More general Aff(G)-equivariant
CNNs respond with an affine group transformation of their output in Fo if their input in 75, is trans-
formed. Sectioninvestigates the generalization properties of Aff(G)-steerable CNNs empirically.

Lizards and butterflies adapted under the Creative Commons Attribution 4.0 International |license|by courtesy of Twitter.)

on Euclidean spaces R¢:
AfF(G) x R — RY, (tg, ) — gw +t 4.1)

Structure group elements act hereby by matrix multiplication, which is possible since the
structure group is by definition a matrix group. For convenience, we note that the action of
an inverse group element is given by ((tg) ™!, ) — g~ *(x — t), which is easily confirmed
by composing the actions of tg and (tg)~*.
Since affine groups contain translations (R%,+) < Aff(G) as subgroups, their action on
R is transitive (Def. . It is for G # {e} not fixed point free (Def. , but has
stabilizer subgroups Stab, < Aff(G) (Def[B.3.6) that are isomorphic to G. As we will see in
Section [4.3] below, these local G-symmetries will result in a requirement for the operations’
local G-steerability.

For completeness, we mention that affine groups may be viewed as a principal G-bundle
g : Aff(G) — Aff(G)/G = R? over a Euclidean base space, where the quotient map ¢ :
tg — tG serves as a bundle projection. The interpretation of G as structure group relies on
this identification. More details on principal bundles in general can be found in Section[T1.1]
while the specific case of Aff(G) as principal bundle and its local gauge transformations
are discussed in Chapter The reader may safely ignore the interpretation of Aff(G) as
principal bundle for now.
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Figure 4.3: Transformation behavior of scalar and vector fields. A group element tg € Aff(G) acts on
a scalar field s : R? — R by moving its values spatially, that is, [tg >, 5| (z) := s((tg)'z). The
individual vectors that make up a vector field v : R? — R¢ carry directional information. They are
therefore additionally transformed by a multiplication with g, i.e., [tg Do v] (2) 1= gv((tg) 'z).
Feature fields generalize this transformation law, acting on feature vectors with some G-
representation p; see Eq. (@3). Scalar, vector or tensor fields are recovered by choosing specific
representations, which are the trivial representation p(g) = 1, the defining representation p(g) = g
and tensor product representations p(g) = ®°(g~1) " ®" g, respectively.

(Microbes adapted under the Apache|license|2.0 by courtesy of Google.)

4.2 Euclidean feature fields as induced affine group representations

The laws of nature are formulated in terms of scalar, vector, or tensor-fields, which have
a well defined transformation behavior under affine transformations (or even diffeomor-
phisms); see Fig. Note that the transformation law [(tg) Dy.q v] () = gv((tg) ')
of vector fields does not only involve a spatial transformation of the field on R%, but also a
G-action on each individual (feature) vector (fiber) in R¢. Feature vector fields generalize
this transformation law by acting with some G-representation p : G — GL(c) (Def.
on feature vectors. Specifically, a feature vector field of geometric type p is a map

F:R? 5 R® 4.2)
that is acted on by the p-induced Aff(G)-action

[tg >, Fl(z) = p(g) F ((tg)~'z). (4.3)
! i
fiber action on R® spatial action on R?

More formally, we define Euclidean feature fields as follows:

Definition 4.2.1 (Euclidean feature fields). The feature spaces of Aff(G)-equivariant Eu-
clidean steerable CNNs are vector spaces

I2RLRY) = {FiR! 5 R

d | F(@)||* < oo} (4.4)
Rd

of square integrable c-channel feature fields in d spatial dimensions. They are as-
sociated to some G-representation (geometric type) p : G — GL(c¢) and transform
according to the induced group action

Aff(G) x L*(RY,R°) — L*(R%,R®), (4.5)
(tg, F) = tg, F = p(g) F(tg)~".

By
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As this action is linear, it corresponds to a group representation, known as induced
representatior|’ ||

md;" Yy AfF(G) —» GL(L2(RLRY)), tg — tg, (-). (4.6)

Euclidean feature fields are therefore just the elements of induced affine group repre-
sentation spaces.

A trivial structure group G = {e}, and thus trivial inducing representation p, recovers
Def.[3.1.1] i.e. Euclidean feature maps as regular translation group representations. A formal
definition of induced representations on general homogeneous spaces (Def.|B.3.11)) is found
in [35].

Different choices of representations p yield different types of feature fields. For instance, the
trivial representation, defined by

Prriv : G — GL(1)7 g 1 (47)

describes fields of G-invariant scalars. Examples of scalar fields are grayscale images, tem-
perature fields, pressure fields or probability distributions. Tangent vector fields, like optical
flow or fluid velocity fields, correspond to the defining representation

Pvecior: G — GL(d), g+—g 4.8)

of the matrix group. More general tensor fields of type (r, s) are described by tensor product
representations

Pensor(r,s): G — GL (RH®" @ (R™)®*), g g% @ (g%)%*, (4.9)

where g* = (g~ 1) " is the dual representation of the defining representation g. They model
for instance diffusion tensor images, electromagnetic field tensors or stress tensors. Another
common choice are regular representations (Def. [B.5.18)), which act by permuting feature
vector entries. They are of great practical relevance in equivariant deep learning since they
describe the transformation of the features of group convolutional networks [52]; see Sec-
tion[4.5] Feature fields which transform under irreducible representations (irreps, Def.
were investigated in 3351323} (301, [1611 13, 322} [139]]. A more detailed overview and an ex-
tensive benchmark of different field types or representations in deep learning is presented in
Chapter [0]

Since finite dimensional unitary G-representations decompose generally into a direct sum
of irreducible representations (Theorem [B.5.16), one may view feature fields of such types
as being a direct sum of the corresponding irrep fields. The original and decomposed rep-
resentations and feature vectors are hereby related by a (linear) change of basis. Linear
operations, like convolutions, may be derived in any choice of basis, implying that one may
w.l.o.g. focus on irrep fields when studying them [322, 173} 40]]. However, general nonlin-
ear operations depend on the particular choice of basis, such that we will consider general
G-representations, instead of only irreducible ones, in the following.

The coordinate free and coordinate independent description of feature fields on general man-
ifolds is described in Sections [8.1] [TT.3.3] and [TT.4.4} see specifically the commutative di-
agram in Fig. The induced representation action corresponds in this setting to the
pushforward of associated bundle sections (pushforward of feature fields), discussed in Sec-

tion[8.3]and Def.[13.1.2]

IIndéff(G) is a functor that turns G-representations into Aff(G)-representations.
There is generally a one-to-one correspondence between linear group actions and group represen-

tations; see the discussion around Egs. (B.35) and (B.36) in Appendix [B.5.1}
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Figure 4.4: A full feature space of steerable CNNs comprises multiple individual feature fields
F; : R — R of potentially different types p; and dimensionalities ¢;. The composite field F' =
€D, Fi transforms according to the direct sum €, Indgﬁ(c) pi = Indéﬁ(c) @, pi, and can there-
fore be viewed as being of type €D, p; (here p1 & p2 @ ps & pa). The block structure of the direct
sum representation guarantees hereby that the individual fields f; transform independently from each
other, that is, their channels do not mix under G-transformations. Compare this to Fig. [83] which
emphasizes the passive transformation viewpoint, i.e. coordinate independence, of feature fields.

Stacked Euclidean feature fields: The feature maps of translation equivariant CNNs con-
sist of multiple channels, which transform independently from each other under translations.
The feature spaces of Aff(G)-steerable CNNs consist in analogy of multiple independent
feature fields F; : R¢ — R, each coming with its own type p;. Taken together, these in-
dividual fields make up a composite (>, ¢;)-dimensional feature field, which is formally
given by their direct su

F=@,F: R - R>“ (4.10)
G)

and transforms thus according to the direct sum P, Indéﬂ( p; of the individual induced
representations. The induction functor commutes with the direct sum [53],

@D, mdi" D p; = md" DD, ps (4.11)
such that the composite feature field can be viewed as being of type
p=Dpi- (4.12)

A visual interpretation of the transformation law of
stacked feature fields is given in Fig. [#.4]

As a practical example of a steerable feature space con-
sisting of multiple fields consider an RGB image as de-
picted in Fig.[£.3] Similar to a grayscale image, the in-
dividual color channels encode intensity values which
do not mix under G-transformations like rotations or re-
flections. The full RGB image is therefore to be iden- ¢ 1 foature space therefore trans-
tified with three scalar fields, each of which transforms g according to the direct sum
independently under the trivial representation. Not all () = (1)@ (1) @ (1).
individual feature fields need to be of the same type p;.

For instance, in a weather forecasting application the input signal might consist of scalar

Figure 4.5: The three color chan-
nels of an RGB image are geomet-
rically identified as scalar fields, the

3The direct sum @ of vectors F;(z) can be thought of as “stacking” these into a concatenated
vector. Consistently with this, the direct sum of representations p; can be thought of as building a
block diagonal matrix containing the p; as blocks; see Def. [B.5.3|and Figs.[d.4]and[f3]
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fields encoding features like temperature or pressure and vector fields like wind flow ve-
locities. A description as p; fields of corresponding types ensures the geometrically correct
processing of such data. While the field types p; of a network’s input and output are typically
given by the learning task, the field types used in hidden layers are chosen by the user as a
hyperparameter similar to the choice of channels for a conventional CNN.

Since stacked feature fields are defined as a direct sum, they transform independently from
each other. This allows to investigate the equivariant network layers in the following section
for each constituent field individually, that is, one can without loss of generality consider
single (non-stacked) input and output feature fields. Layers that map between full feature
spaces of stacked fields are then combined from these operations between individual fields.

4.3 Affine equivariant layers and steerable convolutions

Aff(G)-equivariant (steerable) network layers between feature fields of types p, : G —
GL(cin) and p,,, : G — GL(Cou) are functions L : L? (R% R¢) — L?(R¢ R%) such that
the following diagram commutes for arbitrary affine transformations tg € Aff(G):

L2 (Rd, Rcin) L L2 (Ral7 RC‘J“‘)
tg, tgty,, (4.13)

L2 (Rd, Rcin) T L2 (Rd7 RC”“‘)

As done for translation equivariant layers in the previous Chapter[3] we derive here the most
commonly used affine equivariant layers, i.e. steerable convolutions, biases, nonlinearities
and pooling operations. Since translations (R, 4+) < Aff(G) form a subgroup of the affine
groups, we will recover the constraints that we encountered for conventional CNNs, namely
arequirement for spatial weight sharing. However, the spatially shared network connectivity
(e.g. kernel or bias) is additionally constrained by the structure group G < Aff(G), i.e. an
additional G-steerability constraint. Together, these constraints can be viewed as a weight
sharing over Aff(G)-transformations.

4.3.1 Steerable convolutions as affine equivariant linear maps

Linear Aff(G)-equivariant maps between feature fields (induced affine group representa-
tions) are necessarily convolutions with G-steerable (G-equivariant) kernels. As before, the
convolution ensures translational equivariance. Fig. .6 visualizes the role of the kernel’s
G-steerability: it summarizes the p, -features in its field of view such into a p,-feature vec-
tor that any G-transformation of the field of view results in a corresponding G-transformation
of the output feature vector. Applied in a convolutional manner, this ensures exactly that the
resulting field of output feature vectors transforms according to their induced representation,
Def.

The statement that linear Aff(G)-equivariant maps are convolutions with G-steerable kernels
has been proven in different settings. Jenner and Weiler [[137] considered general linear func-
tionals, corresponding to steerable kernels in the distributional sense. This setting includes
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p(9)

Figure 4.6: A convolution kernel at z € R? summarizes the field of input feature vectors around z into
a single output feature vector F'(xz) € R°*. Since the kernel is applied in a convolutional manner, i.e.
at each point 2 € R?, it produces a field of output feature vectors. Aff(G)-equivariant convolutions
rely according to Theorem on G-steerable kernels, satisfying the G-equivariance constraint in
Eq. @I8) and diagram . Intuitively, G-steerable kernels guarantee that a transformation of the
input features in their field of view by g € G (or more specifically by Indéﬂ(@ £, (g9)) results in a
transformation of the output feature vector by p,,(¢g). Applied convolutionally, the resulting field of
output feature vectors is guaranteed to transform according to the induced representation IndgH(G) Pout-
More details on G-steerable kernels are found in ChapterE]below.

convolutions with classical kernel functions, but also with other Schwartz distributions, like
e.g. partial differential operators. For simplicity, we will here follow the original derivation
of the G-steerability constraint by Weiler et al. [323]], considering specifically convolutions
with classical kernel functions, derived from an integral transform ansatz. In contrast to their
derivation, we allow here for general structure groups G < GL(d) instead of compact struc-
ture groups G < O(d) only. This will result in an additional volume scaling factor |det g|
occurring in the G-steerability constraint on convolution kernels.

As simple ansatz for unconstrained linear maps between feature fields, we consider the same

integral transforms as in Section[3.2] i.e.

L.: L*(RYR%) — L*(RYR*), definedby I.[F|(z) = /Rddy k(z,y) F(y) .
(4.14)

They are parameterized by square integrable matrix-valued two-argument kernel functions
ki R x R? — ROu X (4.15)

which specify how input features from any point y € R? are aggregated into an output
feature vector at z € R see Fig.

The following theorem proves that the demand for affine group equivariance requires this
integral transform to be a convolution with a G-steerable kernel:
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Theorem 4.3.1 (Steerable convolutions). The integral transform 1. in Eq. @13)is AH (@)
f£(G)

equivariant w.r.t. induced affine group representations Ind P, and Ind " "pyy,
that is, satisfies

I, [tg Dy F] = tg>,  Ie [F] Vitg € Aff(G), (4.16)
if and only if

1. it is a convolution integral
L. [Fl(z) = dy K(z —y) F(y) = [K =« F|(x) (4.17)
Rd

with a one-argument kernel K : R — ReX% sqatisfying the translation rela-
tivity condition k(x,y) =: K(x — y), and

2. the kernel K is G-steerable, that is,

K(gz) = o tg\p"“‘(g) K(x)p, (9)7" VezeRY geG. (4.18)
This G-steerability constraint is captured by the commutativity of the diagram
Rd K s TR Cout X Cin
: L : -1 (419

Rd s [R Cout X Cin
K

for arbitrary g € G. Chapterd|below discusses G-steerable kernels in depth.
Proof: We write out the left-hand side of Eq. (#.16)), which yields
I.[tg >y, F](2) = /R dy r(,y) [tg &, F(y) (4.20)
= /ddy k(2. y) pa(9) F((tg)"'y)
= [ dildetgln(z. (t9)7) o) @)

after a substitution of § := (tg)~'y = g~ '(y — t) with ’det(%)‘ = |det(g7)| =
|det g| 1. The right-hand side is given by

tg Do LJ[F]](z) = tg Douc /Rddy k(z,y) F(y) (4.21)

ZAWM@WW%MHW

These expressions agree for any tg € Aff(G) and any feature map F € L? (Rd, RC‘") if
and only if

1
|det g|

k((tg)x, (tg)y) =

holds for any z, y € R? and any tg € Aff(g).

———pou(9) Kz, y) p,(9) (4.22)
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This constraint implies:

1. As already seen in Theorem [3.2.T] on translation equivariant convolutions, the
two argument kernel may only depend on the relative translation between its
arguments, i.e. x(z +t, y+1t) = r(x,y) forany t € (R4 +) < Aff(G). This
allows to express the two argument kernel in terms of a one (relative) argument
kernel K : R? — Réux¢n given by K(Az) := x(Ax,0). Equivalently, we
have x(x,y) = K(z—vy), implying that the integral transform is a convolution
with kernel K.

2. Expressing the general constraint in Eq. (4.22)) in terms of the one-argument
kernel, we obtain

k((tg)z, (tg)y) = r(gz +t, gy +1) (4.23)
K(g(z —y))

= Gy P @) K@ = 0)p,(0)7"

for any x,y € R< and g € G, which, after inserting Ax := x — y, is the
claimed G-steerability constraint. O

After being published for Euclidean spaces in [323]], this theorem was in [56]] generalized
to H-equivariant convolutions on homogeneous spaces H/G. The symmetry group H was
hereby assumed to be locally compact and unimodular, such that no determinant factor oc-
curred in the G-steerability constraint. Appendix [F]explains such convolutions on homoge-
neous spaces in more detail. Jenner and Weiler [137] generalized our result on Euclidean
spaces furthermore from our integral transform ansatz to arbitrary linear maps, and proved
that these can generally be expressed as convolutions with G-steerable Schwartz distribu-
tions. This framework covers in particular equivariant partial differential operators, includ-
ing for instance gradients, divergence, curl and the Laplace operator.

The active Aff(G)-equivariance of steerable convolutions is in Chapter [15|shown to be re-
lated to their (passive) independence from choices of coordinate charts or pixel grids with
transition maps in Aff(G); see Fig. Note that the independence of the neural connec-
tivity from choices of Aff(G)-related charts is equivalent to the invariance of physical laws
under choices of Poincaré-related inertial frames in the special theory of relativity. Steerable
CNNss are therefore best thought of as performing Aff(G)-relative measurements.

It is intuitively clear that compactly supported G-steerable kernels are equivariant w.r.t. inde-
pendent “local G-transformations” of their field of view at different locations; see Fig.
This property is not adequately captured by our derivation of Aff(G)-steerable convolutions,
which focused on global transformations of the image as a whole. We formalize this lo-
cal G-equivariance in Parts [[I] and [[II] on coordinate independent CNNs, which generalize
steerable CNNs to Riemannian manifolds and focus on passive gauge transformations, i.e.
changes between local reference frames (Fig. 4.7b).

Many equivariant network architectures in the literature are described as group convolutions
instead of steerable convolutions [52, 162,324} [10]. While their theoretical formulation may
look quite different, group convolutions are actually a special case of steerable convolutions,
operating specifically on feature fields whose type is the regular G-representation. Steerable
CNNs are more general in that they allow for arbitrary field types, which allows for instance
to model vector or tensor fields. This equivalence of group convolutions and regular steerable
convolutions is proven in Section[4.5]

Chapter[5]below expands on the parametrization and implementation of G-steerable kernels.
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p(9q)

(a) Active local gauge equivariance of steerable CNNs

p(gp)

p(9q)

(b) Passive local coordinate independence of steerable CNNs

Figure 4.7: Top: Steerable convolutions are not only globally Aff(G)-equivariant, but more generally
equivariant under independent local G-transformations g, and g, of the kernels’ fields of view at dif-
ferent locations p and ¢ in R%. This “local gauge equivariance” of steerable convolutions is formalized
in Parts [l and [lT] Bottom: As argued in Fig. kernels only perceive their relative alignment to-
wards features. The G-transformation of their response vectors when transforming their field of view
is therefore equivalent to that when their own alignment is transformed. Parts[[]and[[I] describe kernel
alignments as choices of local reference frames and interpret steerable CNNs therefore as being coor-
dinate independent.

(Lizards and butterflies adapted under the Creative Commons Attribution 4.0 International|license|by courtesy of Twitter.)
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4.3.2 Steerable bias summation

In analogy to the case of translation equivariant bias summation, we investigate the summa-
tion

By : L*(R",R°) — L*(RY,R), Fw— F+b (4.24)
of a square integrable field of bias vectors
b e L?(R%,RY), (4.25)

however, now subject to an affine group equivariance constraint. Instead of only being
required to be spatially constant (translation invariant), the bias field now has to be in-
variant under Aff(G)-transformations — this implies in particular that biases may only be
summed to the trivial subrepresentations of p, . Note that we have again ¢, = cou =: ¢ and
D = Dy, =: > since bias summation necessarily preserves the field type.

Theorem 4.3.2 (Affine equivariant bias summation). The bias summation in Eq. (#24)

is Aff(QG)-equivariant w.rt. the actions of the induced affine group representations

Indgﬂ(c)pm and IndéH(G)pom, i.e. satisfies

By[tg, F] = tgi, By[F), (4.26)
if and only if the bias field is Aff(G)-invariant:

tg>, b =b Vitg € Aff(G) (4.27)
This requires

1. a spatially constant bias field, i.e. b(x) = b for any x € R? and some shared
bias vector b € R€, and

2. this shared bias needs to be G-invariant, that is, b = p(g)b for any g € G.
Proof: The left- and right-hand sides of Eq. at x € R? become
By[tgr, F](z) = [tgr, F](z) + b(z) (4.28)
p(9) F((tg)~'z) + b(z),

and
[tg >, Bo[F]](z) = [tg>, (F +b)](z) (4.29)
p(g) F((tg)~'x) + plg)b((tg)'z),

respectively, which yields Eq. @.27). Specifically, we have b(z) = b(z — t) for any
translation ¢ € (R, +) < Aff(G), implying the spatially constant bias field b(x) = b.
Reinserting this into the constraint for general tg € Aff(G), we get the G-invariance
b=p(g)forany g € G. O

To get an insight into the implications of the G-invariance constraint b=p(g)b Vg <G,
assume p to be reducible into a direct sum of irreps, which is by Theorems[B.5.14]and[B.5.16
w.l.o.g. the case for compact groups, including any G < O(d). Let Q@ € GL(c) be a
change of basis that decomposes p into irreps p;, i.e. satisfies Qp(g)Q~' = D, ril9)

forany g € G, and let Qb =: b = P ; b; be the corresponding decomposition of the
bias vector into irreducible subspaces labeled by j. The constraint in this basis becomes
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D, b; = (D, ri(9)] [ B, bj], i.e. it splits into independent constraints b; = p;(g)b; on
the subspaces. The latter is always satisfied for the trivial irreducible subrepresentations of
p, satisfying po(g) = 1. For all non-trivial irreducible subrepresentations of p, the constraint

is only satisfied for zero vectors, i.e. b;j2o = 0. If follows that the vector space
BS = {beR"|b=p(g)b Vg€ G} (4.30)

of G-invariant bias vectors coincides with the (subspaces of) trivial subrepresentations of p.
Its dimensionality — and therefore the number of learnable parameters — equals the multi-
plicity of trivial subrepresentations contained in p.

Two simple examples of feature fields to which one might want to sum a spatially shared and
G-invariant bias vector are scalar fields and tangent vector fields. By definition, scalars are
G-invariant, that is, they transform according to the trivial representation p(g) =1 Vg € G.
One can therefore sum any (scalar) bias b € R to them. In contrast, tangent vectors transform
according to the non-trivial, irreducible defining representation p(g) = g of G. This repre-
sentation does not contain any trivial subrepresentation, such that it is impossible to sum a
shared bias vector to tangent vector fields while maintaining Aff(G)-equivariance. As a third
example, consider regular representations of compact groups, which describe for instance
the feature fields of group convolutional networks. By the Peter-Weyl theorem [B.5.27] it is
known that regular representations contain exactly one trivial subrepresentation. The bias to
be summed to regular feature fields is therefore seen to be described by a single parameter.
Section explicitly derives some more examples for representations of the reflection

group.

4.3.3 Steerable local nonlinearities

As probably expected, locally acting Aff(G)-equivariant nonlinearities are not only required
to be spatially independent, but also equivariant w.r.t. field types p, and p,,,, between which
they map. To show this, are again starting with a spatially dependent ansatz

S, : L*(RY,R) — L?(RYR™), 4.31)
for the local nonlinearities, given by
o: REX RO — RO (z,f) = 0.(f), (4.32)
and
G [F] (x) = ox(F(gc)), (4.33)

and then demand affine equivariance.

Theorem 4.3.3 (Affine equivariant local nonlinearities). The spatially dependent local-
ized nonlinearity operation in Eq. @31) is Afl(G)-equivariant w.r.t. the actions of

f£(G) AfF(G)
G

the induced affine group representations Indg p,, and Ind i.e. satisfies

out”
Gotg, F| = tgm, 64[F], (4.34)
if and only if:

1. the underlying field of localized nonlinearities is position-independent, that is,
0. = & for some shared nonlinearity s : R — R and any x € R?, and
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2. this shared nonlinearity is G-equivariant, i.e. p,,(g)s =3p, (g9) Vg€ G.
Proof: The constraint in Eq. (#.34) demands that

S, [tg Dy Fl(z) = o.(ltg >, F] () (4.35)
= 02(p,(9) F((tg) 7)),

and

[tg >, SolF1](x) = poulg) S,[F]((tg)  x) (4.36)

= puul9) 702 (F((t9) '2))

agree for any z € R and any tg € Aff(g), and therefore:

1. focusing specifically on translations ¢ € (R%,+) < Aff(G) first, we obtain
oy (F(x—1)) = 0, (F(z—t)), implying the claimed position independence
of the nonlinearity field

2. reinserting this partial result into the constraint yields, for any tg € Aff(G)
and arbitrary feature fields, d(pin (9) F((tg)*lac» = poulg) (F((tg)’lx) ,
implying the G-equivariance of 4. O

Due to the nonlinearity of the steerability constraint p,,,(9) s = 3 p, (9) V ¢ € G, it cannot be
solved in a systematic fashion by decomposing it into irreducible subspaces, as done for ker-
nels in Section[5.3.2]and for biases in Section[4.3.2] One is instead forced to design steerable
local nonlinearities on a case-by-case basis. The following list summarizes some common
design choices for specific families of field types that were proposed in the literature:

Trivial reps: For trivial representations p, and p,,, the constraint p,,(g)s = s p, (g) be-
comes itself trivial. As a consequence, any nonlinearity is admissible for scalar fields.

Unitary reps: A general class of representations are unitary representations (Def. [B.5.13)),
which preserve the norm of their representation space, that is, they satisfy
|punitary (9) F(z)] = |F(x)| V g € G. As proven in [322], nonlinearities which
solely act on the norm of feature vectors but preserve their orientation are equiv-
ariant w.r.t. unitary representation actions. They can in general be decomposed in

Onorm : R¢ = R°, F(z) — n(\F(x)\) ;83\ for some nonlinear function 7 : R>¢ —
R>( acting on the norm of feature vectors. Norm-ReLUs, defined by n(|F(z)|) =

ReLU(|F(z)| — b) where b € R is a learned bias, were used in [335] 323]]. In

[253]], the authors consider squashing nonlinearities with n(|F(z)|) = %

Gated nonlinearities were proposed in [323]] as conditional version of norm nonlin-
earities. They act by scaling the norm of a feature field by learned sigmoid gates
ﬁ, parameterized by a scalar feature field s. Note that any representation of
compact groups, including any G < O(d), can by Theorem be considered as
being unitary. The nonlinearities described here are in practice often used for irrep
feature fields of such groups.

Permutation reps: Permutation representations act by permuting feature vector channels.
This action commutes generally with any element-wise nonlinearity, for instance
ReLU activations that are applied to each vector entry individually. Practically rel-
evant examples are regular representations (Def. [B.5.18)), corresponding to group
convolutions (Theorem [d.5.1)), quotient representations (Def.[B.5.20), and the trivial
representation.
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Tensor product reps: Feature vectors Fy () € R and Fy(x) € R of arbitrary types p;
and p» can be combined to a tensor product feature [Fl ® Fg} (z) € R%%, whose
type is the tensor product representation p; ® po; Def. The tensor product is
a nonlinear (but still bilinear) operation, such that some authors choose not to apply
further nonlinearities [161) 323} 163} 3].

All of these examples satisfy the equivariance constraint p,,,(¢) 9 = 4 p, (9) Vg € G. Which
particular nonlinearity works well in practice is, however, an empirical question. Section|[6.3]
presents a benchmarking of different field types and correspondingly steerable nonlineari-
ties. The results are summarized in Table [6.6]— regular (permutation) representations with
element-wise nonlinearities perform best overall, while gated nonlinearities perform best for
unitary representations that do not act via permutations, like e.g. O(d)-irreps. Franzen and
Wand [94]] provide a harmonic distortion analysis of nonlinearities that are applied to the
channels of regular feature fields, or subrepresentations of it.

4.3.4 Steerable local pooling operations

As for translation equivariant CNNs, we discuss local and global pooling operations. The
requirement for affine group equivariance imposes additional G-symmetry constraints on
these operations, or may allow their application to specific field types p only.

Channel-wise local max pooling: Since local max pooling operates channel-wise, it com-
mutes only with permutation representations. It requires furthermore an affine invariant
choice of pooling regions, for instance balls of a certain radius for G = SO(d).

Theorem 4.3.4 (Affine equivariance of local max pooling for permutation reps).
Let the field type p : G — GL(c) be a permutation representation, i.e. act by permut-
ing field channels. The local max pooling operation in Eq. (3.30) is then affine group
equivariant, that is,

local_max_pool[tgr>, F|(z) = (tg >, local_max_pool[F])(z) (4.37)

for any x € R? and any tg € Aff(G), if and only if the pooling windows are affine
group invariant (spatially shared and locally G-invariant), i.e. satisfy

(tg) 'Re = Rgya Yz €RY, tg € Aff(G), (4.38)

Proof: Using that permutation representations commute with the channel-wise application
of local max pooling, and substituting the pooling region R, for (tg) 'R, the left
hand side becomes

local_max_pool[tg >, F](z) = max p(9)F ((tg)~'y) (4.39)

max F(y).
p(9) Jeihax (y)

The statement follows by setting this equal with the right hand side, which is given by
(tg >, local_max_pool[F])(x) = p(g)local_max_pool[F] ((tg)flx) (4.40)
= F . D

plg) max F(y)

(tg)~la

A typical example of permutation representations are regular representations.
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Local norm max pooling: An alternative approach to max pool feature fields is local
norm max pooling, which selects feature vectors based on their maximum norm within some
pooling region. It applies to any field whose type p is a unitary representation since their
actions preserve the feature vector norm. It is defined as a map

local_norm max_pool : L*(R% R¢) — L?(R%, R°) (4.41)
that is for a pooling region R, C R around 2 € R? given by
local_norm_max_pool[F|(z) = F(argmax !F(y)|) . (4.42)
YER,

If a stacked feature field F' = €, F; is given by a direct sum of feature fields F; of unitary
type, local_norm_max_pool is usually applied to each summand individually.

Theorem 4.3.5 (Affine equivariance of local norm max pooling for unitary reps).
Let F be a feature field of unitary type p : G — GL(c), preserving the norm
\p(9)F(z)| = |F(x)| of feature vectors under G-actions. If the pooling regions are
affine invariant, i.e.

(tg) 'Re = Rugye Yz eRY tge Af(G), (4.43)
the local norm max pooling operation in Eq. @.42) is then affine group equivariant, i.e.
local_norm_max_pool [tg >, F] () = (tg >, local_norm_max_pool[F]) (x)
(4.44)
for any x € R% and any tg € Aff(G).

Proof: Using the unitarity ‘p(g)F (y)’ = |F(y)] of p in the third step and a substitution of
the pooling region, which requires a corresponding correction of the arg max result, in
the fourth step, the left hand side of the equivariance constraint in Eq. (#.44)) becomes:

local_norm_max_pool [tg >, F] (z) (4.45)

= [tg>, F| (ar;ger;zl?x ’ (tg >, F] (Q)D

= pl9)F ((tg)™! argmax p(9)F ((tg)'y)))

= (o) F (1)~ argmax [ ((t9) "))

= F -1 argmax |F
pl9)F ((tg) (tg)ye(tgg)dm\ )

= p(g)F( arg max {Fl(y))
yE(tg) ™' R.
The right hand side is given by

[tg >, local_norm_max_pool F|(z) = p(g)F( argmax |F|(y)) . (4.46)
YER (1)~ 12

These expressions agree for any tg € Aff(G) and any unitary feature field F €

L?(R?,R¢) if and only if the pooling regions are affine invariant, that is, satisfy
(t9) "' Re = Ritg)-ra- -
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Local average pooling: We defined local average pooling in Eq. (3.33)) as a channel-wise
convolution with a scalar weighting kernel A : R¢ — R. If this 0perat1on is to be affine
equivariant, the weighting kernel is additionally required to be G-steerable. Local average
pooling may be applied to fields of any type p since the convolution with a scalar kernel
commutes with the G-action.

Theorem 4.3.6 (Affine equivariance of local average pooling). Let £ :RY - R be a
scalar weighting kernel that is G-steerable in the sense that

_ 1 d
k(gx) = |detg|ﬁ(x) VereRY gedG. (4.47)
The local average pooling operation in Eq. (§.42) is then affine group equivariant, i.e.
local_avg pool[tgr>, F|(z) = (tg>,local_avg pool[F])(x) (4.48)

forany x € R, any tg € Aff(G) and any F € L*(R?,R¢).
Proof: The equality of both sides of the equivariance constraint is shown by

local_avg_pool [tg >, F] (z) (4.49)

| dy k(z —y) [tg >, F](y)
[ dyfi(z —y) p(9)F((tg)"y)
= p(g) /Rddg |det g| & (z — (tg)y) F ()

:p()/dy/%(tg e - y)F

= p(g) local_avg_pool[F]((tg) ')
=(tgr, local_avg_pool[F])( ),

where we substituted § := (tg)~'y and made use of the weighting kernel’s G-
steerability in the fourth step:
é(x—(tg) ) —f)l(x—gy—i-t) = fi(g(g‘%c—t)—ﬂ)) (4.50)
_ oy 1 IR
=K(g((tg)'x—7)) = 7|detg|ﬁ((t9) x—7) O

Note that the convolution with a G-steerable weighting kernel is analogous to the use of
affine invariant pooling regions.

As for regular translation equivariant CNNs, local pooling operations are in discretized affine
equivariant steerable CNN implementations often followed by a subsampling step. For fea-
ture fields of regular representation type, this may be done using the method of Xu et al.
[336], which subsamples the field on an equivariant choice of coset (Def. [B.2.2).

4.3.5 Steerable global pooling operations

Global affine equivariant pooling operations result in a single feature vector that is position-
independent but still G-steerable.
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Channel-wise global max pooling: Channel-wise global max pooling was defined in
Eq. (3:39). Applied to permutation representations, it is affine equivariant:

Theorem 4.3.7 (Affine equivariance of global max pooling for permutation reps).
If the field type p is a permutation representation, (channel wise) global max pooling is
affine equivariant in the sense that

global_max_pool[tg >, F| = p(g)global_max_pool[F] 4.51)
holds for any tg € Aff(G) and any F € L*(R%,R¢).

Proof: Since the maximum of field values is taken for each channel separately, this operation
commutes with the channel permutation action of the field type. Taking the maximum
field value is furthermore position-independent. We therefore have

global_max_pool [tg >, F} 4.52)
max [tg >, F](z)

max p(g) F((tg)~'x)

~1
plg) max F((tg)'x)
= p(g) max F(z)
= p(g) global_max_pool[F]. O

Global norm max pooling: We define global norm max pooling for unitary representation
field types p as the map

global_norm_max_pool : L?(R% R®) — R° (4.53)
defined by
global_norm_max_pool[F](x) = F(argmaX‘F(x)D . (4.54)
zeR?

Theorem 4.3.8 (Affine equivariance of global norm max pooling for unitary reps).
Let the field type p : G — GL(c) be a unitary representation. The global norm max
pooling operation in Eq. (4.54) is then affine group equivariant in the sense that

global_norm_max_pool[tg >, F} = p(g) global_norm_max_pool[F] (4.55)
holds for any tg € Aff(G) and any F € L*(R?,R®).
Proof: Lettg € Aff(G) and F € L?(R? R¢), then
global_norm max_pool [tg >, F] (4.56)

= Lt #] (ngaes e, £ )]

= plo) F ((t9) ™ argmax p(g) F ((t9) ') )

= plg) F((tg) " (tg) argmax | () )
TER?
= p(g) global_norm_max_pool[F],
where the third step made use of the unitarity of p and expressed the argument of the

spatially transformed field in terms of a spatially transformed argument of the original
field. O
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Global average pooling: If we consider the (channel wise) global average pooling op-
eration from Eq. (3.41), we find that it is affine equivariant and results in a feature vector
of type |det g|p(g). The determinant factor accounts hereby for non-volume preserving
field transformations. Note that g — |det g|p(g) is a well defined G-representation (lin-
ear group homomorphism), i.e. satisfies |[det(gh)| p(gh) = (|det g|p(g)) (|det h|p(h)) for
any g, h € G.

Theorem 4.3.9 (Affine equivariance of global average pooling). Let F' € L?(RY,R) be
a feature field of arbitrary type p and tg € Aff(G), then

global_avg pool[tg >, F| = |detg|p(g) global_avg_pool[F]. (4.57)

Proof: To prove the claim, we simply need to observe that p(g) commutes with the integra-
tion and substitute 7 := (tg)la:

global_avg pool [tg >, F] (4.58)
= / dz [tg >, F|(z)
= /ddfc plg) F((tg)~"x)

~[detglplg) | a5 F(a)

=|det g| p(g) global_avg pool[F]. O

4.4 Local symmetries and equivariance group restriction

The key idea of equivariant networks is to exploit symmetries in the distribution of charac-
teristic patterns in data. Specifically for feature fields, the level of symmetry might vary over
different length scales. For instance, natural images typically show small features like edges,
intensity gradients or the blossom leafs in Fig. £.§]in arbitrary orientations and reflections.
On a larger length scale, however, the rotational symmetry is broken, as manifested in visual
patterns that are exclusively appearing in upright rotation but still in different positions and
reflections. Each individual layer of a convolutional network should therefore be adapted to
the symmetries present at the length scale of its neurons’ receptive fields.

A loss of symmetry can be implemented by restricting the equivariance constraints at a
certain layer to a subgroup Aff(H) < Aff(G), where H < G} e.g. from rotations and reflec-
tions G = O(2) to mere reflections H = (R in the natural image example above. Formally,
this is achieved by the (forgetful) restriction functor (Def.[B.5.2)

AfF(G) |

o (L2RLR), dg™Yp) — (L2(RYR®), Resygiyy, Indg @)

Res A(H)

= (LA(R%R?), Indyy" ™ Resf] p), (459

which maps feature fields with induced Aff(G)-action to fields with induced Aff(H )-action
by simply forgetting the full group action and acting with subgroup elements only. The iso-
morphism on the right-hand side emphasizes that the restriction of a feature field as a whole
(first row) can equivalently be viewed as a restriction of its field type to an H -representation
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Figure 4.8: Natural images have preferred “up” and
“down” directions on their global scale, however,
local patterns, like the leafs of the sunflower blos-
soms, appear commonly in arbitrary rotations. This
can be exploited by composing a full network from
subnetworks with different levels of equivariance.
Formally, the transition from an Aff(G)-equivariant
subnetwork to an Aff(H )-equivariant subnetwork
with H < G is achieved by a group restriction of
the original field type p : G — GL(c) to type
Res% p: H — GL(c).

(Image credit: FreeImages.com/bodee)

Resg p- This equivalence is easily seen as follows,

Reshg o) Tnds™ D (th) F} (z) [Indéﬁ(G)p (th) F} (z) (4.60)
p(h) F ((th)"'z)

[Resg p] (h) F ((th)" ')

= [Indgﬁ(m Res$ p (th) F} (x),

where F' € L2(R%, R¢), z € R? and th € Aff(H) are chosen arbitrarily. The removal and
addition of the restriction functors in the first and third step was hereby possible since they
are just a restriction of the respective representation’s domain.

As a forgetful functor, the equivariance group restriction layer Resigg)) does not change

the actual data of the feature field on which it acts, and the resulting field will implicitly
still transform according to the forgotten Aff(G)-action. However, the restriction functor
allows for the subsequent layers to be Aff(H)-equivariant only, i.e. to break full Aff(G)-
equivariance. The resulting network as a whole will only be Aff(H)-equivariant, while the
Aff(G)-equivariant subnetwork will nonetheless generalize its inference over a larger group
of symmetries:

—— L2(R4,Ren)
Aff(G)-equivariant subnetwork
L2 (Rol7 Rcmid)

full network, Aff(G) 4.61
Aff(H)-equivariant Resiyq (H) ( )

L2 (Rd, [Remia)

Aff(H)-equivariant subnetwork

\ s 2 (Rd, chm)

A simple example to illustrate these ideas are feature fields that transform under the regular
representation (Def. and Remark [B-5.19) of a dihedral group G = Dy. These fields
have ¢ = 2N channels associated to NV rotations in two reflections each. Upon restriction to
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mere reflections H = (R < Dy, the 2N-dimensional feature vectors decouple into N two-
dimensional fields, each transforming according to the regular representation of the reflection
group. The Dy-action is implicitly still present, however, the reinterpretation as multiple
reflection steerable fields puts less equivariance constraints on the following layer, allowing
the network to break rotational equivariance (rotational relativity) by attending to different
rotations in an absolute sense.

Conversely to the symmetry breaking on large length scales, it is also imaginable that local
patterns are aligned, while patterns that emerge on a larger scale are more symmetrically
distributed — think for instance about a solid that is locally magnetized (rotationally aligned)
but globally amorphous (rotationally symmetric). This could analogously be exploited by
merging |G : H]| fields of H-type p into a single field of induced G-type Indg p, where
H < G| Other use cases would be autoencoders, which would require an induction step
in their decoder subnetwork to mirror a group restriction in their encoder subnetwork, or
generative adversarial networks (GANs).

An implementation and empirical evaluation of this network design was presented by Weiler
and Cesa [322]][38]. Romero and Lohit [249] proposed a related approach which relies on
“equivariance” w.r.t. a learned (and not necessarily closed) subset of group elements. An
example are networks that are “equivariant” w.r.t. rotations in an interval [—6, 6] C SO(2),
where the angle 0 < 6 < 7 is learned.

4.5 Affine group convolutions as regular steerable convolutions

One of the most common and successful design for equivariant CNNs are group convolu-
tional neural networks (GCNNGs) [152, 162,324, [10]]. Here we argue that group convolutionsﬁ]
correspond to steerable convolutions with regular feature fields, i.e. feature fields whose
field type is the regular G-representation p<

reg”

Group convolutions: Group convolutions process feature maps that are functions on sym-
metry groups and transform according to the (left) regular representations (Def. [B.5.18)) of
these symmetry groups. In our specific application on affine equivariant CNNs, these would

be the regular Aff(G)-representations pif(g), whose actions on functions
fAff(G) - R, (4.62)
are for arbitrary tg and g in Aff(G) given by
[ond @ (tg) £ (Fg) = f((tg)~ ), (4.63)
i.e. by a “shift” of f on Aff(G) by tg.
An affine group convolution with a kernel £ : Aff(G) — R on the group is then defined as
[f *sq () ] (t9) = / d(tg) f((t9)) £ ((t9)""tg) ; (4.64)
AfF(G)
see Appendix [F.1]for more details.

*|G : H| is the index (number of left cosets) of H in G, which equals |G/|/| H| for finite groups.
SGroup convolutions are to be distinguished from “grouped convolutions” [290], which are just
conventional convolutions with a sparse connectivity between “groups” of feature maps.
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Equivalence: In order to show that Aff(G) group convolutions are Aff(G) steerable con-
volutions between G-regular feature fields, we leverage two properties of induced represen-

tations. Firstly, regular representations can be understood as being induced from the trivial
representation p{e} of the trivial group {e}. For instance, the regular G-representation is

given by

G G fe}
preg Ind{ } )i (465)

Secondly, the induced representation satisfies for any nested subgroups K < G < H and
K -representation p’ the algebraic property

IndZ md§ p% = mdll )i, (4.66)

known as induction in stages [33]]. Taken together, with K := {e} < G < Aff(G) =: H,

this shows the equivalence of GCNN feature maps on Aff(G) and G-regular feature fields
on R%:

AfF(Q)
preg

¢

Ind?f}(e) p{e} (regular repr. induction from trivial, Eq. @&63) ) (4.67)

triv

IndéH(G) Ind?e} p[{_e} (induction in stages, Eq. [£.66) )

1

[

= IndéH(G) pS (regular repr. induction from trivial, Eq. 63) )

reg

Since steerable convolutions are derived as the most general Aff(G)-equivariant integral
transforms between such feature spaces, they cover Aff(G) group convolutions as a special
case:

Theorem 4.5.1 (Aff(G) group convolutions as G-regular steerable convolutions).
The feature spaces Lz(Aff(G),]R) and L2(Rd,R‘G|) of Aff(G) group convo-
lutions and steerable convolutions between Euclidean feature fields of regular

G-representation type, transforming according to ,OAH(G) and IndAH(G Preg TeSPEC-
tively, are isomorphic.
AF(G)) ~ d |G Afl(G) G
(L*(Af(G),R), Pas ) = (L2(R%RIF), dg™ ) pg,) (4.68)

The group convolutions and steerable convolutions between such feature spaces are
equivalent.

Proof: The equivalence of the feature spaces (representation spaces) follows from 1) the
induction in stages and 2) the induction of regular representations from trivial represen-
tations, as discussed above. That group convolutions and regular steerable convolutions
are equivalent follows from the observation that both are the most general integral trans-
forms between such feature spaces. (]

A similar equivalence holds between convolutions on homogeneous spaces on the one hand,
described in Appendix E] and [[162,[10], and steerable convolutions with quotient represen-
tation fields on the other handE]

(4.69)

G/K ~
quot

Ind§ p¥ . such that pA“<G>/ Ko a9 K o Ind AT 1§ pff > ma™ 99K v K < a.

triv q uot

®In this case we use that G/ K quotient representations (Def. [B.5.20) are induced as p
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Generality: Bekkers [10][L1] argues that “group convolutions are all you need” to con-
struct equivariant convolutional networks. Since group convolutions correspond specifically
to steerable convolutions with regular feature fields, this raises the question in how far more
general steerable convolutions with arbitrary field types are covered. In a nutshell, general
feature fields for compact G may always be embedded into regular feature fields — implying
that group convolutions are in this sense indeed sufficient to represent arbitrary steerable con-
volutions. However, an embedding of low-dimensional feature fields into high (or infinite)
dimensional regular fields would consume an excessive amount of computational resources.
Steerable convolutions, on the other hand, operate explicitly on feature fields in the relevant
(sub)representation spaces. We would therefore argue that steerable convolutions are all you
need, however, in this case without excess subrepresentations.

To make these arguments more precise, we make use of the Peter-Weyl theorem [B.5.22]
which guarantees that the regular representation of a compact group G decomposes into
a direct sum of irreducible subspaces Specifically, denoting the isomorphism classes of

irreps of G by G, one has pe, = @] ca @i, p§. where m; > 1 is the multiplicity of
order j irreps pj in the regular representation. The direct sum commutes with the induction

functor [55]], such that regular feature fields decompose into a direct sum of irrep feature
fields:

fe! ~ AF(G) m; o~ N m; Af(G
Indg"pG = Indg™ @JEG@l = @je@ P, ndg (DpG 4.70)

Note further that Theorem [B.5.16] ensures the complete reducibility of finite dimensional
representations of unitary groups G into irreps, which implies that arbitrary (finite dimen-
sional) feature fields decompose in irrep fields as well. Since each irrep field appears in
regular feature fields with positive multiplicity m; > 1, a sufficient number of such regular
fields allows to encode steerable feature fields of arbitrary (finite) type.

An example are scalar fields (trivial representation fields), which are in the regular represen-
tation embedded as constant functions on the group. However, instead of a single channel,
this embedded encoding would require |G| channels for finite and “infinite channels” for
non-finite groups. As a second example, consider vector fields of cyclic groups G = Cy,
corresponding to the two-dimensional Cy-irrep of order one. These vector fields could in
principle be encoded into the /N-dimensional regular representations of Cy, however, with
a linearly growing memory cost O(IV) and quadratically growing compute cost O(N?) in-
stead of the fixed cost for steerable CNNs. We see therefore that while all steerable feature
fields can in principle be embedded in regular feature fields, this approach might consume
an excessive amount of memory and compute resources. In addition, the user would have
to implement the embedding of general feature fields into regular fields manually to process
e.g. vector field valued data like optical flow with regular GCNNs.






CHAPTER 5

G-steerable convolution kernels

Theorem proved that Aff(G)-equivariant convolutions generally require kernels
K : R% — Reucn gatisfying the linear G-steerability constraint

1 _
K(gz) = mpom(g)ff(x) pa(9)™t  VazeR! geq, (5.1)

which corresponds to the commutativity of the following equivariance diagram for any g
inG:

Rd K s TR Cout X Cin

1 —
g mmm(g) RN (5.2)

Rd N Rcoul X Cin
K
As visualized in Fig. a G-steerable kernel at 2 € R is intuitively thought of as summa-
rizing the field of input feature vectors around z such into an output feature vector at = that a
local G-transformation of the input feature field by g € G results in a transformation of the
resulting feature vector by p,,.(g).

This chapter investigates the nature of G-steerable kernels in greater detail, giving explicit
examples and discussing general solution strategies for the kernel constraint. Section
starts off with the general observation that G-steerable kernels form a vector space. Any
G-steerable kernel may consequently be parameterized and expanded in terms of a basis
of G-steerable kernels. To build a first intuition for the workings of steerable kernels, Sec-
tion[5.2]discusses the particularly simple and instructive example of reflection steerable ker-
nels. The resulting kernels, visualized in Table.[5.1] exhibit some type of reflection symme-
try, depending on the choice of input and output field types, shown in Fig.[5.1] Section[5.3]
presents a generalized Wigner-Eckart theorem for G-steerable kernels, which gives a recipe
to construct complete steerable kernel bases from 1) harmonic basis functions (Figs. [5.2]
or @, 2) irrep endomorphisms (reduced matrix elements), and 3) Clebsch-Gordan coeffi-
cients. It is applied to derive SO(2)-steerable kernel bases, which are listed in Table
Section gives a brief overview of alternative approaches that were proposed to parame-
terize equivariant convolution kernels.

Before coming to our investigation of G-steerable kernels, we want to mention that the
G-steerability constraint may alternatively be derived in a more general differential geo-
metric setting, as done in Sections [0.2.3] and [T2.2.T) below. Kernels are here interpreted as
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“local observers”, which measure a feature field relative to some choice of local reference
frame. G-steerability is in this setting required to ensure that convolutional weight shar-
ing is independent from particular choices of frames (gauges). This derivation emphasizes
a compelling analogy between steerable — or frame relativistic — kernels on the one hand
and relativistic laws of nature on the other hand: they are necessary for a group equivariant
network inference and a Poincaré equivariant evolution of physical systems, respectively.

Implementations of G-steerable kernels for arbitrary representations of any subgroups G <
O(3) and G < O(2) are available as part of the escnn library by Cesa et al. [39].

5.1 The vector space of G-steerable kernels and steerable basis expansion

Steerable kernel spaces: A first observation that we can make to parameterize steerable
convolutions is that G-steerable kernels form a vector space and can therefore be expanded
in a steerable kernel basis. To see this, consider the set

K = {K; RY — R%Wm} (5.3)

of general, i.e. not necessarily GG-equivariant, kernels. Equipped with the standard summa-
tion and scalar multiplication of functions, this set forms the usual vector space of convolu-
tion kernels. G-steerable kernels form the subset

K(gz) = —— poulg) K(2) pa(9) ™! (5.4)

KG — {K RY — [RCoutXCin —
' ' |det g

PinPout

V:ceRd,geG}

of all convolution kernels that satisfy the G-steerability constraint in Eq. (5.1)). As this con-

straint is linear, g{f Poue turns out to be a linear vector subspace of K. It is therefore possible
in’"ou

to solve for a basis of G-steerable kernels, in terms of which Aff(G)-steerable convolutions
can be parameterized. Note that the reduced dimensionality of the (sub)space of G-steerable
kernels implies an improved parameter efficiency in comparison to conventional convolu-
tions.

The remainder of this section will briefly elaborate on implementation aspects of steerable
convolutions. We will thereby assume a basis of K& to be given, deferring a discussion

PirPout
of their construction to the following sections.

Steerable basis expansion: Working in the continuous setting, K and g{f Py, A€ USU-
in’Moul
ally infinite dimensional function spaces, and would therefore require an infinite number of

trainable parameters. To obtain a finite steerable kernel basis {K1,..., Ky}, a given in-
finite basis of []{E P needs to be discretized subject to some smoothness conditions. For

instance, SO(2)-steerable kernels can generally be expanded in terms of the circular har-
monics in Fig. [5.2] with an unconstrained radial part. A finite basis may then obtained by
restricting to 1) bandlimited circular harmonics up to some cutoff frequency and 2) smooth
radial parts, e.g. the smooth rings in different rows of Fig.[5.2] Another example are reflec-
tion steerable kernels, Table. which could be sampled on a finite number of points of a
pixel grid.



5.1. The vector space of G-steerable kernels and steerable basis expansion 69

Given a finite steerable kernel basis { K71, ..., K x }, a general G-steerable kernel is expanded
as
N
K = Zwim , (5.5)
i=1
where the expansion coefficients {ws, ..., wy | w; € R} are the trainable parameters of the

kernel. An Aff(G)-steerable convolution operation is then just a conventional convolution
operation after an additional kernel expansion step:

Algorithm: Aff(G)-steerable convolution — forward pass

Input: G-steerable kernel basis { K1, ..., Kn}
trainable weights {w1, ..., wN}
input feature field Fi,
Output: output feature field Fou

expand learned kernel: K <« Zil w; K
convolve to obtain output feature field: Fou < K * Fin
return Fo

The cost of the additional kernel expansion operation is usually negligible compared to the
cost of the convolution operation itself: when performing convolutions in continuous space
(e.g. sampled at a point cloud), the continuous kernel needs to be expanded in some basis
anyways. If the kernel is instead sampled on a square pixel grid, it does not need to be
expanded, but is given directly as a parameter tensor of shape (s1, . . . , Sd, Cout; Cin ) Where the
s; € N are the extensions of the kernel pixel grid in different spatial dimensions. Consider
furthermore a batch of B € N feature fields, given as a tensor of shape (B, X1, ..., X4, ¢in),
where X; € N are the spatial extensions of the fields’ pixel grid. The computational cost of a
convolution scales then as O (B 11 151X comcm) EI In comparison, a sampled steerable kernel
basis {K7,...,Kx} is represented by a tensor of shape (N, 1, ..., Sd, Cou, Cin), and the
kernel expansion scales as O(N HlsZ coutcin). Since N <« B Hl X; in usual applications,
the kernel expansion’s runtime is negligible in comparison to the convolution operation itself.
Note furthermore that the kernel expansion is only necessary during training — as soon as the
parameters are fixed (i.e. during test time), the kernel needs to be expanded only once and
one is left solely with the cost of the convolution operation.

Similar arguments hold for the backward pass of Aff(G)-steerable convolutions, where one
needs to backpropagate additionally through the kernel expansion to obtain loss gradients
g—lﬁ for the expansion coefficients w;:

"Here we are assuming a “spatial” implementation of the convolution operation, which is for the
typically small kernels of convolutional networks cheaper than an implementation in terms of fast
Fourier transforms.
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Algorithm: Aff(G)-steerable convolution — backward pass

Input: G-steerable kernel basis { K1, ..., Kn}
trainable weights {w1, ..., wN}

input feature field Fi,

oL
9 Fout

loss gradients w.r.t output feature field

Output: loss gradients w.r.t input feature field a%ﬁm

loss gradients w.r.t trainable weights 2%, i=1,...,N

Ow;

expand learned kernel: K <« Zf\;l w; K

ione 0L 9L 1 oL
backprop through convolution: gz, 5% ¢« conv_backprop(Fi, K, 57-)
. OL 0K L _ pr. AL
backprop through kernel expansion: u w0k = K; 3%
: aL oL . _
return loss gradients i and e b= 1,...,N

The backward pass conv_backprop through the convolution is hereby performed as usual,
i.e. it is given by convolutions of the output gradient field %fm with the (spatially reflected)
kernel and input field. This operation is again dominating the overall computational cost
in comparison to the cost of the kernel expansion and its backward pass. Note that the
backpropagation through Aff(G)-steerable convolutions does not need to be implemented
explicitly, since it is composed of differentiable primitives (kernel expansion and convolu-
tion), such that the backward pass is taken care of by differentiable programming languages.

We will in the following sections turn to analytical derivations of the steerable kernel bases
themselves, starting with the example of reflection steerable kernels.

5.2 Simple example — reflection steerable kernels

Reflection steerable kernels are the arguably simplest example of G-steerable kernels. The
reason for their simplicity is that the reflection group R = {e, s} consists of two elements,
the identity e and the reflection (Spiegelung) s, only. They are composed according to the
following simple multiplication table:

e s
el|le s (5.6)
s|s e

The only nontrivial statement in this table is that two reflections annihilate, that is, 2 =e,
or, equivalently, s~! = s. Here we assume the reflection group to be instantiated as a
subgroup R =: G < GL(d) of the general linear group, such that it acts canonically on R?
by reflecting points along some choice of reflection axis.

As a preparation for solving for reflection steerable kernels, Section [5.2.1] introduces some
group representations of the reflection group, corresponding to the field types shown in
Fig. The steerable kernels that map between any pair of these field types are derived
in Section [5.2.2] The reflection symmetries of the resulting kernels, shown in Table [5.1]
guarantee the correct transformation behavior of feature fields and reduce the parameter cost
by approximately a half.
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scalar field pseudoscalar field regular feature field
(trivial representation ) (sign-flip representation) (regular representation)

Figure 5.1: Examples of reflection steerable feature field types and their respective induced repre-
sentation actions >,. Left: Scalar fields correspond to the trivial representation p,, , Eq. (5.7). The
induced representation acts by reflecting the field spatially, but leaves the scalar values themselves
invariant. Middle: The one-dimensional sign-flip representation Peign® Eq. (3.9), is characterized by
Py gn(s) = —1. It models pseudoscalar fields, whose values are negated under reflections. Right: The
regular representation p,., of the reflection group, Eq. (3-T1)), acts on two-dimensional feature vectors
by swapping their two values. Regular feature fields consist therefore of two channels and the induced
regular representation acts on such fields by 1) reflecting them spatially and 2) permuting their chan-
nels. Table[5.1]shows reflection steerable kernels that map between any pair of field types — the reader
should validate intuitively that the given kernels will indeed guarantee the correct transformation be-
havior of the output field when being applied to transformed input fields.

Empirical results for convolutions with reflection steerable kernels are reported in Tables[6.2]
[6:41[6.3]and [6.6] where the reflection group R = D is sometimes identified with the dihedral
group of order 1. Chapter |10 furthermore discusses orientation independent convolutions
on the (non-orientable) Mobius strip, which necessarily need to apply reflection steerable
kernels.

5.2.1 Reflection steerable feature fields

According to Def. each feature field /' : R? — R¢ is characterized by its geomet-
ric type — here a reflection group representation p : 'R — GL(c) which specifies how the
field’s channels transform under reflections. We introduce three field types, scalar fields,
pseudoscalar fields, and regular feature fields, which correspond to trivial, sign-flip and reg-
ular representations, respectively. The reader should check that the presented representations
are in accordance with Def. [B.5.1] indeed group homomorphisms (Def. [B.1.3), i.e. satisfy
p(gh) = p(g)p(h) Vg.h € R.



72 Chapter 5. G-steerable convolution kernels

Scalar fields: The most basic example is the trivial representation
e [1}
S — [1}

which assigns the 1 x 1 identity matrix to both group elements. It models scalar fields Fi;y :
R? — R!, which reflect spatially, but whose scalar values stay invariant:

[5 |>plriv F‘triv} (37) = Eriv(sx) (5.8)

ptriv R = GL(I) ’ ’ (57)

Pseudoscalar fields: A second one-dimensional representation is the sign-flip representa-
tion

e [1]
Pign * R — GL(1), ,
S [— 1]
which differs from the trivial representation by assigning the negative 1 x 1 identity matrix to
reflections. The corresponding pseudoscalar fields Fgy, : R? — R' change their sign when
being reflected:

(5.9)

[5 >p Fsign} (J?) = _Fsign(sx) (5.10)

sign
Since the trivial representation and the sign-flip representation are one-dimensional, they are
both irreducible representations (irreps) of the reflection group. In fact, they are the only two
irreps of the reflection group.

Regular feature fields: As a finite group, R has a finite-dimensional (two-dimensional)
regular representation
. 10
“7 o

Preg * R — GL(2) , , (5.11)
01
s 4]
which represents the group elements by permutation matrices. By definition, the regular rep-
resentation models the permutation of the group elements in (R when acting on themselves.
Compare this to the columns of the multiplication table in Eq. (3.6): the middle column can
be thought of as originating from the action of p,.,(e) on the leftmost column, while the

swapped group elements in the right column correspond to the permutation described by the
action of pye, (s) on the left column.

The regular representation models regular feature fields Fe, : R? — R? of R, which com-
prise two channels that are swapped under reflections:

O 1 Fre N E‘e
[S Dpregﬂeg] (z) = preg(S)Freg(Sif) = [1 O}[Frei;;] (sz) = {Frezﬂ (sz) (5.12)

5.2.2 Reflection steerable convolutions

To solve for reflection steerable kernels for a given pair of input and output field type, con-
sider the general G-steerability constraint in Eq. (5.1). For the reflection group, several
things simplify:
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Pout Pin trivial sign-flip regular

K11(SCB) = Ku(:B) Ku(sa:) = —Kn(m) K11(S.I) K12 .Z')

2@

Kn(sx) = *KH(I) Ku(sx) Ku( ) KH SQZ *K12(CB)

>0

Ku(SZE) = KQQ( )
Kia(sz) = Ko ()

- @ (@ @@
@ e les

Table 5.1: Visualization of reflection-steerable kernels for all considered pairs of input and output
field types p, and p,, and d = 2 spatial dimensions. In general, these kernels need to satisfy the
R-steerability kernel constraint K (sz) = p,.(s) K (z)p, (s) where K : R? — R*n_ Each entry
of the table states the specific constraint for the corresponding input and output representations and
visualizes one exemplary steerable kernel. Note that the constraint binds the reflected kernel K (sx)
to a linear transformation of the non-reflected kernel K (x) by the input and output representation. It
results therefore in reflectional symmetries of the kernels.

Kn(SSU) = K21(SU) Ku(SIE) = —Kzl(.’l')

1. reflections are isometries, that is, the volume scaling factor |det g| = 1 drops out.

2. the constraint needs to hold for any g € (R, however, there are only two elements e and
s, and the constraint is trivial for the former. We therefore only have to consider the
reflection g = s.

3. since reflections are their own inverse, i.e. s = s, we can replace p, (s) ! with p, ().
Overall, we obtain the simplified reflection steerability constraint
K(sx) = py(s)-K(z)-p, (s) VzeR?, (5.13)

stating that the spatially reflected kernel on the 1.h.s. equals the non-reflected kernel on the
r.h.s. after being left and right multiplied by the input and output representations, respec-
tively.

We will in the following solve this constraint for all nine pairs of field types. The resulting

kernels, all of which are in one or another sense symmetric under reflections, are visualized
in Table 511
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= scalar < scalar: Kernels K = [Kj;] : R? — R*! which map between scalar fields
are required to satisfy the constraint

[Kul(sz) = [1]-[Kul(x)-[1] = [Ku|@) VYzeR!.  (514)

They are necessarily symmetric (invariant) under reflections; see the upper left entry
in Table 511

» sign-flip < scalar: The kernels K = [K1;] : R? — R'*! which map a scalar field to a
sign-flip field need to satisfy

[Kun](sz) = [-1]-[Kn|@)-[1] = ~[Kn]@@) VzeR!. (515

This implies antisymmetric kernels as visualized in the middle row in the first col-
umn of Table[5.1]

= regular < scalar: In order to map from a scalar field to a regular feature field one needs
to apply kernels of the form K = [Kj;, Ko]" : R? — R2X!, which map from
one input channel to two output channels. The demanded permutation of the output
channels is guaranteed if the kernel satisfies

{gj(“) = {(1) H[gj(w)'[l] = {%i](x) vzeRL.  (5.16)

This constraint requires that the two channels contain kernels which are reflected
copies of each other, that is, K11 (sz) = Ko () for all z € R? (this already covers
the second line of the constraint in Eq. (5.16)). This case is visualized in the bottom
left entry of Table[5.1]

= scalar < sign-flip: Kernels K = [K7;] : R? — R'*! that map from sign-flip to scalar
fields are again antisymmetric since they need to satisfy the same constraint

[Kn](s2) = [1]-[Kul(@2) [-1] = ~[Kn]@) VeeR! (17
like kernels which map in the opposite direction.

» sign-flip < sign-flip: The kernels K = [K1;] : R? — R'*! which preserve the trans-
formation behavior of sign-flip fields are symmetric since the two sign inversions in
the constraint

[Kn(s2) = [-1]-[Kn|(@)-[-1] = [Ku|@z) VzeR®  (518)
cancel out.

= regular < sign-flip: In the case of kernels K = [K1;, K] : R? — R2*! which map
from sign-flip to regular feature fields, we get the constraint

[flgj(sx) - [(1) é}[féj(fc)‘[‘ﬂ = —[%j(x) VaeR?. (5.19)

The two lines imply each other, such that they can be summarized by the single
kernel constraint K1 (sz) = — Ko (2) Vo € R?. This constraint requires that the
two channels of the kernel contain reflected, negated copies of each other; see the
visualization in the middle of the bottom row of Table [5.11
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= scalar < regular: The kernels which map regular feature fields to scalar fields have
two input channels and one output channel and are therefore of the form K =
[K11, Ki2] : R — RY*2. The constraint

[Kn, Klg] (sx) = [1} . {Kll’ Klg} (.23) . |:? é:| = [Klg, Ku](.r), (520)

which can be reduced to the requirement Ky;(sz) = Ki2(z) Vo € R? again
demands that the two entries of the kernel contain reflected copies of each other.

« sign-flip <— regular: Mappings from regular feature fields to sign-flip fields utilize ker-
nels K = [Ky1, Kio] : R? — R that satisfy

{Kll, Klg} (SIE) = [—1] . [Klla Ku](fl?) . |:(1) (]j:| = —{Klg, Kll} (.’L’), (521)

or, equivalently, K1 (sz) = —Kj(x) Vo € RY. As probably already expected,
they are made up from kernels whose two channels contain reflected, negated copies
of another.
* regular < regular: Lastly, we consider kernels K = [KH KIQ} : R? — R2*2 which
’ Ko Koo
map regular fields to regular fields and therefore have 2 x 2 matrices as codomain.

Their constraint, coming from a left and right multiplication with the regular repre-
sentation, becomes

e = [V o) R K[ o] - [ ) e
for any x € R%. This is equivalent to the two independent constraints
Ki1(sz) = Kan(z) Vo € R? (5.23)
and

Kip(sz) = Ko (z) Vo € RY, (5.24)

which couple the four kernel entries such that there are two pairs of mutually re-
flected kernels. This case is visualized in the bottom right entry of Table[5.1]

While the derived results tell us how to map between individual feature fields, convolutional
networks typically operate on feature spaces that consist of multiple, potentially differing
feature fields. The kernels that map between these stacks of feature fields can be thought
of as being built from blocks which map between the individual fields. To give an example,
consider the case where both the input and output feature spaces contain one of the discussed
representations each, thatis, p, = P, = Py, P Py an D Preg- The number of input and output

channels is then ¢, = cout = 1 + 1 + 2 = 4, such that the full kernel is of the form
K : R? — R**4, Since the input and output representations are defined as direct sums,
they are block diagonal. The full constraint decouples thus into nine independent constraints
between all pairs of individual input and output fields, which correspond in this case exactly
to the nine solutions presented above. The 4 x 4 entries of the full kernel will therefore be
required to have the same symmetries as the 4 x 4 kernels which are visualized in Table[5.1]
as a whole.
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5.3 A generalized Wigner-Eckart theorem for G-steerable kernels

Let G be a compact group. The Wigner-Eckart theorem for steerable kernels by Lang and
Weiler [173] and Cesa et al. [40], describes then the construction of a complete basis of G-
steerable kernels on G-orbits on R¢ and which map between field types that are irreducible
representations. General G-steerable kernels — on the whole of R? and which map between
arbitrary finite dimensional field types — are easily assembled from these elementary solu-
tions.

The ingredients from which the basis of G-steerable irrep kernels is constructed are

1. harmonic basis functions on G-orbits, e.g. the circular or spherical harmonics in
Figs.[5.2]and[5.3]

2. irrep endomorphisms, Def.[B.5.9] which allow to steer the harmonics in a learned
manner, and

3. Clebsch-Gordan coefficients, Def. which determine the specific harmonics
that are consistent with an equivariant mapping between the irreducible input and
output field types.

While the harmonic basis and the Clebsch-Gordan decomposition are algebraically fixed, the
endomorphisms form a vector space and constitute the learnable parameters of the kernel.
They correspond to the reduced matrix elements in the original Wigner-Eckart theorem from
quantum mechanics.

The following two Sections[5.3.1]and[5.3.2]lay the foundation of the Wigner-Eckart theorem
by arguing that 1) the steerability constraint may always be restricted to individual G-orbits,
and 2) one may w.l.o.g. consider irreducible representations as field types. The theorem
itself is formulated in Section[5.3.3] Since a formal proof would require a deep dive into rep-
resentation theory, we omit it here and point the reader to the original publications [[173} 40].
Instead, Appendix [H] discusses a succession of increasingly complex constraints, which in-
troduces the three ingredients and their role in steerable kernels step by step. Section[5.3.4]
applies the theorem to derive SO(2)-steerable kernels. Considerations regarding the sam-
pling of continuous kernels on pixel grids are briefly discussed in Section[5.3.5]

5.3.1 Restriction to G-orbits

Inspecting the steerability constraint, we see that it relates kernel values at points z € R? to
those at any other point g on the group orbit G = {gz | g € G} C RY; see Def. and
Fig. @ Values on different orbits are not related, such that we can focus on solving the
constraint on the individual orbits. By construction, the G-action is transitive (Def. [B.3.8)
on the orbits, making them homogeneous G-spaces (Def — we will therefore from
now on consider G-steerable kernels K : X — Ru*¢ on homogeneous spaces X C RY.

A common example for homogeneous spaces for SO(2)-steerable kernels are circles of dif-
ferent radii, visualized in Fig. Similarly, for G = SO(3), we get (the origin and) spheres
of different radii as homogeneous spaces, allowing to solve for steerable kernels on S? in-
stead of R3, as shown in Fig.

While one can solve the constraint independently on the orbits, it may be desirable to obtain
a solution that is smooth when embedding the orbits in R%. Cesa et al. [40] explain how this
smoothness can generally be achieved.
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Figure 5.2: Visualization of circular harmonics angular parts (cos(j¢), sin(j¢)) for different fre-
quencies j > 0 (top row), modulated by different radial parts (left column) to form kernels
on R? 2 S1x Ry U {0}. The circular harmonics span the (real) irreducible subrepresentations of
the regular representation of SO(2), i.e. square integrable functions on the circle SO(2) p S*.
The constant function for frequency zero corresponds to the one-dimensional trivial representation.
All other (real) irreps are two-dimensional and transform according to frequency j rotation matrices
(Eq. (333)). Any SO(2) or O(2)-steerable kernel can be expanded in terms of a subspace of cir-
cular harmonics as prescribed by the Wigner-Eckart theorem for G-steerable kernels [173] 40]; see

Tables @ and @

5.3.2 Restriction to irrep fields

If the structure group G is compact, we can w.l.o.g. consider unitary representations; see
Appendix [B:5.2] Theorem [B.5.16] asserts the complete reducibility of finite unitary repre-
sentations (of any group) into a direct sum of irreps, while the Peter-Weyl theorem [B.5.22]
proves the same property for regular and quotient representations of compact groups. We
can for compact groups G furthermore drop the determinant factor |det g| = 1.

Assuming the complete reducibility of the field types from now on, we show that it is suf-
ficient to solve the kernel constraint for irreducible representations. Let Qi € GL(¢j,) and
Qout € GL(cout) be the change of basis matrices that decouple the field types p,, and p,, into
irreps, that is,

Qurn(@) Q' = P, mle)  and  Qoupul(9)Qut = B rsl9).

L€y JE Iy
(5.25)

where I;, and I, are index sets of the irreps p; and p; contained in p, and p,,,, respectively.
Left and right multiplying the kernel constraint with Qo and Q;l, and inserting identities
of the form idgeon = Q;j Qout and idgen = Q;lQm yields the equivalent constraint

Qou K (92) Q" = Qout pou(9) [Qout Qout] K (2) [Q5' Qin] £, (9) " Qi
-1
— Kirrep(gx) = (@JELM. PJ (9)) Kirrep(m) (@lelin Pl (g)) s (5.26)
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—Jj<m<j

SO(3)-irreps

20
- 0®00®
R

Figure 5.3: Visualization of (real) spherical harmonics }_’; : S 5 R¥*! (rows), where j € Ny, with
components Y;™ for —j < m < j (columns). The spherical harmonics span the (2 + 1)-dimensional

irreducible representation p; of SO(3) (Wigner D-matrices). They are the harmonic basis functions oc-
curring in the Peter-Weyl decomposition (Theorem|B.5.22) of the quotient representation pi,%(?’)/ S0
of SO(3) on SO(3)/SO(2) i S. Any SO(3)-steerable kernel on R* = S%x R~ U {0} can be
constructed in terms of spherical harmonics angular parts, modulated by an unconstrained radial part

(the 3d analog of Fig.@ 323]].

for any x € X and g € G on the kernel Kjrep 1= Qout KQ;, Lin the irrep basis. Since the
direct sum representations are block diagonal, the irrep kernel decomposes into |Iiy| « | Lou|
blocks KL, : X — RAmpoxdimon that are independently required to satisfy the kernel
constraint for irreps

Kinep(92) = p3(9) Kinp(x) pu(9) ™" V2 e X, ge@. (5.27)
This decomposition into irreducible kernel blocks is visualized in the following equation:
ifrlelﬁ Kiﬁelﬁ py.(9) Ki}]r]elﬁ K{r]r]elﬁ Pl](!]fl
Kty | iy |- |(92) = p1,(9) Ky | Kiteep | - | (@) o)
Kirrep(gx) @Je[om pJ(g) Kirrep(-r) @leli“ Pl (9)71

1UTe]

by inserting these solutions into the right blocks and undoing the change of basis. For the
remainder of this section, we will exclusively consider irrep fields p, = p; and p,,, = pJ,
but drop the subscript “irrep” to reduce clutter. Note that, while the steerability constraint
may w.l.o.g. be solved in the irrep basis, the specific choice of basis matters as soon as we
apply nonlinear network operations.

5.3.3 Statement of the Wigner-Eckart theorem

Given a basis for irrep steerable kernels K/! »» the general steerable kernel basis is recovered

This section states the Wigner-Eckart theorem for G-steerable kernels. It assumes some
familiarity with representation theoretic concepts that are introduced in Appendix [B-5] The
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individual ingredients going into the construction of the theorem are motivated in a less
formal setting in Appendix [H]

To formulate the theorem, we fix some notation. Let (pj, VJ) J € é be the j-th order
real irreducible representation of GG and assume a basis to be chosen, such that we can iden-

tify the representation space V; with R4™; - where dim; := dimV}. Denote the consid-
ered G-orbit by X C R? and let Y;; : X — RY™ be the harmonic basis functions that
span the irrep subspaces V;; = V;, 4 = 1,...,m; in the Peter-Weyl decomposition (The-

orem [B.5.22) of Lg(X) = @. .5 ., Vji. Consider the endomorphism space End (V)
of j-th order irreps (Def. and let ¢j, € End(V;), r = 1,...,dimEnd(V}), be any
basis of the endomorphism space. Let furthermore CG;; : V, ® V; — ®jeé eV
be the Clebsch-Gordan decomposition from Def. which decomposes the irrep tensor
product V; ® V; back into irreducible subspaces, where irrep order j occurs with multi-
plicity m, ;7. Denote the projection of V; ® Vs on the s-th irreducible subspace of order j
by CGyj,js := Proj js© CGy s and its pseudoinvserse, which embeds that subspace into the

tensor product, by CGZJ} st

Given the assumed identification of V; with RY™; | we can identify the endomorphisms Cjr
with matrices in R4™s X dim; and the Clebsch-Gordan projectors CGy ;s with matrices in
Reim; > (dim, dim:) The pseudoinverses CG/; . are then R(4imy dim)xdim;_matrices, which
turn out to be given by the transpose of the matrices representing CG; s ;5. Lastly, let vec :
Rdim; xdim, _, pdim, -dim, he the vectorization operator, which stacks the columns of a
dim; x dim;-matrix into a dim; - dim;-dimensional vector, and let unvec be its inverse.

Equipped with these prerequisites, we can state the Wigner-Eckart theorem for steerable
vectors in the formulation of Cesa et al. [40]

Theorem 5.3.1 (Wigner-Eckart theorem for G-steerable kernels). Let G < GL(d) be
compact and consider a G-orbit X and irreducible field types p,, = p; and p,, = p;.
The space of G-steerable irrep kernels
Ko = {K7 X = REm A K (ga) = ps(g)- K7 (@) -pu(9) ™! (5.28)
VzeX, geG}

on X is then spanned by basis kernels

K7'. = unvec CGZ}JS Cjr )_;71 , (5.29)

srjt
that is,

Wg:;i = span{K;]lei | je @, s<mjis, 1 <my, r< dimEnd(Vj)}. (5.30)

The following diagram visualizes the definition of the steerable basis:

N
3y ) G .
X Yji Rdim, Gir Rdim, 11,35 Rdim, - dim, _UNVEC . pdim, x dim,

L J

}KTJZ

sTJt

(5.31)

*The formulation by Lang and Weiler [I73] is equivalent, but differs in that it decomposes a tensor
product V; ® Vj into irreps V7, instead of the decomposition of V; @ V; into irreps V; here.
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Proof: For a formal proof, we point the reader to the original publications Lang and Weiler
[L173]] and Cesa et al. [40]. A constructivistic motivation of the theorem is given in
Appendix [H] O

A steerable kernel on R? as a whole can be assembled from these solutions for the individual
G-orbits. Section below solves for SO(2)-steerable kernels on R? as a practically
relevant example application of the theorem.

Selection rules: Note that the Clebsch-Gordan l I-J <j<I+J J
coefficients CG; s ; are generally sparse in j —im- I

plying that only certain harmonics frequencies j . .
are allowed to map between field types of irrep
orders [ and J. This is a direct analog to the se-
lection rules in quantum mechanics, which restrict
the range of operators that may map between cer-
tain quantum states.

For instance, for G = SO(3), the Clebsch-
Gordan decomposition of V; ® V; contains all of
the 2min(l, J) 41 irreps V; with indices [/ —.J| < Figure 5.4: Visualization of the selection
j < I+ J.SO(3)-steerable kernels that map be- rules specifying which harmonics Y; may
tween fields of types V; and V; contain therefore miip ;et}l{/lfef} 30(3);“69 ﬁeldig of Orddiirs' !
only harmonics Y, with frequencies in that range. 27¢ <. 10¢ ILITEp OIdErs are color coded 1n
Fig. 54 visualizejs the admissible transitions be- rvigk(:(t))(;gellow (1), green (2), blue (3) and
tween different SO(3) field types. '

5.3.4 SO(2) and O(2)-steerable kernels

To illustrate the practical use of the Wigner-Eckart theorem, we derive complete bases for
SO(2)-steerable irrep kernels on R2. The SO(2)-action partitions the plane into orbits,
which are the origin and rings at different radii. As the solutions at the origin are trivial
(they turn out to be intertwiners), we consider the case of orbits X = S' that are circles, that
is, we are interested in kernels with angular parts

K7U: 5t — R A guch that - K7 (gp) = ps(9) K7 (d)pi(g)™" (5.32)
forany ¢ € S' and g € SO(2).

Full kernels on R? follow by expanding this angular steerable kernel basis with an uncon-
strained radial part.

The following paragraph lists the ingredients required by the Wigner-Eckart theorem. Subse-
quently, we put these ingredients together to construct steerable kernel bases. The complete
solution spaces of the steerability constraint for different SO(2)-irreps of orders [ and .J are
summarized in Table Table|[5.3| gives their analog for G = O(2).

List of ingredients: To construct the steerable kernel basis according to the Wigner-Eckart
theorem, we require the harmonics, endomorphism spaces and Clebsch-Gordan coefficients
for all SO(2)-irreps. The irreps of SO(2) are the trivial irrep (pg, Vo) with Vj = R and
the two-dimensional irreps (p]-7 Vi), j > 1, with V; = R2, whose actions are given by the
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identity matrix and frequency j rotation matrices, respectively:
) cos(j —sin(g
@)= (1) andforj>1  p;(d) = (Sm((j;ﬁ’f Cos(é‘f;))) (5.33)
Their endomorphism spaces are
End(Vy) =span(co1)  and, forj > 1,  End(V;) = span(cj1, ¢j2) (5.34)

with Co1 — (1) with Cj1 = ((1) ?) and Cj2 = (2 _(1)>

The corresponding harmonics are the circular harmonics

ST . .\ _ [cos(jo)

To) =) andforj =1 o) = (a0 639
that are visualized in Fig.[5.2] Note that we dropped the index ¢, which is possible since all
orders j occur with multiplicity m; = 1 in the Peter-Weyl decomposition.

The non-zero Clebsch-Gordan coefficients CG; ; are in matrix form given by:

l=J =0: if both irreps are trivial, we have Vp ® V = Vj and CGop,01 = (1)
1=0,J >1: if Vjis trivial and V; is not, then Vy ® V; = V; and CGy ;51 = idg:
{>1, J=0: fornon-trivial V; and trivial V;, we have V; ® V = V; and CGyp ;1 = idge

l,J > 1: for non-trivial irreps V; and V;, one has to distinguish three different cases.
The tensor product splits in all cases into multiple irreps, such that we need
to consider different values for the indices j and s in CGy ;5.

J >1>1: inthis case, V; ® Vy = V;_; ®© V4.5 with

(5.36)

(5.37)

CGiy0.1 ) 10 0 1
0 1 -1 O

CGyy = CG[.]_]OyQ = ﬁ 10 0 —1 (5.38)
CG[JJJ,_JJ 0 1 1 0

Note that these Clebsch-Gordan coefficients are ultimately the same, just
with the roles of ! and J swapped in the first two cases and, in the third
case | = J, with the projection CGyj;_ 1 of Vi @ Vyon Vj_; = R?
split further into two projections CGy 0.1 and CGy s o 2 on the two separate
trivial subrepresentations Vo & Vo = R d R.

All other Clebsch-Gordan coefficients are zero. As stated above, the pseudoinverses CG; js
are given by transposition of CGy .
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Constructing solutions: With these ingredients we are ready to instantiate the SO(2)-
steerable bases with elements

K7 .= unvec CGIMS Cjr }—/; j€E @, s<mjy, r<dimEnd(V;), (5.39)

srj

where we dropped the index ¢ as mentioned above. The following list constructs these bases
for all qualitatively different combinations of input and output irreps. The admissible circular
harmonic frequencies j are thereby determined by the non-zero Clebsch-Gordan coefficients
listed above. All results are summarized in Table 5.2

* Vo <+ Vo: Kernels K% : ST — R1*! that map between scalar fields, i.e. [ = J = 0,
have a one-dimensional (angular) basis

Kijo(0) = UHVGCCG(J)FO,m o1 }_/;J = unvec (1)(1)(1) = (1), (5.40)

that is, they are necessarily rotation invariant. Fig. [16.5] visualizes such kernels
when adding a learnable radial part.

- VJ21 < Vy: Convolutions that map scalar fields, [ = 0, to non-trivial irrep fields,

J > 1, rely on circular harmonics kernels K70 : S' — R2*! of frequency .J.
Their two-dimensional (angular) basis is spanned by

K05 (¢) = unvec CGy 5y e ¥y (5.41)
. 1 0\ /1 0\ [cos(Jp)\ _ [cos(Jo)
- unvee (0 1) (0 1) <sin(.]¢)> = (sin(J¢)>
and
Ki]2OJ(¢) = unvec CGgJ,Jl CJj2 3—%1 (5.42)

_ 1 0\ (0 -1\ [cos(Jp)\ _ [-sin(J9¢)

= unvee (o 1) (1 0) <sin(J¢) =\ cos(Jg) ) -
Learned linear combinations of these two basis kernels correspond to a phase-
shifted and amplitude scaled circular harmonics pair of frequency .J. Fig. .| visu-

alizes the corresponding convolution for [ = 0 and J = 3 (ignoring the learnable
radial part and with arbitrary phase-shift).

* Vo < Vi>;: If we are, conversely, mapping an order [ > 1 irrep field to a scalar field,

J = 0, this requires kernels K% : S* — R'*2 that are spanned by the transpose of
the previous case, namely

E%)(¢) = unvec CCyh en Y (5.43)
= unvec ((1) (1)> ((1) ?) (g?;gi;) = (cos(lgp) sin(lp))
and
KW%,(¢) = unvec CGip 1y ez Y, (5.44)

— unvec (é ‘f) ((1’ é) (2?5823) — (-sin(lg) cos(id))

Note that the unvec operator maps the vectorized kernel here to a 1 x 2 instead of
a 2 x 1 kernel, as in the previous case.
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* Vy>1 < Vi>q1: If both the input and output field correspond to non-trivial irreps,
J,1 > 1, we have kernels K7/! : §1 — R?*2. As there are different Clebsch-
Gordan coefficients for J > 1 > 1, [ > J > landl = J > 1, we need to
make the same distinction in our construction of the steerable basis. As it turns out,
the resulting solutions can ultimately be brought in the same form, which allows to
ignore this case distinction in the solution Table

- J>12> 1: In this case we have the two non-zero Clebsch-Gordan coefficients
CGy,j—11 and CGyy 41,1 from Eq. (5.36) and the two endomorphism basis
elements c¢;; and ¢;5 (for j = J — 1l or j = J +1) from Eq. (5.34). This results
in four (angular) basis kernels, two for the sum and two for the difference

frequencies:
Ki{ j_1(¢) = wnvecCGfj ;1 esmia Vi G4
1 0
0 1)/1 0\ /[cos((J—1)¢)
oc unvec | g (() 1) (sir?((J — l)¢))
1 0
~(cos((J = 1)¢) -sin((J — 1))
= \sin((J —=1)¢)  cos((J —1)¢)
K{5 5_(¢) = unvec CGI+J,J—Z,1 €I—1,2 Yoo (440
1 0
1) /0 -1 J =)o
o unvec | 1) (1 ()) <E?r§((((J— l;qﬁ)))
1 0
B (sin((Jl)¢) cos((Jl)é))
o\ cos((J—1)¢) -sin((J —1)9)
Kijll,l+J(¢) = unvec CGZ_LHJ,I CltJ,1 }—/;+J G47
0 1
1 0] /1 0\ /[cos((l+J)p)
ocunvec [ (0 1) (sin((l + J)¢)>
0 -1
B (cos((l +J)¢p)  sin((l+ J)¢)>
= \sin((I+ J)p)  -cos((I+ J)g)
Ki3145(¢) = unvec CGy 5y i Vi 049
0 1
x unvec 0 (1 0) <Z?§g((l + J)>¢)))
-1

J
J)¢)  sin((l + 1))

1

0
[ -sin((l +
- < cos((l +

)¢)  cos((l+ J)fb))
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- 1> J > 1: Here we have the same two-dimensional endomorphism basis from
Eq. (5.34) but other Clebsch-Gordan coefficients, now from Eq. (5.37). As
CGy 14,1 occurred already before, we will obtain the same two basis kernels

K{{,,,and K{},, ; from them. From CGy ;71 we get the other two basis

elements:
Kijll,l—J((vb) = unvec CGlJrJ,l_J,l Cl—J1 Yoy (5.49)
1 0
0 -1]1/(1 0 I-J)o
cumee [0 1] (8 9) (<t =)
1 0
_ < cos((I — J)¢) sin((I — J)¢))
-sin((l = J)¢)  cos((l = J)9)
_ (cos((J—l)¢) —sin((J—l)¢)>
sin((J —1)¢)  cos((J — 1))
Kijzlylﬂ](qﬁ) = unvec CGZJ}J,JJ Cl—J,2 Y, (5.50)
1 0
0 -1]/0 -1 = J)o
o unvec | (1 ()) ((;?1?((((1 - J))tb)))
1 0

_ (— sin((l — J)¢) cps((l — J)gb))
—cos((l = 1)g) -sin((l — )}

_ (—sin((J— 1)) —cps((J g

cos((J = 1)¢) -sin((J —1)¢

The last equalities bring the basis elements in a different form, emphasizing
that K|, ;, = K{! ,_, agrees with the previous result, and that Ki}, ; =
—K{} ;_, is the negative of what we had before. Overall, this implies that
these kernels span the same basis as in the previous case J > [ > 1, such that
they don’t need to be distinguished further.

- 1 =J > 1: If the irrep orders are equal, there are three invariant subspaces in the
decomposition of their tensor product, and accordingly three components in
the Clebsch-Gordan coefficients in Eq. (3.38). The one corresponding to the
sum frequency, CGy 47,1, is again the same as before, and yields therefore

the same two basis kernels K7 ,, ; and K{} . ;. For the other two Clebsch-
Gordan coefficients CGy 50,1 and CGy 9,2 we get two more basis elements:

N
K{l(¢) = unvec CGp, co1 Yo o unvec

(1) (1) (5.51)

= (69) = (5069 -omig)

— o o
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0
Ki4o(¢) = unvec CG;j, cot Yy o unvec _1 (1H)(1) (5.52)
0
B (O —1) _ (— sin(0¢) - cos(OqS))
“\1 0) 7\ cos(0¢) -sin(0¢)
The last equalities are again written to emphasize that these solutions turn out

to be special cases of K{! ; ,and K{! , , for J =1.

Solution tables: The derived solutions of the SO(2)-steerability constraint for irrep fields
are summarized in Table[5.2]

Special Orthogonal Group SO(2)

out in Vo Vi, 1>1
Vo [1] [cos(l¢) sin(lg)], [ - sin(l¢) cos(lg)]
{ COS(M)} {COS((J—Z)@ -Sln((j—l)¢)} [-Sin((j—l)<b) -COS((j—l)QS)}
Vi, sin(jo) |* | [sin((j—1)¢) cos((j—1¢)] | cos(i—1)¢) -sin((j—1)¢)]’
J>1 -sin(j @) cos((j+1)¢) sin((j+1)e)] [-sin((G+1)p) cos((j+1)¢)
{cos(jtﬁ)} {sin((j-i—l)(b) —cos((j+l)¢)}’[ cos((j+l)¢) sin((j-i—l)d))}

Table 5.2: Bases for the angular parts of SO(2)-steerable kernels satisfying the irrep steer-
ability constraint in Eq. (5.32). The SO(2)-irreps (p;, V;) are given by Eq. (5.33). General
SO(2)-steerable kernels on R? follow by adding an unconstrained radial part.

Table [5.3| gives analogous solutions for O(2)-steerable irrep kernels, derived originally
by Weiler and Cesa [322]. In contrast to the SO(2) case, there is an additional sign-flip
irrep of O(2) and the higher order irreps involve an additional reflection action. Specifically,
parameterizing O(2) as

0(2):{@?553 _(Sjg;((‘;))) ((1) 2) 6 € [0,2m), se{jzl}}, (5.53)

where the additional parameter s models reflections, the irreps are given by:
po(d,s) =1, Psign(, ) = s (5.54)

. ‘ cos(jop) —sin(jo)) (1 O
and, for j > 1, p;(¢, s) (sin(j¢) cos(jo) ) \0 s
A major difference to SO(2) is that the endomorphism spaces of O(2)-irreps are all one-

dimensional and consist of scaled identity matrices (homothetys). As a result, all bases
involving higher order harmonics are of half the dimensionality as in the case of SO(2).

5.3.5 Kernel sampling and anti-aliasing:

Feature fields and kernels are in practice commonly sampled on a pixel grid or evaluated
at a finite set of sampling points. To prevent aliasing effects, it is necessary to bandlimit
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Orthogonal Group O(2)

out in VO ‘/sign ‘/17 l 2 1
Vo [1} 1%} [— sin(l¢) cos(l¢)]
Viign 1) [1] [cos(lg) sin(lg)]

Vi, |:sin(J¢>):| |:cos(J¢):| |:COS((JI)¢) sin((Jl)¢):| |:Cos((J+l)¢) sin((J+1)9)
J =1 cos(J)] | Lsin(J@)] | [sin((J-1)¢) cos((J—l)d))’ sin((J+1)p) -cos((J+1)o)

Table 5.3: Bases for the angular parts of O(2)-steerable kernels satisfying the irrep steer-
ability constraint for G = O(2). The O(2)-irreps are defined in Eq. (3.54). As the endomor-
phism spaces End(V;) for j > 1 are for O(2) only one-dimensional, the dimensionalities of
the kernel spaces such irrep orders are reduced by half in comparison to the SO(2) solutions.
General O(2)-steerable kernels on R? follow by adding an unconstrained radial part.

the continuous kernel before sampling it. This is luckily easily possible since our steerable
kernel bases in Eq. (5.30) are already defined in terms of a harmonic (Fourier) basis, i.e.
functions of a certain frequency.

Specifically for G = SO(d) or O(d), Weiler et al. [324] proposed to use a bandlimiting
heuristic with a radially dependent cutoff frequency, allowing for higher order harmonics on
orbits of larger radius only. This strategy was empirically shown to reduce the numerical
errors in the analytically proven G-equivariance of steerable convolutions. Cesa et al. [40]
furthermore discuss an adaptation of the Wigner-Eckart theorem for steerable kernels that
allows for solutions that are smooth across orbits.

5.4 Alternative approaches to construct steerable kernels

For completeness, this section mentions alternative approaches to parameterize equivariant
convolution kernels or solve the steerability constraint.

Heuristic approaches: While the vast majority of group equivariant CNNs relies implic-
itly on steerable kernels, most network architectures were proposed heuristically instead of
being derived from first principles. For instance, Worrall et al. [335]] proposed harmonic net-
works, which apply circular harmonic kernels to map between SO(2)-irrep fields, Thomas
et al. [301]] proposed tensor field networks, which map via spherical harmonics between
SO(3)-irrep fields, and Schiitt et al. [263]] construct their O(3)-invariant Schnet by applying
isotropic kernels. Similarly, many authors, e.g. [[195] [196, 71} 1358]], observed that apply-
ing G-transformed copies of kernels to a signal results in an equivariant response — which
corresponds to group convolutions or convolutions between regular feature fields.

The difference to steerable CNNss is that these approaches do not derive the kernels from
a symmetry constraint, but merely observe that the proposed construction yields equivari-
ant responses. They are in particular not able to prove a notion of completeness of their
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kernel space — in fact, it happens commonly that the authors parameterize only a sub-
space of steerable kernels that would be consisting with the feature spaces’ transformation
laws [8, 232} [339]]. Steerable CNNs allow furthermore to classify the zoo of equivariant
models in terms of feature field types.

Group convolutions: Many equivariant convolutional networks apply group convolutions,
which were in Section[4.5]shown to be equivalent to steerable convolutions between regular
feature fields. Convolution kernels (and feature fields) are in this setting viewed as uncon-
strained functions on the group, e.g. £ : Afi(G) — R. While this seems easier than imple-
menting regular representation constrained steerable kernels, the complexity is here hidden
in the definition of the group convolution operation itself, i.e. in Eq. (4.64).

We note that harmonic basis functions were prior to their use in steerable CNNs already
utilized to parameterize group convolution kernels [324].

Expansion in harmonic basis functions: The G-steerability constraint in its current form
was first derived by Weiler et al. [323]], who considered G = SO(3). The authors observed
that the constraint may be restricted to spherical shells with an unconstrained radial part,
which corresponds to the restriction to G-orbits from Section[5.3.1] Considering irrep fields,
they found a spherical harmonics basis after applying a Clebsch-Gordan decomposition as
in the Wigner-Eckart theorem for steerable kernels. Weiler and Cesa [322]][38] extended this
approach to arbitrary field types by introducing the irrep decomposition of kernels that was
described in Section Focusing on subgroups G < O(2), the kernels were expanded in
terms of circular harmonics, Fig. @ and the authors found the solution Tables [3;2] and @
as well as their analogs for cyclic and dihedral groups. Lang and Weiler [173] formalized
these insights in terms of the Wigner-Eckart theorem for steerable kernels. This theorem
was implemented by Cesa et al. [40][39], who adapted the theory such that the individual
solutions on G-orbits vary smoothly across orbits.

Lie algebra representations: de Haan et al. [67] observed that it is already sufficient to
satisfy the steerability constraint for the generators of the group. They reformulate the con-
straint accordingly in terms of Lie algebra representations and solve it symbolically with the
help of a computer algebra system, again finding selection rules on harmonic subspaces.

Steering from orbit representatives: Since the G-steerability constraint relates kernel
values on each G-orbits, the full kernel can be reconstructed by steering values from some
choice of orbit representatives (Def. [56]. Specifically, let G\R? be the quotient
space (Def. [B.3.4) of R? by the left G-action, consisting of all possible G-orbits, let
r: G\R? — R? be a choice of orbit representatives and let g., € G be any group ele-
ment satisfying g, ,7(G.x) = x. Then, any G-steerable kernel K : R% — Ru*cn gatisfies
for any x € R?

1 -1
K(z) = K(gror(Gx)) = mpin (9r,2) K (r(G-2)) pou (9r,2) (5.55)
implying that it is possible to reconstruct the full kernel from its restriction
. d Cout X Cin
K]T(G\Rd) 0 7(G\R?Y) — R (5.56)

to orbit representatives by steering it via g. ... The restricted kernel is still required to satisfy
the reduced steerability constraint

_ 1 »
Kl oven®) = e e Kl cmn () poulh) (5.57)
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for any « € r(G\R?) and any h € Stab,, where Stab, < G is the stabilizer subgroup
(Def.|B.3.6) for ¢

We want to mention that this approach is problematic if the kernel is to be sampled, since
knowledge about the specific harmonics (frequency components) is required to prevent alias-
ing effects [324, 1323/ [322].

Numerical solutions: Assume that the structure group G is finite, and that the kernel is
sampled at a finite number of points, the set of which is invariant under the G-action. The
kernel constraint becomes then a (finite) system of linear equations, which can be solved
numerically. Cohen and Welling [53]] used this approach to solve for D, (dihedral group) or
C4 (cyclic group) steerable kernels on a square grid of s x s pixels.

MLP parametrizations: As an alternative to solving the steerability constraint, steerable
kernels may be parameterized implicitly by means of G-equivariant MLPs (fully connected
networks), mapping from R? to R¢u¢n 22 Reu>¢n and satisfying the kernel constraint by
construction. Finzi et al. [91]] used a similar approach to parameterize regular group convo-
lutional kernelsﬂ A thorough investigation of (non-steerable) MLP-parameterized kernels is
found in [250]].

3This constraint makes the construction in particular independent from the specific choice of gy ..

*Since MLPs map between vector spaces, Finzi et al. [01] would parameterize a group convo-
lutional kernel £ : Aff(G) — R in terms of a kernel Aii : aff(G) — R on the group’s Lie algebra,
associating the two via the Lie exponential and logarithmic map. Our formulation does not require this
extra step since steerable kernels K : R% — R already map between vector spaces.



CHAPTER 6

Empirical evaluation of steerable CNNs

This chapter investigates the properties and design choices of steerable CNNs empirically,
thereby identifying general trends and caveats when working with equivariant models. In
a nutshell, equivariant models are characterized by an enhanced data efficiency and con-
vergence rate, leading to a significantly improved performance in comparison to their non-
equivariant counterparts. Some care has to be taken when designing the model architecture,
since for instance too much invariance or an unsuitable choice of field types or steerable non-
linearities may crucially impair the results. The following list gives a high level overview of
our findings.

Generalization: Section [0.1] presents experiments that measure the generalization of steer-
able CNNs over group orbits by training on data in a fixed representative pose and
testing over all other poses on the orbit. In theory, equivariant CNNs are guaranteed
to generalize perfectly over orbits, i.e. achieve the same result for any transformed
pose of a feature field. This guarantee holds indeed if the numerical discretization
of the continuous model is invariant under the symmetry group action, but may be
slightly broken if this is not the case (e.g. for continuous rotations on a pixel grid).
Numerically broken equivariance is easily restored via data augmentation over the
orbit. While conventional CNNs can also learn to be equivariant when being trained
with augmentation, this requires additional learning capacity from them, such that
they perform significantly worse.

Data efficiency and convergence: That equivariant models generalize their inference over
group orbits leads to an improved data efficiency and convergence in comparison to
non-equivariant models. Section [6.2]demonstrates this claim empirically by training
models with different levels of equivariance on varying dataset sizes and observ-
ing that equivariant models on small datasets may achieve better results than non-
equivariant models on significantly larger datasets. This is of particular importance
in settings where data is scarce or expensive to collect, as is for instance the case with
some medical imaging tasks.

Choice of symmetry group and group restriction: The performance of an equivariant model
depends heavily on its equivariance group and the level of symmetries present in
the data: too little equivariance does not make use of all available prior knowledge,
while too much equivariance overconstraines the model, forcing it to generalize over
transformations that are not respected by the ground truth itself. Section [6.3] presents
experiments which vary the levels of symmetries in the data and models, and inves-
tigates the interplay of the two. We experiment additionally with group restricted
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models, whose overall equivariance is adapted to the global symmetries of the data,
but whose initial layers have a larger equivariance group, which allows them to ex-
ploit local symmetries. These models are consistently achieving the best results.

Drop-in replacement for conventional convolutions: As many contemporary signal process-
ing pipelines are based on convolutional networks, practitioners may be interested in
how far these pipelines are compatible with steerable convolutions. Our experiments
in Section[6.4]take established image classifiers, replace their conventional with steer-
able convolutions, and train them subsequently with the original training procedure
and choice of hyperparameters. The equivariant models significantly outperform their
non-equivariant baselines, which suggests that steerable convolutions can be readily
used as drop-in replacements of conventional convolutions.

Natural image datasets: The above mentioned experiments from Section [6.4] are performed
on natural image datasets, which are characterized by a global rotational alignment
due to a preferred gravity direction. Their results show therefore additionally that
steerable convolutions yield substantial gains even if only local rotational symmetries
are present in the data.

Field type and nonlinearity benchmarking: Section [6.5] presents a benchmarking study of
the design choices of steerable CNNs, covering different symmetry groups G <
0O(2), G-representations as field types, G-equivariant nonlinearities and G-invariant
maps for a pose-independent classification. Table[6.6|summarizes the results on three
transformed MNIST datasets with different levels of symmetries. Overall, we find
that group or quotient space convolutions, corresponding to regular or quotient repre-
sentations of finite subgroups of O(2), achieve the best performance. An alternative
are models whose field types are O(2) or SO(2)-irreps. These models are continu-
ously rotation equivariant and have lower-dimensional feature vectors, however, their
test errors are consistently higher than those of the regular or quotient representation
based models. The best results among these models are achieved by learned gated
nonlinearities [323]].

Most of the results presented in this chapter were originally published by Weiler and Cesa
[322]], while the generalization experiments in Section[6.1]are inspired by Weiler et al. [324].
Chapter [TI0|presents additional empirical results for the analog of Euclidean reflection steer-
able CNNs on a Mobius strip, investigating in particular the performance of the field types
from Fig. 5.1] Before coming to the actual experiments, the next two paragraphs describe
the datasets and models that are used.

Datasets: All of our experiments are run on image datasets, i.e. signals on R?, which is
a practically relevant setting and is in contrast to higher dimensionalities computationally
manageable. We focus on the supervised classification setting, which is computationally
cheaper and easier to optimize than other tasks. The insights should qualitatively generalize
to signals on higher dimensional spaces, to point cloud instead of pixel grid discretizations,
and other learning tasks beyond classiﬁcationﬂ A list of papers running experiments on
Euclidean spaces of other dimensionalities and using other signal discretizations is found
in Table [T4.1] Literature using steerable CNNs for other learning tasks, like generative
modelling, reinforcement learning or tracking was listed in the paragraph “Applications &
literature review” in the introductory Chapter 1]

More specifically, we are running many experiments on G-transformed variants of the
MNIST dataset, where G is either of the trivial group {e}, the reflection group (R, the rotation

'For instance, fully convolutional image segmentation is equivalent to a sliding window pixel clas-
sification [189].
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layer output features

network input 1 scalar field Table 6.1: Basic model architecture from

conv block (7x7,pad1) 16 regular fields ,Whldtl all ;n ogels f&l&?&?l?ﬁp er

conv block (5x5,pad2) 24 regular fields 1ments Im Sections : an are
. derived. Each convolution block consists

max pooling (2 X 2) 24 regular fields

of a convolution layer, batch-normalization
and a nonlinearity. The feature field types
are in the first three sections regular rep-

conv block (5x5, pad 2) 32 regular fields
conv block (5x5,pad2) 32 regular fields

max pooling (2x2) 32 regular fields resentations of different discrete subgroups
conv block (5x5,pad2) 48 regular fields of O(2), while the hyperparameter bench-
conv block (5x5,pad0) 64 regular fields mark experiment in Section [6.3] uses the
G-invariant projection 64 scalar fields representations listed in Table[6.6] The first
R2 av erage pooling 64 scalars fully cqnn§cted layer is followed by batch-
fully connected 64 scalars normalization and ELU.

fully connected + softmax 10 scalars

group SO(2) or the orthogonal group O(2). MNIST has the advantage that the level of sym-
metries in the dataset is well controllable since most digits appear in an upright rotation and
have a preferred chirality (one would not use rotations or reflections for data augmentation
in the original MNIST dataset). This is in contrast to e.g. natural images, whose statistics
are usually reflection invariant. Following the construction of the official rotated MNIST
dataset, we split the G-MNIST datasets into a training set consisting of 12000 images and
test on the remaining 50000 images.

The experiments in Section @] are conducted on CIFAR-10, CIAFAR-100 and STL-10,
all of which are datasets of natural images. They show a larger intra-class variability than
MNIST, have, in the case of CIFAR-100 more classes, and, in the case of STL-10 a higher
spatial resolution of 96 x 96 pixels.

Models: All of the experiments on the G-MNIST datasets rely on models that are vari-
ations of the architecture in Table [6.1] This baseline model is group convolutional, with
feature vectors in R16 that transform according to the regular Cig-representation; see
Def. and Remark Regular representations act by permuting the |G| feature
vector entries according to the group’s binary operation, as exemplified for C, in Table.[B.T]
Variations of this model that use other field types have their multiplicities of feature fields
scaled such that the total number of model parameters is approximately held constant — de-
pending on the parameter efficiency of the model, this leads to a different total number of
channels. All experiments in Sections|[6.1]-[6.4]stick with regular representations of different
cyclic and dihedral groups Cy and Dy [%%]Vhile the variants in Section adapt the field types
as reported in Table[6.6] All permutation representation based networks, i.e. all regular and
quotient representation based models, apply element-wise ELU nonlinearities [S0], while
the irrep based models apply different types of norm-nonlinearities or gated nonlinearities;
see Section Aff(G)-invariant models apply some G-invariant projection operation
to scalar fields after the last convolution, which is followed by spatial average pooling, to
produce invariant features for classification.

The models for CIFAR-10, CIFAR-100 and STL-10 in Section [6.4] are based on WideRes-
Nets [344], whose conventional convolutions are replaced with regular representation steer-
able convolutions. The numbers of feature fields are thereby either adapted to match the

’The dihedral groups Dy comprise N rotations in two reflections each, implying that D; = (R is
the reflection group.
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{e}-MNIST train set R-MNIST train set
vanilla CNN R-steerable vanilla CNN R-steerable
original test set 0.87+0.05 0.98 +0.09 1.61+0.08 0.96 +0.05
reflected test set 61.49+0.91 0.98 +0.09 1.65+0.12 0.96 +0.05

Table 6.2: Test errors of conventional and reflection steerable CNNs on differently reflected training
and testing datasets. {e}-MNIST refers to a training dataset with digits in their original orientation,
while R-MNIST applies (random) reflectional data augmentation during training. The “original test
set” is again in the original orientation, while all digits in the reflected test set are (non-randomly)
reflected. As expected, vanilla CNNs do not generalize over reflections, while (R-steerable CNNs do.
When being trained on reflection augmented digits, vanilla CNNs achieve a worse performance than
equivariant models.

number of parameters of the original model (resulting in more channels), or to match the
original models’ number of channels (resulting in fewer parameters).

All models are implemented using the PyTorch library e2cnn [38] or its successor
escnn [39].

6.1 Generalization over group orbits

The central idea of equivariant CNNss is that they generalize whatever they learn over their
group orbits; see Fig. A.2] Here we investigate the generalization capabilities of steerable
CNNs by training a classifier network on a dataset of images in a fixed pose, but testing it
on datasets that contain images in another, transformed pose on the group orbit, measuring
how the classification error depends on the particular dataset transformation. As expected,
steerable CNNs are found to generalize over group orbits, while non-equivariant CNNs do
not. Non-equivariant CNNs that are trained with data augmentation are (more or less) gen-
eralizing over the augmentation orbit as well, however, as they explicitly need to learn the
mapping for each pose, their performance is significantly worse.

We experiment in the following with reflection and rotation symmetries on square pixel grids.
The qualitative difference between these two cases is that reflections are exact symmetries
of the pixel grid, while the rotational symmetries are broken by this discretization. We
disregard the translational generalization of steerable CNNSs, since it is equivalent to that
of conventional CNNs and was already investigated by Azulay and Weiss [6] — pooling
layers are found to break translation equivariance, which can be alleviated via the approaches
suggested in [348l 1336]. An animation of the generalization of a rotation equivariant model
is found at https://github. com/QUVA-Lab/e2cnn#demol

Exact reflection symmetries: To measure the generalization of vanilla CNNs and steer-
able CNNs over reflections, we train and test them on differently transformed MNIST vari-
ants as summarized in Table

Training on {e}-MNIST (left two columns) means that all digits in the training set are pre-
sented in their original orientation. When testing such trained models on non-reflected digits
(“original test set”), vanilla CNNs have a slight advantage over reflection invariant CNNss,


https://github.com/QUVA-Lab/e2cnn#demo
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Figure 6.1: Rotational generalization of a conventional CNN (blue) and a rotation steerable CNN
(orange) on a square pixel grid. The models are either trained on digits that are aligned upright ({e}-
MNIST, solid lines) or augmented with random rotations (SO(2)-MNIST, dashed lines). As expected,
the vanilla CNN does not generalize over rotations. The theoretically predicted C¢-equivariance of
the steerable CNN is in practice broken to C4-equivariance since the pixel grid is only invariant under
rotations by multiples of 7. While the test error for 7 is far from random chance (mind the logarithmic
y-axis), the rotational equivariance of the model can be improved further by using rotational data
augmentation. The error rates of both models are approximately rotation independent when being
trained on rotation augmented digits, but the error rate of the equivariant model is approximately half

of that of the vanilla CNN.

since the latter are unable to leverage any information about the digit orientationﬂ However,
when being tested on reflected digits (“reflected test set”), the vanilla CNN’s performance
degrades significantly, since it never saw such samples during training. In contrast, the re-
flection steerable CNN generalizes perfectly to the unseen digit orientations, i.e. it achieves
exactly the same test error and standard deviation on both test sets.

If the learning task is a-priori known to be reflection equivariant, the usual approach is to
train the conventional CNN with reflectional data augmentation, denoted here as R-MNIST.
Augmentation leads to an approximately similar performance of the conventional CNN on
both test set orientations. However, due to the greater intra-class variability of this classi-
fication task, the performance is quite a bit worse as compared to training on non-reflected
digits. Reflection steerable CNNs are by design equivariant (here invariant), and therefore
not affected at all by the reflectional augmentation. The test error of the reflection steerable
CNNs is lower than that of augmentation trained vanilla CNNss, since they do not explicitly
need to learn to be equivariant.

Numerically broken rotation symmetries: The exact analytical equivariance and gener-
alization of steerable CNNs may be broken by the numerical implementation. An example
of great practical relevance are rotation equivariant CNNs on square pixel grids. We in-
vestigate the networks’ generalization as before by training either on digits that are aligned
upright ({€}-MNIST) or randomly rotated (SO(2)-MNIST) and testing on a set of datasets
that contain digits which are all rotated by the same angle. A plot of the resulting test errors
for different test set rotation angles is shown in Fig.[6.1]

3This issue can be alleviated via group restriction operations, which help (locally) reflection steer-
able CNNs to achieve even better results than vanilla CNNs. Section @proves this claim empirically.



94 Chapter 6. Empirical evaluation of steerable CNNs

Figure 6.2: Dependence of the train set size
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the rotation group order N 1/16
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When training on {e}-MNIST, the vanilla CNN achieves a good performance on the non-
rotated test set, but the performance degrades quickly to random chance for larger test set
rotations. The small dip in the error rate for rotations around 180 degrees comes from digits
like 0 and 8, which are approximately invariant under such transformations. The rotation
steerable CNN is in theory expected to generalize its inference over test set rotations. As
seen from the plot, this expectation is in our implementation violated, and the test error is
5 -periodic, corresponding to the subgroup of rotational symmetries of the square pixel grid.
While the generalization is with /& 3.7% test error in the worst case already much better than
random chance, there is still room for improvement.

The dashed lines correspond to models that were trained using augmentation with randomly
rotated digits. Both curves are approximately independent from the test set angle, but the
rotation steerable model has a lower test error. Rotational equivariance is therefore clearly
beneficial, even though it should be combined with data augmentation if it is broken by the
numerical discretization.

6.2 Data efficiency and convergence

The equivariance of steerable CNNs implies that they don’t need to learn to process any
transformed version of a feature field individually, but automatically generalize over group
orbits. As a consequence, they require less data to achieve better results and converge faster
than non-equivariant models.

Fig. records the test errors of regular Cy-steerable CNNs on SO(2)-MNIST for varying
rotation orders N and training set sizes. The test error decreases initially with growing N
before it saturates at around N = IZE] The claim that equivariant CNNss exhibit an improved
data efficiency is apparent by the fact that an increase of the equivariance group order allows
to reduce the test error further than a doubling or even quadrupling of the training set size.

The improvements in data efficiency are even more significant in higher dimensions [[329] [8]],
since higher dimensional rotation groups consist of “more elements” and thus larger orbits to

4The exact order of saturation correlates with the chosen kernel size, which was here fixed to 5 x5
pixels.
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Figure 6.3: Validation errors and losses during the training of a conventional CNN and Cy-equivariant
models on SO(2)-MNIST. Networks with higher levels of equivariance converge faster and achieve
better final results.

generalize over. For instance, Winkels and Cohen [329] (Table 2) showed that incorporating
equivariance w.r.t. cubic symmetries (24 rotations in two reflections each, i.e. 48 elements)
may lead to larger gains in a detection task than a fenfold increase of the dataset size.

Fig. [6.5] shows a plot that is similar to Fig. [6.2] with the difference that the dataset size is
here plotted on the x-axis and the experiment is performed on the STL-10 dataset of natural
images. That the curves are straight lines in the log-log plot reflects the well-known fact that
test errors depend on the data set size via a power law [120]E| More data efficient models
result usually in shifted lines with the same slope, i.e. same power law exponent. Batzner
et al. [8] noticed that these exponents, and therefore data efficiencies, are for locally rotation
invariant models (scalar fields) lower than for locally faithfully rotation equivariant models
(non-scalar fields). Observing that our equivariant and non-equivariant models all show the
same slope suggests that this is an issue specific to locally invariant models. This issue with
purely scalar field based models is supported by the fact that such models perform overall
worst in our model benchmark in Table @ (line 45, labeled as “irreps = 07)

The evolution of validation errors and losses of Cy-steerable CNNs during training on
SO(2)-MNIST is visualized in Fig. One can see that higher rotation orders N do not
only lead to lower final losses and errors, but also to a faster model convergence. The reason
for this effect is again the models’ generalization over group orbits: conventional CNNs need
to learn all transformed versions of an input image explicitly, which requires either more it-
erations or a larger batch size in comparison to equivariant models. Equivariant CNNs may
therefore not only be more accurate than non-equivariant models, but also cheaper to train.

6.3 Choice of equivariance group and group restriction

The optimal choice of symmetry group w.r.t. which a model is equivariant depends on the
level of symmetry present in the learning task. Assuming that the data distribution is invari-
ant under Aff (G gy, ), and the model (globally) is Aff (G noder )-e€quivariant, we can distinguish
three qualitatively different cases:

5The same effect manifests in Fig. in the fact that the curves are equidistant on the (log scale)
/-axis.
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Ghodel < Gara: In this case the model does not fully exploit the symmetries present in the
data and is forced to learn to generalize over Ggu,-orbits explicitly. As seen in the
previous sections, this results in a suboptimal performance in comparison to equivari-
ant models with Gpoge] = Ggaa- A common example would be to use a conventional
CNN, i.e. Gmodel = {e€}, on satellite imaging data, which is often isometry invari-
ant, i.e. Ggua = O(2). Other examples are the conventional CNNs on R-MNIST in
Table[6.2]and on SO(2)-MNIST in Fig.

Ghodel > Gaaa: If the model assumes more symmetries than actually present in the data, it
generalizes over too large orbits and may draw wrong conclusions. For instance, the
digits of the original MNIST dataset appear all in an upright rotation, i.e. G = {€}.
When using a rotation invariant model, Gyoger = SO(2), it confuses digits like 6
and 9, which are related by rotations. Similarly, the digits W and 3 (4 and 7) are
related by a reflection and a rotation by 7 /2, and might therefore be confused by a
Godel = O(2)-invariant model. Another example is the [R-steerable CNN on {e}-
MNIST in Table[6.2] which performs worse than the vanilla CNN.

Ghodel = Gaaa: Having the symmetries of the data and model matching is obviously the best
choice. This way we are neither giving away prior knowledge, nor overconstraining
the model with too much equivariance. The examples in Table[6.2]and Fig.[6.1]are the
vanilla CNN on {e}-MNIST, the (R-steerable model on R-MNIST and the rotation
steerable model on SO(2)-MNIST.

The above analysis considered the global symmetries of the data and the overall equivari-
ance of the model. However, as described in Section @ the statistics of local patterns in
the data are often invariant under a larger symmetry group Gaalocal > Gdataglobal than that
present at the global scale. Each convolution layer is usually accumulating features from

a local receptive field, and its equivariance should be adapted to the symmetries present at

that scale. This can be achieved with the group restriction operation Resﬁgggj“:“"f“:?) from
ata,global

Section [4.4] which we investigate here empirically. Our finding is that a higher level of
equivariance up to the final network layer generally seem to be helpful — this way the model
generalizes most of its inference over large Aff (G gy jocal)-OTbits, but can ultimately discrim-
inate between features on different Aff (Gdata,global)-orbits. We abbreviate the restriction of a

model’s structure group G to a subgroup H after layer [ in the following by G | H.

G-MNIST: To investigate the interplay of equivariance groups and dataset symmetries,
we run fully Dy, Cy and {e}-steerable models and group restricted variants of them on
O(2)-MNIST, SO(2)-MNIST and {e}-MNIST. All models are Goger-invariant classifiers,
that is, they start confusing classes whenever Gmodel > Gaaaglobal. Fig. @ and rows 2-10
and 19-27 in Table[6.6) summarize the results of these experiments.

For O(2)-MNIST, all models are in the regime Gmodet < Gdataglobal and models with larger
equivariance groups perform better than those with less. In particular, the Dy models per-
form consistently better than the Cy models of the same order N since they generalize
additionally over the reflections that are present in the dataset.

On SO(2)-MNIST, the Ciy models and the conventional CNN are still in the regime Godel <
Glaaglobal and the test error decreases with growing rotation order N. The performance of
these models improved relative to the corresponding results on O(2)-MNIST since the intra-
class variability in SO(2)-MNIST is reduced. In contrast, the Dy models are harmed by their
global reflection invariance — in fact, they are not able to distinguish between O(2)-MNIST
and SO(2)-MNIST at all, thus achieving exactly the same result on both datasets. For N = 1
the dihedral model is purely reflection- but not rotation invariant, and therefore performs
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Figure 6.4: Test errors of Dy and Cy steerable and conventional CNNs on different G-MNIST vari-
ants. Left: All equivariant models improve upon the non-equivariant CNN baseline on O(2)-MNIST.
The error decreases before saturating at around 8 to 12 orientations. Since the dataset contains re-
flected digits, the Dy -equivariant models perform better than their Cy counterparts. Middle: Since the
intra-class variability of SO(2)-MNIST is reduced, the performances of the Cy model and the baseline
CNN improve on this dataset. In contrast, the Dy models are invariant to global reflections such that
they can’t distinguish between the O(2)-MNIST and SO(2)-MNIST datasets. For N = 1 this leads to
a worse performance than that of the CNN baseline. Restricted dihedral models, denoted by D ‘ 5CN,
make use of the local reflectional symmetries but are globally only rotation invariant. This makes them
perform even better than the Cy models. Right: On {e}-MNIST the globally invariant models Cn
and Dy don’t yield better results than the baseline, however, the restricted (i.e. non-invariant) models
Cn | s1e} and Dy | s1e} do. For more details see the main text.

even worse than the CNN baseline. This issue is resolved by restricting the dihedral models
after the penultimate convolution (at layer 5) to Cy < Dy, such that the group pooling after
the final convolution results in globally Cy-invariant features. This model, denoted in the
figure by Dy | ;Cn, achieves a slightly better accuracy than the pure Cy-equivariant model
since it can leverage local reflectional symmetries.

For {e}-MNIST, the non-restricted Dy models perform again worse than the Cy models
since they are insensitive to the chirality of the digits. In order to explain the non-monotonic
trend of the curves of the Cy and Dy models, notice that some of the digits are approximately
related by symmetry transformationsﬂ If these transformations happen to be part of the
equivariance group w.r.t. which the model is invariant the predictions are more likely to be
confused. This is mostly the case for /N being a multiple of 2 or 4 or for large orders V.

®E.g. 6 and 9 (6 and 9) or 2 and S (2 and 5) are related by a rotations by « and might therefore
be confused by all models Ca, and Doy, for k& € N. Similarly, & and F (4 and 7) are related by a
reflection and a rotation by 7/2 and might be confused by all models D.y.
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restriction SO(2)-MNIST {e}-MNIST
depth group test error (%) group  test error (%) group test error (%)

0) Cis 0.82+0.02 {e} 0.82+0.01 {e} 0.82+0.01
1 Dis L Ci6  0.86+0.05 Dis 1{6} 0.79 +0.03 C16|1{e} 0.80+0.03
2 Dis|, Cis  0.82+0.03 Dis|,{e} 0.74%0.03 Cis|,{e} 0.77x0.03
3 Dis|, C16  0.77+0.08 D16|3{e} 0.73+0.03 Cle|3{e} 0.76 +0.03
4 Dis|, Ci6  0.79+0.03 D16|4{e} 0.72 +0.02 C15|4{e} 0.77 £0.03
5 Dig|, Cis  0.78+0.04 Dig|,{e} 0.68+0.04 Cis| {e} 0.75x0.02

no restriction Dis 1.65 +0.02 Disg 1.68 +£0.04 Cis 0.95+0.04

Table 6.3: Effect of the group restriction operation at different depths of the network on SO(2)-MNIST
and {e}-MNIST. Before restriction, the models are equivariant to a larger symmetry group than the
group of global symmetries of the corresponding dataset. A restriction at later layers leads to an im-
proved accuracy. All restricted models perform better than non-restricted, and hence globally invariant,
models.

Once again, the restricted models, here Dy |.{e} and Cy 5{e}, show the best results since
they exploit local symmetries but preserve information on the global pose of the digits. Since
the restricted dihedral model generalizes additionally over local reflections, its performance
is consistently better than that of the restricted cyclic model.

Restriction depth: The results in Fig. demonstrate the benefit of using group restric-
tion operations right before the final convolutional layer of the network. Table[6.3|extends on
these experiments by varying the depth at which restriction is performed. The overall trend
is that a restriction at later stages of the model improves the performance and that restricted
models perform significantly better than the invariant models.

6.4 Drop-in replacement for conventional convolutions and natural
image datasets

Lots of effort has been made to design conventional CNN architectures and to tune their
hyperparameters, which raises the question in how far these findings transfer to steerable
CNNs. Here we explore whether steerable convolutions can be used as a drop-in replacement
for conventional convolutions without any further adaptations or hyperparameter tuning. To
this end, we take widely established WideResNet architectures [[344], upgrade them to be G-
steerable, and optimize them according to the original training protocols and hyperparameter
settings reported in the literature. The resulting steerable WideResNets outperform their
baselines by a large margin, showing that steerable convolutions can be readily deployed for
various signal processing tasks. All experiments in this section are conducted on natural
image datasetﬁ thus demonstrating in addition that steerable CNNs are beneficial for this
particular image modality.

CIFAR: A first set of experiments, conducted on CIFAR-10 and CIFAR-100 and reported
in Table [6.4] replicates the WideResNet (wrn) architecture, training procedure and hyper-
parameters from [344] with steerable convolutions. The labels G1 G2 G35 signify hereby the

"The statistics of natural images are typically invariant under global translations and reflections,
i.e. Aff(Dq), but not under global rotations.
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levels of equivariance in the three

main blocks of the networks, which model CIFAR-10 CIFAR-100
are separated by pooling layers. Reg- ~ Wrm28/10  [344] 3.87 18.80

ular representations are used through- xg%gﬁg* B; Bi Bi ggg i o %;Zg i s
out the whole model except for the  ym28/10 C5C, C, 3.20+0.04 16.47=0.22
last convolution which maps to a  wr28/10 DgD4D; 3.13+0.17 16.76+£0.40
scalar field to produce invariant pre-  wrn28/10 Dg D4 Dy 291+013 16.22+0.31
dictions. For a fair comparison we  wm28/10  [64] AA 2.6 +o1 17.1 +o03
scale the width of all layers such that ~ wrn28/10* Ds D4 D1 AA  2.39+0.11 15.55+0.13
the number of parameters of the origi- wrn28/10 DgDsD; AA  2.05+0.03 14.30+0.09

nal wrn28/10 model is approximately
preserved. Note that, due to their en-
hanced parameter efficiency, our mod-
els become wider than conventional
CNNs.  Since this implies a higher
computational cost, we add an equivariant model, marked by an additional *, which has
about the same number of channels as the non-equivariant wrn28/10. More details on the
training procedure and hyperparameters are found in [322].

Table 6.4: Test errors of different equivariant models on
the STL-10 dataset. Models with * are not scaled to the
same number of parameters as the original model but pre-
serve the number of channels of the baseline.

The results of the D; Dy D1 model in Table [6.4] confirm that incorporating the global sym-
metries of the data already yields a significant boost in accuracy. Interestingly, the Cg C4 Cq
model, which is purely rotation but not reflection-equivariant, achieves better results, which
shows that it is worthwhile to leverage local rotational symmetries. Both symmetries are
respected simultaneously by the wrn28/10 Dg D4 D; model. While this model performs
better than the two previous ones on CIFAR-10, it surprisingly yields slightly worse re-
sult on CIFAR-100. This might be due to the higher dimensionality of its feature fields
which, despite the model having more channels in total, leads to less independent fields.
The best results (without using auto augment) are obtained by the Dg D4 D4 model which
suggests that rotational symmetries are useful even on a larger scale. The small wrn28/10*
Dg D4 D; model shows a remarkable gain compared to the non-equivariant wrn28/10 base-
line despite not being computationally more expensive. To investigate whether equivariance
is useful even when a powerful data augmentation policy is available, we further rerun both
Dg Dy Dy models with AutoAugment (AA) [64]. As without AA, both the computationally
cheap wrn28/10* model and the wider wrn28/10 version outperform the wrn28/10 baseline
by a large margin.

STL-10: In order to test whether the pre-
vious results generalize to natural images of model group  #params _test error (%)
higher resolution we run additional experi-  wrnl6/8 [69] - 1IM  12.74+0.23
ments on STL-10 [51]. While this dataset wrnl6/8*  D;D1 Dy 5M  11.05+0.45
was originally intended for semi-supervised Wrg}gﬁ 2* Bl Bl Bl igll\\/[/l 1(1).;1[0460

. . .. . WI s g Dy . . 0.70
learning tasks, its 5000 training images are wrnl6/8 DeD,D,  12M 0,800 40

also being used for supervised classification
in the low data regime [69]. We adapt the
experiments in [69] by replacing the non-
equivariant convolutions of their wrnl16/8
model, which was the previous supervised
SOTA, with Dy -steerable convolutions. As
in the CIFAR experiments, all intermediate
features transform according to regular representations. A final, invariant prediction is gen-
erated via a convolution to scalar fields. We are again using steerable convolutions as a mere
drop-in replacement, that is, we use the same training setting and hyperparameters as in the

Table 6.5: Test errors of different equivariant mod-
els on the STL-10 dataset. Models with * are not
scaled to the same number of parameters as the
original model but preserve the number of channels
of the baseline.
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original paper. The four adapted models, reported in Table [6.3] are equivariant under either
the action of D; in all blocks or the actions of Dg, D4 and D; in the respective blocks.
For both choices we build a large model, whose width is scaled up to approximately match
the number of parameters of the baseline, and a small model, which preserves the number of
channels and thus compute and memory requirements, but is more parameter efficient.

As expected, all models improve signifi- 604
cantly over the baseline with larger mod-
els outperforming smaller ones. However,
due to their extended equivariance, the small
DgD4D; model performs better than the
large D; Dy Dy model. In comparison to the
CIFAR experiments, rotational equivariance
seems to give a more significant boost in ac-
curacy. This is expected since the higher reso-
lution of 96 x 96 pixels of the STL-10 images
allows for more detailed local patterns which
occur in arbitrary orientations. 101, . . . ;
Fig. [6.5] reports the results of a data ablation 20 ootoraininlgooget Si;eooo 1000
study which investigates the performance of
the Dg D4 D1 models for smaller training set
sizes. The results validate that the gains from incorporating equivariance are consistent over
all training sets. More information on the exact training procedures is given in [322].

—— wrnl6/8 DsDyD,
WI‘H16/8 * D3D4D1
—— wrnl6/8

40+

w
(=

test error [%]

Do
(=)

Figure 6.5: Data ablation study on STL-10.

6.5 Field type, nonlinearity and symmetry group benchmarking

The framework of Aff(G)-equivariant steerable CNNs comes with many design choices,
like symmetry groups, field types or nonlinearities. While all of the above experiments used
regular representations of Cy or Dy as field types and applied element-wise nonlinearities,
the current section presents a benchmarking of alternative choices. The results are summa-
rized in Table[6.6]and analyzed in detail below. The first four columns state the equivariance
groups G < O(2), G-representations, nonlinearities and G-invariant maps which distinguish
the models. Column five cites related work that used the corresponding model design. As the
performance of the (G-invariant) models depends heavily on the level of symmetry present
in the data, we evaluate each model on O(2)-MNIST, SO(2)-MNIST and {e}-MNIST. The
statistics of each entry are averaged over (at least) 6 samples. All models in these exper-
iments are derived from the base architecture described in Table The actual width of
each model is adapted such that the number of parameters is approximately preserved. Note
that this results in different numbers of channels, depending on the parameter efficiency of
the corresponding models. All models apply some form of G-invariant mapping to scalar
fields followed by spatial pooling after the last convolutional layer such that the predictions
are (up to discretization errors) guaranteed to be Aff(G)-invariant. The number of invariant
features passed to the fully connected classifier is approximately kept constant by adapting
the width of the last convolutional layer to the invariant mapping used.

Before guiding through the results in detail, we give a high level overview: All models
relying on regular or quotient representations discretize the continuous rotations in SO(2)
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or O(2) by N discrete rotations in the subgroups Cy or Dy, respectivelyﬂ They apply
element-wise acting ELU nonlinearities [50]], which is a valid choice for any permutation
representation; see Section In addition, there are variants of the regular representa-
tion based models that are applying either a max-pooling operation over the feature vector
entries to produce a G-invariant (scalar) response field or, for Cy, a vector pooling opera-
tion that maps the regular feature field to a vector field. As final G-invariant maps after the
last convolution layer, all of these models compute scalars via a G-pooling or G/ H-pooling
operation over the regular or quotient feature vectors, respectively. For the continuous sym-
metry groups O(2) and SO(2), we benchmark different choices of irrep fields. These are
unitary representations, and are acted on by different types of either norm-nonlinearities or
gated nonlinearities, both of which were discussed in Section[4.3.3] An exception are scalar
fields, for which we use conventional ELU nonlinearities. Specifically for O(2), we also in-
vestigate field types that are defined by an induction of SO(2)-irreps to O(2)-representations.
The invariant maps are all variants of either a linear convolution mapping to scalar fields, or
a nonlinear mapping that takes the norm of non-trivial irrep features.

In a nutshell, regular representation based models, corresponding to group convolutions,
perform best. Among the irrep based models, those using gated nonlinearities work better
than those using norm-nonlinearities, and the O(2)-induced SO(2)-irreps outperform O(2)-
irreps. In the remainder of this subsection we will guide through the results presented in
Table[6.6in detail.

Regular steerable CNNs:  Fig. [6.4] summarizes the results for all regular steerable CNNs
on all variants of MNIST The models in (rows 2-10 and 19-27 in Table [6.6)) are steerable
CNNs whose feature vectors are regular Cy or Dy -representations for varying rotation or-

ders N; see Def. and Remark As argued in Section [4.5] these models corre-

spond to group convolutional neural networks 152, 13241 [162} [10]]. For the dihedral models
we choose a vertical reflection axis. We apply element-wise ELU nonlinearities

G-ELU: RI9 5 RIC 1= 3" fe, = > ELU(fy)e, (6.1)
geG geG

to the regular feature vectors / € RIS| and perform group pooling, defined by

G-pool: RIG¢l L R f.= ey 6.2
poo , f g%éfgeg gleaé(fgv (6.2)

as invariant map after the final convolution.

The relative performance of these regular steerable CNNs among each other was already
discussed in Section [6.3] (paragraph G-MNIST) and Fig. [6.4] above. In comparison to other
choices of group representations, regular steerable CNNs perform very well. The reason for
this is that G-regular feature vectors in RI/®! can encode an independent response for each
individual element of GG and that the nonlinearities act localized (element—wise)r_;] The model
for C; = {e} corresponds to a conventional CNN, however, its performance is slightly
better than that of the CNN baseline in row 1, which seems to be a result of the smoothed
kernel parametrization in terms of (unconstrained) circular harmonics; see Chapter [5 and

8 Alternatively, one can use a Monte-Carlo sampling of the infinite-dimensional regular representa-
tions of the continuous Lie groups [91} 40].

°This is analogous to conventional CNNs, whose features are regular (Rd, +)-representations:
their feature maps store an independent response (pixel) for each translation and nonlinearities act
point-wise.



group  representation nonlinearity invariant map citation  O(2)-MNIST SO(2)-MNIST {e}-MNIST
1 {e} trivial (conventional CNN) ELU - - 5.534+0.20 2.87+0.09 0.91+0.06
> Cq [324/12] 5.19+0.08 2.48 +£0.13 0.82+0.01

Co 1324]112]  3.29+0.07 1.324+0.02 0.87+0.04
4 Cg - 2.87+£0.04 1.194+0.06 0.80 +0.03
5 Cy 1521153113241112!71} 2.40 +0.05 1.02+0.03  0.99+0.03
6 Ceg regular Preg G-ELU G-pooling [125] 2.08 +0.03 0.89+0.03  0.8440.02
7 Cg 13241112] 1.96 +0.04 0.84 +0.02 0.89+0.03
g Cio 1324] 1.95+0.07 0.804+0.03 0.89+0.03
9 Cig 13241112] 1.93+0.04 0.82+0.02 0.95+0.04
10 Cao 1324] 1.9540.05 0.83+0.05 0.9440.06
11 Cy4 5reg © 2P ety ®205 " (53] 243+£0.05  1.03£0.05 1.01+0.03
1 Cg 5preg D20gun ®2pqun ©205* . 2.0340.05  0.84+0.05 0.9140.02

C12 /. Cy-
13 Ci2  quotient 5preg@2pqu;t/02 @qu;;{°4 @305 G/H-ELU G/H-pooling = 2.04+004  0.81+£0.02 0.9540.02
14 Cig 50res B2 geer” D20guen * BAPS™ - 2.004£0.01  0.864+0.04 0.9840.04
Co C.
5 Cho 50resD20gues” D20gn’ ®5p5™ - 2014005  0.83+003  0.9640.04
16 regular/scalar  pS1e LY, g, R (Cro ELU, G-pooling (32195] 2.02+0.02  0.90+0.03 0.93+0.04
17 Cypg  regular/vector p?w iy Preg e s plc“3 vector field G-pooling [196/1198]  2.12 4+ 0.02 1.07+0.03  0.78 £0.03
18 mixed vector  preg ®p1 — 2pregveci’lr> pree®p1 ELU, vector field - 1.87+0.03  0.834+0.02  0.63+0.02
pool
19 D;1=R - 3.40 +0.07 3.44+0.10 0.9840.03
20 Do - 2.42 +0.07 2.39+0.04 1.0540.03
21 Dg - 2.17+0.06 2.15+0.05 0.94 +0.02
22 Dy [152117111531130711216] 1.88 +0.04 1.87+0.04 1.69+0.03
23 Dg regular Preg ELU G-pooling [1251270] 1.77+0.06 1.77+0.04 1.00 £ 0.03
24 Dg - 1.68 +0.06 1.73+0.03 1.64 +0.02
25 Dig - 1.66 +0.05 1.6540.05 1.674+0.01
26 Dig - 1.6240.04 1.65 4 0.02 1.68 +0.04
27 Dgg - 1.64 +0.06 1.62+0.05 1.69+0.03
G .

5 Dig  regular/scalar  p5t S preg Grpool, P ELU, G-pooling - 1.9240.03  1.88+0.07 1.74+0.04




29 irreps < 1 Do o0 - 2984004  1.384£0.09 1.2940.05

yi
%0 irreps < 3 20,0 - 3.024018 1384009  1.2740.03
31 irreps < 5 ?:0 pJS.O(Z) = 3.24+0.05 1.44+0.10 1.36+0.04
» itreps < 7 00,0 - 3.30+0.11 1514010 1.40+0.07

3 : 1 S0(2),C ELU, norm-ReLU conv2triv 1
33 C-irreps < 1 @jzo pJS.O e [1335] 3.39+0.10 1.474+0.06  1.42+0.04
34 C-irreps < 3 3??: : ), 1335] 3.484+0.16 1.51+0.05 1.53 +0.07
35 C-irreps < 5 o ?O(z)’c . 3594008  1.5940.05 1.55+0.06
6 . C-irreps < 7 ]7.:0 ?OQW - 3.64+012  1.61+0.06 1.62+0.03

2
37 @) ELU, squash - 3.10 +0.09 1.414+0.04 1.46+0.05
38 ELU, norm-ReLLU - 3.234+0.08 1.38 £ 0.08 1.33 £0.03
39 ELU, shared norm-ReLU norm - 2.88+0.11 1.154+0.06 1.18 £ 0.03
40 . . shared norm-ReLU - 3.61+£0.09 1.574+0.05 1.88+0.05
irreps < 3 3 S0
41 - J=0"3 ELU, gate T - 2.37+0.06  1.09+0.03 1.10+0.02
42 ELU, shared gate - 2.334+0.06 1.11+0.03 1.12+0.04
43 ELU, gate - 2.234+0.09 1.04 +0.04 1.05 +0.06
norm
44 ELU, shared gate - 2.204+0.06 1.01+0.03 1.03 +£0.03
45 irreps = 0 oo ELU - [[44]  5.46+0.46 5214029 3.98+0.04
46 itreps < 1 P e pfi’g(f) @200 . 3314017  3.37+0.18  3.05+0.00

B . 0(2) . 0(2) 3 0(2)

47 irreps < 3 Po " B Pgen P51 20; ) - 3.42+0.03 3.414+0.10 3.86+0.09
. 0(2) Og(2) ?, {)(2) ELU, norm-ReLU O(2)-conv2triv

48 irreps < 5 Py D Pggn =1 2pj 3.59+0.13 3.78 £0.31 4.17+0.15

49 irreps < 7 p00(2> &) p;)g(nZ) @7:1 2p§.)(2) - 3.84+0.25 3.90+0.18 4.5740.27

50 Ind-irreps < 1 Ind p°*) @ Ind p; O - 2.7240.05 2704011  2.3940.07

B r SO(2) 3 SO(2) )

1 0(2) Ind %rreps <3 Ind pgo(z) @ézl Ind pjéo(z) ELU, Ind-norm-ReLU ki 2.66 +0.07 2.65+0.12  2.25+0.06
52 Ind-irreps < 5 Ind p; D;_1 Indp; - 2.71+0.11 2.84+0.10 2.3940.09
53 Ind-irreps < 7 Ind pg 0> @7_, Ind p,° - 2804012  2.85+0.06 2.25+0.08
54 . ; 0(2) 0(2) 3 0(2) O(2)-conv2triv - 2.394+0.05 2.384+0.07  2.28+0.07

irreps < 3 D p > . 2p; ELU, gate
55 B Po Psign - D j=1P; g norm - 2214009 2244006 2.15+0.03
56 Ind-conv2triv - 2.13+0.04 2.094+0.05  2.05+0.05

Ind-irreps <3 Ind pg° > @2, Ind p5°*  BLU, Ind-gate

57 J Ind-norm = 1.96 +0.06 1.95+0.05 1.85+0.07

Table 6.6: Benchmarking of Euclidean steerable CNNs for different groups G, representations, nonlinearities and final G-invariant maps. Multiplicities of
representations are reported in relative terms; the actual multiplicities are depth dependent integer multiples. The results are analyzed in Section@
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Fig. The main disadvantage of regular representations is that they are R!“|-dimensional
— while this dimensionality is with | Cy | = N and | Dy | = 2N for usual values of N well
manageable, discrete subgroups of SO(3) or O(3) become prohibitively high-dimensional
for current hardware.

Quotient representations: As an alternative to regular representations we experiment
with some mixtures of G/H-quotient representations of G = Cy (rows 11-15), which are
explained in Def. [B.5.20|and Remark [B.5.21] These models differ from the regular models
by enforcing more symmetries in the feature fields and thus kernels [322]]. The individ-
ual feature fields are lower dimensional; however, by fixing the number of parameters, the
models use more different fields which in this specific case leads to approximately the same
number of channels and therefore compute and memory requirements. As nonlinearities, we
are again applying ELUs element-wise to G/ H-quotient features f € RICI/I7 je,

G/H-ELU : RICVIAL o RIGVIHL e N fpegn > ELU(fyu) . (6.3)
gHEG/H gHEG/H

The invariant map after the final convolution is similarly a max-pooling over the quotient
space:

G/H-pool : RIGI/IH] —R, f:= Z foregr — max fom (6.4)
GHEG/H gHeG/H

We do not observe any significant difference in performance between regular and quotient
representations.

G-pooling and vector field nonlinearities: For C;g we implement a group pooling net-
work (row 16) and a vector field network (row 17). The former relies on steerable convo-
lutions from scalar to regular feature fields, which are then after each convolution mapped
back to scalar fields by applying the G-pooling operation from Eq. (6.2). Vector field net-
works [196] map the regular feature fields instead to vector fields, where the vectors’ norms
are again determined by the maximal response, but an additional directional information is
computed via an argmax, ¢ operation. Both pooling operations compress the features in
the regular fields, which can lead to lower memory and compute requirements. However,
since we fix the number of parameters, the resulting models are ultimately much wider than
the corresponding regular steerable CNNs. Since the pooling operations lead to a loss of in-
formation, both models perform worse than their purely regular counterpart on O(2)-MNIST
and SO(2)-MNIST. Surprisingly, the group pooling network, whose features are orientation
unaware, performs better than the vector field network. On {e}-MNIST the group pooling
network closes up with the regular steerable CNNs while the vector field network achieves an
even better result. We further experiment with a model which applies vector field nonlinear-
ities to only half of the regular fields and preserves the other half (row 18). This model is on
par with the regular model on both transformed MNIST versions but achieves the overall best
result on {e}-MNIST. Similar to the case of Cig, the group pooling network for D14 (row
28) performs worse than the corresponding regular model, this time also on {e}-MNIST.

SO(2) irrep models: The feature fields of all SO(2)-equivariant models that we consider
SO(2)

are defined to transform according to irreducible representations p’; , which were defined
in Eq. (5.33) in Section Note that this covers scalar fields and vector fields for the

trivial representation p§O %) and defining representation p?O(Q), respectively. Overall, these
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models are not competitive compared to the regular steerable CNNs. This result is partic-
ularly important for SE(3) = Aff(SO(3))-equivariant CNNs whose feature fields are often
transforming according to SO(3)-irreps [301} 323 [161], [163} [3].

The models in rows 29-32 are inspired by Harmonic Networks [335]] and consist of irrep
fields with the same multiplicity up to a certain threshold order. All models apply ELUs on
scalar fields and norm-ReLUs (see Section on higher order fields. The projection to
invariant features is done via a convolution to scalar features (conv2triv) in the last convolu-
tional layer. We find that irrep fields up to order 1 and 3 perform equally well while higher
threshold orders yield worse results. The original implementation of Harmonic Networks
considered complex irreps of SO(2), which results in a lower dimensional steerable kernel
basis as discussed in [322]. We reimplemented these models and found that their reduced
kernel space leads to consistently worse results than ours (rows 33-36).

For the model containing irreps up to order 3 we implemented some alternative variants:
The model in row 37 replaces the norm-ReLU activations by squashing nonlinearities, in-
troduced in Section 4.3.3] which leads to a slightly worse performance. Row 38 shows a
variation which sticks with norm-ReLUs, but computes the final G-invariant responses by
taking the norms of all non-scalar fields. This network design does again not improve upon
the baseline variant. Instead of applying the norm-ReL.U nonlinearity individually to each
higher order irrep field, the model in row 39 takes the norm of direct sums of higher order
irrep features (each with multiplicity one), which is valid since this direct sum representa-
tion is unitary. This shared norm-ReLU nonlinearity performs significantly better than its
baseline, but still far worse than regular steerable CNNs. Another variation in row 40 again
takes the norm of direct sums of irrep features, now including trivial ones, which results in
the overall worst results among all SO(2)-models. The models in rows 41-44 apply learned
gated nonlinearities, introduced in [323]] and Section @]) These nonlinearities are either
applied to each higher order irrep feature individually (gate), or to their direct sum (shared
gate). While not beating regular steerable CNNs, these models close up to their performance.
This insight might be interesting for SE(3) or E(3)-equivariant models, for which regular
representations are quite high dimensional.

O(2) models: As for SO(2), we are investigating steerable CNNs whose features transform
according to O(2)-irreps (Section [5.3.4] Eq. (3.54)) up to a certain order and apply norm-
ReLUs (rows 46-49). In this case we choose twice the multiplicity for two-dimensional field

types p?z(Ql) in comparison to that of one-dimensional types pOO(Q) and pgg(nz ), which reflects

the multiplicities of irreps contained in the regular representation of O(2). Invariant predic-
tions are computed by convolving in equal proportion to fields which transform under trivial

ureps Scalar nelds) and s1ign-1ip 1rreps p seudoscalar nelds), 1ollowe takin
irreps pg ) (scalar fields) and sign-flip irreps p5.>) (pseudoscalar fields), followed by taking

the absolute value of the latter (O(2)-conv2triv)]'°| We again find that higher irrep thresholds
yield worse results, this time already starting from threshold order 1. In particular, these
models perform worse than their SO(2)-equivariant counterparts, even on O(2)-MNIST.
This suggests that the kernel constraint for this particular choice of representations is too
restrictive.

If only scalar fields, corresponding to the trivial irrep p(? (2), are chosen, the kernel constraint
becomes K(gx) = K(x) Vg € O(2), and therefore allows for isotropic kernels only.
This limits the expressivity of the model so severely that it performs even worse than a
conventional CNN on SO(2)-MNIST and {e}-MNIST, while being on par for O(2)-MNIST;

'"The motivation for O(2)-conv2triv is that the steerable kernel space for immediate conv2triv
convolutions from pseudoscalar fields (psoig(nQ)) to scalar fields (p(? <2)) is empty; see Table
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see row 45. Note that isotropic kernels correspond to vanilla graph convolutional networks,
which are well known to oversmooth the signals they process [44} 31} [17].

In order to improve the performance of O(2)-steerable CNNs, we propose to use O(2)-

representations Indgg(é) p]S.O(Q), induced from the irreps of SO(2), as field types. By the

definition of induction, this leads to pairs of fields which transform according to p;é.o(z) un-

der rotations in SO(2) but permute under reflections in O(2)/SO(2) =4, R [322]. The
multiplicity of the irreps of O(2) contained in this induced representation coincides with the
multiplicities chosen in the pure O(2)-irrep models. However, the change of basis, relat-
ing both representations, does not commute with the nonlinearities, such that the networks
behave differently. We apply Ind-norm-ReLU nonlinearities to the induced O(2) models
which compute the norm of each of the permuting subfields individually but share the norm-
ReLU parameters (the bias) to guarantee equivariance. In order to project to final O(2)-

invariant feature vectors, we first apply a convolution producing Indgc()z(é) ng(Q) fields (Ind-

conv2triv). Since these transform like the regular representation of R =,,, O(2)/SO(2), we
can simply apply G-pooling over the two reflections. The results, given in rows 50-53, show
that these models perform significantly better than the O(2)-irreps models and outperform
the SO(2)-irrep models on O(2)-MNIST.

We again build models that apply gated nonlinearities. As for SO(2), this leads to a greatly
improved performance of the pure irrep models; see rows 54-55. In addition we adapt the
gated nonlinearity to the induced irrep models (rows 56-57). Here we apply an independent
gate to each of the two permuting sub-fields (Ind-gate). In order to be equivariant, the gates

need to permute under reflections as well, which is easily achieved by deriving them from

0(2) SO(2
Indsc()(é) o ?

best results among all O(2)-steerable networks, however, it is still not competitive compared
to the Dy models with large V.

fields instead of scalar fields. The gated induced irrep model achieves the
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AN INTRODUCTION TO
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Figure II.1: An intuition on the inherent ambiguity of weight sharing on manifolds. Left: A common
interpretation of weight sharing on the plane is to shift a kernel over the whole space. Since parallel
transport is on Euclidean spaces path independent, this is unambiguous. Middle: On curved spaces,
like the sphere, parallel transport is path dependent. Different paths result in kernels that are rotated
relative to each other.  Right: The Mobius strip is a non-orientable manifold. Different paths can
therefore result in kernels that are reflected relative to each other. Botfom: We formalize different
kernel alignments by different choices of local reference frames of the corresponding tangent spaces. It
is well known that no choice of reference frames (gauge) is preferred on general manifolds. Different
coordinatizations are related by gauge transformations, which take values in the structure group G of
the manifold (the trivial group G = {e} for the plane, rotation group G = SO(2) for the sphere and
reflection group G = R for the Mobius strip). Coordinate independent CNNs address the ambiguity
of reference frames by applying G-steerable (gauge equivariant) convolution kernels.
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Introduction & overview

There are many applications where the signal to be processed by a neural network is not
supported on a flat Euclidean space, but on more general Riemannian manifolds; see for
instance Fig. Parts [T and [[TT] of this work address such applications by generalizing the
Euclidean steerable CNNs from Part[[| to the differential geometric setting. Since convolu-
tions are essentially characterized by their spatial weight sharing property, a central question
in this endeavor is how convolution kernels should be shared over Riemannian manifoldsE-]

In the Euclidean setting, weight sharing could be derived by demanding models to be affine
group equivariant. This approach generalizes to arbitrary homogeneous spaces (Def.[B.3.11))
like the sphere or torus [56]. However, it is bound to fail on general manifolds since they
are potentially asymmetric, i.e. may have no transitive symmetries w.r.t. which one could
demand networks to be equivariant. Weights would only be shared over isometry group
orbits as visualized in Fig. [I.TT] and no weight sharing at all would result for trivial isome-
try groups. An alternative intuition from the Euclidean setting is that kernels are shared by
“shifting” them over the space. Since parallel transporters on Euclidean spaces are path in-
dependent, this results in an unambiguous alignment of kernels; see Fig. [[I.T|(left). However,
transporters become on curved or non-orientable spaces path dependent, and thus unsuitable
for sharing weights. Fig.[IL.T| (middle and right) exemplifies this issue for the sphere and the
Mobius strip, where different paths lead to a different kernel alignment.

As it turns out, the alignment of convolution kernels on manifolds is inherently ambiguous.
A natural solution to address a G-ambiguity in the kernel alignment is to use G-steerable
kernels: different kernel alignments result then in equivalent responses, differing only by
a predictable group action. Viewing kernels as local observers who are measuring features
relative to their local frames of reference, this independence of the extracted information
from the chosen kernel alignments (frames) can be interpreted as the networks’ coordinate
independence (G-covariance).

The theory of coordinate independent CNNss is formalized in reverse order — its foundational
principle is the models’ coordinate independence, from which the requirement for the ker-
nels’ steerability is shown to follow. Chapter [/ introduces the underlying gauge theoretic
formalism, which describes coordinatizations of the tangent spaces and gauge transforma-
tions between different choices of coordinates. Based on this, Chapter [§| defines coordinate
independent feature spaces, in particular the gauge transformations, parallel transport and
isometry pushforward of feature vectors. Coordinate independent neural network layers
that map between such feature vector fields are developed in Chapter[9] An exemplary in-
stantiation of such coordinate independent feature fields and network layers on the Mobius
strip is presented in Chapter [I0}

The aim of the current Part [[I] is to introduce the theory of coordinate independent CNN's
in an easily accessible language. It describes all quantities and layers in local coordinates
(gauges), ensuring thereby that the particular choice of gauge remains irrelevant. This is in
contrast to Part which develops the corresponding coordinate free formulation in terms
of associated fiber bundles. The formulation presented here will be shown to follow from
the global theory when expressing it in local bundle trivializations.

"This question applies more generally to any shared template operation, including for instance
biases or pointwise nonlinearities.






CHAPTER 7

Gauges, gauge transformations and G-structures

Geometric quantities like tangent or feature vectors exist independently of coordinates, how-
ever, a (non-symbolic) computer implementation requires them to be expressed in terms of
numerical coefficients in some gauge, i.e. relative to some choice of reference frames. The
specific choice of coordinates is irrelevant — it represents just one of multiple equivalent de-
scriptions. The appropriate mathematical framework to regulate such redundant degrees of
freedom are gauge theories. A gauge theory accounts for the equivalence of different gauges
by consistently relating them to each other via gauge transformations.

This chapter discusses the coordinatization of tangent spaces, from which coordinate ex-
pressions of associated geometric quantities like feature vectors will follow. In particular,
Section introduces gauges and gauge transformations of the tangent spaces as a for-
mal way of describing choices of local reference frames and transformations between them.
Section explains how functions on tangent spaces are represented relative to different
coordinatizations — this introduces the idea of coordinate independent mappings, which we
use later to define coordinate independent network layers. Section defines G-structures
and G-atlases.

7.1 Tangent spaces and reference frames

A d-dimensional (smooth) manifold M has a tangent space T, M = R? attached to each
point p € M. The tangent spaces are d-dimensional vector spaces, however, in contrast to R?
they do in general not come with any preferred choice of reference frame. A tangent vector
v € T,M is a coordinate free object and is thus not immediately represented numerically
by a coordinate tuple (vy,...,vq) € RY More abstractly stated, each tangent space T, M
is isomorphic to R? but in general no canonical isomorphism between them is given. Both
spaces are therefore structurally equivalent but are not identified with each other in any
preferred way.

A gauge (local trivialization of the tangent bundle) on U# C M is defined as a smoothly
position-dependent collection of invertible linear maps

i T,M - R, peU?, (7.1)
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C UA
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v = ! vB= V2

1 0
Figure 7.1: Identification of T, M =2 R? with R? via different gauges. A (coordinate free) tangent vector
v € T, M (orange) can be represented numerically by a coordinate tuple v = 77%4 (v) = (1, 1) T
relative to gauge wp (red) or, equivalently, by v ( )= (\f 0)T relative to gauge wp (green).

A choice of gauge corresponds to a choice [ef, 3 ] or [ef,eF] of reference frame. On a general
manifold no choice of gauge or coordinatization is preferred a priori. Different gauges, and thus
reference frames, are related by gauge transformations gf A= wf o (1/;1‘,4) ~! (blue) which take values
in the thus defined structure group G. This figure is a graphical interpretation of the commutative
diagrams in Eq. (7.8)) and Fig. Note that gauges are immediately assigning coordinates to tangent
spaces. Fig.[15.2]in Section %ows a similar diagram for (affine) charts, which assign coordinates
to the manifold, thereby inducing gauges (“coordinate bases”).

specifying the missing vector space isomorphisms between 7, M and R?. As visualized in
Fig.[7.] they coordinatize the tangent spaces by assigning a coefficient vector
vd = Y2 (v) eRY (7.2)

p

to each coordinate free tangent vector v € 1, M. An inversion of this relation yields

= ()70 = () (X vite) = 2 vt () (@) = > v

(7.3)

where we denoted by {e1,..., €4} the standard basis of R? and made use of the linearity
of the gauge to pull out the summation. This shows that the gauge can be thought of as
endowing each tangent space 1, M with a reference frame

ety cved] = [ M@ s ) e (74)

defined as that d-tuple of linearly independent tangent vectors which results when mapping
the standard frame of R? back through the inverse gauge map. For brevity, we will in the
following use the shorthand notation [e'] ¢

A, for frames [ef, ..., ef]. The coefficients v

are the coordinates of v relative to this frame. The collection of frames induced by the 7,/1[‘)4
on U4 is called (smooth) frame field; see Figfor a visualization.

Gauges ¢X coordinatize tangent spaces only on local neighborhoods UX C M, and can
due to topological obstructions in general not be extended to the whole manifold without
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Figure 7.2: Each point p of a Riemannian manifold
M has a tangent space 7,M attached. A smooth
gauge ¥ on a suitably chosen subset U4 C M (red)
coordinatizes all tangent spaces T, M for p in U 4
as shown in Fig. [T1] It is equivalent to a choice of
smooth frame field on U . Since it is in general not
possible to extend a gauge globally over the whole
manifold, it is necessary to consider a G-atlas, con-
sisting of gauges which cover M. Different coordi-
natizations 1" on U 4 (red) and B on UB (green)
are patched together via gauge transformations (or
transition maps) g®4 : U4 NUP — G which are
defined on the overlap U“ N UZ (striped) and take
values in the structure group G < GL(d).

violating the smoothness assumption. One therefore considers an atlas

A= {0 g &

consisting of smooth gauges on a set of neighborhoods U~ covering the manifold, that is,
satisfying (Jx ¢ UX = M, where X is an index set On the overlaps UA N UB +# &
of neighborhoods, different gauges wz‘;‘ and 1/}5 are stitched together by smooth transition
Sfunctions
—1

Pt UANUP = GL(d), p—glt=vlo(v)) . (7.6)
Here we assume the codomain (for now) to be given by the general linear group GL(d),
consisting of all invertible matrices in R?*?, which explain the relation between any pair
of vector space isomorphisms (gauges) or reference frames. The action of such a transition
function on a given gauge defines a gauge transformation

PP = gPA oyl (7.7)

In terms of a commutative diagram, the relation between different gauges is visualized as:

gpt-
R[l v M vy I&d (1.8)
[ J
gt = ()

Compare this diagram to its graphical interpretation in Fig[7.1]

A gauge transformation alters the coordinatization of the tangent spaces such that the same
coordinate free tangent vector v is represented by a different component vector

B = ngvA. (7.9)

'An atlas of gauges is very similar to usual atlases of charts of a manifold (Appendix . The
difference is that the here considered atlases directly assign coordinates to the tangent bundle 7'M
instead of to the manifold M.
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Since a gauge corresponds to a choice of frame field, a gauge transformation corresponds

to a transformation between frame fields. Specifically, a frame [ef‘]?:l = [ef,... e} at
p € M transforms to another frame
_ d
(eﬂ j:l = ( 5) ! (61):| - (gauge induced frame, Eq. )
= (ng 1/);34) ! (ez)} - (gauge transformation, Eq. )
_ _ d
= ((z/;;l) ! ((ng) ! ei)} - (expanded inverse)
- _ d
= ( ;04) 1 (ZJ eje;-r (ng) 1 61)L=1 (inserted identity 1 = Zj eje;r)
- d
= _( ;34) ! <Zj € ((ng) _1)3_1_)] . (matrix elements of (ng)fl)
r d
- Zj (w;j‘)—l(ej) ((ng)ﬂ)jJ (linearity of ;)
L i=1
r d
= Z ) ef <(g£A) 71) ] (gauge induced frame, Eq. (7.4) )
I Jili=1
= (et < (o8 (7.10)
via the thus defined right action
d
<: ([ei]g:h 9) = el <g = (ZJ €; gji] i (7.11)

of group elements on frames. Note that the inverse in this action in Eq. is due to the
definition of Eq. without inverseE] One usually refers to the transformation behavior of
reference frames as covariant transformation while the transformation of gauges and vector
coefficients is denoted as contravariant transformation; see Appendix [C]

Since the transformation behavior of the coefficients in Eq. and the basis in Eq. (7.10)
are inverse to each other they compensate, that is, they leave the tangent vector v =
S viet =3, vPel invariant:

A A1
v= 3wl = 3P et (),
BAy~1 B\ A
(S (@), 00 )¢
A_A
= vites . 7.12
Zj J 7 ( )
This construction ensures that any calculation is ultimately independent of the chosen gauge,
which is usually denoted as coordinate independence. In general, any coordinate represen-

tation of a coordinate free object or function is for consistency reasons required to be coor-
dinate independent.

2Qther conventions might flip the choice of inverses in »® = gB444 and [eP]L; = [, <

—1 . . . . .
(gB A) . An inverse in either of the two equations is necessary to make the left action - on gauges
and right action <1 on frames compatible.
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VACR?

Figure 7.3: A chart ©* : U% — V* assigns coordinates V4 C R? to regions U* C M of the
manifold. It induces coordinate bases [%?‘p, e %;?u and corresponding gauges ¥;' = dx;
of the tangent spaces 1,M over U#. We will mostly not work with charts but rather refer to points
p € M in a coordinate free manner. Gauges (frames) are then directly assigned to the tangent spaces
instead of being induced.

For completeness we want to mention that the here presented formalism defines general
bases of the tangent spaces, sometimes referred to as non-coordinate bases (non-holonomic
bases), in terms of local gauges. A very popular but less general alternative are coordinate
bases (holonomic bases)

0 0 ]
— e, = |, (7.13)
|:(9I"14 » oz} v
which are induced by coordinate charts
4 U4 5 VA CR? (7.14)

of the manifold [221]]. The corresponding gauges are given by the the chart differentials,
that is,

Wi = dat = (day,.., dety) " T,M 5 RY (7.15)
Gauge transformations coincide in this setting with the Jacobians
0xB
gbt = 3A e GL(d) (7.16)
Tz p)

of chart transition maps. An exemplary chart and its induced coordinate bases are visualized
in Fig. Appendix [C] discusses the relationship between both formalisms in detail; an
overview is given in Table [C1]

In the remainder of this paper we will mainly work in the gauge formalism, which assigns
reference frames immediately to the tangent spaces instead of inducing them from charts.
Exceptions are the Mébius convolutions in Chapter[I0] Euclidean CNNs in Chapter[T3] log-
polar coordinates in Section[I6.2]and icosahedral CNNs in Section[17.4] In all of these cases
the manifolds are locally flat and the charts are isometric, such that they induce orthonormal
frames. GM-convolutions on U# can then be computed in an efficient manner by running
Euclidean convolutions with G-steerable kernels on the charts’ codomains V4.
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=%
O

RZ

BA
9p

r2 Y

ME MBYE

Figure 7.4: Graphical interpretation of the commutative diagram in Eq. (]7;22[) A coordinate free map
M T,M — T, M can be equivalently represented by functions MA:RT = RY or MP: R? — R?
relative to different gauges 1/)1? or wf , respectively. These coordinatizations of M are defined by a
pre- and postcomposition with gauges in the domain and codomain, for instance, following the arrows,

A A Ay—1 : B BA \4A(,BA\—1
M =1 o Mo (wp) . As a consequence, gauge transformations M~ = g, "M (gp )
between coordinatizations are given by a pre- and postcomposition with transition maps ng 4 in the
domain and codomain. All quantities and mappings in this work will either be coordinate free (like
M) or will be expressed in a coordinate independent way in different gauges (like M* and MZ). We
will therefore need to define (or derive) transformation laws for any quantity and function.

7.2 Coordinate independent functions on tangent spaces

Just as the vectors v € T, M, functions on the tangent spaces are coordinate free, that is,
they are defined without referring to any reference frame. A chosen gauge allows to rep-
resent such coordinate free mappings by functions which operate on coefficient vectors in
R, Similar to the coefficient vectors, coordinatizations of functions need to transform in a
specific way under gauge transformations in order to be consistently defined, i.e. to respect
coordinate independence. We will later apply the here presented concept of expressing co-
ordinate free mappings in terms of local coordinates to define GM-coordinate independent
convolutions.

As a simple example for a coordinate free operation, let us consider the case of a linear map
M T,M — T,M . (7.17)

Let vi, € T,,M be a tangent vector which is by M being mapped to vey = Muiy € T, M.
Linear maps are in numerical implementations usually modeled by coefficient matrices
which map between coefficient vectors relative to some choice of reference frame. To make
this precise, assume some gauge 1/11;4 to be given such that the coordinate free vectors vy, and
Vour in T, M are represented by coefficient vectors vis = wz‘,“(vm) and vZ, = wgl(vout) in R4,
The linear map M is in this gauge represented by the matrix

MA = oMo (v e RO (7.18)
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whose definition is visualized by the commutative diagram below:

Y M v
R «+——2— T,M T,M Y, R? (7.19)

y J

MA

The matrix is consistent with the coordinate free mapping since both imply each other:
-1
Mt = [t o Mo (1) ] o v (vin)]
= ¥ (M)
= 77[};)4 (Vout)
= 4 (7.20)

out

Of course one could have represented M relative to any other choice of gauge wf. We
; i B _ ,BA,A
know from Egq. that coefficient vectors in different gauges are related by v* = g,’“v*.

Similarly, M? relates to M* by the gauge transformation
MP = dpo Mo ()"
= 0y o (U)o M ougto (v)
= gPAMA (gP ) (7.21)

which acts here both on the domain and codomainﬂ This transformation law is again seen
to be consistent by the mutual transformations canceling out:

MEE = [gPAMA (g5 8 ]
= ngMAv{g
= ngvé?n

=B (7.22)

out

The derived gauge transformations therefore assert that all coordinatized computations are
ultimately coordinate independent. The relations between the coordinate free mapping and
its coordinatizations is summarized by the following commutative diagram

R¢ MA R
v vy
B M —M T go4. (7.23)
vy vy
d d
R v R

which is graphically interpreted in Fig.

3The transformation of the matrix coefficients via the left and right multiplication with g®4 and
(gB A) - respectively, identify the linear map as a tensor of type (1, 1).
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In practice one can not instantiate the coordinate free linear map M numerically without
referring to a choice of coordinatization. However, its existence is implied if (and only if)
its coordinatizations relate to each other as specified by Eq. (7.21)), which ensures that the
correct transformation behavior of the input and output vector coefficients in Eq. is
preserved.

7.3 Structure groups, G-structures and G-atlases

We will later on require neural networks to operate in a coordinate independent manner, that
is, we demand their inference to be independent from arbitrary choices of reference frames.
This raises the question to which extent the choice of reference frames on a manifold is
arbitrary. In the previous Sections[7.T]and[7.2] we allowed for any possible choice of gauge or
reference frame, which were thus related by general GL(d)-valued gauge transformations. In
many applications the manifold does, however, come with additional structure which allows
to distinguish a preferred subset of reference frames or gauges, whose transition functions
take values in a reduced structure group G < GL(d). Such geometric structures — or rather
the subsets of preferred reference frames themselves, which encode equivalent information
— are denoted as G-structures.

G-structures are best understood by considering some specific examples. The following list
gives such examples, classified by their structure group G < GL(d):

O(d): Consider the metric structure of a Riemannian manifold, which allows to measure
distances and angels, and therefore to distinguish orthonormal frames, that is,
those frames that satisfy 7(e;, e;) = d;; forany i, j = 1,. .., d. Correspondingly,
a Riemannian metric allows to talk about isometric gauges 1)/, which identify the
metric of R? with that of T,,M, i.e. which satisfy 7(v, w) = (¥7}(v), ¥/} (w))ge
for any v,w € T,M. Since orthonormal frames and isometric gauges are de-
fined up to rotations and reflections, any gauge transformation between them will
take values in the orthogonal group O(d), which is that subgroup of GL(d) that
preserves angles and distances.

GL™(d): Similarly, an orientation of the manifold distinguishes left-handed from right-
handed frames and orientation preserving gauges from orientation reversing
gauges. Gauge transformations between frames of a given handedness take values
in GL(d), that is, that subgroup of GL(d) which preserves orientations.

SO(d): Together, a given metric and orientation specify orthonormal frames of a certain
handedness. Gauge transformations between such frames are guaranteed to lie in
the subgroup SO(d) of GL(d).

{e}: A globally smooth frame field defines an {e}-structure on M. In this case there is
only one single distinguished frame at each position, such that gauge transforma-
tions lie in the trivial group {e} < GL(d).

GL(d): If no additional structure is imposed, any reference frame of the tangent spaces is
equally valid. Gauge transformations are in this case general invertible liner maps
in GL(d) and the corresponding G-structure is just the frame bundle F'M.
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structure group G G-structure GM equivalent structure on M
GL(d) all reference frames, i.e. GM = FM smooth structure only
GL*(d) positively oriented frames orientation of M
SL(d) unit volume frames volume form
CO(d) conformal frames —
Sp(d) symplectic frames —
O(d) orthonormal frames Riemannian metric
O(d—n, n) pseudo-orthonormal frames pseudo-Riemannian metric
SO(d) positively oriented orthonormal frames  Riemannian metric + orientation
{e} parallelization (global frame field) —

Table 7.1: Examples of G-structures GM on M and their corresponding reduced structure groups G <
GL(d) [159]. A G-structure is defined as a smoothly varying subset of reference frames (a principal
G-subbundle of the frame bundle F'M), where the frames of any tangent space are mutually related
by G-valued gauge transformations. While this is a quite abstract definition, it allows to view many
geometric structures on M in a unified way. For instance, a Riemannian metric on M allows to dis-
tinguish orthonormal frames. Conversely, a specification of orthonormality uniquely implies a metric.
A Riemannian metric and an orthonormal structure are thus equivalent to each other. Similarly, there
is a one-to-one correspondence between volume forms and unit volume frames. Note that a choice of
structure group GG does not uniquely specify a G-structure. For example, different Riemannian metrics
could be chosen as O(d)-structure, different volume forms as SL(d)-structure or different global frame
fields as {e}-structure. Coordinate independent CNNs are designed to respect a given G-structure —
which particular structure this is depends on the learning task.

The common theme in those motivating examples is that they are all defined by

1. a (spatially smoothly varying) subset of distinguished reference frames,
2. acorresponding subset of preferred gauges and

3. asubgroup G < GL(d) of gauge transformations which preserve the
distinguished notion of frames and gauges.

Such smoothly varying subsets of reference frames are denoted as G-structures GM on M
and the group G is denoted as (reduced) structure group — see Section [I1.3| for a more
rigorous deﬁnitionﬂ The process of specifying a G-structure is known as a reduction of the
structure group from GL(d) to G. An atlas AY = {(U*X,¢~) is denoted as G-atlas

if all of its transition functions

Fxex

-1
gBh. UANUP = @q, p»—)ng = wEO(z/J;‘) (7.24)

lie in a reduced structure group G < GL(d) (cf. Eq. (7.6)). The relation between reference
frames and gauges in Eq. (7.4) implies that any G-atlas encodes a corresponding G-structure.

Multiple choices of G-structures may exist for a given structure group G. To connect to
the examples above: different Riemannian metrics specify different subsets of reference
frames as being orthonormal, that is, they correspond to different O(d)-structures OM. A
choice of metric is therefore equivalent to a choice of O(d)-structure. Similarly, different
choices of orientations of an orientable manifold specify a different set of frames as being

“Formally, GM is defined as a principal G-subbundle of the frame bundle F'M, which is a principal
GL(d)-bundle.
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right-handed. The two possible choices of orientations therefore correspond to two possi-
ble choices of GL™ (d)-structures GLTM. SO(d)-structures SOM may differ in both the
choice of orientation and metric. A further example are {e}-structure {e¢}M. They do not
allow for (non-trivial) gauge transformations and therefore correspond to choices of smooth,
global frame fields on M. Table gives more examples of structure groups GG and the
corresponding G-structures.

A reduction of the structure group to G, i.e. the existence of a G-structure, might be ob-
structed by the topology of the manifold. This implies that there is an “irreducible” structure
group beyond which the ambiguity of reference frames can not be resolved without violating
the smoothness (or even continuity) assumption of the G-structure. For example, the Mobius
strip in is non-orientable, which means that it does not admit a globally consistent, smooth
definition of frame handedness and thus {e}-structure (globally smooth frame field). As vi-
sualized in Fig.[I0.1] a G-atlas of gauges covering the Mobius strip will unavoidably require
a reflection in one of the transition maps, implying an irreducible structure group G = R.
Coordinate independent CNNs on the Mdbius strip is therefore required to be at least re-
flection equivariant. Similarly, the structure group of the sphere can not be reduced further
than G = SO(2). Smooth spherical CNNs are thus necessarily based on locally rotation
equivariant kernels.

Note that any (differentiable) manifold comes with some G-structure. For instance, a raw dif-
ferentiable manifold has a GL(d)-structure (containing any possible frame), a Riemannian
manifold an O(d)-structure and R? is canonically equipped with an {e}-structure, visual-
ized in Fig.[13.3al We will therefore without loss of generality refine the term “coordinate
independence” to GM -coordinate independence, i.e. the independence w.r.t. choices of ref-
erence frames in the G-structure given on M. Throughout, we will assume that gauges are
part of some G-atlas
A = {(U~,¢%) suchthat ¢P4 e G V0P e A°, peU*nU?
(7.25)

Fxex

corresponding to the given G-structure. Any quantity or function can be expressed relative
to any gauge from this atlasﬂ and the coordinatizations in different gauges relate uniquely
by some GG-valued gauge transformation. Guaranteeing the coordinate independence of all
constructions, they will always correspond to some coordinate-free counterparts, in terms of
which we will formulate the global theory in Part [ITI}

>This is a non-trivial statement since not any quantity can be expressed relative to arbitrary GL(d)-
related reference frames. For instance, the feature fields, introduced in Section @ will only admit
G-valued gauge transformations and are therefore only defined relative to the preferred frames in GM.
As an intuitive example, consider the feature vectors of a conventional (non-equivariant) CNN on R,
which are extracted relative to the canonical {e}-structure of R? and do not carry information about
the kernel responses relative to other reference frames.
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Coordinate independent feature vector fields

The feature spaces of coordinate independent CNNs are spaces of feature vector fields. Sim-
ilar to the case of tangent vector coefficients, the numerical coefficients of feature vectors are
required to transform consistently under gauge transformations. The specific transformation
law (group representation) of a feature field does hereby specify its field type, — common
examples are scalar fields, tangent vector fields, tensor fields, regular feature fields or irrep
fields. A field’s type determines furthermore how feature vectors are parallel transported or
acted on by isometries.

The goal of this chapter is to define coordinate independent feature fields and their geomet-
ric properties. Section [8.1]introduces feature vectors and their gauge transformation laws.
Parallel transporters of feature vectors and their representation relative to different coordi-
natizations are introduced in Section Section [8.3] discusses isometries and their action
on geometric quantities like tangent and feature vectors.

The coordinate independent feature fields described here are the differential geometric gen-
eralization of the Euclidean feature fields from Section[d.2] The coordinate free definition of
feature vector bundles is given in Section|11.3.3|below.

8.1 Gauge transformations of feature vectors

Convolutional feature fields assign a feature vector, encoding information inferred from a lo-
cal neighborhood of the input signal, to each point of the manifold. The spatial accumulation
of information is performed by a convolutional kernel which is measuring feature fields in
its surrounding relative to its local reference frame. We are thus assuming a gauge 1) which
specifies the kernel alignments on a neighborhood U4. Relative to this gauge the kernel will
yield a smooth local field of responses (observations)

AU SR, 8.1)

given by a c-dimensional numerical feature vector f“(p) at each position p € U4. Assume
a second response field f2 : UP — R¢, inferred relative to gauge ¢ on UZ, to be given.
Since the response of a kernel depends in general on its alignment, it is to be expected that
f4 and fB do not agree on the overlap U N UZ. Without further restrictions the responses
of a convolution kernel will be arbitrarily gauge dependent.
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gauge frames / kernels responses
by L
g : _— e = fA(D)
—1
gy < (g7%) p(g24)
Y
vy .

> l'll ll‘ = fP(p)

Figure 8.1: The numerical responses f*(p) € R° and fZ(p) € R of kernels that are oriented

according to different frames do in general not coincide. In order to represent numerical coefficients

of the same coordinate independent feature vector relative to the chosen }%auge, they are required to be
. BA\ - A . .

related by gauge transformations p(g,, ) if the gauges are related by g,, . As derived in Chapter

this requirement imposes a gauge equivariance constraint on the convolution kernels.

The principle of covariance, proposed by Albert Einstein [80} [79]], states that:

“Universal laws of nature are to be expressed by equations which hold good for all systems
of coordinates, that is, are covariant with respect to any substitutions whatever.”

We believe that a similar principle should hold in geometric deep learning as well, that
is, the inference should be independent from any arbitrariness in the choice of reference
frames. Given that this arbitrariness in coordinatizations is precisely captured by the given
G-structure GM, this requires in particular that features should be GM -coordinate indepen-
dent geometric objects[!] We thus design convolution kernels such that their responses f*
and f? encode fields of feature vector coefficients which represent a coordinate free feature
vector field f locally in different gauges. A collection of such numerical coefficient fields
1, expressed relative to a G-atlas of gauges 1) on neighborhoods UX covering M, is
equivalent to the global, coordinate free feature field f on M.

In order for this coordinate free feature field to be well defined, i.e. GM -coordinate indepen-
dent, the local coefficient fields (or kernel responses) are required to be consistently stitched
together via GG-valued transition maps. They must therefore transform in a principled manner
under gauge transformations. Since we are dealing with feature vector spaces, these trans-
formations are typically taken to be linear, that is, they are modeled by G-representations

p: G — GL(c). (8.2)

'In this point we deviate from Einstein’s general covariance, which always considers GL(d)-
valued gauge transformations (corresponding to diffeomorphism covariance). His setting is in our
formulation included for G = GL(d), however, we keep the assumed structure group flexible since
most applications will assume a reduced structure group.



8.1. Gauge transformations of feature vectors 125

II:: II:: E reference frame field
L o

scalar field coefficients

p(gP) =1

covector field coefficients

g% = ("M 1)

Figure 8.2: Examples of feature coefficient fields on M = R? from classical image processing. Top:
For simplicity we assume a “parallel” frame field and consider the same gauge transformation, a rota-
tion by 7/2, at each point p € M. Middle: The intensity values of a grayscale image are independent
from the choice of reference frames. They are therefore modeled by scalar fields, characterized by the
trivial representation p(g) = 1 Vg € G. Bottom: The two coefficient channels of a gradient image
are calculated from a scalar image by taking the derivatives along the frame axes — they are there-
fore gauge dependent. Gradient images w.r.t. different gauges are related by the group representation
p(9) = (¢71) " and are therefore identified as covector fields (tensor fields of type (0, 1) or 1-forms).
For the visualized rotation by 7 /2 this leads to a new first channel (9/02") equivalent to the old second
channel (9/sz7) and a new second channel (9/522) equivalent to the negative old first channel (9/9z7).
Relative to their respective reference frames, both coefficient fields encode the same (coordinate free)
gradient field. The description is therefore automatically coordinate independent.

Similar to the transformation of tangent vector coefficients in Eq. (7.9), the feature vector
coefficients are then defined to transform under a G-valued gauge transformation gf 4 ac-
cording to

Bw) = p(g?*) (). (8.3)

where p € U4 N UPB; see Fig. for a visualization. Being constructed to transform
synchronously, the spaces of reference frames, tangent vector coefficients and feature vector
coefficients are said to be G-associated to each other. Note that the construction via a G-
representation p does in general not describe GL(d)-valued gauge transformations, i.e. fully
coordinate independent features. The extracted feature vectors will therefore only have a
well defined expression relative to the frames in the considered G-structure GM, which is
captured by the term “GM -coordinate independence” (or G-covariance).

Bundle description: For completeness we briefly mention that coordinate free feature vec-
tor fields will in Paltbe more formally defined as smooth sections f € I'(A) of a feature

vector bundle A ™ M which is associated to the G-structure GM and has the feature vec-
tor coefficient spaces R® as typical fibers. The coefficient vectors f4(p) and fZ(p) in R® are
local trivializations of a coordinate free feature vector f(p) € A, = R, and are similarly
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Figure 8.3: As for steerable CNNs (Chapter, the full feature spaces of coordinate independent CNNs
consist of multiple independent feature fields f; of potentially different types p; and dimensionalities
¢;. The individual fields are in gauge ¢ localg represented by coefficient fields f{* : U4 — R and
relate to coefficient fields in another gauge ¢* via local gauge transformations f£ = p; (gB A) 1A,
The representation modeling the whole feature space is given by a direct sum, here @, p; = p1 ® p2 &
p3 @ pa, which reflects that the coefficients of each individual field transform independently (i.e. do
not mix). This independent transformation behavior of the individual coefficient fields applies to active
transformations (isometry pushforwards) as well; cf. Fig. @

defined as the coefficients v = wﬁ(v) and v” = ¢} (v) of a tangent vector v € T,M. Note
that, while being isomorphic, the feature spaces A, = A, at different points p # g of M are
distinct from each other, such that their elements can not be summed together. The parallel
transporters, discussed in Sections [8:2] and [T1.3] provide isomorphisms between different
feature vector spaces, which allows the summation of features (after transporting them into
the same vector space). Since these definitions are quite technical, we skip their details for
now and refer the interested reader to Section[T1.3l

Stacked feature fields and coordinate independent feature spaces: As for steerable
CNNs, we define the feature spaces of coordinate independent CNNs as comprising mul-
tiple feature fields f; of potentially different types p; and dimensionalities ¢;. A full field
of activations of a feature space is therefore defined as the direct sum f = €, f;. Its local
numerical representations fX = @i fiX transform according to the direct sum p = EBi Di
of the individual field types. The individual fields transform by construction independently
from each other:

p(a®) 4 = [Diri (6] [Bif] = Bilpi(9”*) 1] (8.4)

Fig. B3] visualizes the independent passive transformation of a direct sum of coefficient
fields under local gauge transformations. Compare this with the situation in Fig. .4] where
we instead visualized the active transformation of a feature coefficient field in a fixed gauge.
This active transformation viewpoint is in the differential geometric setting described by
pushforward actions of the isometry group, which are covered in Section[8.3] below.

For specific examples of stacked coordinate independent feature fields, we refer the reader
back to the end of Section
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8.2 Parallel transport of feature vectors

The kernels of convolutional networks accumulate features from all points ¢ in a neighbor-
hood around each point p of the manifold. Since features at different points live in different
feature vector spaces they need to be parallel transported along some path v from ¢ to p
before they can be processed further. We first discuss the transport of tangent vectors, which
is formalized by a parallel transport map

P, TyM — T,M. (8.5)

This transporter is often computed from the canonical Levi-Civita connection of the man-
ifold, however, it might in some applications correspond to an alternative (G-compatible)
connection, as further discussed below and in the discussion of applications in Part [V] A
transporter of (G-associated) feature vectors follows from that of the tangent vectors if the
transport is G-compatible.

8.2.1 Tangent vector transporters

It is didactically reasonable to start with the specific case of Levi-Civita transporters on Eu-
clidean spaces, depicted in Fig. before proceeding to more general transporters and
manifolds. In this case the parallel transport is independent from the chosen path v and
keeps the transported vector parallel in the usual sense on Euclidean spaces. Note that the
transporter P, is a coordinate free map between the tangent spaces 1M and T,M. It can,
however, be expressed relative to coordinates, then operating on numerical coefficient vec-
tors instead of tangent vectors. An intuition is given in Fig. [§.4a] where the frames at ¢

and p are not paralle such that the coefficients (1,1) " at ¢ and (v2, 0)T at p differ even
though the corresponding (coordinate free) tangent vectors are parallel to each other. To

make this more precise, consider gauges ¢A and 1} to be given on neighborhoods U A of
q (red) and UA of p (green). Let a vector v = (1/1‘4) ") € T, M be given by its co-
efficients v4 € R?. The coefficients of the transported vector Pyv at p are then given by
1/1;)4 oPy(v) = %’;‘ oP,o0 (w;;l) (vg). It follows that the coordinate expression of a
transporter is relative to gauges Aand A expressed as

g = gl oPyo () e GL(A) (86)

q

The group element g:;“Z accounts for non-parallel choices of reference frames at ¢ and p. On

R?, one typically assumes all frames to be parallel such that all coordinatizations of Levi-
Civita transporters become trivial — conventional and steerable Euclidean CNNs implicitly
make this assumption of parallel frames (Fig. [I.6a) and trivial transporters, which explains
why they don’t appear in their mathematical formulation.

As the transporter in Eq. (8.6) is coordinate dependent, we are interested in its gauge trans-
formations. Denote by wf and wf two alternative gauges on neighborhoods of ¢ and p.

%In contrast to general manifolds, R¢ comes with a canonical notion of parallelism of frames.

3 g;‘m takes values in GL(d) if we assume arbitrary (gl(d)-valued) connections and general struc-

ture groups G < GL(d). For the so(d)-valued Levi-Civita connection and orthonormal frames, i.e.
G = 0(d), onehasgAA € O(d).
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AA
¢ N gw
—_—
)—o\—
(a) Parallel transport flat Euclidean space. (b) Parallel transport on the 2-sphere S2.

Figure 8.4: Parallel transport of tangent vectors v € T;M at g to P, v € T, M at p. Fig.visualizes
the special case of Levi-Civita transporters on flat Euclidean spaces M = E,. Independently from
the chosen path ~, the Levi-Civita transport keeps the vector (orange) parallel in the usual sense in
Euclidean spaces. Gauges 1/);14 (red) and 1/1;,4 (green) allow to express the coordinate free transporter

by a group element g'* = 12 o P, o (w[;‘)fl € GL(d) which accounts for the change of vector
coefficients if the target frame does not agree with the transported source frame. Fig.[8:4b]shows the
Levi-Civita transport on the 2-sphere S, Eq. (T7.18). The transporters P, and P, along different
paths 1 and 2 disagree in general. As before, the coordinate free transporters can be expressed by
group elements that operate on coefficients relative to the coordinate frames at g and p.

From the commutative diagram

AA

Rd Al R

o ‘1,[):;\ P 4
gBA. i M ———— T,M gBA. 8.7)
B ¢y

R4 _ R4
BB
9y

one can then read off that the transporters in the different gauges are related by
B i/ BAy-1
97" = 9" 97" (97") 8.8)
Note the similarity of this transformation law and commutative diagram to those in
Egs. (7.21) and (7.23). The difference between both is that the transporter has a different
domain 7;M and codomain T, M, which are trivialized by different, independent gauges
and transform therefore independently.

In general, the parallel transport of tangent vectors is determined by some choice of connec-
tion, for instance (but not necessarily) by the canonical Levi-Civita connection of a Rieman-
nian manifold. A connection can be seen as a collection of infinitesimal transporters between
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adjacent tangent spaces, such that the full transporter P, is given by integrating the connec-
tion along the path «. The transporters along different paths +; and 7, from g to p need
not agree, which is in Fig. exemplified by Levi-Civita transporters on the 2-sphere S2,
cf. Eq. (I7.18). As for flat spaces, the coordinate free transporters can by Eq. (8.6) be ex-
pressed relative to gauges. The gauge transformations of such coordinatized transporters are
again given by Eq. (8:8)). The transporters on a given manifold can in principle be calculated
analytically from the connection [[100,[221]] and can sometimes be expressed in closed form,
for instance for the sphere S2, Eq. (T7.18). Several numerical algorithms exist to compute
parallel transporters on meshes; see Section[I8.1.2] We will not go into more details on how
to compute tangent vector transporters P, but simply assume them to be given.

8.2.2 Feature vector transporters

Eq. (8:3) defines the transformation law of feature vector coefficients by their field type p.

Their parallel transporter, expressed relative to gauges 1/’{;4 and 1/};)4, is analogously given by
wrapping the tangent vector coefficient transporter into this field representation, that is, by

p(g4). (8.9)

Note that — since p : G — GL(c¢) is a G-representation — this construction is only then well

defined when all transporters g:;‘A (for arbitrary paths « and frames A, A) are actually tak-
ing values in the chosen structure group G. Whether this is the case depends both on the
particular choice of G-structure (or G-atlas) and the transporters (or connection) considered
— they need to be compatible [326].

All convolutional networks accumulate (thus transport) feature vectors in one way or the
other, and assume therefore some choice of connection and G-structure. If the chosen G-
structure is incompatible with the Levi-Civita connection, this implies that these models are —
often implicitly — assuming an alternative, G-compatible connection to accumulate features.
The reader should for now not worry about the specific choices of connections, which will
become more clear when reviewing specific applications in Part[TV] In the remainder of this
section, we will elaborate more on the G-compatibility of connections and G-structures.
Assuming that feature transporters will in the following always be well defined, this part can
be safely ignored at a first reading.

A more rigorous, coordinate free discussion of transporters on the associated feature vector
bundles can be found in Section

8.2.3 Compatibility of connections and G-structures

A connection is said to be G-compatible with a G-structure GM if the coordinate expres-
sions g:;‘A of its transporters P, relative to any frames A, A of GM take values in the struc-

ture group G [326]E] A G-compatible connection gives rise to transporters of G-associated
feature vectors.

*Equivalently, the connection I-form of the connection, expressed relative to frames of GM, is
required to be g-valued, where g denotes the Lie algebra of G. More abstractly, we are interested in
principal Ehresmann connections on the principal G-bundle GM .
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To illuminate this somewhat abstract compatibility condition, we discuss a few specific ex-
amples. A simple example is that of the Levi-Civita connection on R?, Fig. |8.4a, Consider

the two {e}-structures on R? that are shown in Figs. and|13.3bl Here G = {e}, which

means that the field type p : {e} — GL(c) is a {e}-representation, such that the parallel

transport of feature vectors can only be defined if the coordinate expressions g;“A take val-
ues in {e}, i.e. are trivial. As the {e}-structure in Fig. consists of “parallel” frames,
this is indeed the case — the Levi-Civita connection is thus compatible with this {e}-structure.
In contrast, the frames of the {e}-structure in Fig. are “rotated” relative to each other,

resulting in non-trivial coordinate expressions g::‘A that take values in SO(2) (visualized in
Fig.[8.4d). Since the field type p : {e} — GL(c) does not handle rotations, it is not possi-
ble to define the Levi-Civita transport of features associated to this {e}-structure — they are
incompatible. As a second example, consider the Levi-Civita connection on S 2 shown in

Fig. The transport will in this case always be path dependent and lead to differently ro-

tated vectors, implying that 917414 will take values in SO(2). Feature vectors to be transported
according to Levi-Civita connection need therefore to be of some type p : SO(2) — GL(c)

that is an SO(2)-representations. This requires at least the SO(2)-structure on S? that is
shown in Fig. The {e}-structure on S? from Fig. [17.2bfis incompatible with the

Levi-Civita connection.

Since the Levi-Civita connection is a metric connection, it preserves lengths of and angles
between tangent vectors, and thus transports orthonormal frames to orthonormal frames.
It follows that the Levi-Civita connection is always compatible with the O(d)-structure of

orthonormal frames, relative to which g;‘A takes values in O(d). If the manifold is ori-
entable, the frame-handedness is preserved by Levi-Civita transporters, which means that
they are guaranteed to be compatible with SO(d)-structures of orthonormal, right-handed
frames on M. All of the convolutional networks in our literature review in Part [[V] that are
based on SO(d)-structures accumulate features via Levi-Civita transporters.

If a given G-structure is incompatible with the Levi-Civita connection, one needs to define an
alternative, G-compatible connection to transport the feature vectors. The most prominent
example in our literature review is that of trivial connections on {e}-structures. A trivial
connection is characterized by the property that its transport is path independent [62]]. Any
{e}-structure implies a unique trivial connection, which transports tangent vectors such that

they keep the same angle to the reference frames of the {e}-structure. This implies g;‘m =e,
i.e. they transport coefficient vectors in R€ (relative to frames of the {e}-structure) without
transforming their numerical values. Such transporters are used in convolutional networks
that do not explicitly model non-trivial transporters — which applies to all networks with

G = {e} in Table [14.1] specifically those in Sections and Note that the trivial

connection is the only connection that is compatible with an {e}-structure.

As stated above, any convolutional network assumes some choice of compatible G-structure
and connection, most often Levi-Civita connections or trivial connections.

Section elaborates on the compatibility of transporters and G-structures from a coordi-
nate free viewpoint.
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Figure 8.5: Visualization of the coordinate free pushforward of

tangent vectors and its coordinate expression relative to given

reference frames at the source and target location. The coor-

dinate free pushforward ¢. |, : T, M — T, M moves tangent

‘z’*‘p(v) vectors v €T, M to ¢ |p(v) € Ty M (orange). Let ;! be the
gauge at p that corresponds to the red reference frame and wﬁ(m

the gauge at ¢(p) that corresponds to the green reference frame.

They explain the vectors before and after the pushforward by nu-

merical coefficients ¢ (v) = (1,1)" and 1/1;;(1,) (¢ulp(v)) =

(p) (0, —\/i)T. This transformation of vector coefficients is de-
\ scribed by the isometry induced gauge transformation g;;‘A (p) €

GL(d), that is, w;f‘(p) (¢«lp(v)) = g4 (p) - ¥5' (v). The co-
efficients of feature vectors transform analogously according to

P92 ) if 957 () € G.
8.3 Isometry actions and induced gauge transformations

Until now our discussion focused exclusively on the local gauge symmetries in the coor-
dinatization of tangent spaces. A manifold might, however, come with non-trivial sym-
metries itself, which are in the case of a Riemannian manifold M forming its isometry
group Isom(M). This section discusses isometries and their action on manifolds, tangent
vectors, reference frames and feature fields in a nutshell, summarizing results which are
more rigorously derived in Section[I3.1] We will thereby highlight the equivalence of active
isometry actions and their passive interpretation in terms of isometry induced gauge trans-
formations. This equivalence will later on allow us to describe the isometry equivariance of
GM -convolutions.

Isometries are defined as the symmetries of Riemannian manifolds, that is, those maps (dif-
feomorphisms)

¢: M — M, (8.10)

that preserve the metric and thus distances on M. The set of all isometries of a Riemannian
manifold M forms its isometry group, which we denote as Isom (). For instance, the Eu-
clidean group E(d) is the isometry group of Euclidean spaces E,. It consists of translations,
rotations and reflections, all of which preserve the standard metric of E;. The isometry group
of the 2-sphere S? is given by the orthogonal group O(3), consisting of rotations and reflec-
tions. Fig.[8.5]shows an egg-shaped manifold, whose isometries are rotations and reflections
in O(2) around the vertical axis.

8.3.1 Pushforward of tangent vectors

Any isometry ¢ € Isom(M) acts via its pushforward (or differential)
Gulp s TyM = Ty)M @.11)

naturally on tangent vectors. The pushforward can intuitively be thought of as carrying
tangent vectors along with the action of the isometry on the underlying manifold M. A
formal definition of the pushforward on T'M is given in Appendix [C.2} however, the given
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intuition is sufficient for our purpose. Since the pushforward is a coordinate free, linear
map between tangent spaces, its action is in coordinates represented by some d X d matrix.

Assuming gauges ¢§ and ¢$(p) at the source and target location, respectively, this matrix is
given by
i -1
954 (p) = w;;‘(p) odilpo (¥5) € GL(d). (8.12)

It explains the transformation from the numerical coefficients of an original vector v € T, M
in the source gauge and its pushforward ¢.[,(v) € Ty, M in the target gauge, that is,

i (Dxlp(v)) = gg‘g(p) - b2 (v). The commutative diagram

AA

R 95" (p)- Rd
N w\ buly /w::(: 5
gp ) M ————— TypM 9op) (8.13)
¥ NG
Rd — Rd
95" (p)-

which is conceptually similar to that in Eq. (8.7), visualizes the definition of the tangent
vector pushforward’s coordinate expression. It furthermore implies that the gauge transfor-
mations between different coordinatizations are given by

2] A/ BAy—1
957 = 940 95" (95) (8.14)

which is the conceptual analog to Eq. (8.8).

8.3.2 Pushforward of reference frames and symmetries of the G-structure

Since reference frames are just d-tuples of linearly independent frame vectors, the pushfor-
ward of tangent vectors induces a pushforward of reference frames by pushing the individual
frame axes forward. Specifically, the pushforward of a frame [e;]?_, at p is defined as the

frame I:(b*lp(ei)]?:l at ¢(p).

This pushforward of frames is always well defined, however, it might not be compatible with
the G-structure, that is, there is in general no guarantee that frames in GM remain in GM
when being pushed forward. Take for instance the {e}-structure in Fig. (top left), which
is preserved by horizontal translations but not by vertical translations or any other isometry
of R?. Similarly, the R-structure in Fig. (bottom left) is preserved by translations and
horizontal reflections, but not by rotations. We consider therefore the subgroup

Isomgps = {¢ € Isom(M) ‘ [(b*(@i)]j:l €GM Ve, € GM} < Isom(M)
(8.15)

of isometries which are symmetries of the G-structure, i.e. which are guaranteed to map any
frame in GM to another frame that is also contained in GM E] Note that Isomgps depends in

>More formally stated, such isometries are (or induce) principal bundle automorphisms of the
G-structure.
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general on the specific choice of G-structure GM , not only on the structure group G. For the
special case that G > O(d), it is guaranteed that Isomgys = Isom (M) coincide since isome-
tries are guaranteed to map orthonormal frames to orthonormal frames. We are interested in
the subgroup Isomgy, since only those isometries will induce a well defined pushforward of
GM -coordinate independent feature vectors, as discussed further in the following section.

Before proceeding to the isometry action on feature vectors, we discuss what we call isom-
. . . id
etry induced gauge transformations. For this purpose, let [eiA]i:l be that frame at p that

corresponds to some source gauge 7,[15 and let [e{‘] ;1:1 be that frame at ¢(p) that corresponds
to some target gauge w;‘(p), as shown in Fig. in red (left) and green (right), respectively.

d .
The pushforward [¢.|,(e;*)]_, of the source frame from p to ¢(p) (translucent red, right)
does in general not coincide with the target frame. However, as proven in Section[I3.1.3] the
two frames are related by the isometry induced gauge transformation

[bulpe]” =[], agiim), (8.16)

where g(‘;‘A (p) is the group element from Eq. and < is the right action from Eq. (7.T1).
The term “isometry induced gauge transformation” makes in so far sense that the geometries
around p and ¢(p) are indistinguishable since ¢ is an isometry, i.e. a symmetry of M.
Identifying the two points with each other, one can therefore reinterpret the active action of
¢ on a geometric quantity as a passive gauge transformation, i.e. an induced change from
the source to the target frame.

Theorem [13.1.3]in Section asserts that G-structure preserving isometries in Isomaps
and G-valued induced gauge transformations imply each other, that is,

¢ €Tsomgn <= gii(p)eG VpeM (8.17)

holds for arbitrary gauges wg and ’l/J:;( ») of the G-atlas. The reader should verify these claims
at our examples in Fig.[I.12]

8.3.3 Pushforward of feature vectors

If (and only if) an isometry is a symmetry of the G-structure, it gives rise to a pushforward
of feature vectors. Intuitively, this pushforward moves feature vectors from points p to ¢(p).
When being expressed relative to the two reference frames at p and ¢(p), it is given by the
induced gauge transformation

p(95"(p)) - (8.18)
Note that this transformation is well defined for any ¢ € Isomgyy, since the induced gauge
transformations gg‘g (p) will in this case take values in G and p is a G-representation. In
contrast, if ¢ is not a symmetry of the G-structure, it is impossible to define a corresponding
feature vector pushforward. This statement relates to the fact that the features of conven-

tional CNNs have no specified transformation behavior under rotations or reflections in the
Euclidean group E(d).

The pushforward of individual feature vectors implies an action on the whole feature field f,
which we denote by ¢ > f. Relative to coordinates, this action is expressed as

(6> 11" (60) = p(92% () FA(p). (8.19)
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Note the similarity of this action to the induced representation action on Euclidean feature
fields in Eq. @.3).

We will later prove that coordinate independent CNNs are equivariant w.r.t. the action of
isometries in Isomgps on feature fields; see Fig. This property relies on the fact that the
active isometry action on feature fields can by Eq. (§.19) be understood as a mere passive
gauge transformation of feature vector coefficients.



CHAPTER 9

Coordinate independent networks and GM-convolutions

Neural networks process data by applying a series of parameterized mappings (layers) to an
input signal — in our case to a set of feature fields on a Riemannian manifold. The principle
of covariance requires thereby that the individual network layers should be GM -coordinate
independent operations. The coordinate representations of such layers will therefore have
to transform such that they respect the transformation laws of their input- and output fea-
ture field. Except form this consistency requirement, general coordinate independent layers
remain unconstrained.

A common design principle of neural networks which operate on spatial signals (feature
fields) is that they are in some generalized sense convolutional. The main characteris-
tic which most generalizations of the convolution operation share is that their inference
is position-independent. This is achieved by sharing template functions (neural connec-
tivity), for instance convolution kernels or biases, between different locations. Whenever
the structure group G is non-trivial, the weight sharing process is ambiguous since tem-
plate functions could be shared relative to different reference frames. As we will prove in
this chapter, this ambiguity requires the shared template functions to be equivariant under
G-valued gauge transformations (G-steerable). Gauge steerable template functions will be
indifferent to the specific reference frame in which they are applied and therefore allow for
a coordinate independent weight sharing. Intuitively, G-steerability can be thought of as ex-
tending spatial weight sharing to a weight sharing over the full G-structure, i.e. additionally
over G-transformations of frames.

In essence, neither coordinate independence nor weight sharing alone require the steerability
of the neural connectivity, but together they do:

GM-coordinate independence . o
. . . G-steerability (gauge equivariance)
spatial weight sharing

To emphasize this distinction, all of the network layers in this chapter are introduced in
a two step process: first, we only demand their coordinate independence, i.e. investigate
their coordinate representations relative to different frames. Subsequently, we require spatial
weight sharing, from which steerability constraints follow.

In this chapter we will consider network layers which take fields fi, of type p, as input and
produce field fou of type p,, as output. Section discusses the specific case of layers
which operate pointwise, that is, whose output fo,(p) at any p € M depends only on the
single input feature vector fi,(p) at the same location. The practically relevant examples
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considered here are gauge equivariant 1x1-convolutions in Section[9.1.1] bias summation in
Section and nonlinearities in Section

The more complicated case of convolutions with spatially extended kernels is treated in Sec-
tion[9.2] As a preparation, Section[9.2.1discusses feature fields as seen from the viewpoints
of local observers (reference frames), relative to which the (convolution) kernels will be ap-
plied. Such observations are formalized as a pullback of the feature field to an observer’s
tangent space; see Fig.[0.1] Section[9.2.2)introduces so-called kernel field transforms, which
are similar to convolutions but do not assume spatial weight sharing and are therefore pa-
rameterized by a (smoothly varying) kernel field on M. The actual GM -convolutions are
in Section [9.2.3] defined as those kernel field transforms that are parameterized by a single,
shared template kernel. In order to ensure the coordinate independence of the weight shar-
ing process, the convolution kernels are required to be G-steerable, i.e. to satisfy a gauge
equivariance constraint.

Section [9.3| shows that GIM-convolutions are automatically equivariant under those isome-
tries that are symmetries of the G-structure (Isomgys-equivariant). This means that GM -
convolutions commute with the action of isometries on feature fields as visualized in Fig.

9.1 Pointwise gauge equivariant operations

To begin with, we consider some neural network operations for which the constraints com-
ing from the required coordinate independence and weight sharing are particularly easy to
derive. All of these operations have in common that they act pointwise on feature vectors,
that is, they compute output feature vectors fou(p) at p € M solely based on the input fea-
ture vectors fi,(p) at the same location. In order to satisfy the principle of G-covariance, the
coordinatizations of these operations are all required to transform according to a precom-
position with p, and a postcomposition with p,,,. When demanding that the operations are
determined in terms of shared weights, these transformation laws imply a requirement for
the gauge equivariance (or invariance) of the operations.

The derivations for the different pointwise operations in the following Sections [0.1.1} 0.1.2]
and[0.T.3]are in the first steps mostly analogous and lead to essentially the same covariance
and equivariance constraints on the template functions. They could therefore be treated to-
gether, keeping the particular operation (or template function) abstract. However, since the
implications of the resulting constraints differ for the particular instantiations, and since we
want to keep the discussion close to the application, we will omit such an abstract formula-
tion and directly consider particular instantiations.

9.1.1 Gauge equivariant 1x1-convolutions

As a first example of pointwise operations, we consider the action of a family of linear maps
Cp, which send the input feature vector fi,(p) at each p € M to an output feature vector

fout(p) = Cp fin(p) . O.D

If we add the assumption of spatial weight sharing, the linear maps C,, and C, at different
locations p and ¢ will be coupled, and the operation can be seen as a convolution with
a linear operator-valued Dirac delta kernel. This operation is quite common in computer
vision, where it is usually denoted as 1 X 1-convolution, since the spatial discretization of a
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linear Dirac kernel which operates on two-dimensional images is given by a (matrix-valued)
kernel with a spatial extent of 1 x 1 pixels. We will in the following derive that the demand
for spatial weight sharing will result in a constraint, which forces the matrix-valued template
kernels to be intertwiners, that is, gauge equivariant matrices.

Prior to the assumption of weight sharing, the coordinate expressions of the linear maps C,
and the gauge transformations between them behave very similar to those of the linear maps
on T, M, which were discussed in Section Since the input and output feature vectors are
in coordinates represented by coefficient vectors f2(p) € R and f(p) € R, the linear
map is naturally represented by that matrix C;‘ € R%ux¢n that satisfies

a(p) =Ct - fik(p) - 9.2)

This relation does of course hold for arbitrary coordinatizations, such that we have £, (p) =
CP- f5 (p) for any other gauge, labeled by B. The transformation law which relates C to C;}!
follows by the principle of covariance from the transformation laws of the input and output
features. Since these are given by 5 (p) = p,, (95 [ (p) and 2 (p) = pu (9524 fi (1),
one has

B) = Cl B p)
< pulgl?) fap) = €2 p,(957) £k (p)

-1

© Toa®) = pal9y) ™ C) pn9,7) fid (0)- 93)
A comparison with Eq. (9.2) implies that the two coordinate expressions of C,, are necessarily
related by

B BA\ pA BAy—1
Cy = puly ) Cy pul(9y”) ©.4)
if they should respect the transformation laws of the feature vectors. As usual, these consid-
erations are concisely captured by a commutative diagram:

A .
Re¢in P s TR Cout

Pul(95™) L Lpom (92): ©.5)

Cn Cout
R cb. R
The important practical implication of this result so far is that the linear map C,, is not re-
stricted in any way. Differently formulated: as long as the coordinate expressions in different
gauges are related by Eq. (9.4), one is free to parameterize C,, in an arbitrary, fixed gauge A
by an unconstrained matrix C;‘. As we will see, the situation changes when requiring the
linear maps to share weights.

Consider now the case where the linear maps C,, and C,, share weights. This means that we
assume them to be parameterized by a shared set of parameters, given by a 1x1-convolution
template kernel Kj,; € RCw*%_  The open question is how exactly the coordinate free
maps should be parameterized in terms of this template kernel. Our requirement for GM -
coordinate independence demands that we do not prefer any particular reference frame in the
weight sharing process, that is, that we treat all coordinatizations in the same manner. It is
therefore necessary to share the template kernel with all coordinatizations at the same time,
that is, to set

CYX = Ky forany gauge (U™, ¢%) € A% with p e U, (9.6)
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where A is the (maximal) G-atlas corresponding to the considered G-structure; see
Eq. (7.25). As the covariance constraint in Eq. (9.4) needs to hold for arbitrary G-related
gauges, and the coordinatizations C;,“ = Cf = Kj,q of the linear maps do all coincide,
the joint demand for weight sharing and GM -coordinate independence is seen to imply a
constraint

K1><l = poul(Q) Kl)(l pin(g)71 vg S G (97)

on the template kernel. The corresponding adaptation of the commutative diagram in
Eq. with weight sharing is for any g in G given by:

Re¢in K- s R Cou

pm(g)[ [pom(g) (9.8)

Rcm 5 Rcoul
Kixa-

The conclusion of this analysis is that the template kernels which can be unambiguously
shared are exactly those which are invariant (equivariant) under the gauge action. The vec-
tor space of such gauge invariant 1x1-convolution kernels is simply the space of intertwining
maps (Def. between the representations p, and p,,, that is,

Homg (p,,, po) = {Kixa € R | Ky = po(9) Kia p(9) ™" Vg € G} (9.9)

Note that, according to Schur’s Lemma the requirement on K to be an in-
tertwiner prevents a mapping between fields that transform under non-isomorphic irre-
ducible representations via 1x1-convolutions. This severe restriction is unavoidable with
1x1-convolution kernels but will be resolved later when allowing for spatially extended ker-
nels.

At this point we want to mention that we use the terms “gauge equivariant template function”
and “gauge invariant template function” interchangeably. This is justified by the observa-
tion that the invariance constraint in Eq. can be written as an equivariance constraint
Kixi p,(9) = poul(9) Kixa Vg € G. Itis in general possible to view functions which are
equivariant w.r.t. some group action in their domain and codomain as the invariants of the
corresponding action on the function itself; see Eq. (B.28)) in Appendix [B.4] In our applica-
tion, the equivariance viewpoint highlights that a transformation of the input field will lead
to a corresponding transformation of the output field, which ensures that all involved quan-
tities transform covariantly with each other. On the other hand, the invariance viewpoint
emphasizes that the template function can be shared in an arbitrary gauge.

9.1.2 Gauge equivariant bias summation

After applying a convolution operation, it is common to sum a (shared) bias vector to the in-
dividual feature vectors. Together with the requirement of coordinate independence, weight
sharing will again lead to a linear constraint. This constraint will only allow for biases to be
summed to the invariant subspaces of the gauge action on the input feature field.

As before, we first consider the bias summation without requiring weight sharing. We thus
have biases 6,,, depending on the position p on the manifold, which are summed to an input
feature vector to produce an output feature vector

fout(p) = fin(p) + 6p . (9.10)
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: A B . : A B
Relative to gauges v, and 9),;’, the bias is represented by those coefficient vectors 6, and 6,,

in R¢ that satisfy f(p) = fil(p) + 6;' and £5 (p) = fZ(p) + 6. Since the summation

of vectors does not allow to change their transformation laws, the group representations
associated with the input and output feature necessarily agree, that is,

pin = pnut =P (911)

Together with the requirement for coordinate independence, this implies that the diagram

+64

Re e R®
p(ggA).L Lp(g;m). ; (9.12)
R® R®
+65

which is the analog of that in Eq. (IEE, needs to commute. Written out as an equation, this
demands the relation p(g]f,Eg A) Iy +6; = p(g;)B A) ( f];“ + 6;‘) to hold. Since the linearity

of p(g) allows to rewrite the right-hand side as p(g7*) f + p(gF#)6;}, a subtraction of
the input feature vector leads to

62 = p(gl*) 6. 9.13)

The coefficient vectors which represent a coordinate independent bias relative to different
gauges therefore need to transform exactly like the feature vectors to which they are summed.
As in the case of 1x1-convolutions, the coordinate independence does not restrict the bias
6, in any way, but only requires different coordinatizations of the same bias to be consis-
tent with each other. An implementation could therefore pick an arbitrary gauge and freely
parameterize the bias in that gauge by parameters in R".

The situation changes again when asking for spatial weight sharing. Let b € R be a
template bias vector to be shared over the manifold. Since the only way to do this without
arbitrarily preferring any coordinatization is to share the bias vector in all gauges simultane-
ously, we have to require

61))( =b forany gauge (UX,z/JX) e A% with pe UX. 9.14)

in analogy to Eq. (9.6). The combination of the covariance constraint in Eq. (9.13)) with this
gauge independent weight sharing then leads to the invariance constraint

b= p(g)d YgeG 9.15)

on the bias vector template. This is exactly what we found in Theorem for Aff(G)-
steerable bias summation layers on Euclidean spaces, but here derived from a passive
instead of active transformation viewpoint. To complete the analogy to the case of
1x1-convolutions, we show the adapted version of the commutative diagram in Eq.
with shared weights:

+b

R® R®
p(g)[ [p(g)‘ ©.16)
R® R®

+b
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Section argued that the vector space
B = {beR°|b=p(g)b Vg€ G} 9.17)

of such G-invariant bias templates coincides with the trivial subrepresentations in the irrep
decomposition of p and gave some specific examples. Examples for the reflection group are
explicitly derived in Section[10.3.1]

9.1.3 Gauge equivariant nonlinearities

Except from linear (convolution) operations and bias summations, the most basic operations
used in any neural network are nonlinearities. We will here consider the usual case of non-
linearities o, which act in a spatially localized way, that is, which compute output feature
vectors as fou(p) = op(fin(p)). A shared nonlinearity will again be required to be gauge
equivariant. As the reasoning which leads to this conclusion is essentially equivalent to that
in the previous cases, we will only summarize it shortly.

Similar to before, any coordinate free nonlinearity o, is relative to gauges A and B given by

coordinate expressions 0;)4 : R — R and opB : R — R%u« which are by the demand

for coordinate independence required to be related by o2 = p,,, (97*) 0 a2' 0 p, (954) -t

A nonlinear template function s : R% — R can only be shared in a coordinate indepen-
dent way when sharing it with all gauges simultaneously. This turns the covariance constraint
in an invariance constraint s = p,,(9) 030 p, (g9)~! Vg € G on the template function, or,
equivalently, in the corresponding equivariance constraint

Pui(g) 08 =00p,(9)"" VgeQG. (9.18)

This recovers the constraint on Aff(G)-equivariant local nonlinearities found previously in
Theorem .3.3] Due to the generality of nonlinear maps it is impossible to derive linear
solution spaces, as done for 1x1-convolutions and biases in Egs. and (9:17), respec-
tively. For specific examples and a benchmarking of steerable nonlinearities we refer back

to Sections 4.3.3]and

9.2 Kernel field transforms and GM-convolutions

The central operation of convolutional networks is the convolution operation, which linearly
accumulates characteristic patterns of features from a local neighborhood around each point
p € M into a new feature vector f,,(p). A spatially extended convolution kernel determines
thereby the specifics of this accumulation. The principle of covariance requires coordinate
independence, and therefore a specific transformation law of kernels under gauge transfor-
mations. As in the previous examples, an additional demand for weight sharing results in a
requirement on the template kernel to be gauge equivariant (G-steerable).

In accordance with the previous section, we clearly distinguish between the requirements
for coordinate independence and weight sharing. Section[9.2.2]starts therefore by discussing
fields of kernels and their transformations laws without demanding the kernels at individual
positions to be tied together. Such unrestricted kernel fields give rise to kernel field trans-
forms, which are integral transforms that can be seen as precursors of convolutions. The
actual GM -convolutions, which are parameterized by a shared, necessarily gauge equivari-
ant template kernel, are defined in Section[0.2.3] As a preparation, we will in the following
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Section describe local representations of feature fields on the tangent spaces, where
they will be matched with the convolution kernels.

9.2.1 A local observer’s view on feature fields

In contrast to Euclidean spaces or more general homogeneous spaces like the sphere, the
local geometry of a general Riemannian manifold varies from point to point. It is therefore
not immediately clear how a convolution kernel should be defined on M and how it could
be shared between different locations. A common solution is to define the kernel as usual
on a flat, Euclidean vector space R?, and to share it over the tangent spaces instead of the
manifold itself; see Sections [0.2.2] and [9.2.3] or prior work [204, [232| 293 58, 57, 327,
67, 1339]. Subsequently, the kernel can via the Riemannian exponential map be mapped
down to the manifold. It can be thought of as being applied by a local observer, who is
measuring features in its surrounding relative to its local reference frame. We will in this
section shortly elaborate on how feature fields are perceived from the perspective of different
local observers. Mathematically, this is formalized as the pullback and parallel transport of
the feature field to the tangent spaces; see Fig.[0.1|for a visualization.

In order to map between the tangent spaces and the manifold, we consider the Riemannian
exponential map (corresponding to the Levi-Civita connection)m Assuming the manifold for
simplicity to be geodesically completeﬂ the exponential map at a specific point p € M is a
map

exp, : IpM — M. (9.19)

It identifies vectors v € T), M with those points exp,,(v) € M that are reached when follow-
ing the geodesic through p with an initial velocity of v for one unit of time. While preserving
radial distances, the exponential map does in general distort angels and fails to be injective.
For instance, if the manifold is a sphere, the exponential maps wrap their corresponding tan-
gent space infinitely often around it. It is, however, guaranteed that the exponential map is a
local diffeomorphism if its domain is restricted to distances shorter than the distance to the
cut locus (where injectivity fails).

Given the exponential maps, one can pull feature fields on the manifold back to the tangent
spaces. Specifically, let f be some feature field on M, then the pullback exp;,  := foexp,
is defined as that map that assigns the feature vector f(exp, (v)) from exp,(v) tov € T, M.
Note that, due to the missing injectivity of the exponential map, each tangent vector might be
assigned to multiple tangent vectors v; and vy if expp(vl) = expp(vg) — this is somewhat
similar to gravitational lensing effects in physics. For the case that the exponential map
is injective, or when restricting it to its injectivity radius, the pullback corresponds to an
expression of the feature fields in geodesic normal coordinates [204]].

Recall that the purpose of pulling the feature vectors back to the tangent spaces is to enable
that they can be accumulated by a convolution kernel. Unfortunately, this is not immediately
possible since the feature vectors at different locations live in different vector spaces and
are expressed relative to different gaugesﬂ It is therefore necessary to express all feature

'Even models which assume an alternative (G-compatible) connection to transport features utilize
usually the canonical Levi-Civita connection to compute geodesics and exponential maps.

The assumption that M is geodesically complete means that the exponential maps exp,, are for any
p € M defined on the whole tangent space 1, M. In cases where this assumption is violated one can re-
sort to zero padding, which is commonly used in convolutional networks for finitely supported images.

3 A very similar circumstance motivates the definition of covariant derivatives, which also needs to
combine geometric objects that live in different spaces.
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Figure 9.1: A feature field f on M and its local representation Exp; f on T, M via the transporter
pullback Expy,. Just like the usual pullback exp,, f of f along the exponential map exp,, : T, M — M,
the transporter pullback assigns feature vectors f (expp(v)) to tangent vectors v € I, M. However, as
we aim to accumulate the pulled back features by means of a convolution kernel, they need to be given
in the same space and be expressed relative to the same gauge at p. The transporter pullback therefore
additionally applies the (G-compatible) parallel transporter along the geodesic from exp,,(v) to p. Via

a gauge 1/)1),( , the transporter pullback of f on T, M can be expressed on R? as [Exp;, 1% R = R®
— different choices of reference frames (observers) correspond hereby to different linear deformations
of the feature field. Kernel field transforms and GM -convolutions compute an output feature fou(p)
at p by matching a kernel IC,, on T, M with Exp,, f (i.e. integrate their product over the tangent space;

see Eq. (9:30)).

(Lizards and butterflies adapted under the Creative Commons Attribution 4.0 International [license|by courtesy of Twitter.)

vectors [exp;‘, f](v) in the same vector space and relative to the same gauge. A natural
idea, proposed by Poulenard and Ovsjanikov [232]], is to do this by parallel transporting the
feature vectors along the geodesics that define the exponential map from expp(v) to vf’| We
denote this pullback of f with additional transport as Exp; f to emphasizes its close relation
to the usual pullback expy, f to T, M. Fig.[9.1|gives a visual idea of this transporter pullback
of feature fields to the tangent space and its representations | Expy f] A and [ Exp;, f] B
R relative to different coordinatizations.

on

We formalize Exp; f by defining it in terms of its coordinate expression relative to some
choice of gauge. To this end, let zbg‘ be a gauge at p, relative to which the transported
A

exp,, (v) "
which represents the feature vector at that location by a coefficient vector f A(expp(v)) €
R€. Denote by

features will ultimately be expressed and let ¢ be an arbitrary gauge at exp,, (v),

(e, ) (9.20)

the G-compatible parallel transporter of feature vector coefficients along the geodesic from

exp.,,(v) to p. Then we define the transporter pullback in coordinates as
D P p
4 14 (0% (9.21)

[Exp;f :RT 5 Re, vt e [Exp;f

= 2(90L ey om) - I (expy () (@),

“The parallel transport along any other path would be equally valid.


https://github.com/twitter/twemoji/blob/gh-pages/LICENSE-GRAPHICS
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where v = (z/;;j‘)fl(vA) € T,M is the coordinate free tangent vector referred to by the
A

exp,, (v
by the coordinate independence of all equations irrelevant and cancels out. Specifically,

coefficients v via 1/11’,4. As claimed before, the choice of gauge ¥ ) at expp(v) is

one could have used any other gauge 1/}5(1) (v) At expp(v), implying gauge transforma-
: AB _ AA BA -1

tloan p(gp&expp(v)) ij(gp (_Nexpp(v))p(gexpp(v)) of the transporter by Eq. (8.8) and
fE (exp,(v)) = p(gfx‘gp(v))f"‘ (exp,(v)) of the feature vector coefficients by Eq. (83).
which annihilate when composing both expressions.

The transporter pullback [Exp;k7 f]A depends, however, still on the gauge at p, and there-
fore transforms under gauge transformations gf 4 at p. As for any coordinatized function,

its transformation law is determined by the gauge transformations on its domain R¢ and
codomain R€. It is therefore given by

x« 1B « 1A -1
[Bxpp 7 = plgp™) o [Exppf]" 0 (9,) (9.22)
which is summarized by the following commutative diagram:
« 1A
pd I
QEA.| ‘p(ng)~ (9.23)

R, Re
[Exp} f]”

Note that this is essentially the induced representation action on p-fields from Section
however, here restricted to G' and viewed passively on a tangent space. As visualized in

Fig. , | Exp;, f]A and | Expj f] P should be thought of as the perspective of different
local observers (reference frames) on the feature field.

In principle, one could consider alternative constructions for the pullback of feature fields
from M to T,M. Our definition of kernel field transforms and GM -convolutions in Sec-
tions [0.2.2]and [0.2.3| below is independent from this particular choice.

9.2.2 Coordinate independent kernels and kernel field transforms

GM -convolutions are coordinate independent operations which apply the same, shared ker-
nel at each point of the manifold. To clearly separate the assumptions being made, we first
discuss more general kernel field transforms, which are coordinate independent operations
but drop the requirement of weight sharing. They are therefore similar to GM -convolutions
but apply a potentially different kernel K, to each point p of the manifold. In order to re-
spect the principle of covariance, the coordinate expressions of those kernels are required to
transform in a principled manner, however, the kernels themselves are left unconstrained.

Coordinate independent kernels: Since convolutions in deep learning map between
fields of feature vectors of dimensionalities R and R, the convolution kernels are
Cout X Cin matrix-valued. Discretized implementations of d-dimensional convolutions on Eu-
clidean spaces typically represent such kernels as arrays of shape (s1, ..., 84, Cout, Cin). The
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Figure 9.2: A coordinate free kernel /C,, on 7, M and its coordinate expressions ICff : R — ReouXein

-

\

RZ

relative to gauges 1/11),( (only one of the cout X cin kernel channels is shown). The gauge transforma-
tions that relate different coordinatizations of a kernel follow from the transformation laws of their
domain R? and codomain R%«*¢n_ They are therefore for any v € R¢ given by ICB ( 5 Ao) =
Pout (gf A) K (o) p, (g5 A) ~!. A kernel field K on M is a smooth assignment of kernels over the tan-
gent spaces (Def. . Note that we are here assuming the kernel on 7, M to be given and express
it subsequently relative to differe auges on R?. This is conceptually different from the situation
depicted in Figs. - and ﬁl where we assume a template kernel K to be given on R? and
subsequently deﬁne IC on T M via convolutional weight sharing relative to some reference frame. In
order to preserve coordinate independence during the weight sharing process, the shared kernel needs
to be invariant (or equivariant) under gauge transformations; see Section@and Appendix

first d axes represent hereby a spatial grid of s1 X --- X s4 pixels, each of which is assigned
a Coyut X Cip Matrix, encoded in the last two axes[| In the continuous, Euclidean setting, such
kernels can be described as maps

K : R% — RéuXen (9.24)

which assign a Coyt X Cin Matrix to each point of R<. As mentioned in the previous Sec-
tion | we define GM -convolutions as matching the transporter pullback Expp fm on the
tangent space T,M with a kernel X, on T,M . Since the tangent spaces are flat, it is natural
to define this matching as in the usual fully Euclidean setting. We do therefore define the
kernels /C,, via their coordinate expressions, which take the form in Eq. (9.24), that is,

Ko RE — Rewxen (9.25)

Fig. n shows a given coordinate free kernel on 7, M and its representations on R relative
to different reference frames ]

The transformation law between the coordinate representations IC]‘;x and IC]J)B of a kernel /Cp,

on T,M follows as usual from the transformation laws of their domain and codomain. On
the domain R¢ the transformation law is given by gf 4. while the transformation law of
R s, as in Eq. (94), given by a simultaneous left multiplication with p,, (92**) and

5The actual memory layout depends on the particular deep learning framework in consideration.

SWe emphasize that we are here assuming a coordinate free kernel K, which is given on T, M and
consider its coordinate expressions IC;( on R? relative to reference frames X. Convolutional weight
sharing will later on pose us with the question of how to define a coordinate free kernel K, on T, M
given a template kernel K on R%. Appendix |G|elaborates on these two concepts and their relation to
the kernel’s G-steerability.
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right multiplication with p, (g A) . The two coordinatizations of the kernel K, relate thus
for any v € R% by

-1
K3 (9540) = poun(9p™) - K (0) - pul9p ™) (9.26)
which is visualized by the following commutative diagram:

A

Rd ICP s JRCout X Cin
95A~| lﬂm(gf*‘) [ o (P ™) ©.27)
d out in
R ICB RC X ¢

P

As in the examples from Section[9.1] the principle of covariance only requires a consistent
transformation behavior between different kernel coordinatizations but does not lead to a
constraint on the kernel itself. One might therefore parameterize the kernels K, for any
p € M and an arbitrary gauge at p by some unrestricted, matrix-valued kernel. We denote
smooth fields of such kernels as kernel fields, which play a major role in our analysis of the
isometry equivariance of GM -convolutions in Chapter[13]

Coordinate independent kernel field transforms: Given a smooth kernel field /C, we can
define kernel field transforms, which are similar to convolutions but differ in that they might
apply a different kernel at each spatial position. They compute a field of output feature
vectors fou(p) by integrating the product of the corresponding kernel /C,, and transporter
pullback Exp,, fin of fin over T, M, that is,

Fu(p / Ky (0) Bxp’ fn(v) do 9.28)

To express this coordinate free definition in terms of coordinates, one has to replace all
quantities by their coordinate expressions and to pull the integration via the chosen gauge
from 1}, M to R?. As described in Appendix@ the appropriate (gauge invariant) Riemannian

volume element is for a gauge 1%4 given by

VInA| dv?, (9.29)

(D.6)), is the (positive) volume spanned by the refer-

where the factor y /|72!],

ence frame [e;']L_; at p. The coordinate expression of the kernel field transform thus reads

fom(p / KA (™) [Expl fin] () /] do? . (9.30)

The coordinate independence of the kernel field transform is asserted by expressing it relative
to an alternative gauge 1/}5 and showing that the resulting output field transforms as expected,
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which is indeed the case:

B C [ KEWP) [Exp) fu] @07) /] dv®

R
(i) Ad [p"“‘ (ng) ]C;‘ ((Q:EA)_lvB)) Pin (ng)_l} [Exp;fin] B(UB) |77§’ doP

3) -1 x o 1B

2 oo ) [ K0 [0 ) By ] (a0 ]
@ BA Ap A w140 Ay A oA

- poul (gp ) /Rd le (U ) [Eprfm] (U ) |77p | d’U

(5)
= o (92?) £ () (9.31)

Here we used the definition of kernel field transforms and the transformation law of ker-
nels (Eq. (9.26)) in the first two steps. The third step follows by pulling p,, out of

. o . —1 .
the integral and substituting v® with v* = (gZ4) v”, using that the volume element

\/ | dv? =/ 2| dv? is by design gauge invariant. The last two steps follow then by

identifying the transformation law of the transporter pullback of the feature field in Eq. (9:22)
and the definition of the kernel field transform in gauge 1/)1‘,4. Note that the coordinate inde-
pendence of the kernel field transform affirms the correctness of the kernel transformation
law in Eq. (9:26).

A kernel field transform is only well defined if the integrals over the tangent spaces converge,
which is more rigorously discussed in Section and Appendix [I} Theorem [12.2.6| proves
that a compact support of the kernels /C,, is sufficient to guarantee this well-definedness. It
further proves that kernel field transforms that are based on smooth kernel fields will map
smooth input feature fields to smooth output feature fields.

9.2.3 GM-convolutions and G-steerable kernels

The freedom of kernel field transforms to apply a different kernel at each location does not
allow them to generalize learned inference over different locations and thus makes them data
inefficient. One does therefore typically consider convolutions, which can be seen as those
specific kernel field transforms that are based on convolutional kernel fields, i.e. kernel fields
that are parameterized by a single, shared template kernel. As before, a coordinate indepen-
dent weight sharing requires the template kernels to be gauge equivariant (G-steerable). This
gauge equivariance of the template kernels implies that patterns which appear in different,
G-related geometric poses are guaranteed to evoke the same response up to a corresponding
transformation of the feature vector via p,,,.

Convolutional weight sharing: Let K : R? — R%u*¢n be a template kernel to be shared
over all tangent spaces. In order to not prefer any particular gauge — which would contradict
our requirement for coordinate independence — we are forced to share the kernel with coordi-
natizations in all gauges simultaneously. Naively, this seems to suggest to share the template
kernel by setting IC;)( = K for any point p € M and any gauge w;( at p. While such a def-
inition of kernel sharing seems reasonable, it does not follow our principle of sharing local
template functions in a strict sense: instead of directly sharing the kernel, it is important to
share the whole local operation — which is here the whole integral transform in Eq. (9:30).
Since this operation is parameterized in terms of the kernel field /C, this leads indirectly to a
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sharing of the template kernel, however, with a slightly different result as the naive sharing
considered above.

To find the correct definition of GM -convolutional kernel fields according to our principle
of sharing local template functions, we first need to identify these local operations. We do
this by abstracting kernel field transforms (in coordinates) as a collection of local integral
operators of the form

A [eS) c c A
g4 . C®(RLRY) SRS, F H/Rd/cp (0) F(o) \/lndldo.  (932)

where C*° (R?,R®) denotes the space of smooth maps from R to R°. In our application,
these smooth maps are just the local feature field representations [Exp’ f]4 : R? — R¢
as seen from the tangent spaces at p, which are by the kernel field transtyorm mapped to an
output feature vector foy(p) = 92 ([Expj, f]*) at p. Given our template kernel K : R? —
Reux¢n we define a corresponding integral operator template

Jx: C°(RLRY) - RS, F s [ K(o)F(v)do, (9.33)
R4

which multiplies a local field representation F' with the template kernel K and then integrates

their product. Note that Jg is as a template function necessarily agnostic to specific choices

of gauges and does therefore not involve a frame volume factor. A GM-coordinate inde-

pendent convolutional weight sharing scheme is imposed by demanding that this template

functional agrees with all the individual integral operators at any point and in any gauge, that
is,

g,{pzjK for any gauge (UX,wX)EﬂG with p € UX | (9.34)

where A is the (maximal) G-atlas corresponding to the considered G-structure; see
Eq. (7.25). This is equivalent to directly sharing the local template kernel according to

K
i

where the normalization factor reduces the “kernel density” by the reference frame volume

IC;( = for any gauge (U™, 9™) € AC with pe UX, (9.35)

[7:X|. This volume factor will result in the factor |det g| in the G-steerability constraint,

which is necessary for 1) recovering Euclidean steerable CNNs from Part [I] and 2) guar-
anteeing the active gauge equivariance of coordinate independent CNNs for non-volume-
preserving symmetry groups, as discussed below.

We denote kernel fields which are parameterized by a shared kernel K according to
Eq. (9:35) as GM-convolutional kernel fields. The simultaneous requirement for weight
sharing and coordinate independence leads to an equivariance constraint on the template
kernels. To derive this constraint, insert the kernel sharing in Eq. (9.33) into the kernel
transformation law in Eq. (9.26), which results in

1 BA 1 BA
K g v) = Pout\ 9, :

7] (57%) VI ")

Since the volumes of different reference frames are related by  /|n2!| = |det(g;)B A)| \/InE]

and since the transformation law needs to hold for arbitrary G-related gauges, this implies
the G-steerability constraint

K(gv) = [ Paul9) - K (9) @)™t VeeR! geaq. 9.37)

K@) p(g7") " 936)

1
|det g|
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object ‘ K K [Exp;, f]X and F V¥ dvX and do

density s ‘ 0 -1 0 -1 1

Table 9.1: An overview of the density exponents s of different objects involved in general ker-
nel field transforms and GM-convolutions. The coordinate expression of an s-density transforms
with a factor of |det g|° when the coordinates are transformed via g € G. A general matrix-
valued kernel ICff is according to Eq. (9.26) a 0-density. The same holds for feature fields and
their pullbacks, whose transformation laws are given in Egs. (8:3) and (9:22). The whole integrand
KX (’UX)[EXp; I (™) /InX] dv™ of a general kernel field transforms in Eq. [§30) is seen to be
a 0-density as well — note that this is necessary for its coordinate independence as demonstrated in
Eq. (0:31). As the integral operator template Jx in Eq. (9:33) is agnostic of any choice of gauge, it
does not involve the frame volume factor /|7 |. Since it should nonetheless behave like the integral
operators I3 , underlying kernel field transforms, the whole integrand K (¢0) F(9) do of T (F) is re-
quired to be a O-density. This necessitates the shared template kernels K themselves to transform like
—1-densities, which is reflected in the G-steerability constraint in Eq. (9.37). Note that this transfor-
mation law of template kernels is strictly necessary for the local G-equivariance of GM -convolutions
if the output features should transform like densities of weight 0; see Eq. (9.42)). For an alternative per-
spective, we point the interested reader to Corollary 1 in [[10], where the determinant factor is derived
from Haar measures on Lie groups.

on template kernels, which was already found in Theorem {.3.TJon Euclidean steerable con-
volutions. Diagrammatically, a G-steerable kernels K is required to satisfy the commutativ-
ity of

R4 K s R Cout X Cin

d Cout X Cin

forany g € G. Note that the inverse determinant factor |det g| in the kernel’s transformation
law makes it transform like a matrix-valued —1-density; see Table E] for more details. In-
tuitively, G-steerable kernels are exactly those kernels that can be shared relative to arbitrary
G-related reference frames without that the particular choice of gauge would influence the
result[] The ambiguity of kernel alignments — which motivated our investigation of coordi-
nate independent CNNs in the first place — is thus resolved by additional weight sharing over
all the equivalent reference frames (all gauges) in the considered G-structure GM . For more
details on steerable kernels and their solution spaces we refer back to Chapter 5]

GM-coordinate independent convolutions: Given a G-steerable template kernel K &
9{/? Pout” the GM -convolution K* with this kernel is defined as the kernel field transform

with the corresponding GM -convolutional kernel field, satisfying ICg( = K/+/|nX| for any
point p € M and any gauge wif . By inserting the GM -convolutional kernel field into the

"The G-steerability constraint can be rewritten as K (0) = |det g| " p,(9) - K (g7 ') - p, (9) "
Vo € R, g € G, which emphasizes that G-steerable kernels are the invariants under the gauge
action on the right-hand-side. Being invariant under gauge transformations, a G-steerable kernel leads
to the same coordinate free kernel /C;,, at p when being shared relative to any reference frame in G M.
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5 Figure 9.2: Local G-equivariance of the
R shared integral operator template Jx un-
derlying a GM -convolution K*. An active

K G-transformation ResAGH(G) IndgH(G)

a local field representation on R% moves
feature vectors from g~ 1o to ¢ and trans-
forms them additionally via p, (¢). While
the former moves features spatially, the lat-
ter transforms their numerical coefficients
(visualized as rotation and scaling of the
Resgﬁ(a) Indgﬁ(c)pm(g) Poul9) individual (tangent) vectors in thegﬁgure).
The application of J i to both inputs results
in different output feature vectors, however,
R? Y by the G-equivariance of Jk, the responses

E are guaranteed to be related by p,,.(g); see

p of

Eq. 042). An active G-transformation of

> 1 ¢ - an input field therefore results in a cor-

T l l l l l responding active G-transformation of the

output feature vector. Note that the G-

equivariance of Jx is a direct consequence
of the G-steerability of K.

kernel field transform, Eq. (9.30), the coordinate expression of the GM -convolution boils
down to

Oft(p) = [K*fin}A(p) = /RdK(v) [Exp;fm]A(v) do = jK([EXp;fin]A). (9.39)

It is thus simply given by matching the transporter pullback [Exp; fin]? of the feature field

in an arbitrarily chosen gauge 1/}1;4 with the gauge independent convolution kernel K. GM -
coordinate independent convolutions are therefore easily implemented by 1) choosing arbi-
trary reference frames, 2) pulling (and transporting) the feature fields back to the tangent
space coordinatizations and 3) contracting them there with a (trainable) G-steerable kernel.

GM -convolutions exhibit multiple related symmetry properties, an overview of which is
given in Fig.[T.9}

GM -coordinate independence: As specific instances of kernel field transforms, GM-
convolutions are (passively) coordinate independent (or G-covariant), i.e. Eq. (9.31)
applies to them.

global isometry equivariance: They are equivariant under the active, global action of G-
structure preserving isometries in Isomey on feature fields. Sections[9.3]and specif-
ically Chapter[I3]discuss this property in detail.

local G-equivariance: The integral operator template Jx is by the G-steerability of K it-
self G-equivariant. Any G-transformation of a local feature field representation on
R? will therefore result in a corresponding transformation of the resulting feature
vector; see Fig.[9.2] Independent G-transformations of patterns that are centered at
different points p; € M will therefore lead to independent output feature transforma-
tions at these points (this holds only at these points and requires compactly supported
kernels whose entire field of view transforms according to the G-transformation).

To make the last point precise, we need to define active G-transformations of local feature
field representations as seen from a kernel’s viewpoint, i.e. G-actions on C>(R? R®).
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These are naturally given by the restriction of the induced representation (Eq. {.6)) back
to G that is, by

Rese @ Indy "9 - G — GL(C™(RY,RY)), (9.40)
whose actions are defined by
[Res™ @ md ™D p|(g) F = p(g)o Fog™". (9.41)

Note that this is the active counterpart of the passive local gauge transformation of transporter
pullbacks from Eq. (9.22) above. Fig. visualizes both, showing in particular that they
are indistinguishable from a kernel’s viewpoint.

The claimed G-equivariance of Jx is easily seen by applying it to a transformed input,
followed by a substitution and making use of the G-steerability of K:

Ix(Resg™ @ Indg™ ¥ p, (g) F) (9.42)
= (p (g)oFog 1) (def of ResGﬂ(G> IndAff )p, Eq. @]))
= / K(9) p,(9) F(g o) do (def. of I, Eq. ©33) )
= K(g%) p,(9) F (%) |det g| do (substitution of 6 = g~ "0 )

R4
= / Pou(9) K (9) F(9) do (G-steerability of K, Eq. )
Rd
= pou(9) Ix(F) (def. of 3, Eq. @33) )
An active transformation of a local feature field representation F' on some tangent space

coordinatization by ResAﬂ(G) IndAff(G)pin (g) is therefore guaranteed to lead to a transfor-

mation of the resulting output feature vector by p,,.(g). In other words, features which appear
in different G-related geometric poses will evoke the same response up to a transformation
via p,,. In terms of a commutative diagram, this is concisely summarized as:

o> (Rd, an) IK s [RCou

Res5™ 9 nd2 ™D (g) ‘ Pou(9) ©43)

> (Rd, RC‘“) _ s TR Cou
JK

Fig.[9.2] gives a visual interpretation of this equivariance property of J.

Note that the equivariance under local G-transformations in Eq. (9.42) requires the G-
steerability constraint exactly as it is in Eq. (9.37), that is, in particular, with the determinant
factor |det g|~* which makes the kernel transform like a —1-density. This factor is traced
back to our definition of convolutional weight sharing in Eq. (9.35) with the normalization

by the reference frame volumes ,/ |77;f |. The naive weight sharing mentioned in the begin-

ning of this section would therefore not have lead to the desired transformation behavior. In
other words: both the naive and the normalized version of the kernel sharing are coordinate
independent and behave therefore both consistently under passive gauge transformations

8The restriction back to G suppresses the translations in Aff(G).
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Figure 9.3: A network layer is
said to be isometry equivariant
when it commutes with their ac-
tion on feature fields, i.e. satisfies
K*(¢>fin) =¢ > (K * fin) for
any feature field fi, and isometry ¢.
GM-convolutions are by design
equivariant Ww.r.t. the subgroup
Isomegns of isometries that are sym-
metries of the G-structure.

That GM -convolutions are Isomegas-
equivariant relies on the facts that
1) kernels are shared over the whole
manifold, 2) isometries preserve the
transporter pullback of feature fields
and 3) that Isomgy induces G-
valued gauge transformations, which
are accounted for by the kernel’s
G-steerability.  (Lizards adapted under the
Creative Commons Attribution 4.0 International

:

license| by courtesy of Twitter.)

— in particular such which change the frame volume. However, in the case of the naive
kernel sharing, this is taken care of by the invariance of the Riemannian volume element

In| dv* =\ /InE| dv®. By canceling this factor in the normalized weight sharing, the

consistency of the transformation behavior is not guaranteed by the integration measure itself
anymore — which requires the G-steerable kernels themselves to explain volume changes via
the determinant factor. Only the latter generalizes to active transformations, where only the
feature field is transformed, while the integration measure stays invariant.

As our definition of GM-convolutions allows for arbitrary Riemannian manifolds, G-
structures and field types, it is quite general and covers a wide range of applications. We
substantiate this claim in Part[[V] where we explain many CNNs on Euclidean affine spaces
Eg4, the sphere S and general manifolds or meshes as specific instantiations of Eq. (9.39).
For an overview and a classification of these models, we refer to Table [T4.1]

9.3 Isometry equivariance

Given that a manifold exhibits symmetries it is usually desirable that neural networks respect
these symmetries, i.e. are equivariant under their action on feature fields. GM -convolutions
are by design guaranteed to be Isomgys-equivariant, which means that they commute with
the action of isometries in Isomaas (Eq. (8:13)) on feature fields, as visualized in Fig.

“Recall that an action on GM-coordinate independent feature fields can only be defined for the
G-structure preserving isometries in Isomgas. It is therefore not even possible to define a notion of
isometry equivariance for isometries that are not symmetries the G-structure. Note that this is without
loss of generality since one can always choose a structure group G = O(d), for which Isomgyn =
Isom (M) coincides with the full isometry group.
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Expressed in equations, the GM -convolution K« is equivariant when it satisfies the relation

Kx (¢ fin) = o> (K * fin) YV ¢ € Isomay (9.44)
for any possible input field fi,, that is, when the following diagram commutes:
fin ¥ K« Jout
¢ > fin T ¢ > fou

As a first step towards proving the isometry equivariance of GM -convolutions, recall that
they are pointwise defined as the contraction of a kernel K with the transporter pullback
[Exp; fin]A of the input field fi,. Since isometries preserve the Riemannian geometry of M
by definition, they preserve in particular the Riemannian exponential map and Levi-Civita
transporters; see Section and Fig. This implies that the transporter pullback
of the pushforward field ¢ > fi, at ¢(p) will only differ from the transporter pullback of the
original field f;, at p by the isometry induced gauge transformation, that is,

[Expl,) (0> fu)]” = pul957(0) o [Exp) fin] " 0954 (0) 7 (9.46)
cf. Eq. (9.22) and, for the coordinate free formulation and a proof, Theorem [I3.1.4]

Given this identity, the isometry equivariance of GM -convolutions is proven by the follow-
ing simple calculation, which crucially leverages the G-steerability of the template kernel K
to explain away the isometry induced gauge action:

[K % (65 f)] " (6(p)) 9.47)

/Rd K (o) [Expgp) (¢ & )] (0) do
/R LK) [pm(gqﬁ‘g(p)) [Exp;, fm]ﬁ(ggxﬁ(p)_lv)} o

/Rd {K (954 (p)5) p, (gﬁg(p))} [Exp} fu] (5 [det g4 (p)| d5

[ (o 050 B 110

1 1+

—~
[
—

—~
[\
-

—~
w
=

—
N
=

D ol p) - £Ap)
© o fu] (60)

D [p5 (K * fu)]*(6(p))

The first step follows hereby from the definition of GM-convolutions in Eq. (9.39) while
the second step inserted the induced gauge transformation according to Eq. ©:46). A sub-

stitution from ¢ to 0 = g(‘;‘A (p)~Lo justifies step three. In the fourth step the G-steerability

"More generally, whenever an alternative G-compatible connection is chosen to transport feature
vectors, we assume this connection to be invariant under the action of Isomaas; see Section [13.1.4}
This assumption is satisfied for all models that are covered in the literature review in Partm
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of the template kernel, i.e. Eq. (9:37), is applied (recall Eq. (8.17), which states that the
Isomgas-induced gauge transformations are G-valued). What follows is that the resulting
output feature vector is transformed by the induced gauge transformation. After identifying
this as the coordinate expression of the pushforward of the output field in Eq. (8:19), the
statement follows. As all steps are valid for arbitrary isometries in Isomgys, we see that
GM -convolutions are automatically equivariant w.r.t. any G-structure preserving isometry.
They are not necessarily equivariant w.r.t. general isometries in Isom (M), which might dis-
respect the G-structure, however, full isometry equivariance is guaranteed for orthonormal
structure groups G = O(d) (or supergroups of it).

Invariant kernel fields: A more in depth analysis of the isometry equivariance of gen-
eral kernel field transforms can be found in Sections [13.2] and The central result
of this investigation is Theorem [13.2.4] which states that the isometry equivariance of a
kernel field transform implies the isometry invariance of its kernel field and vice versa.
Fig [13.6] visualizes such an invariant kernel field, which is required to share weights over
the orbits of the isometry action. The required invariance of the kernel field is intuitively
plausible since isometry equivariance certainly requires the inference of the network to be
the constant on each orbit. This abstract results implies the isometry equivariance of GM -
convolutions by observing that GM -convolutional kernel fields — which are determined by
a single, shared template kernel — are invariant under isometries in Isomgys; see Theo-
rem and Fig. The template kernel’s G-steerability accounts thereby for the
invariance of kernels under the action of stabilizer subgroups of the isometry group.

Homogeneous spaces: While the demand for isometry equivariance requires kernels to be
shared over orbits of the isometry group, it does in general not require convolutional weight
sharing over the whole manifold. An important exception is the case of manifolds that
are homogeneous spaces of their isometry group, like for instance R? or the sphere S2. By
definition, the isometry action is on such spaces transitive, that is, there exists only one single
orbit. Consequently, there will only be one independent kernel, which is via the action of the
isometry group being shared over the whole space. Theorem [13.3.3]in Section [I3.3] proves
that isometry equivariant kernel field transforms on homogeneous spaces are necessarily
coordinate independent convolutions. This observation establishes a formal link between
our theory and prior work on convolutional networks on homogeneous spaces by Kondor
and Trivedi [162], Cohen et al. [56] and Bekkers [10]], who are defining convolutions via
their equivariance w.r.t. global symmetries of the underlying space.

Diffeomorphism equivariance: The reader might wonder whether it is possible to make
our coordinate independent CNNs fully diffeomorphism equivariant. As one can easily see,
the pointwise operations from Section @ i.e. 1x1-convolutions, biases and nonlinearities,
are already diffeomorphism equivariant. Specifically, let

Diffcys = {¢ € Diff (M) | [¢u(e:)], € GM ¥ [e]L, € GM} < Diff(M)
(9.48)

be the subgroup of G-structure preserving diffeomorphisms, i.e. the analog to Eq. (8.13)
without the requirement on ¢ to be an isometry. Similarly to Eq. and Theorem[13.1.3]
the coordinate expressions (induced gauge transformations) of G-structure preserving dif-
feomorphisms are guaranteed to take values in G, that is,

¢ €Diffoyy  — ¢ (p)eG VpeM. (9.49)
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The G-equivariance of the shared pointwise template functions will guarantee that they com-
mute with these Diff o3/-induced gauge transformations — and therefore with the active dif-
feomorphism action itself.

GM -convolutions with spatially extended kernels, on the other hand, are in general not
equivariant w.r.t. diffeomorphisms. The reason for this is that the transporter pullback
Exp; f relies on exponential maps, which are inherently Riemannian constructions that do
not commute with diffeomorphisms. However, as the kernels are G-steerable, Diff o);-
equivariance should nonetheless hold in the limit of the kernel support going to zero, where
they correspond to steerable partial differential operators [137]]. Given that convolution
kernels are in typical deep learning applications quite small, diffeomorphism equivariance
should in practice hold approximately.

Affine equivariance: Euclidean spaces constitute a special case since they allow for GM -
convolutions that are equivariant under the action of affine groups Aff(G). That this is the
case relies on the fact that the exponential map commutes on Euclidean spaces not only
with the action of isometries but more generally with affine transformations. The affine
group equivariance of Euclidean GM -convolutions, which correspond to Euclidean steer-
able CNNss, is proven in Section [15.2]



CHAPTER 1 0

Reflection steerable Mobius CNNs

To make the theoretical considerations in the previous chapters more tangible, we turn now
to an exemplary application. While not being of immediate practical importance, GM -
convolutions on the Mobius strip are a suitable toy model since its geometry and the involved
representation theory are particularly simple. Due to its non-orientability, reference frames
can only be (smoothly) preferred up to reflections. As expected, coordinate independent
CNNs, applying reflection equivariant template functions, outperform a naive, coordinate
dependent implementation. They are furthermore shown to be equivariant under the action
of the Mdbius strip’s isometry group.

The following Section [I0.1]discusses the geometry of the flat Mobius strip. Due to its twist,
its structure group can not be reduced further than to the reflection group G = R, such that
one needs to consider an R-atlas of gauges as visualized in Fig. The isometry group
is given by rotations along the strip and induces R-valued gauge transformations. RM -
coordinate independent feature fields, some of which are discussed in Section[@l, necessar-
ily have to transform according to some representation of the reflection group. Section[10.3]
discusses orientation independent convolutional network operations like (RM -convolutions,
bias summation and nonlinearities. The RM -convolutions rely hereby on the (R-steerable
kernels from Section[5.2and Table[5.1] A numerical implementation of the proposed model
family is discussed in Section and evaluated in Section The code is publicly
available at https://github. com/mauriceweiler/MobiusCNNs.

10.1 Geometry of the Mdbius strip

The manifold M under consideration is the flat Mobius strip with boundary, as shown
in Fig. It can be thought of as being constructed by taking a rectangular subset
[0, X] x [0,Y] of R? and gluing two opposing ends together in a twisted way. Such defined,
the Mobius strip inherits the canonical metric of R2, which endows it with a Riemannian
structure. The metric specifies in particular a Levi-Civita connection and therefore exponen-
tial maps and parallel transporters, which are further discussed below.

A first question to answer when constructing a coordinate independent CNN is to which ex-
tent the choice of reference frames is ambiguous. Given the Riemannian metric on the strip,
we can restrict our attention to orthonormal frames. One can furthermore single out one of
the two directions along the strip to (smoothly) disambiguate the rotation of the reference
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Figure 10.1: The flat geometry of the Mobius strip allows for local subsets which can be isometrically
identified with corresponding subsets of R?. We fix an isometric atlas, consisting of two charts z** and
x® on U# (red) and U® (green), which cover the whole strip. Gauges wff = c?a:;( I,M — R? for
pelU 4 are induced as chart differentials. Due to the twist of the Mdbius strip, the transition functions
gf A will at one of the overlapping regions be trivial, while the other region will necessarily transition
between gauges via flips s. The chosen atlas of charts therefore induces an R-atlas of gauges and
implies a corresponding R-structure RM, consisting of two reflected frames at each point of M. Each

d
of the charts 2% induces a smooth local frame field, given by the coordinate bases [%LX ’p] ;- The

flip in the transition functions at one overlap shows in a reflection of frames.

(Lizards adapted under the Creative Commons Attribution 4.0 International|license|by courtesy of Twitter.)

frames by aligning their first axes with this direction. This leaves us with an ambiguity of
frame handedness, with the two orientations corresponding to the two possible directions
of the second frame axis perpendicular to the strip. Being a non-orientable manifold, the
Mobius strip does not admit a globally smooth (or even continuous) choice of frame orienta-
tions. To get an intuition about this statement, consider the attempt of constructing a smooth
frame field by picking an arbitrary frame at a random position and to smoothly extend this
choice over the whole strip. After one revolution around the strip the constructed frames
will unavoidably be reflected w.r.t. the initial frames, and therefore contradict the desired
smoothness. It is thus topologically impossible to define an {e}-structure, i.e. a globally
smooth field of frames, on the Mobius strip. We are thus left with an irreducible structure

group
G=®R=1Z/2Z, (10.1)
which models the reflection of frames. As already discussed in Section [5.2|on R-steerable

kernels, the reflection group contains only two elements, the identity e and the reflection
(Spiegelung) s. They are composed according to the following simple multiplication table:

e s
el e s (10.2)
s|s e

The only nontrivial statement in this table is that two reflections annihilate, that is, $2 =,

or, equivalently, s~! = s. Given the irreducibility of the structure group R, we will in the
following need to consider the corresponding (R-structure (RM which consists of two frames
of opposing handedness at each point on the Mobius strip.
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To encode smooth (RM -coordinate independent feature fields on M, one needs to specify an
(R-atlas, consisting of R-related gauges that cover the whole strip. We choose to do this by
fixing an atlas of charts

22X UX 5 VvX cR? (10.3)

which cover the strip, and subsequently induce the gauges from it. Fig. [T0.1] visualizes
such an atlas, consisting of two charts 24 and 28 on U (red) and UP (green) which map
two overlapping halves of the strip isometrically to corresponding rectangular regions of
R2. As described in Appendix the charts induce gauges, which are given by the chart
differentials, that is,

X = dz) : T,M —R? forany pe U* and X = A, B. (10.4)

o, . . . . . . B .
The transition functions coincide then with the Jacobians gBA = ngA' Due to the twist,

the transition maps are at one of the two overlapping regions all trivial, that is, ng =e,
and on the other end necessarily reflected, i.e. ng = s. The induced atlas of gauges is
therefore indeed identified as an (R-atlas. Being derived from coordinate charts, the smooth

local frame fields corresponding to the gauges are just the usual coordinate bases, that is, the

X

d . d . . .
frames [ei ]izl at p € UX are given by [&%‘p} ;- Since the charts are isometric, the

induced frame field is automatically orthonormal. However, the two rectangular regions V4
and VB in R? must not be rotated relative to each other in order to induce an R-atlas and a
corresponding R-structure RM .

We need to emphasize that the approach of inducing gauges via coordinate charts is not
strictly necessary — it is just a convenient option since the flat Mobius strip is locally iden-
tified with regions of R? in an isometric way. This will later allow us to transfer regular
sampling grids from R?, like for instance the pixel grid Z?2, to regular sampling grids on the
strip. As this is not possible for manifolds that are not locally flat, for instance meshes in
computer graphics, most implementations on general manifolds (or meshes) assign coordi-
nates immediately to the tangent spaces; see Chapter[18]

The canonical Levi-Civita connection on the Mobius strip defines a notion of parallel trans-
port of tangent vectors. Since the strip is locally isometric to the plane R?, this transport can
on local patches be understood as flattening these patches out into a plane and moving the
vectors as usual on R2. If no single patch can cover a path -, there will be an open covering
such that the full transport is explained by a sequence of transporters over the local patches.
It is easy to see that the transport will relative to frames of the chosen R-structure take values

g;‘A in the reflection group (R. This means that the Levi-Civita connection is {R-compatible

with RM . Tt does therefore imply well defined transporters p(g,‘;‘g ) of (R-associated feature
vectors.

The group Isomg, of isometries that preserve the (R-structure contains all rotations which
shift the strip along itself. Note that a rotation once around the strip, which we denote by an
angle of 27, does not correspond to the identity but rather maps the strip in a reflected way on
itself. Only a rotation by 4, i.e. two full revolutions, map the strip back to itselfﬂ The action
of the isometry group on the manifold and on reference frames is visualized in Fig. [10.2]
Relative to coordinates, the isometry action will induce R-valued gauge transformations.

'The Mébius strip is therefore seen to have the cylinder as double cover.
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e

Figure 10.2: Visualization of the group of (R-structure preserving isometries Isomgy, of the Mobius
strip, which is isomorphic to SO(2). It consists of all rotations along the strip. Due to the twist, a
rotation by 27, i.e. once around the strip, does not yet map it back to itself but results in a reflection.
After a second revolution, that is, a total rotation of 47, the strip is mapped back to itself. Induced
gauge transformations take values in (R.

(Lizards adapted under the Creative Commons Attribution 4.0 International|license|by courtesy of Twitter.)

10.2 Orientation independent feature fields

The principle of covariance requires the feature fields on the Mobius strip to be RM -
coordinate independent, that is, they need to be equivalently expressible relative to frames
of either handedness. They are therefore characterized by a choice of group representation
p : R — GL(c) of the reflection group, which specifies the transformation of numerical
feature vectors when switching between the two orientations. As in Section [5.2.1] on reflec-
tion steerable feature fields on Euclidean spaces, we will consider scalar, pseudoscalar and
regular feature fields, corresponding to trivial, sign-flip and regular representation, respec-

tively. In contrast to these Euclidean feature fields, which were defined in terms of their
global transformation law according to induced representations Ind4T*®) p, the orientation
independent feature fields on the Mdobius strip are defined by their local gauge transforma-
tions when reflecting frames. We will therefore reintroduce R-steerable feature fields from
this more general viewpoint. In addition, we discuss irrep decompositions of regular feature

fields. Our numerical implementation of such feature fields is described in Section[T0.4]

Local gauge transformations of orientation independent features: Scalar fields are
fields of one-dimensional feature vectors whose coefficients £ (p) € R! transform accord-
ing to the trivial representation p, . , Eq. (5.7), i.e. stay invariant under frame reflections:

Py (5) firn(®) = fitn(p) (10.5)

The sign-flip representation p, . Eq. (59), assigns the negative 1x 1 identity matrix to

reflections. It models pseudoscalar fields, which are one-dimensional and are characterized
by the property that their numerical coefficients fs‘{‘gn(p) € R! change their sign under
reflections, that is,

Pyian($) Fien(P) = —Fiea (D) - (10.6)

Scalar and pseudoscalar fields are the two irreducible field types of the reflection group — any
other feature field can be decomposed into a direct sum of these types, as explained below.
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Regular feature fields correspond to the two dimensional regular representation of the re-
flection group, defined in Eq. (5.1TT). Their feature vector coefficients f,(p) € R? have two
numerical values, which are swapped under frame reflections:

A A
Prea () Frep(P) = [? éH Agj (p) = [Agﬂ () (10.7)
reg, reg,

The description in terms of local gauge transformations allows to model such feature fields
on any manifold admitting an R-structure. For completeness, we want to point out that
the Euclidean (R-steerable feature fields in Section correspond to the (R-structure in

Fig. The induced representations Indgﬂ(m) p acting on such fields is in the differential
geometric setting recovered as the pushforward action ¢ > of isometries ¢ in Isomgy, =
Aff(R) = (R, +) x R on feature fields; see Section

Irrep decomposition of feature fields: Any finite-dimensional representations of com-
pact (including finite) groups is completely reducible into a direct sum of irreps; see Theo-
rem [B.5.16] or [102] 72| [267]. This suggests that any covariant feature vector, transforming
under a compact structure group, can up to a change of basis be constructed from irrep fea-
tures. As argued in Section and [322], it is in this case possible to reduce any affine
network operation (i.e. linear or summation layers) to equivalent operations between irrep
fields, which simplifies the construction of the space of G-steerable kernels and G-invariant
biases.

An example are regular feature fields, which contain two proper invariant subspaces corre-
sponding to a scalar and a pseudoscalar field. Specifically, the regular representation can be
thought of as being constructed of the direct sum p, . @ p  of the trivial and sign-flip irrep

and a change of basis @ :

Pree(9) = Q (P @ Pypn)(9) @7 where  Q = \}5 H ” (10.8)

The validity of this statement is easily asserted by inserting the right-hand side for both group
elements:

1 _
Q(pmv@psign)(e) QT = 5 |:% %:||:(]i (1):||:_% %:| = |:(1) (‘i):| = preg(e) (10.9)

sign

101 -
Q (Puiy @ Pyga)(5) Q7 = 5 [1 ﬂ[é ?Hi ﬂ = {(1) (1)} — peg(s)  (10.10)

We will in the following Section[T0.3.1| show how the orientation independent bias summa-
tion operation can either be derived directly in the regular representation basis or in the irrep
basis.

While the equivariance constraints may be equivalently solved in any basis, nonlinear net-
work operations are sensitive to the chosen basis. This statement is in Section [I0.5] shown
empirically by comparing convolutions that use regular feature fields and those that use the
corresponding irrep fields.

10.3 Orientation independent convolutional networks

In order to construct orientation independent CNNs on the Mdbius strip we need to instanti-
ate the gauge equivariant layers from Chapter[J]for the reflection group (R. More specifically,
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each of the shared equivariant template functions defining the orientation independent lay-
ers needs to be instantiated for any choice of the considered field types p, . . Psign and pye,-

Section [10.3.1| starts by solving for the spaces @5 of gauge invariant bias templates from
Eq. (9.17). Some admissible choices of gauge equivariant nonlinearities for the different

field types are proposed in Section Section comments on {RM -convolutions,
which rely on the (R-steerable kernels that were already derived in Section More gen-
eral isometry equivariant kernel field transforms are discussed in Section [I0.3.4] While this
section will mainly consist of theoretical derivations, the following Section will cover
more practical implementation details.

10.3.1 Orientation independent bias summation

The space of bias templates that can be summed to a field of type p without interfering with
the coordinate independence assumption was in Section[9.1.2] shown to be given by

BY = {beR"|b=p(g)b Vg€ R}. (10.11)

For the case of the reflection group, there are only two group elements and thus two con-
straints. The constraint for the identity element g = e is trivially satisfied since p(e) = idge
is by definition always the identity on R€. In the following it is therefore sufficient to restrict
attention to the constraint b = p(s)b coming from the reflection g = s.

We start with the case of scalar fields, i.e. the trivial representation. The reflection constraint
then reads b = p,_. (5)b = b, which is always satisfied. It follows that the space of bias
templates

Br =R (10.12)
remains unconstrained such that arbitrary real-valued biases can be summed to scalar fields.
For the sign-flip representation the reflection constraint becomes b = p,, (s) b = —b and is
therefore only satisfied for biases which are zero:

R
@Psign = {0} (10.13)

It is thus impossible to sum biases to sign-flip fields while maintaining coordinate indepen-
dence. Our third exemplary field type is the two-dimensional regular representation. The
corresponding reflectional constraint on b € R? reads

[2;] = b= prls)b = [(1) éHﬁﬂ = [gb,ﬂ (10.14)

and leads to the one-dimensional solution space

@?;g:{beRﬂbl:bz}:Hg} ’ﬁeR}. (10.15)

The coordinate independence of this constraint is intuitively clear: since the regular repre-
sentation swaps the two channels which make up the field, the bias summation is only then
coordinate independent when the values summed to both channels are equal, such that their
order does not matter.

As argued in Section the solution space @/‘? for a representation p coincides exactly

with its trivial subrepresentations. This is certainly true for the trivial representation, to
which one can sum any bias, and the sign-flip representation, which has itself no trivial
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subrepresentation and therefore does not admit biases at all. A more interesting example is
the regular representation, which was in Eq. (T0.8)) shown to decompose into a direct sum of
the trivial and the sign-flip representation. The one-dimensional solution space in Eq.
corresponds exactly to the single trivial subrepresentation contained in p,. To check the
validity of this statement, note that the admissible biases for the direct sum representation
Puiv D Pign aT€ of the form (3,0) T, where 3 € R. This results can via the change of basis

@ be translated back to the regular representation, which indeed recovers our solution in
Eq. (I0.15):
1 -1
o)~ [ 3] = 3 019

10.3.2 Orientation independent nonlinearities

To construct a deep network, we need to come up with equivariant nonlinearities for each of
the field types. As already discussed in Section[4.3.3] scalar fields can due to their invariance
under gauge transformations be acted on by any nonlinearity 44, : R — R. Usual choices
are ReLU or ELU nonlinearities.

For the sign-flip fields one might take the absolute value || s‘f“gn (p)]| of feature vectors, which

maps the sign-flip field to a scalar field. In our implementation below we instead use nonlin-
earities of the form

Sign /= ReLU(If] — )L, (1047

il
where b € R is a learnable bias parameter. This choice is easily seen to map sign-flip
fields to sign-flip fields since the first multiplicand is acting on the gauge invariant norm of
feature vectors while the second multiplicand is preserving the feature vector’s sign.

As a permutation representation, the regular representation allows for any nonlinearity that
acts on each field channel individually, without changing the field type. An example are
ReLU nonlinearities, that are applied element-wise to the entries of a feature vector:

oo ] - [0 3] )] - [iki] o

= Jreg Bﬂ = dreg O Preg(8) [;j

While the regular representation is linearly equivalent to p . @ Pyigns WE Can not apply inde-
pendent element-wise nonlinearities to the two channels in the irrep basis. This substantiates
the claim that nonlinearities make the networks sensitive to the particular choice of basis of
the representation.

10.3.3 Orientation independent convolutions

The last operations that we instantiate here are reflection equivariant convolutions. This
requires us on the one hand to explain the exponential map and parallel transport on the
strip, and on the other hand to solve for the (R-steerable kernel spaces.
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Due to the locally flat geometry of the strip, the computation of exponential maps and
transporters is almost trivial since we can choose isometric charts and identify the op-
erations with their counterparts on R2. More specifically, consider an isometric chart
x4 . U4 = VA C R? and assume first the trivial case where the whole geodesic of
the exponential map expp('u) is contained in the chart domain, in particular p € U4 and

expp(v) € UA. The exponential map is then in the chart codomain given by the sum
z( exp,(v)) = 4 (p) + cfx;‘ (v) on R? and the transporter is trivial. If the geodesic leaves

the chart’s domain U, one can split it in a first exponential map up to the boundary of U4,
and then transition to another chart 2% on U? and continue there. Transporters along such
geodesics are composed of the gauge transformations p(g”#) at all chart transitions.

The R-steerable kernel spaces were already derived in Section They consist of kernels
with certain reflectional symmetries, where the specific type of symmetry depends on the

field types; see Table

It follows that RM -convolutions are within a chart (co)domain simply Euclidean convolu-
tions with reflection steerable kernels. We handle the boundaries of the chart (co)domain,
where the kernel transitions between charts, via the “transport padding” operation shown
in Fig. More details on our numerical implementation of RM-convolutions on the
Mobius strip are given in Section[T0.4] below.

10.3.4 General isometry equivariant kernel field transforms on the Maobius strip

For completeness, we briefly elaborate on general kernel field transforms and isometry
equivariant kernel field transforms on the Mobius strip. In the general case the smooth kernel
field remains entirely unrestricted, that is, no weights need to be shared and the individual
kernels are not required to have any reflectional symmetries whatsoever. In order for the
kernel field transform to be equivariant w.r.t. isometries, the applied kernel field is required
to be invariant under isometry actions. This requires weights to be shared over the isometry
orbits, which come in two different types.

The first type corresponds to the single orbit lying exactly in the middle of the strip. Points
on this orbit return back to themselves after being shifted one revolution around the strip,
while the strip itself ends up reflected over this central orbit. An Isomgy,-invariant kernel
field will therefore have some kernel shared over this central orbit. Since the kernel is after
one revolution mapped back on itself in a reflected manner, it kernel is additionally required
to have some reflectional symmetry like the (R-steerable kernels in Table

Any other orbit is of the second orbit type. Consider some point at a given distance from the
central orbit. The isometry action will move this point at this distance from the center along
the strip. Due to the strip’s twist, it will not return to the initial point after one revolution but
to that point which lies at the same distance on the opposite of the central orbit. Only after a
second revolution around the strip the orbit will close. The demanded isometry invariance of
the kernel field will thus require kernels to be shared over all points with the same distance in
either direction of the strip’s center (but allows for different kernels at different distances). In
contrast to the central orbit’s kernel, these kernels are not required to be reflection equivariant
themselves, but the shared kernels will be reflected over the central orbit.

2Sectiondescribes such situations in a more general setting as stabilizer subgroup constraints
of the isometry group. In the current case, the subgroup of rotations once around the strip stabilizes the
points on the central orbit. It is isomorphic to the reflection group and therefore leads to reflectional
symmetries in the kernels.
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This analysis shows that any isometry equivariant kernel field transform requires (R -steerable
kernels, although strictly only on the central orbit. Conversely, the convolutional kernel field,
corresponding to the application of the same (R-steerable kernels on the whole manifold, is
certainly invariant under isometries. The orientation independent convolution on the Mobius
strip is therefore Isomg-equivariant, which is empirically confirmed below.

10.4 Numerical implementation of Mobius convolutions

Being prepared with the analytical derivations in the previous sections we are ready to dis-
cuss a numerical implementation of orientation independent CNNs on the Mobius strip.
The implementation is publicly available at https://github.com/mauriceweiler/
MobiusCNNs.

Feature spaces: The first question to answer when implementing convolutions on the
Mobius strip is how the feature fields should be represented numerically. Since the M6bius
strip is a flat manifold, we can conveniently inherit (subsets of) the regular sampling grid
Z? from R? over to the strip. This intuition is formalized by the pullbacks f* o (z) -
VX — R¢ of the local feature field coordinatizations f~X : UX — RC via the (inverse)

charts (2% )_1 : VX — UX to anew domain VX C R?, where X = A, B. The numerical

discretization is then defined as a restriction fX o (xX ) -t ’V x 7 Of the pullback to the
sampling grid, which is in Fig. shown as an overlay.

Note that this representation is due to the overlap U4 N UP # & of the charts redundant.
To remove this redundancy one needs to identify those regions that are represented twice
and store only one, shared copy of the corresponding feature vectors. One possible scheme
to do so, which we use in our numerical implementation, is to store the feature fields in
the multidimensional array corresponding to the magenta rectangle in Fig. [[0.3] It can be
thought of as being defined by “gluing” those regions in V4 and VZ which are identified
by trivial gauge transformations %4 together (“id” in Fig. and central four pixels in
Fig.[10.3). What remains is a redundancy of feature vectors at the second overlapping region
with reflecting gauge transformations (“flip” in Fig. [10.1). It is resolved by assigning those
feature vectors in equal parts to either end of the “glued” local field representation (orange
pixels in Fig. [T0.3). Together, the pixels in the magenta box represent the feature space in
a non-redundant way by assigning a c-dimensional feature vector to each of them. The ring
of two pixels around the magenta rectangle is not part of the feature space but visualizes a
padding region which will only be used during the forward pass of the convolution operation
as discussed below.

The actual dimensions (shape) of the array that encodes a feature space depend on the chosen
field multiplicities. Let myiy, Mgign and myg be those integer multiplicities of feature fields
which make up a feature space. Since the scalar and sign-flip fields are one-dimensional and
the regular feature fields are two-dimensional, the overall number of channels (or dimen-
sionality of stacked feature vectors) is given by ¢ = myiy + Myign + 2Myee. Assume further
that the spatial resolution of the magenta rectangle is X x Y pixels and assume a batch
size of N samples. The array that encodes a feature space is then of shape (N, ¢, X,Y),
as usual in image processing. Note that this numerical representation of the feature space is
both agnostic to the twisted geometry of the strip and the actual type of the contained feature
fields (except for their dimensionality). The actual geometric information is therefore solely
carried by the network layers which process the fields.
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transport pad p(s) Figure 10.3: Numerical representa-
tion of feature fields on the Mobius
L - strip and Levi-Civita transport of fea-
N0 ture vectors during the convolution.
.'"‘ The flat geometry of the strip allows
to cut it open and flatten it out iso-
) metrically to the inner magenta rect-
angle. When assigning the canoni-
40 cal reference frames of R? this corre-
sponds to a gluing of the two charts
[ V4 and VZ from Fig. at their
overlap with trivial gauge transforma-
tions (“id”). In order to avoid redun-
dancies, we assign half of the width of
the second chart overlap with reflective gauge transformations (“flip”) to either end of the flattened
magenta strip (orange pixels). Feature fields are stored as an array with spatial dimensions corre-
sponding to the magenta box and c channels. During the convolution operation, the kernel collects
features from all pixels that it covers. Choosing a kernel size of 5 x 5 pixels, we need to specify all
values in a radius of 2 pixels around its center, which overall requires to pad a border region of 2
pixels around the magenta rectangle. The border at the top and bottom correspond to the boundary
of the strip. Since no valid feature values can be assigned there, we zero-pad the array as commonly
done in computer vision. The left and right border of the flattened strip are glued together with a
twist. We implement the parallel transport of those features by cutting an area of two pixels width
from either end of the strip (orange) and padding them in a reflected way to the opposite ends (blue).
As the twist implies a gauge transformation, the feature fields need to be acted on by p(s) when
being reflected. After padding, the convolution is run with “valid” boundary conditions, such that
its output again has the size of the magenta box. Operations which act pointwise do not require the
padding but can be applied to the magenta array right away.

(Lizards adapted under the Creative Commons Attribution 4.0 International [license|by courtesy of Twitter.)

N

transport pad p(s)

Bias summation: To implement the orientation independent bias summation, recall the
results from Section[T0.3:T]that the vector spaces of reflection equivariant template biases are
for scalar fields and regular fields one-dimensional and for sign-flip fields zero-dimensional.
At initialization of the bias module we therefore allocate an my;,-dimensional parameter
vector By and an my,-dimensional parameter vector S.,. During the forward pass we
expand these parameters into a c-dimensional bias vector bg,;, which is to be summed to
the full stack of feature fields. This is done by allocating a c-dimensional array of zeros and
filling the first 7y, elements with the scalar field bias parameters and the last 2m,., elements
with the m,, regular field bias parameters, each repeated twice to satisfy the structure of the
solution space in Eq. (T0.13). After this expansion the full bias vector

bfull = [ﬁtriv,la ey Btriv,mmva O; ey 07 ) Breg,l» ﬁreg,la vy ﬁreg,mmg; ﬁreg,mrcg
——

Miriy Msign 2Mgeg

]T

(10.19)

in R is summed to the feature field array as usual. Its orientation independence (gauge
invariance) justifies the summation to the array in Fig. [[0.3] despite it being glued from
feature vectors in two different gauges.

Nonlinearities: The nonlinearities can be implemented straightforwardly as defined in
Section [10.3.2] We do this by splitting the full stack of feature fields into three stacks of
fields of the same type, applying the respective reflection equivariant nonlinearities to them,
and finally concatenating the results. Due to the definition of the nonlinearity for sign-flip
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fields in Eq. (10.17) with a learnable bias, the nonlinearity module has mg, trainable pa-
rameters.

GM-convolutions: Since convolution operations do not operate pointwise but accumulate
all features covered by the kernel, their implementation is less trivial. The forward pass is
split in three steps, namely 1) the expansion of reflection symmetric kernels from parameter
arrays, 2) a Levi-Civita transport of feature vectors and 3) the actual convolution.

Recall that the space Q{gf o of (R-steerable kernels is a linear subspace of the space of

unconstrained kernels K in Eq. (5.3). To parameterize (R-steerable kernels it is necessary
to choose a basis of K f Do’ in terms of which the kernels are expanded. The trainable
parameters of the convolution operation are the expansion coefficients in this basis. Our
implementation parameterizes all kernels that correspond to the same pair of input and output
field types jointly since they share the same symmetries and thus basis. Considering the nine
pairs of field types shown in Table [5.1] this means that the convolution module holds nine
corresponding parameter arrays. The actual kernels are then expanded from these parameters
during each forward pass. To give an example, consider the subset of kernel channels that
map from my;y scalar fields to m;g, sign-flip fields and assume a kernel size of s X s pixels.
The corresponding parameter array is then of shape (msign7 Msiy %, s) and represents the
Myiv X Mgy individual kernel channels with a basis of % X s antisymmetric Kernels each.
The expansion is implemented as filling the upper 3 X s pixels with the unaltered parameters

2
while the bottom £ X s pixels are filled with the negated and spatially reflected parameters.

As a second examf)le, consider the kernel channels that map from m,, regular fields to 7y
scalar fields. The parameter array for this case is of shape (Mmyiy, Meeg, S, s) and stores
one of the two kernel channels per input and output field. The second, symmetric channels
are during the forward pass expanded by spatially reflecting the first kernel channels as
shown in Table After expanding the full kernel in this fashion from all of its sub-
blocks corresponding to the different combinations of field types, it has the usual shape of
kernels in deep learning but is guaranteed to respect the symmetries derived in Section [5.2]
Note that the kernel symmetries make RM -convolutions more parameter efficient than a
corresponding non-equivariant CNN with the same number of channels c. Specifically for
(R-steerable kernel the number of parameters reduced by a factor of twﬂ

After expanding the kernels, they are convolved with the feature fields. This requires an
implementation of the exponential map and the R-compatible Levi-Civita transporters on the
Mobius strip — or rather on its numerical representation by the magenta array from Fig.[10.3]
The flat geometry of the Mobius strip makes the implementation almost trivial, however,
its boundaries and circular connectivity require some special care. We therefore need to
distinguish between three qualitatively different cases, which correspond to 1) exponential
maps that lie completely within the magenta array, 2) exponential maps that would cross a
boundary and are therefore not well defined and 3) exponential maps whose geodesics run
out at one end of the array and enter it (twisted) at the other end. The first case is trivial
and corresponds to the exponential map on R? itself. Since the strip is flat and the reference
frames within the array are all parallel, the transport along these geodesics is trivial. Within
the interior region of the array, where the (finitely supported) kernels do not protrude out of
it, one can therefore implement the convolution as usual on R?. The second case concerns
the top and bottom rows of the array where the exponential maps might cross the boundary

3The improved parameter efficiency of (R-steerable kernels by a factor of 2 is exact for continuous
kernels or for even kernel sizes s. If s is odd, the number of parameters scales for symmetric kernels
like s(s+1)/2 and for antisymmetric kernels like s(s—1)/2 since the former are freely parameterizing
the central row of pixels while the latter need to set them to zero.
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of the strip (or array). This is analogous to the boundary problems for usual flat, rectangular
images, where the issue is most commonly solved via zero-padding. Adopting this solution,
we pad the array with rows of zeros, shown as the two light gray strips above and below the
magenta rectangle in Fig. [I0.3] Given a kernel size of s x s pixels with s being odd, one
needs to pad (s — 1)/2 rows of zeros at both sides. The third case occurs at the left and
right end of the array, where the strip was cut open to flatten it out. Fig.[T0.3] visualizes an
exemplary geodesic which crosses the cut line and therefore enters the array in a reflected
direction at the opposite side. Due to the reflection, the parallel transporter across the cut is
given by p(s). In order to be able to run a conventional convolution routine, we implement
the transport across the cut by copying a region of (s — 1)/2 pixels from both ends of the
array (orange), reflecting them upside down to model the twist, acting on them with p(s)
to account for the reflected gauges and finally appending them to the opposite side of the
array (blue). Having padded the array in this way, all relevant geodesics and transporters are
reduced to their trivial counterparts on R2.

Overall, our implementation of the convolution operation applies the three steps mentioned
above. It first expands the R-steerable kernels and pads the magenta feature field array
with zeros and the field values which are transported over the cut. The expanded kernel is
then convolved with the padded feature fields, calling a conventional convolution routine for
flat images. We use “valid” boundary settings for the convolution, which means that the
operation does not implicitly pad further zeros and only computes feature vectors for those
points where the kernel does not protrude beyond the boundaries of our manually padded
array. The resulting feature field will therefore again have the same spatial dimensions as the
original magenta rectangle.

Pooling: Conventional CNNs usually apply spatial pooling operations which summarize
feature vectors from a given pooling window, for instance a region of 2 X 2 pixels, into a new
feature vector. Such operations reduce the spatial resolution, which lowers the computational
cost and increases the effective field of view of the convolution kernels. A common way of
pooling is the so-called “max-pooling”, which takes the maximum value of each individual
feature channel in the pooling region. This operation can be applied to scalar fields right
away since they are gauge invariant. It is further admissible for regular feature fields since
taking the maximum commutes with the permutation of channels. However, as sign-flip
fields change their sign under gauge transformations, max-pooling is not equivariant w.r.t.
their transformation law. An equivariant alternative is average pooling, which takes the
average of features in the pooling region and therefore commutes with a change of sign.
Another option, that we use in our experiments below since it performs slightly better, is
to pool sign-flip fields based on their absolute value, which is again invariant under sign
inversions. We then multiply the sign of the pooled field values with maximum norm back
in to preserve the original transformation law.

While such defined pooling operations are equivariant w.r.t. gauge transformations, their
design principle interferes fundamentally with the desired isometry equivariance. This is the
case since they reduce the spatial resolution of the numerical discretization, such that the out-
put is only exactly equivariant w.r.t. the subgroup of symmetries of the lower resolution grid.
This effect is well known for conventional CNNs [6]]. Even though some attempts to rectify
the situation were made [348]], the partial loss of translation (or isometry) equivariance to a
subgroup is usually accepted as it is.

Unit tests: All of the proposed coordinate independent operations are unit tested in order
to guarantee their gauge equivariance and isometry equivariance. The gauge equivariance
tests pass for all of the proposed operations as well as for the whole networks described in
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the following section. For the convolution, bias summation and nonlinearities, our unit tests
confirm isometry equivariance to hold exactly. As expected, the spatial pooling operations
are not exactly equivariant w.r.t. the symmetries of the high resolution grid|| However,
we confirm their isometry equivariance for that subgroup of isometries which are simulta-
neously a symmetry of the lower resolution grid. Our empirical results, which we discuss
next, suggest that the inexact isometry equivariance affects the isometry invariance of a full
network’s classification predictions in most cases only marginally.

10.5 Empirical evaluation of Mobius convolutions

We evaluate the coordinate independent operations and their claimed equivariance properties
on a simple classification task of MNIST images which are projected on the Mobius strip.
Different combinations of field types are compared by instantiating similar model architec-
tures for them. As a baseline we train a non coordinate independent CNN on the Mobius
strip, which is significantly outperformed by the equivariant models.

The Mobius MNIST dataset is constructed by taking the standard MNIST digits of 28 x 28
pixels and projecting them on the strip by identifying the left and right border with an addi-
tional twist. In compliance with the rotated MNIST dataset, which is a standard benchmark
for rotation equivariant Euclidean CNNs, we reduce the training set size to 12000 sam-
ples [132411322]]. Since MNIST contains single channel grayscale digits, which are invariant
under gauge transformations, its samples are identified as scalar fields. Each sample is there-
fore represented by an array of shape (1,28, 28), corresponding to the magenta rectangle in
Fig.[10.3] Note that the identification of the left and right border does not lead to any discon-
tinuities for the specific case of MNIST digits since their background color is constant black
(i.e. zero). In order to demonstrate the induced isometry equivariance of the coordinate inde-
pendent CNNSs, we construct two versions of this dataset. The first one contains digits which
are all centered, that is, which occur at the same position on the strip. The second dataset
puts the digits at random positions around the strip, i.e. shifts them by randomly sampled
isometries as visualized in Fig. Any isometry equivariant model is expected to general-
ize their inference from the dataset of centered digits to the isometry shifted dataset, which is
confirmed by our experiments. While Mobius MNIST clearly is a toy dataset, it exhibits all
the theoretical properties which we are interested in and serves as a convenient test case to
demonstrate the difference between conventional CNNs and coordinate independent CNNs.

All network architectures are as usual constructed as a series of convolutional layers, fol-
lowed by a global pooling operation and an invariant, fully connected classifier; see Ta-
ble [T0.] for a comparison. The convolutional parts are built from six convolutional blocks
with spatial pooling operations after the second and fourth convolution block. The con-
volution blocks are pretty basic and consist of only one convolutional layer followed by a
bias summation and a nonlinearity layer. All intermediate pooling operations utilize pooling
windows of 2 X 2 pixels and therefore halve the spatial resolution. In the case of reflection
equivariant models, the last convolutional layer maps to 64 scalar fields. Their invariance
under gauge transformations guarantees that the subsequent global max-pooling operation
produces both position and gauge invariant features. An MLP with a final softmax activa-
tion takes those features to produce invariant predictions. It consists for all models of the
same two MLP blocks, which apply a batch-normalization, ELU nonlinearity, dropout with

“Note that this issue is inherent for pooling operations and applies to conventional CNNs as well [6],
348].



168 Chapter 10. Reflection steerable Mobius CNNs

layer output field multiplicities (M, Msign, Mreg) / channels / neurons

scalar sign-flip regular irreps mixed CNN
network input (1,0,0) (1,0,0) (1,0,0) (1,0,0) (1,0,0) 1
conv block (16,0,0) (0,16,0) (0,0,8) (8,8,0) (4,4,2) [16/+/]
conv block (32,0,0) (0,32,0) (0,0,16) (16,16, 0) (8,8,4) 132/
pooling —— —— —i— —i— —— ——
conv block (64,0,0) (0,64,0) (0,0,32) (32,32,0) (16,16, 8) [64/v/a]
conv block (128,0,0) (0,128,0) (0,0,64) (64,64,0) (32,32,16) [128/+/cx]
pooling —n— —n— —n— —n— —n— —n—
conv block (256,0,0) (0,256, 0) (0,0,128) (128,128,0) (64,64, 32) 1256/+/cc]
conv block (64,0,0) (64,0,0) (64,0,0) (64,0,0) (64,0,0) 64
global max-pool 64 64 64 64 64 64
MLP 32 32 32 32 32 32
MLP + softmax 10 10 10 10 10 10

Table 10.1: Overview of the compared model architectures. All models consist of a convolutional
part on the Mobius strip, followed by a global max-pooling operation and an MLP classifier. The five
orientation independent CNNs differ in their multiplicities (77uuiv, Msign, Mreg) Of field types but agree
exactly in their number of channels and approximately in their number of parameters. Their inputs,
i.e. the MNIST digits, are assumed to be scalar fields. All orientation independent models map in their
last convolution to 64 gauge invariant scalar fields. A subsequent global pooling operation therefore
produces position and coordinate independent features. The baseline CNN model comes in two flavors,
which differ by their factor of y/« in the number of channels. A first version assumes « = 1, and
therefore utilizes the same number of channels like the coordinate independent models. Due to the
inferior parameter efficiency of non-equivariant CNNs, this model uses approximately twice as many
parameters. For a fair comparison we add a second version with & = 2 and therefore approximately
the same number of parameters like the equivariant models.

30% dropping probability and a linear (or affine) layer, whose number of output neurons is
listed in Table [[0.1l The differences between the different models are therefore restricted to
the convolutional part.

The five coordinate independent models that we instantiate differ in the utilized field types:
there are three pure models, denoted by “scalar”, “sign-flip” and “regular”, which assume
only the suggested field type. Due to their higher dimensionality, the field multiplicities of
the regular feature fields are halved in comparison to those of scalar and sign-flip fields.
A fourth model, denoted by “irrep”, uses a mixture of scalar and sign-flip fields in equal
proportions. Note that the feature fields of this model are linearly equivalent to those of the
“regular” models since the change of basis from Eq. (T10.8) translates between both. A fifth,
“mixed” model applies all three field types. The nonlinearities in use for the different field
types are those described in Section[10.3.2] As stated before, all models assume scalar inputs
and outputs.

All coordinate independent layers are unit testes and found to be exactly gauge equivariant,
implying that the models are overall exactly gauge invariant. Since they apply two pooling
steps, which reduce the spatial resolution by a factor of 2 each before the global pooling, the
isometry equivariance (invariance) holds only for the subgroup of shifts by multiples of 4
pixels. The theoretically claimed properties therefore hold as expected.

As a baseline, we compare the reflection equivariant models to conventional coordinate de-
pendent CNNs on the Mobius strip. In order to respect the topology of the strip, we apply
a naive version of the transport padding operation. Since CNNs are agnostic to field types,
this is done by taking the orange strips of two pixels from Fig.[I0.3]and padding them to the
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model field types p; params test error (%)
trivial sign-flip regular shifted train digits centered train digits

CNN (channels) — 1501k 1.97+0.11 42.99 £ 2.65
CNN (params) — 832k 2.08 £0.10 43.68 £2.85
gauge CNN (scalar) v X X 902k 1.60+0.10 1.6040.09
gauge CNN (sign-flip) X v X 820k 4.2740.24 4.89+0.36
gauge CNN (regular) X X v 752k 1.24+0.08 1.23+0.07
gauge CNN (irreps) v v X 752k 1.65+0.09 1.64+0.12
gauge CNN (mixed) v v v 752k 1.43 +0.09 1.42+0.10

Table 10.2: Test errors of the different network architectures, each averaged over 32 runs. The column
“shifted train digits” reports the performance for a setting where both the training and test samples are
placed at random locations on the strip. While not being /R M -coordinate independent, the conventional
CNNs are able to learn to detect the digits as seen from their discontinuous frame field. Almost all
coordinate independent CNNs achieve significantly better results. The inferior performance of the
sign-flip model shows that coordinate independent CNNs might not work very well when bad choices
of field types or nonlinearities are made. The training digits in the column “centered train digits” are all
placed at the same position on the strip while the test digits remain randomly shifted. The coordinate
independent CNNs are able to generalize their inference between both situations which affirms their
isometry equivariance. In contrast, the performance of the conventional CNNs deteriorates, which
reflects their missing equivariance under isometries.

opposite side of the array after applying a reflection but without acting with the unspecified
group representation — formally, this corresponds to transporting the features according to
a trivial connection. Since the non-equivariant operations are less parameter efficient, we
consider two different versions: the first version uses the same number of channels like the
coordinate independent CNNs, and therefore requires approximately twice as many param-
eters. The number of channels of the second version is scaled down by a factor \/5 such that
the number of parameters is approximately equivalent to that of the orientation independent
models.

All models are trained for 20 epochs with a batch size of 128 samples, a weight decay of
10~ and using the Adam optimizer [I51]. The initial learning rate of 5 - 102 is chosen
as high as possible without leading to a divergence of the training process. A fixed learning
rate decay schedule reduces the step size every 4 epochs by a factor of 2.

Table[T0.2]shows the resulting test errors of all models, each averaged over 32 runs. The first
setting, reported in the column “shifted train digits”, uses randomly located digits both in the
training and test dataset. Both versions of the non-equivariant CNN achieve approximately
the same test error. In contrast, most coordinate independent CNNs achieve a significantly
better result. Only the model which is purely based on sign-flip fields performs worse —
this suggests that the utilized combination of sign-flip fields and nonlinearities is not a good
choice, despite being coordinate independent. Bad choices of feature fields and nonlineari-
ties are therefore seen to harm the model performance. The model achieving the best results
is based on regular feature fields. This observation is in alignment with previous findings, for
instance the systematic comparison of field types in [322]. Our interpretation of this result is
that the kernel constraints involving regular feature fields allow for essentially unconstrained
kernel channels, with the additional requirement of applying two reflected copies of them —
view this in contrast to the [R-steerable kernels between irrep fields, which are required to be
symmetric within one kernel channel. The model based on scalar fields achieves an interme-
diate performance between the conventional CNNs and the regular field model. Both models
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which use mixed field types have performances lying between those of the field types of the
mix. We want to emphasize again that the regular model and the irrep model contain exactly
the same irrep field types but are expressed in a different basis. Since this change of basis
could be interpreted as part of the applied nonlinearities, this result implies that the used
nonlinearities have a major impact on the model performance. Despite being investigated
in [322], the landscape of equivariant nonlinearities is still largely unexplored territory.

The second training setting, reported in the column “centered train digits”, investigates the
capability of the models to generalize over all poses that are related by isometries. All models
are trained on digits which occur at the same location on the strip but test on randomly shifted
digits. As expected, the conventional CNNs’ performances degrade significantly in this set-
ting — this implies that they are indeed not equivariant under the isometries of the Mobius
strip. In contrast, the performance of most coordinate independent CNNs stays within the
standard deviation unchanged. Despite only being exactly equivariant (invariant) to the sub-
group of isometries which shifts by multiples of 4 pixels, the full isometry invariance of the
models therefore seems to hold very well. While the sign-flip model becomes significantly
worse in comparison to the first training setting, it is still approximately isometry equivariant
and therefore performs much better than the conventional CNNss.

In conclusion, the conducted experiments confirm the claimed properties of coordinate in-
dependent CNNs and show their superiority over coordinate dependent models.
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Introduction & overview

The previous Part[[l] introduced coordinate independent feature fields and network layers in
terms of their coordinate expressions relative to some choice of gauge on local neighbor-
hoods U C M. As the existence of global gauges is in general topologically obstructed,
global coordinate representations of feature fields do in general not exist. Part|lI|addressed
this issue by assembling the global content of feature fields from their local coordinate ex-
pressions relative to an atlas of gauges that cover M. A more elegant alternative is to define
global feature fields and network layers in an abstract, coordinate free formalism in terms
of fiber bundles. Bundle trivializations allow to recover the local coordinate expressions of
feature fields and network layers.

This part develops a global, coordinate free description of the neural networks and feature
spaces from Part [lI} No new models or layers are introduced, but the theory of coordinate
independent CNNSs is presented in a more formal language. A series of theorems justifies
so far unproven claims and presents new results, including the existence and smoothness of
kernel field transforms and GM -convolutions. The global bundle formulation allows specif-
ically for a much more thorough investigation of the networks’ equivariance under global
isometry actions. An interesting result in this regard is that isometry equivariant kernel field
transforms on homogeneous spaces are necessarily GM -convolutions. An overview of all
theorems and definitions is given in Appendix [A]

Chapter[T]introduces the theory of fiber bundles in general and discusses the tangent bundle,
G-structures and G-associated feature vector bundles in particular. Neural network opera-
tions like kernel field transforms and GM-convolutions are defined in Chapter Chap-
ter[[3]investigates the isometry equivariance of these operations.






CHAPTER 1 1

Associated bundles and coordinate free feature fields

Fields of geometric quantities on manifolds are formalized as “sections” of fiber bundles
(Eq. (IT.19)). Any smooth manifold is naturally endowed with its tangent bundle and frame
bundle. A choice of G-structure, which is a G-bundle of reference frames, allows to de-
fine G-associated feature vector bundles. The feature spaces of our coordinate independent
neural networks are spaces of feature fields, i.e. sections of these feature vector bundles.

Fiber bundles in general are reviewed in Section [[1.1] Section [IT.2] discusses the tangent
bundle T'M and the frame bundle FM. G-structures GM, which are subsets of refer-
ence frames that are distinguished by the given geometric structure on the manifold, are
introduced in Section Associated G-bundles, including the feature vector bundles A,
are constructed from the G-structure. Section gives details on the local trivializations
(gauges) of TM, FM, GM and A, which reintroduces coordinates and recovers the formu-
lation in Part[[Il The mutual transformation of the trivialized feature fields with trivialized
tangent vector coefficients and reference frames follows thereby from the coordinate free
formulation via associated G-bundles. Section discusses parallel transporters on the
associated bundles, in particular how they induce each other.

All concepts presented here are well established in differential geometry and can easily be
found in the literature [262), 221} [132} 283, 1273|202, 1326, 284, 230,,159]. Our contribution is
to give a comprehensive exposition which bridges between the mathematical theory and its
application in geometric deep learning.

11.1 A brief introduction to fiber bundles

Intuitively, a fiber bundle can be thought of as a space which is constructed by taking a so-
called base space, in our case the manifold M, and attaching another space F’, denoted as
typical fiber, to each of its points. A trivial example would be the direct product M x F.
However, the fibers can in general be connected in a twisted way such that the resulting
bundle is topologically different from a product. For instance, let the base space be the
circle M = S! and let the fiber be the line segment F' = [—1,1]. Their direct product
St x [—1, 1] then forms a cylinder; see Fig. (left). In contrast, if the fibers are attached
such that they are twisted "upside down" after one revolution around the circle, one obtains
the Mobius strip, a non-trivial fiber bundle which is topologically different from the cylinder;
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Figure 11.1: A cylinder and a Mobius
strip. Both bundles share the circle
S' as base space and line segments
[—1, 1] as fibers, however, their topo-
logical structure differs by a twist in
the fibers. (Figure based on Jake’s code from

tex.stackexchange.com|)

see Fig. (right)EIEl Note that the Mobius strip locally looks like a direct product U x F' of
aline element U C S* with the fiber F'. As discussed below, fiber bundles can by definition
always be locally trivialized to direct products.

We are interested in fiber bundles since they allow for a global description of fields on mani-
folds. For instance, a wind field on the globe M = S? is a tangent vector field which assigns
a tangent vector in T, M to each point p of M. The corresponding fiber bundle is the tan-
gent bundle T'M which connects all the tangent spaces together and is therefore identified
as a fiber bundle with base space M = S? and fiber R? = T,M. Similar to the fibers of
a Mobius strip, the tangent spaces of a curved manifold are in general not connected in a
canonical way but are inherently twisted relative to each other. The tangent bundle is there-
fore in general topologically distinct from a product, that is, TM ¢ M x R?. In order to
define c-dimensional feature vector fields, we will later consider bundles with base space M
and feature vector spaces R€ as fibers.

11.1.1 Fiber bundles in general

Formally, a fiber bundle is a structure (F, M, w, F) consisting of topological spaces E
(total space), M (base space) and F' (typical fiber) and a continuous surjective projection
map ™ : E — M. A fiber bundle is locally trivializable, which means that for each point
p € M there exists a local neighborhood U C M of p, restricted to which the bundle
looks like a direct product U x F'. The local triviality is formalized by homeomorphismsﬂ
U7~ (U) — U x F satisfying the commutative diagram below

v

ED 7Y U) ——— UXF
- . , (11.1)
proj;
M D U
that is,
T = proj;oV¥, (11.2)

'To prevent confusion, we emphasize that this example considers the Mobius strip as a fiber bundle
with base space (manifold) M = S*. In contrast, all previous figures that contained the Mdbius strip
considered it as the base space (manifold) M to convolve over, and to which fibers were attached.

*We furthermore need to mention that the arrows shown in the figure are just meant to emphasize
the twist in the Mobius strip. They do not imply a gluing direction as in gluing diagrams.

3 A homeomorphism is a topological isomorphism, i.e. a continuous, invertible map between topo-
logical spaces with continuous inverse.
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where proj; : U x F' — U denotes the natural projection on the first factor. A bundle which
is globally homeomorphic to the product M x F'is called trivial. Bundles are often shortly

written E = M or just E with the typical fiber and base space left implicit. Since we are
considering smooth frame fields, we assume F, M and F' to be smooth manifolds and 7 and
U to be smooth maps (diffeomorphisms).

The local triviality of £ =+ M implies that the preimage E, :=7!(p) of any point p € M,
called the fiber over p, is diffeomorphic to the typical fiber F'. As in Chapter[7] we denote
the diffeomorphisms which identify the fibers over different points with the typical fiber by
Yy : B, — F'. The local trivializations are then in terms of these diffeomorphisms given by

U:n (U) > UxF, e (n(e), ¥re(e)). (11.3)

If the typical fiber F' and the fibers £, over p carry additional structure, the diffeomorphisms
Yy, + B, — I are required to respect this structure, i.e. to be isomorphismsﬂ For instance,
if I and E, carry a vector space structure, then v, is required to be linear.

In general the specific choice of local trivializations (or diffeomorphisms) over U is not
canonically specified by the bundle. One therefore has to consider different choices (gauges)
and transition functions (gauge transformations) between them. To make this precise, con-
sider two overlapping trivializing neighborhoods U4 and U with local trivializations U4
and W2, From Eq. it follows that the transition between both local trivializations is
on UAB .= UANUP # @ given by

WP (U UAB X F — UAP x F, (11.4)
, -1
(. f) — (p7 [P o () ](f)) =: (p, g7 »/)
where we implicitly defined the smooth transition ﬁmctiomﬂ
-1
gPht UAP = Aw(F), pre gl =yl o (v))) (11.5)
and their left action

b Aw(F) x F = F, (g8 1) = g%%f = [wfo(q/;;)‘l}(f). (11.6)

on the typical fiber F'; cf. Egs. (7.7) and (7.6). To see that the first factor in Eq. (I1.4)
is indeed given by the identity, note that, for any p € UAZ and any f € F, the repeated

application of Eq. (T1.2) implies [proj1 oUB o (\IIA)_l] (p,f) = [W o (\IIA)_l] (p,f) =
proj;(p,f) = p. The transition between different trivializations is visualized by the fol-

4 Alternatively, assume that F' carries structure which is respected by the transition functions 1/)5 o
()™t = gP*(p) € Aut(F) (see the next paragraph). Then the trivializations ¢, : E, — F
consistently induce the structure of F' on E}, and are automatically isomorphisms.

>The automorphism group Aut(F) of a space F' consists of all invertible, structure preserving
maps (isomorphisms) from F’ to itself. For instance, if ' = R" is a vector space, the automorphism
group is the general linear group GL(n), which consists of all invertible n x n matrices.
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lowing (commuting) extension of the commutative diagram in Eq. (I1.1):

id x gB4

>
o .|
UABxp +— Y p-yuaBy Y, yABF
. i . (11.7)
p1r0oJ, proj,;
UAB

Compare this diagram to that in Eq. (78], which applies to a single point p € UAB only
(and considers specifically the tangent bundle). A graphical interpretation of the full local
trivialization diagram in Eq. (T1.7) is given in Fig.[T1.3]

By definition, the transition functions in Eq. (T1.3) satisfy the following three conditionsﬂ

i) gt =e Vpe U4 (11.8)

i) gPh = (g2P)" wpeUutnUP (11.9)
iii)  gSPglt = g5t Vpe UANUBNU®  (cocycle condition) (11.10)
By the fiber bundle construction theorem, any fiber bundle can be fully spemﬁed globally in
terms of an atlas A = {(UX UX) | X € X} of local trivializations (U, ¥) which
cover M and whose transition functions satisfy Egs. (T1.8), (I1.9) and (here X de-

notes some index set). The individual trivializations can be thought of as belng “glued to-
gether” by the transition maps, which is visualized in Fig. [I1.2] Note that this is similar to
the global description of a manifold in terms of an atlas of local charts.

11.1.2 Vector bundles

Several more specific notions of fiber bundles, carrying additional mathematical structure,
exist. An important example are vector bundles, which, as the name suggests, are bundles
consisting of vector spaces attached to a manifold. Formally, a (real) vector bundle of rank &
is a bundle (E, M, 7, R¥) with typical fiber R* and fibers E, = R* over p such that the
local trivializations are fiber wise vector space isomorphisms (linear maps). The transition

functions ¢ o (1/1;34) e Aut(R*) = GL(k) then take values in the general linear group.

Alternatively, given the fiber R¥ and an atlas of local trivializations whose transition func-
tions take values in Aut(R*) = GL(k), a vector space structure of F,, is induced by setting

av + fw = (1&1‘)4)71(041/);,4(1))—1—61#;,4(10)) Vo,weE, a,f€R  (11.11)

for an arbitrary gauge 1/}[’,4 o R* from the GL(k)-atlas. That the vector space structure
is consistently defined is clear as

(wB)*1 (awa) + By (w))
) (98 (agP e (v) + BB vt (w) )
(a v) + By (w )) (11.12)

SConditions ) and #i) follow from the cocycle condition #44) but are often stated explicitly.
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Figure 11.2: Description of the cylinder and the M&bius strip in terms of G-atlases consisting of
two local trivializations each. Left: Since the cylinder is a trivial bundle, all transition functions can
be chosen to be identity maps such that the structure group is reduced to the trivial group G = {e}.
Differing from the visualized situation, it is possible to choose a single, global trivialization. Right: The
topology of the Mobius strip forces the transition functions at one of the overlaps to glue the fibers
together in an inverted way. The structure group can therefore not be reduced further than the group
G = R which models the reflection of fibers. Global trivializations of the Mobius strip do therefore
not exists. Note that the arrows on the Mobius strip should not be confused with the arrows in gluing
diagrams, that is, the twist glues the vectors at one of the cuts in opposite direction.

yields the same result. Note that the last step required the linearity of gf 4 ¢ GL(d). The
gauges 1/11‘,4 or z/)f are then automatically vector space isomorphisms.

The most relevant examples for us are the tangent bundle and feature vector bundles, which
are introduced in the following sections.

11.1.3 G-bundles

Depending on the topology of the bundle, it might be possible to define an atlas of local

trivializations A¢ = { (U X pX ) | X e %} whose transition functions are restricted to a
subgroup G < Aut(F), that is, they satisfy
gPt e G forall A,B€X andall pe UANUP. (11.13)

Any such atlas is called G-atlas and G is denoted as structure group of the bundle. Two
different G-atlases are equivalent (or compatible), if their union is again a G-atlas. A bundle
equipped with an equivalence class of G-atlases is known as a G—bundleﬂ

The topology of a bundle determines how far its structure group can be reduced. For instance,
the cylinder in Fig. (or any other trivial bundle) can be described by an {e}-atlas, con-
sisting of local trivializations with identity transition functions only. This corresponds to
a reduction to a trivial structure group G = {e}. In contrast, the twisted topology of the
Mobius strip requires any (G-atlas to contain transition functions which glue the fibers to-
gether in an inverted orientation; see Fig [IT.2] (right). The structure group of the Mébius
strip can therefore not be restricted further than the group G = R which models the re-
flection of fibers. On Riemannian manifolds the structure group of the tangent bundle 7'M,
and thus the associated feature vector bundles, can in general not be reduced further than to

"The equivalence class ensures thereby that no single of the equivalent G-atlases is preferred.
Equivalently, one could take the maximal G-atlas, defined as the unique G-atlas in which any other
compatible G-atlas is contained. Note that an equivalence class of G-atlases is uniquely implied by a
single given G-atlas.
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an orthogonal structure group O(d) which motivated this work on coordinate independent
CNN s in the first place.

11.1.4 Associated G-bundles

Two G-bundles are said to be associated to each other if they share the same base space,
structure group and, most importantly, same transition functions. Associated bundles
(E,M,n,F)and (E, M, 7, F) with structure group G might differ in their typical fibers F’
and F and therefore also in their left actions »: G x F' — F and» : G x F — F of G on
the respective fiber. Given two G-atlases {(UX, \I/X) ‘ X e %} and { (UX, \I/X) | X e f{}
of the bundles over the same open cover of M, the requirement for the equivalence of the
transition functions (up to the different left actions) means:

U0 (U4) 7 = (idx gP4e) = TBo (T = (idx g% %) (11.14)

Intuitively, the typical fibers F' and F of E and E are “glued together” in the same way
over M.

An important example of bundles which are GL(d)-associated to each other are the tangent
bundle 1M, the cotangent bundle T*M , any other tensor bundle T'7M and the tangent frame
bundle F'M, (the first and the latter are introduced in Section [11.2)). The associatedness of

these bundles is reflected in that their components relative to chosen bases transform accord-
. . . oxf . .
ing to the same gauge transformation (e.g. Jacobian gfu“‘ = az'g , see Appendix . The dif-
ferent actions of a gauge transformation on the respective fibers is in this example denoted as
being a contravariant transformation (7'M ), covariant transformation (7"*M), r-times contra-
and s-times covariant transformation (7°;M) and, again, covariant transformation (F'M), re-
spectively. We will later on introduce the G-structure GM, the tangent bundle 7'M and the
feature vector bundles .4 as associated G-bundles. The associatedness does in this case come
from the fact that changes of reference frames in GM lead to a simultaneous transformations
of the tangent vector coefficients and feature vector coefficients.

We want to mention that any associated bundles are additionally associated to a uniquely
specified principal G-bundle (defined in the next paragraph). In turn, any associated bundle
can be constructed from the respective associated principal bundle — we will make heavy use
of this construction to define feature vector bundles in SectionT1.3]

11.1.5 Principal G-bundles

A fiber bundle (P, M, w, G) is called a (smooth) principal G-bundle (P, M, 7, G, <) if 1) its
typical fiber coincides with its structure group G and 2) it is endowed with a smooth right
G-action

4: PxG—=G, (p,g)—p<yg (11.15)
which preserves the fibers, that is,

m(p<g) = w(p) VpeP,geqG (11.16)
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and acts transitively and freely on themﬂ The last two conditions (transitivity and freedom)
together require that the fibers of a principal G-bundle are G-torsors (or principal homo-
geneous GG-spaces), which intuitively means that they “look like G”” but come without any
specified origin or identity element/’| The local trivializations ¥ : 7=1(U) — U x G are
required to respect the right G-action, that is, to be right G-equivariant

U(p<g) = V(p)(idx-g) VpeP geaq, (11.17)
or, expressed locally,
djﬂ(p)(qu]) = 1/J7T(p)(p)-g VpePl ged,
where -g denotes the canonical right multiplication with group elements on the typical
fiber G. This extends the diagram in Eq. (IT.T) to the diagram
I U) —L S UxG

g (id x -g)

v

(U) —Y s Uxa ) (11.18)

proj;
U
which is required to commute for any g € G.

Principal G-bundles are of great relevance for the study of general G-bundles. In par-
ticular, any G-bundle (E, M, 7g, F') is associated to some (unique) principal G-bundle
(P,M,np,G,<) over M and any associated G-bundle can be constructed from P. In
the following sections we will present the frame bundle F’M and G-structures GM as spe-
cific instances of principal bundles, which will make the claims made here less abstract and
uncover some consequences of them.

11.1.6 Sections and fields

Smooth F-valued fields over M are formalized as smooth sections o of a bundle E = M
with fiber F'. A smooth section is thereby defined as a smooth map ¢ : M — FE that
assigns to each point p of the base space an element in the fiber E, over p, that is, it satisfies
o o = idpy, which the following commutative diagram visualizes:

M g E T M (11.19)

L J

idas

8A (right) group action ¢ : X x G — X, (x,g) — =.g is called transitive if any point of X can
be mapped to any other point i.e. if for each x,y € X there exists a g € G such that y = z.g. It is
called (fixed point) free if for any € X the equation z = x.g implies that g = e, that is, if only the
action of the identity element leaves p invariant. Equivalent statements can be made for left actions;
see Defs.[B.3.8|and [B.3.10}

Formally, a (right) G-torsor P satisfies P x G 2 P X s P where the isomorphism is given by
(p,g9) — (p,p.g). This condition implies that there is a unique group element connecting any two
points in the torsor. See also Def. [B.3.13]
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An important example are tangent vector fields, which are modeled as sections v : M —
T'M that assign a tangent vector v(p) € T, M to each point p in M. Note that the projection
map is, by its nature, non-invertible, such that 0 o w # idg. The following diagram does
therefore in general not commute:

E T M g (11.20)
2]

L i

In cases below where a diagram does not commute, which is mostly the case for sections,
we emphasize this visually by adding the symbol &. Smooth sections do not necessarily
exist globally but can always be defined on trivializing neighborhoods U C M. Via a
local trivialization, a local section can be identified with a function s : U — F' by setting
s(p) = Yp(o(p)) for p € U. We denote the space of global sections by I'(£) while the
space of local sections is written I'(U, E).

ide

11.1.7 Bundle morphisms

The morphisms (maps) in the category of fiber bundles are called bundle morphisms or bun-
dle maps. They differ from mere diffeomorphisms between the total spaces in that they are
additionally required to respect the bundle structure, i.e. to map fibers to fibers. In general, a

smooth bundle map between two smooth fiber bundles (E, M, 7, F) and (E, M, 7, F) is a
smoothmap ¢ : E' — E between the total spaces such that there exists a second smooth map
gzb M — M between the base spaces which satisfies 7 o ¢ = qb o m, that is, the following
diagram is required to commute:
— 2 L FE
Wl J (11.21)

M4>M

The map on the base space ensures that the bundle morphism maps fibers at p € M to

fibers at <b( ) € M instead of “shearing them apart”. Obvious generalizations to bundle
isomorphisms and bundle automorphism exist. For instance, bundle isomorphisms require ¢

and 5 to be invertible, i.e. diffeomorphisms (and to respect further structure if defined).

The specific kind of bundle map under consideration can be narrowed down further
by demanding additional requirements. A bundle M-morphism between two bundles

(E,M,n, F) and (E, M, 7, ﬁ) over the same base space M is required to map fibers E,,
over any p € M to fibers £, over the same point p, that is, ¢ = idy. In terms of a

commutative diagram this reads:
\ / (11.22)
m T
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From this perspective, we identify the bundle trivialization in Diagram (11.1) as a bundle
U-morphism ¥ between the trivial bundles 7~ (U) and U x F over U.

If the fibers carry additional structure, this structure is typically required to be preserved
by the bundle map. For instance, vector bundle morphisms ¢ between (E, M, 7, R¥) and

(E, M, 7, RF) are demanded to respect the vector space structure on the fibers, and there-

fore to restrict to fiber wise linear maps ¢|, : E, — E¢(p). Similarly, principal bundle
morphisms are required to respect the property of the fibers to be right G-torsors, i.e. to be

right G-equivariant. Given two principal bundles (P, M, 7, G, <1) and (P, M,%,G,<) and
some group homomorphism § : G — G, a principal bundle morphism is required to make
the following diagram commute for any g € G:

pP—% . p

<g <6(g)

¢ = (11.23)

=N

™

¢

M—"—M

The local trivialization of principal bundles in Diagram (11.18)) is therefore identified as a
principal bundle U-morphism ¥ between 7~ *(U) and U x G, where the group homomor-
phism 0 : G — G, g — ¢ is given by the identity on G.

Bundle morphisms are of particular importance in Chapter[I3] where they describe the trans-
formation of bundles and feature fields under the action of isometries. Coordinate indepen-
dent CNNs are proven to be equivariant w.r.t. these actions on bundles and their sections.

For more background on fiber bundles in general we refer to [262, 221}, (132} 283 273|202}
326].

11.2 The tangent bundle 7M and frame bundle FM

Any differentiable (and thus any Riemannian) manifold M is canonically equipped with its
tangent bundle 7'M and the (general) frame bundle F'M, consisting of all local reference
frames of the tangent spaces. The two bundles are naturally associated to each other, with
their structure group a-priori given by Aut(R?) = GL(d). This fact will be emphasized by
“reconstructing” T'M from F'M via an associated bundle construction which will later allow
us to define associated feature vector bundles. To clearly separate the concepts introduced
and assumptions made, we will describe TM and FM here as GL(d)-bundles. The follow-
ing Section [I1.3] will additionally assume a G-structure imposed on 7'M and F'M, which
will establish them as G-bundles. While bundles are locally trivializable by definition, we
will take the specific trivializations for now as granted and postpone their exact definition to

Section[11.4
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id xgB4

UAx R?

T™

Figure 11.3: The tangent bundle 7'M is the bundle formed by all tangent spaces of a smooth mani-
fold M. The tangent spaces are vector spaces isomorphic to R%, which implies local trivializations of
the form Wy, : WE(U ) = U x R<. Transition maps U, o (\I'ﬁj) T =id x P4 can be viewed as
a field of local gauge transformations gf 4 ¢ GL(d), translating between different identifications of
the tangent spaces 1, M with R<. Trivializations of TM are canonically induced by coordinate charts;
see Appendix Elfor more details.

11.2.1 Tangent bundle TM

Any smooth manifold M comes with a set of tangent spaces T,M = R?. Their disjoint

uniorm

™ = [] M, (11.24)
peEM

together with a canonically given smooth structure and projection map, defines a smooth
fiber bundle known as the tangent bundle. The projection map m,,, : TM — M is thereby
given by the obvious choice 7, (v) = p forv € T,M.

Local trivializations Wy, : ﬂ;é (U) — U x R? identify the tangent bundle over a trivializing

neighborhood U with a product U x R?; visualized in Fig. As derived in Appendix (C]
any coordinate chart z : U — V C R? of the manifold induces a corresponding local
trivialization, denoted as coordinate basis. We can therefore take the trivializability of T'M
for now as granted and postpone a detailed discussion to Section [IT.4] A smooth structure
on T'M is induced from the smooth structure of M via the above mentioned trivializations
from charts. We skip the technicalities on this construction and refer the interested reader
to [262, 221]].

The thus defined tangent bundle is a vector bundle since its typical fiber R? is a vector
space. Tangent vector fields, describing for instance a flow on M, are formalized as sections
o : M — TM of the tangent bundle. Smooth global sections of vector bundles always
exist; a standard example is the zero section which assigns the zero vector of 7, M to each
p € M. We want to emphasize that the tangent spaces — and therefore the tangent bundle —

'9The disjoint union Hpens ToM = U,ear {(p,v) [v € T,M} of tangent spaces can be thought
of as “remembering” from which particular tangent space 1, M a certain vector v € T'M originates,
which is necessary for the definition of the projection map ;.
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are defined without reference to coordinate frames, such that sections describe vector fields
in a coordinate free way.

After introducing the tangent frame bundle F'M below, we will come back to the tangent
bundle and its explicit construction as associated GL(d)-bundle which emphasizes its co-
ordinate free nature. In Section we will analogously construct 7'M as a associated
G-bundle to a G-structure GM.

11.2.2 Frame bundle FM

The space of local reference frames of all tangent spaces T, forms the (tangent) frame
bundle. Consider the spaces of reference frames (ordered bases) of the individual tangent
spaces T, M:

BM = {[er,... ed) ] {e1,... ea} isabasis of T,M } (11.25)

The frame bundle is defined as their disjoint union F'M := ]_[pe a FpM together with
the projection map 7,,, : F'M — M which sends frames in F,M to p and a smooth
structure induced from T'M. The typical fiber of the frame bundle is the general linear
group GL(d) = F,M, i.e. the group of invertible d x d matrices whose linearly independent
columns can be thought of as defining a frame of R?. As the frame bundle is constructed from
the tangent bundle, its local trivializations Wy, : ’ﬂ'}(U ) = U x GL(d) are immediately

induced from those of T'M; see Section Fig. shows a graphical interpretation of
the frame bundle.

Smooth local sections o : U — 71';;([] ) € F'M of the frame bundle map points p € U to
frames in F;, M. They define smooth local frame fields, that is, smoothly varying choices of
reference frames for T,M, p € U, visualized in Fig. As argued in Eq. (7.4)), a choice of
frame field on U is equivalent to a choice of gauge or local trivialization on U. This implies
that global frame fields exist only if F'M — and thus T'M — are trivial. We will discuss this

equivalence in more depth in Section[T1.4]

A transitive and free right action on the individual fibers F,M = GL(d) of the frame bundle
is naturally given by the change of frames defined in Eq. [262]]. The corresponding
action

<: FM x GL(d) — FM, (11.26)

(elr ) = lelirag = [3 0]

on FM as a whole makes the frame bundle to a principal GL(d)-bundle as defined in Sec-
tion|[11.1.5] The lack of origin or preferred identity element of the fibers F;,M as GL(d)-
torsors reflects the inherent ambiguity of reference frames.

11.2.3 TM as GL(d)-associated vector bundle (FM X Rd) /GL(d)

In Section we expressed tangent vectors in 7, M in terms of their coefficients in R? rel-

ative to some reference frame. The particular choice of frames was thereby irrelevant since

the transformation of the coefficients in Eq cancels Wlth the transformation of refer-
Z l

ence frames in Eq. (7.10) such thatv = ), B are equivalent coordinate
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GL(d)
FM
BA
gp 71—17[\1
GL(d)
M
g4

Figure 11.4: A graphical interpretation of the frame bundle F'M over M and its trivializations. The
fiber F;, M over p is defined as the space of all possible reference frames of 7, M. All frames in F,M
are by the projection map ,,, being mapped to that point p in M to which the fiber is attached. The
fibers F, M are isomorphic to GL(d), but come without an origin which would distinguish a preferred
choice of reference frame. Gauges ¥y, : F,M — GL(d) or ¢, : F,M — GL(d), introduced
in Sectionbelow, identify the fibers with GL(d), thereby specifying a preferred frame. Different
gauges are related by gauge transformations gf = GL(d). We need to warn the reader about two
potential misconceptions: Firstly, the frames in different fibers are a-priori not identified with each
other in a canonical way, which the redundant colors might suggest. Secondly, to minimize clutter, the
visualization shows only right-handed, orthonormal frames instead of all possible reference frames.
As we will discuss in the following Section[TT.3} the shown orthonormal, right-handed frames would
correspond to a G-structure GM (a principal G-subbundle of FM) for the structure group G = SO(2).

representations of the same coordinate free vector v € 1, M. Following this idea, one can
construct the tangent bundle from the frame bundle by pairing reference frames with coeffi-
cient vectors and taking a quotient to collapse the resulting redundant descriptions of tangent
vectors relative to different frames to one unique element.

In order to construct the tangent bundle in this way, consider the product FM x R? which
can be seen as a fiber bundle with base space M and a typical fiber GL(d) x R?. This
bundle consists of pairs of (mutually unrelated) reference frames and coefficients. Motivated
by the equivalent expression of tangent vectors in different reference frames we define the
equivalence relationlﬁ

1

(leiliey, ) ~cr@ ([ediei<g™, g 0)  VgeGL(@) (11.27)

on FM x R? As an equivalence relation, it partitions FM x R? into equivalence
classes [[ei];-i:l, v]. The space of these equivalence classes is the quotient space (F'M x

R4)/ GL(d). The projection map

Pt (FM < BY/GL() M, [y, o] o m (le]ly) . (1128)

" An equivalence relation on a set X is a binary relation ~ which is reflexive (x ~ x), symmetric
(x ~y < y ~ x) and transitive (x ~y ANy ~ z = x ~ z). It defines a partitioning of X into
equivalence classes [x] := {y € X|x ~ y} of elements = € X. The space of equivalence classes
X/~ :={[z] |z € X} is called the quotient set of X by ~.
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which is induced from that of the frame bundle, turns (FM x R?)/GL(d) into a fiber
bundle with base space M and typical fiber R%. Note that the projection map in Eq. (TT.28)
is well defined since it is independent of the representative of the equivalence class, i.e.
Trcr ([edies <97t g-0]) = 7y, (lediy<g™") = 7, ([eddi,), where we used
that the right action <1 preserves the fibers of F)M. The vector space structure of R% makes
(FM x R%)/ GL(d) to a vector bundle with linear combinations within the same fiber being
defined by

allely, o] + B[lediy, w] = [[e]iy, av+ Bw], (11.29)

for arbitrary o, 3 € R and ¢, w € R%. This definition is easily checked to be independent of
the choice of representative in both summands.

The thus defined bundle is isomorphic to the tangent bundle,
TM = (FM x R%)/ GL(d), (11.30)
with the vector bundle M -isomorphism given by the fiber wise linear map

d
X (FM xR/ GL(d) — TM, [fei]iy, o] = Y vie; (11.31)
i=1

which takes some representative tuple of frame and coefficient vector from the equivalence
class and maps them to the corresponding tangent vector. By the definition of the equiv-
alence relation ~GL(d)> this function is independent of the choice of representative, that
is, Vg € GL(d) : x (([%‘]?:1 a9t g- V)) = >i(g-9) ([@j]?:1<19_1)i = >, 0i€i;
cf. Eq. (7.12). As discussed in [262]], the inverse is given by taking a tangent vector, project-
ing it on an arbitrary frame and taking the equivalence class.

The bundle (FM x R%)/ GL(d) is by construction associated to FM as GL(d)-bundle, that
is, it has the same transition functions in GL(d) as FM, as we will derive in Section [I1.4]
The construction of 7'M as quotient (FM x R?)/ GL(d) emphasizes the coordinate free
nature of the tangent bundle in a very intuitive way: it considers all possible choices of coor-
dinatizations of the tangent spaces and treats them as being equivalent by taking a quotient.

11.3 G-structures GM and associated feature vector bundles .A

We will now introduce G-structures GM as distinguished subsets of frames in F'M, which
encode additional geometric structure on M that is to be respected by coordinate indepen-
dent CNNs. The tangent bundle is via a similar associated bundle construction to that in
the last section reintroduced as an associated GG-bundle. This approach can be generalized
to construct any other associated G-bundle, which we use to define the feature vector bun-
dles A. All such constructed bundles are associated to each other, that is, they differ only in
their fiber F’ but share the same base space M, structure group GG and transition functions
P4 between trivializing neighborhoods. The local trivializations of the bundles and their
mutual gauge transformations are discussed in detail in the next Section [IT.4]

11.3.1 G-structures GM

As discussed in Section [7.3] and Table it is often possible to work with a distinguished
subset of reference frames which are related by the action of a reduced structure group
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G < GL(d). This is best understood by discussing a few examples before coming to a
technical definition below. For instance, a restriction to orthonormal frames

O,M = {[61, - ‘ {e1,...,eq} is an orthonormal basis of T, M w.r.t. 77}
>~ 0(d) (11.32)

gives rise to a principal subbundle OM of FM with structure group O(d). Note that the
orthonormality of reference frames is judged by the metric 1 on M - different choices of
metrics on a manifold therefore correspond to different subsets of preferred reference frames
for the same structure group O(d). As a second example, consider a choice of orientation on
an orientable manifold, which allows to specify a preferred notion of frames{?]

GL;M = { le1, ... ed] ‘ {e1,...,eq} is a positively oriented basis of TpM}
=~ GLY(d) (11.33)

and a corresponding principal subbundle GL*(d)M of FM with structure group GL'(d).
Again, the two different choices of orientations correspond to two different choices of sub-
bundles of accordingly oriented frames. Combining both requirements for the orthonormal-
ity and right-handedness of frames results in an SO(d)-structure with fibers

SO,M := {[el, ol ed] ) {e1,...,eq} is a positively oriented, (11.34)
orthonormal basis of T, M } >~ S0(d),

Fig. can be thought of as showing an SO(2)-structure since only right-handed, orthonor-
mal frames are shown (the typical fiber GL(d) should then be labeled SO(2)). Different
choices of SO(d)-structures correspond either to an opposite handedness of frames, sticking
to the same notion of orthonormality, or to a different choice of metric (or both). The exact
same pattern repeats for volume forms w (on orientable manifolds M): they allow to specify
a preferred notion of frames

SL,M := {[el, - ‘ {e1,...,eq} is abasis of T, M with unit volume w.r.t. w}
~ SI,(d) (11.35)

and thus principal subbundles SLM of FM with structure group SL(d). The specific set of
frames which are preferred depends here on the specific choice of volume form. As a last
example, consider {e}-structures, corresponding to a trivial structure group G = {e} and
therefore consisting of one single frame at each point p. By definition, {e}-structures are
equivalent to global (smooth) frame fields o € I'(FM):

{epM = {[er,....ea] = o(p)} = {e} (11.36)

They do therefore only exist on trivial manifolds. Figs.[T3.3a]and [13.3b] visualize two differ-
ent choices of {e}-structures {e}M on M = R2.

All of these examples represent specific choices of G-structures GM on M. In general, a
G-structure on M is a principal G-subbundle of F'M, that is, a “smoothly varying” choice
of subsets G,M C F,M which are right G-torsors w.r.t. < for any p € M [284] 230, 59]

The smoothness can hereby be formalized by requiring that around each frame [e;]L, €

"2Conversely, non-orientable manifolds do not allow for a reduction of structure group to GL(d).
'3 As F,M is a right GL(d)-torsor, any G-orbit G, M in F, M is automatically guaranteed to be a
right G-torsor.
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GpM there exists a neighborhood U of p on which a smooth section o : U — Wcé(U ) C

GM with o(p) = [e;]%_, exists. The projection
Tow = Tl © GM — M (11.37)

of GM is hereby simply given by the restriction of the projection map of F'M to GM.
Together with the restriction

d
9 GM x G = GM, ([e)ey, ) = [e]b,<g = [Zj e; gji]. (11.38)

of the right action of GL(d) on FM in Eq. (IT.26) to an action of G < GL(d) on

GM C FM, this makes the G-structure to a principal G-bundle GM TGV M. How-
ever, it is important to note that there are multiple choices of such subbundles, corresponding
to different G-structures for the same structure group GG; compare this claim with the exam-
ples above. As discussed earlier, the topology of a bundle might obstruct the reduction to a
structure group (7, and thus the existence of a corresponding G-structure GM.

While the above definition of G-structures would be sufficient, it is instructive to briefly re-
view some alternative, equivalent definitions. The claim that GM is a principal G-subbundle
of FM is made precise by defining it as a tuple (P, &) consisting of a choice of an (also
non-unique) principal G-bundle P over M together with a smooth, right G-equivariant em-
bedding & : P — FM (over M )E] This is visualized by the following diagram, which is
required to commute for any g € G:

& L FM

P
qu] TQQ
P

& (11.39)

\/

Different subsets of preferred frames correspond in this viewpoint to different choices
of embeddings GM = E(P) of P in FM. G-structures are furthermore equivalent to
sections of the form s : M — FM/G with GM = s(M), which emphasizes that
GpyM = s(p) € F,M/G is indeed a choice of G-orbit in F,M as stated in footnote
Yet another definition of G-structures is in terms of (equivalence classes of) G-atlases [3260].
As this is the viewpoint which might be taken in an implementation of GM -convolutions,
we discuss it in more detail in the following Section[TT.4] For the interested reader we want
to mention that G-structures are a specific case of the more general concept of a reduction
(or lift) of structure groups [284, 1230} 159].

G-structures are of pivotal importance for the theory of GM -convolutions. The particu-
lar choice of G-structure determines the specific set of reference frames over which the
G-steerable template kernel is shared. By the gauge equivariance of the kernels, GM -
convolutions are guaranteed to respect the G-structure, i.e. to be GM -coordinate indepen-
dent. As derived in Chapter [I3] the isometries with respect to which a GM-convolution is
equivariant are exactly those which preserve the G-structure (i.e. those which induce auto-
morphisms of GM).

'4The embedding is a principal G-bundle M-morphism as introduced in Section [11.1.7, with the
group homomorphism 6 : G — GL(d) being the canonical inclusion of the subgroup G < GL(d)
into GL(d).
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11.3.2 TM as G-associated vector bundle (GM x R%) /G

Given a G-structure GM, one can adapt the associated GL(d)-bundle construction of TM
from F'M in Section to a similar associated G-bundle construction of T'M based on
GM. Instead of expressing tangent vectors relative to general frames in F'M, they will
thereby be expressed relative to the distinguished frames in GM and the quotient is taken
w.r.t. the reduced structure group G instead of GL(d). The resulting bundle is by design
associated to GM (or to F'M with a G-atlas, which is equivalent as explained in the next
section) and therefore has transition functions which take values in G. The restriction of x
in Eq. (TT.31) to (GM x R%)/G yields a vector bundle isomorphism

TM = (GM x RY)/G. (11.40)

While all three bundles TM, (FM x R?)/GL(d) and (GM x R?)/G are thus isomorphic
as vector bundles, they are only isomorphic as associated G-bundles if TM and (FM x
R?)/ GL(d) are endowed with a G-structure (or G-atlas), which is a-priori not the case.
In contrast, the bundle (GM x ]Rd) /G comes with a G-structure by design. For a precise
definition of associated G-bundle isomorphisms we refer to [262]].

11.3.3 Associated feature vector bundles A

The associated G-bundle construction (GM x R?)/G can be generalized to attach other
fibers with other group actions to the G-structure GM. Indeed, any bundle associated to
GM can be constructed in this way. Important examples in differential geometry are the
cotangent bundle T*M with its typical fiber being the dual R of R¢, acted on by the dual

action, or the (r, s) tensor bundles 7'M with fibers (Rd)®r ® (Rd*)@)s being acted on by
the corresponding tensor product representation of G.

In the following we consider associated feature vector bundles with feature vector coeffi-
cients R¢ as typical fibers. Under gauge transformations, these fibers are acted on from the
left by a multiplication with a group representation p : G — GL(c), that is, Eq. (T1.6)
is instantiated with »,: G x R® = R, (g,f) — p(g)f. Similar to before, feature vector
bundles are then constructed as a quotient

A = (GM xR®)/~, (11.41)
with the equivalence relation ~, here given by
(leilici, 1) ~ (edimiag™, p(9)f)  Vg€G. (11.42)

The elements of A are the equivalence classes Uei]le, f] of feature vector coefficients
relative to reference frames and are therefore coordinate free. A (well defined) projection
map is again induced from the projection of the G-structure:

o A= M, [lelly, f] = mg, (le]ly) (11.43)

Linear combinations on the fibers are defined in analogy to Eq. (IT.29). Since such defined
feature vector bundles are associated to GM, their structure group is G < GL(d), as we will

explicitly derive in the next Section 5| Note that this definition includes tangent vector

'>The transition functions are actually taking values in p(G) < GL(c) instead of G < GL(d),
however, the transitions are still “G-valued” in that they are defined via a G-action, as required in

Section ['I_IE}
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fields and scalar fields, which can of course be processed as feature fields, for p(g) = g and
p(g) = 1, respectively.

The construction of .4 as an associated G-bundle models GM -coordinate independent fea-
ture vectors on )M — features f,, € A are equivalently expressed relative to arbitrary frames
in GM, with feature coefficients in different coordinatizations being related via Eq. (I1.42).
Such features do, however, not have a well defined coordinate expression relative to other
frames that are not contained in GM. From an engineering viewpoint, the G-bundle con-
struction is reflected in the G-steerability of convolution kernels, which ensures that mea-
surements of features are performed relative to arbitrary frames in GM, but allows to dis-
criminate between patterns whose poses are not related by a G-valued gauge transformation
in an absolute sense.

11.3.4 Associated feature vector field and feature spaces

Smooth, coordinate free feature fields are defined as smooth global sections f € T'(\A) of the
feature vector bundles, that is, as smooth maps f : M — A satisfying 7,0 f = idas. As dis-
cussed before, such feature fields are guaranteed to exist since vector bundles always admit
smooth global sections. In the following Section|[TT.4we show how a local bundle trivializa-
tion over U4 allows to represent f by a field f4 : U4 — R€ of feature vector coefficients.
A different trivialization over U” will lead to a different coefficient field fZ : UP — R¢
representing f locally. From the transition maps between bundle trivializations it will follow
that both coefficient fields are on the overlap UAZ = U4 N UZ of their domains related
by f2(p) = p(95*) f*(p). The commutative diagram in Fig. visualizes the relations
between feature vector fields and their local trivializations.

The feature spaces of coordinate independent CNN's usually consist of multiple independent
feature fields over the same base space. The bundle describing a feature space as a whole is

the Whitney sum @, A; of the feature vector bundles A; RENY Vi underlying its individual
fields. As such it has the same base space M, a typical fiber P, R = R2:¢ defined as
direct sum of the individual fields’ fibers and is equipped with the obvious projection map.
It is associated to T'M, FM, GM and the A; as G-bundles and can therefore equivalently
be defined as

DA = (OM xR [~ (11.44)

Note that the direct sum €, p; of representations p; defining A; guarantees that the transi-
tion maps of @, A; transform each individual field independently. The feature spaces are
then defined as the spaces I'(@D, A;) of global sections of the Whitney sum bundle.

11.4 Local bundle trivializations of TM, FM, GM and A

While the global theory of coordinate independent CNNss is elegantly formalized in terms
of coordinate free fiber bundles, a numerical implementation requires coordinate free fea-
ture vectors f(p) € A, to be expressed by coefficient vectors f4(p) := wﬁp( f(p)) € R®

. . d oo .
relative to some choice of reference frame [ef‘] .—1 € GpM as described in Section In

the language of fiber bundles, this corresponds to a choice of local trivializations or gauges
W, W, WA, and U4, all of which transform simultaneously if GM, TM, FM and A are
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taken to be GG-associated to each other. Recall that a local description and thus implemen-
tation via a G-atlas, consisting of local trivializations which cover M and satisfy the three
conditions (11.8)), (11.9) and (11.10), is fully equivalent to the global, coordinate free theory.

In this section we work out the associated trivializations of TM, FM, GM and A and
their synchronous gauge transformations. We start out by assuming trivializations of T'M
to be given and discuss how they induce trivializations of F'M and corresponding local
frame fields. If a G-atlas is chosen for TM and thus FM, it gives rise to a G-structure
GM whose G-atlas agrees with that of F’M. The local trivializations of any associated G-
bundle, in particular those of the feature vector bundles A, follow from those of GM . These
trivializations recover the transformation law of feature fields from Section

11.4.1 Trivializations of TM

As the tangent bundle has R? as typical fiber, its local trivializations are given by maps of
the form

Wy :m H(U) = U x RY, (11.45)

™
which are visualized in Fig.[TT.3] These trivializations correspond to the (spatially smoothly
varying) pointwise gauges

Yoy : T,M — RY (11.46)
from Eq. by identifying Wp,(v) = (7, (v), Ymip(v)) for p = 7, (v). In order to
respect the vector space structures of the fiber R? and the tangent spaces 1,M, the trivial-
izations Wy, are defined as vector bundle isomorphisms between ﬂ;‘} (U)and U x R?, that
is, the maps try,, are required to be linear and invertible (i.e. vector space isomorphisms).
The transition maps between different trivializations of 7'M will in general take values in
the general linear group GL(d), the (linear) automorphism group of R¢.

If further structure is specified on the tangent bundle, the trivializations are required to re-
spect this structure. For instance, if a metric is defined on M and thus T'M, the maps
are required to be isometric, i.e. to map vectors in 7T, in such a way to vectors in R4
that norms and angles are preserved. As the trivializations are then only allowed to differ in
their direction and orientation, different trivializations are guaranteed to be related by a re-
duced structure group O(d), corresponding to the metric as O(d)-structure. More generally,

a G-structure on T'M requires — or is implied by — a choice of G-atlas { (U™, ¥7{,) 1, -
Two different trivializations W7}, and W2, of such a G-atlas are on U4 N U® related by

Uh o () ! as defined in Eq. (IT.4) with G-valued transition functions
—1
gPrUANUP = G, pep,o () s (11.47)

which define the left action » : G x R? — R?, (g,0) + g - 0 on the typical fiber. For a
graphical intuition on the pointwise action of the transition functions on individual fibers we
refer back to Fig. A diagrammatic visualization of local trivializations of 7'M and their
transitions is given in Fig.[T1.5a

11.4.2 Induced trivializations of FM and frame fields

Any atlas { (UX,¥3})) of the tangent bundle is in one-to-one correspondence to an

atlas { (U™, ¥3),)

Fxex

} Xex of the frame bundle. Specifically, given a local trivialization W/},
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U x R? U x GL(d)
Ui, B
T™ (ingBA~) FM (id)(gBA~)
-1 \IJ{%" d -1 “Ifff}w
L U) UxR L (U) U x GL(d)
™ M
Tt ; Y, .
Progy proj,
U U
(a) Trivializations of TM L5 M. (b) Trivializations of FM 25 .
UxG U x R¢
. BA \I’f . BA
(id x g% (id x p(g”*)")
Wi, _ Lg%
7T;;(U)$>UXG WAI(U) A LU xRC
Tam . A .
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U U
(c) Trivializations of GM L2 M. (d) Trivializations of A2 M.

Figure 11.5: Visualization of the local trivializations of the associated G-bundles TM, FM, GM and
A in terms of commutative diagrams where we abbreviate U := UANUP. A G-atlas {U X \I/fil}
of the tangent bundle with transition maps g®# : U — G implies a G-structure GM and induces
G-atlases for FM, GM and A with compatible transition functions. More detailed commutative
diagrams which show sections o : U — 7,y (U) and the right action < on the frame bundle are given
in Figs. [[T.6a and [IT.60] Feature fields, modeled as sections f : M — A of the associated feature
vector bundle A, and their local trivializations f* : U* — R are shown in Fig. Graphical
interpretations of the commutative diagram for 7'M are given in Figs. andm

of T'M, a corresponding local trivialization

A -1
Vi T on

(U*) = U x GL(d), [eley = (p, Y, (leddiny)) (11.48)
of FM, where we abbreviated p = 7, ([e;]¢_,), is induced by defining

7/1;74]\1], : FPM - GL(d)7 [ei]zdzl = ’(ﬁg\[,p([e’b}g:l) = (w;]l\fp(e’b))zdzl (1149)

as a map from tangent frames to invertible d x d matrices whose ¢-th column is given by the
trivialization wj‘f}u’p(ei) € R? of the i-th frame axis e; € T,M. As required for associated
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bundles, the trivializations of T'M and F'M share the same transition functions,
B d B d
Yruryp ([61]1:1) = (wTM.p(ei))izl
A A d
= (gf qz[}TJ\J,p(ei))izl

= ng (wﬁj.p(ei))j:l

= g7, ([ell) ) (11.50)

since the action of g4 on the individual trivialized frame axes in the second line agrees
with its action on the trivialized frame matrix in the third line. Furthermore, as claimed for
principal bundles in Eq. (IT.I7), the trivializations of the frame bundle are right GL(d)-
equivariant, that is, for any h € GL(d) one has:

d
iy ([eliey <h) = viy, ((Z] €j hﬂ) )

i=1

= (dﬁu,p (ZJ €j hji))jzl
(Zj iy (€5) hﬂ) j: )

= (W, (), h

= i, (lelly) - h (11.51)

Here we used the linearity of w]f}\j,p in the third step and identified the index expression as a
right matrix multiplication in the fourth step. Fig.|l1.6a] summarizes the left action on the

trivialization via transition functions U/ o (¥#,) = (id x gB4) as derived in Eq. (TT.50)
and the right equivariance W/}, o (< h) = (id x -h) o U/}, of the trivializations as derived in
Eq. (TL.5T).

As indicated in Eq. (7:4) and visualized in Figs. [7.1] and % a smooth local trivialization

W, on U4 of the tangent bundle induces a frame field on U?. It is formalized as a smooth
local section

oA UA S 2 (U4, pes [(w;‘)‘[,p)‘l(ei)}é (11.52)

FM —

of the frame bundle, defined by mapping the standard frame vectors €; of R¢ back to the
tangent spaces in 77;; (UA) C TM. Following Eq. (7:10), a gauge transformation from

UA to UE = (id x ¢gB4.)¥4, corresponds to a transformation

oP(p) = oh(p) < (927) (11.53)

of sections on UAB. Being defined in terms of W/},, the trivializations W/}, of F'M have
the nice progerty that they map the corresponding sections o to the identity frame e €

GL(d) € R?*4 of R%, which can be seen by inserting both definitions:
-1 d
oot ) = v, ([(h,) @] ) (11.54)
d

1
= (Ei)?:l = ¢

= (Uhepo W) @)’
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(id x - h)

(id x - h)

(id x ")

7L U) —YB U GL(d)

proj;

(a) The trivializations of the frame bundle are right equivariant, i.e. they satisfy
\IIFM o<dh = (ld X h) o \IIFM for any h € GL(d)

<gB’A

-1
FM

v

(b) If identity sections ¢ and o® are added to the diagram, the left and right
actions agree with each other since ¥}, ,00”* (p) = eand g-e = e-g Vg € GL(d).

Figure 11.6: Extended diagrams of the frame bundle trivializations which capture the interplay of the
transition functions g”# -, the right actions <1 k and - h and the identity sections o** and o”. As before,
we abbreviate U = U*? = U* N UP. Except for 0* o 7, # idpar and 0” o 7, # idpar, the
diagrams commute. If the trivializations are part of some G-atlas, similar diagrams, with F’M/ and
GL(d) being replaced by GM and G, apply to the corresponding G-structure.
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This property is often used to define sections of F’M given trivializations W/}, as

- -1 -1
ot UA — 7TF$(UA), D (\Iiﬁj) (p,e) = (wﬁ,p) (e), (11.55)
which ultimately coincides with our definition in Eq. (TT.52). Since 0 and ¥}, constructed
this way imply each other they are sometimes called identity sections and canonical local
trivializations. Extending the diagram in Fig.with identity sections 0 and ¢ 2, related
by Eq. (TT.53), fixes h = g”4 and thus leads to the commutative diagram in Fig. The
left and right multiplications with g4 on the typical fiber GL(d) coincide hereby only since

wﬁu oot = ngu,p ooB = e for which %4 - e = gB4 = ¢ - gB4. Compare Fig.|11.6b|to

Fig.|11.4] which shows the left gauge action gf 4. on GL(d) and the right action < (gf A) -
of the inverse group element which transforms between the corresponding identity section
frames.

11.4.3 G-atlas induced G-structure GM

The agreement of the transition functions of the tangent bundle and the frame bundle in
Eq. (I1.30) implies that a G-atlas of TM induces a G-atlas for FM. As we will derive
in the following, such G-atlases fix a corresponding G-structure GM, i.e. a principal G-
subbundle of F'M, consisting of preferred frames.

To motivate the definition of GM in terms of a given G-atlas { (UX,U,)}, _, of FM,
consider two of its local trivializations W7, and W2, with overlapping domains and let
p € UANUP. The trivializations define reference frames o (p) and o2 (p) in F,M, which

are according to Eq. (TT.53) related by the right action of some element g5 of the reduced

structure group G < GL(d). Any such defined frame is therefore seen to be an element of
a G-orbit GyM = G in F,M = GL(d). Specifically, expressing the identity sections via

-1 -1 1

Eq. (IT35) as 04 (p) = (Vi) (e) and 0P (p) = (Vi) (€) = (97 Wi,)  (e) =
(1/)}3\1‘1,)_1 ((gf 4) _1) suggests the pointwise definition of the G-structure in terms of in-
verse images of GG by (arbitrary) gauge maps:

A 1 A 1

GM = {(vh,) (9) g€ G} = (¥h,) (G) (11.56)

The independence from the chosen gauge of the G-atlas is clear as any other choice
—1 —1 —1 —1 .

(VB (G) = (Vi) ((ng) G) = (¥f;,)  (G) would yield the same resul.
As one can easily check, G, M is indeed a right G-torsor since G is a right G-torsor and w;‘M_p
is by Eq. (IT.51) aright GL(d)-equivariant — and thus in particular right G-equivariant — iso-
morphism. The required smoothness of GM = HpE v GpM follows from the smoothness
of the trivializations W73,

A G-atlas of local trivializations of GM is given by restricting the trivializations in the G-
atlas of F'M to frames in GM, that is,

a, = Uh| (U - U2 x G, (11.57)

1 .
a (U4) GM
or, locally,

Vorrp = V| ot GoM = G. (11.58)
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It follows immediately that the G-valued transition functions agree with those of TM and
FM, that is,

lpg\[,p([ei]gl:l) = g;)BAlzjé[p([el];i:l) ’ (1 1 59)
and that the trivializations are right G-equivariant:
Yoy (ledlizy <h) = Yo, (lelisr) b VheG (11.60)
The frame fields are also given by an equivalent expression
-1
oi(p) = (V) (o) (11.61)

to that in Eq. (IT.53). The commutative diagrams in Figs. [IT.6a]and[I1.6b]hold as well when
replacing FM with GM and GL(d) with G.

11.4.4 Induced trivializations of associated bundles A

A G-atlas {(UX, \Ilj()}Xe3€ consisting of local trivializations \Ilj{ : W,Zl (UX) — UX xR°
of the associated feature vector bundles A = (GM x R¢)/ ~, is induced from the corre-
sponding trivializations Wz}, of the G-structure. In order to construct these trivializations,
recall that A is defined in terms of equivalence classes Hei];-izl, f] consisting of pairs of
reference frames and feature coefficient vectors which are related by the equivalence rela-
tion ~, defined in Eq. (IT:42). A natural idea is thus to trivialize [[e;]¢_;, /] € A, by
picking one representative of its equivalent coefficient vectors in R®. A preferred choice
of representative is hereby given by that coefficient vector belonging to the identity section
frame o (p) corresponding to W},

Let [e;]L; := 0(p) <h € G,M be some frame that is defined by an offset h € G relative
to section 0. This offset can be recovered by the trivialization of the G-structure:

Vv ([eliey) = ¥a, (0 (p) <h) = ¥4, (p) h = h (11.62)

Here we used the right G-equivariance of 7&(‘3\”} and that o is defined as identity section;

see Egs. (T1.60) and (T1.54), the latter adapted to 1&5‘3\14[,. We can therefore rewrite any frame
via its offset as:

[ei];‘izl = UA(p) < ¢é\],p([ei]?:1) (11.63)

Similarly, we can rewrite any feature vector [[ezﬁ:l, f] € A, by different representatives
of the equivalence class:

ey, 1] = [o%(p) <l (edier), 1] = [02(D), p (W, ([eidi=1)) /]
(11.64)

Based on these insights we define induced trivializations of .A by setting
vl w H(UY) = U4 xRS (11.65)
lleddizs 11 > (man (feidina)s it ([leadirs 11))
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proj,

Figure 11.7: Coordinate free feature fields are defined as global sections f € I'(.A). On local neigh-
borhoods U# and U? they trivialize to fields of feature coefficient vectors f* : U4 — R° and
f? . UP — R° which are on U = U* N U? related by fZ(p) = p(ng)fA(p). Except for
f om, # id4, the diagram commutes.

with
v A, = RC (11.66)
[ledirs 1] = [0 @), (i, (ledi) )/ | = p(vin, (i) 1

which picks that specific representative coefficient vector f4 = p (d)éw ([eldy)) f € Re
that is distinguished by the frame o4 (p) corresponding to the chosen gauge. For later con-

venience we note that this implies in particular that the inverse of Eq. (TT.66) is given by

(W) R Ay f o [0 (), /] (11.67)

The such defined trivialization is independent of the chosen representative since for any
k € G we have:

wfp([[ei}f:ﬁl B p(k)f]) = p($d, (lediey < k1)) p(k) S
= (wG'\[p([eZ]z 1>‘k_1)P(k)f
= (wGUp([e’L]z 1))f

Uiy ([leddier, 1]) (11.68)

By construction, the transition functions are given by p( gf A):

wAp([[elh 1 ﬂ) = p(l/)(‘]\[p<€7f 1))f
= p( chwp(e ;1 1 )f
p( Y (1/’0\11)([61}? D)/
= P(gp )¢A,p([[ei]z’:17 f]) (11.69)

If the tangent bundle is taken as a G-associated vector bundle TM =2 (GM x R%)/G, its
trivializations are recovered from Eq. (T1.63) for the specific choice p(g) = g.
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Assume a coordinate free feature field f € T'(A) to be given. Relative to gauge ¥4, it can
be locally represented as a coefficient vector field f4 : U4 — R by defining

A= projs O\I/;l4 of (11.70)
which is equivalent to the pointwise definition

fAp) = vl o fp). (11.71)

As apparent from the commutative diagram in Fig. [I1.7} the transition functions in
Eq. (T1.69) carry over to the local coefficient fields such that we get

B = p(g?) () (11.72)

for p € UANUP. This agrees with and justifies our definition of the gauge transformations
of feature coefficient vectors in Part[[l} Eq. (8.3).

11.4.5 Summarizing remarks

The here defined local trivializations and transition functions formalize and justify the defi-
nitions of gauges and gauge transformations from Section Local trivializations of T'M
and F'M were shown to induce each other. If a G-atlas is chosen for either of both, it defines
a G-structure GM, whose G-atlas essentially coincides with that of F'M. It furthermore
induces a G-atlas for any other associated bundle, including A. As visualized in Fig.
the transition functions of all G-atlases for TM, FM, GM and A agree, making the bun-
dles G-associated to each other. Specifically, when switching from gauge A to gauge B, the
trivializations of TM, FM and GM transform according to a left multiplication with gB4
while the feature vector bundle trivializations transform according to a left multiplication

with p(gB4); see Eqs. (IT47), (TT.50), (TT-39) and (Eq. (TT.69)). At the same time, frame
fields transform according to the right action <I(g”%) ~! (Bq. (@IT53)).

11.5 Parallel transporters on associated bundles

Section [8.2] gave an intuitive introduction to the parallel transport of tangent vectors and
feature vectors along a path v from ¢ € M to p € M. Here we briefly discuss how coor-
dinate free parallel transporters on the fiber bundles induce each other and derive coordinate
expressions relative to given trivializations for them. We start by assuming coordinate free
transporters

Posry  1eM — T,M (11.73)
on the tangent bundle T'M to be given and explain how they induce transporters
Pyt FoM — FpM (11.74)

on the frame bundle F'M. If these transporters are G-compatible with the chosen G-
structure, as discussed below, they further induce transporters

Faary GoM — G,M (11.75)
Py A=A (11.76)
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on the associated G-bundles GM and A. In practice, most convolutional networks assume
either transporters that are based on the Levi-Civita connection or some trivial connection.
Chapter [14] gives an overview of the transporters occurring in the applications in Part[[V]

A more formal definition of bundle transporters might take a different route, starting by intro-
ducing a so-called principal Ehresmann connection on the principal G-bundle GM (which
would by definition be GG-compatible). Such an Ehresmann connection can either be de-
fined by a choice of horizontal subbundle HGM of the tangent bundle TGM of GM or,
equivalently, by a Lie algebra-valued connection 1-form w : TGM — g on GM. The
transport on GM would subsequently be defined via the horizontal lift 4T : [0,1] — GM
of curves v : [0,1] — M on the base space such that the tangent vectors of the lift in
GM are horizontal, i.e. 4T € HGM. All transporters on TM, FM and A as associ-
ated G-bundles would then be induced from the transporters on the G-structure. Instead of
following this formal approach, which would be rather technical and can be found in the lit-
erature [262} 326|132 2211202} 273]], we focus on how the different transporters interrelate
by inducing each other.

11.5.1 Transport on TM

To this end, we take a shortcut by assuming the coordinate free transporters P, , on T™

to be given. Recall that, given gauges \IIT‘% on a neighborhood U A of g and ¥4, on a
neighborhood U4 of p, the tangent vector transporter is coordinatized according to Eq. (B6),
that is,

gi/qA = wxr?wp © Pty © (wzf}u.q) € GL(d), (IL.77)

and that its coordinatizations transform under gauge transformations at ¢ and p according to

Fa. G3):
=~ ~ ~ -\ —1
gFF — gBA g A (b ) (11.78)

We refer back to Eq. for a visualization of these definitions in terms of a commutative
diagram.

11.5.2 Transport on FM

Given the transporter on the tangent bundle, the transporter on the frame bundle follows
immediately from the transport of individual frame axes. In equations, let [e;]%_; € E,M be
a frame at g, then the individual axes e; for i = 1, ..., d are tangent vectors in 7y M which
can be transported via 7, .. We thus define the transporter on the frame bundle asm

d
i=1

Pory: FiM — B,M, ey = Py, (leidi) = [Py, (e3)] (11.79)

!6The transport of a frame along -y describes a curve " (horizontal lift) in FM. The space spanned
by all tangent vectors 4" in T F M along such curves is the horizontal subbundle HFM of TFM,
mentioned above.
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. . . P i -1
In order to derive the explicit form of its coordinatization 7}, , 0P, o (¢5,,) € GL(d),
consider its action on a group element h € GL(d), representing a trivialized frame of RY
which is spanned by the matrix columns h.; € R, i =1,...,d:

[@bﬁu,p © Py © (¢1§1\1q) 71} (h) (11.80)
= [ P (0h00) " R0IL)
= wg\f,p ( [IPTM,'Y © (wITqu) o (h:,i)] ?:1)

(def. of ¥, ,» Eq.
(
= (Ve © Py 0 () " (00)) (
(

def. of By, , Eq. ((T79))
def. of 'd)[é;\[,p’ Eq. @D)

i=1

- (g;“A(h:,i)), 1 triv. of By, Eq. (TL77))
i

The coordinatizations of the frame transporters are therefore equivalent to those of the tan-
gent vector transporters in Eq. (I1.77) but act on trivialized frames in GL(d) instead of
acting on coefficient vectors in R%. Their gauge transformations are from the commutative
diagram

gAZ.
GL(d) - GL(d)
. wlgw,q 7DFM . %
gP A ] M ——"— F,M B4 (11.81)
Vit %p/‘
GL(d) = GL(d)
gy "

seen to coincide with those of the coordinatized transporters on 7'M in Eq. (T1.78).

11.5.3 Compatibility of connections and G-structures

Not any choice of connection or definition of transporters on the GL(d)-bundles TM and
F'M is compatible with any G-structure. Specifically, a G-structure might not be closed

under the transport of frames, that is, while a frame in G,M C F,M will by PFM, . be

transported to some frame in F,M, this frame is not necessarily contained in G, M |'’| Rel-
ative to trivializations of GM, such an incompatibility would reflect in coordinatized trans-
porters g5 ¢ G, whose left multiplication is well defined on the fibers R? and GL(d) of
the GL(d)-bundles TM and F'M, but not on the fiber G of GM. If the subbundle GM is not

'"In terms of a principal Ehresmann connection on F'M, this is the case if the horizontal subbundle
HFM C TFM is not contained in TGM C TF M. An immediate definition of parallel transport in
terms of a choice of horizontal subbundle H G M on the G-structure will always (by definition) lead to
a well defined transport on GM .
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closed under the parallel transport on F'M, this means that no well defined corresponding
transport on GM — and thus on any associated G-bundles A — exists.

As an example, consider the Levi-Civita connection on Euclidean spaces, whose transporters
keep tangent vectors and frames parallel in the usual sense on E,4. The {e}-structure (frame
field) in Fig. is closed under this transport, and therefore compatible. The {e}-structure
in Fig.|[13.3b} on the other hand, is not closed under the transport, and thus incompatible with
the Levi-Civita connection. Similarly, the SO(2)-structure on S? in Fig.[17.2alis compatible
with the Levi-Civita connection on the sphere, while the {e}-structure in Fig.[I7.2b|is not.

The reader might wonder which general statements about the compatibility of connections
(or transporters) and G-structures can be made. In general, the Levi-Civita connection, or
any other metric connection, are compatible with the O(d)-structure OM that corresponds
to the metricEg] If the manifold is orientable, the Levi-Civita connection is furthermore com-
patible with any SO(d)-structure that corresponds to the metric. An example is the SO(2)-
structure on S? in Fig. A necessary (but not sufficient) condition for a G-structure
to be compatible with a given connection is that the holonomy group of the connection is a
subgroup of the structure group G.

An important special case is that of {e}-structures, since they imply a unique trivial connec-
tion The corresponding transporters move frames in such a way that the stay parallel
with the frames of the {e}-structure. Trivial connections might not seem to be of particular
importance for the theory of GM -convolutions, however, they are actually utilized by many
convolutional networks. Specifically, any network that relies on an {e}-structure is implicitly
assuming a trivial connection. This includes all of the models in Table [14.1 with G = {e},
specifically those which are reviewed in Sections m and 18.3|.|21 Note that these models
assume the trivial connection only for their feature vector transport but compute geodesics
for the transporter pullback, Eq. (9.21)), based on the original Levi-Civita connection.

11.5.4 Transport on GM

Assuming that GM is compatible with (i.e. closed under) the transport on F'M, a well
defined transporter is given by restricting the frame bundle transporter to the G-structure:

Fn

Ly "

PFA

1,y ’GM :

G,M — G,M (11.82)

The transition functions between different coordinatizations of 7, ~ do then agree with
those of 7, and thus also 75, . We obtain the following commutative diagram, which

visualizes the restriction of the diagram in Eq. (IT.8T) from F,M, F,M and GL(d) to G, M,

18This statement holds by definition since metric connections preserve angles and lengths between
vectors and thus the orthonormality of frames. One can furthermore define metric connections as
principal Ehresmann connections on OM.

19 A connection is trivial if its holonomy group, i.e. its parallel transport around any closed loop, is
trivial [62].

20nly one principal Ehresmann connection H{e}M = T{e}M can be chosen on {e}M since the
vertical subbundle V{e}M is the zero-section of T'{e}M .

*I'These models are implicitly assuming a trivial connection by not modeling non-trivial transporters
of feature vectors: they accumulate feature vector coefficients without transforming them.
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GpM and G:
AA
G Al G
% P %
s GM —2 5 G,M gBA. (11.83)
goe

We will in the remainder of this work assume that the transport on GM is well defined.

11.5.5 Transport on A

If the transporters of a connection are well defined on GM, they induce transporters on
any associated G-bundle, including the feature vector bundles A = (GM x R¢)/ ~,. Let

fq = [les]%_;, /] be a coordinate free feature vector in A,. Its parallel transport is given by
that equivalence class defined by keeping some representative coefficients f € R€ fixed and
transporting the corresponding frame [e;]%_:

Pyt Ag = Ay, g P(fa) = [P, (lelzn), f] (11.84)

In Section @ we claimed that the transporter of numerical feature vector coefficients is

given by p( ) provided that gAA € @, which is the case if the transport on GM is
well defined. ThlS coordinate expression of P, _ can be derived by evaluating the action of

w;ép oP, 0 (wfq) “le p(G) < GL(c)ona feature coefficient vector f € R€ step by step:

vy 0Py 0 () 7| ) (11.85)
= [ty o P | ([ @), 1]) def. of (1:4,) ", Eq. (TT57))
U ([P (7)), 1]) def. of P, . Eq. (IT59)

(
(
= oYy © Rasy 0 @) -1 (def. of vy, Eq. (IT55))
(
(R

A —1
= (7/)(1\11; Tty © (’lﬁé\,)q) (e)) - f def. of identity section o , Eq. m)

= P(Q?A) f %, i coordinates Eq. (T33))
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The commutative diagram

AZ
Re p(95") Re
rk i %
p(gqﬁﬁ) ! A’W P(QEA) (11.86)
R€ R¢
p(g5")

implies that the gauge transformations of the coordinatized feature vector transporters read:

5 i BAy—1
p(977) = plgy")p(97")p(a7) (11.87)
Note that this transformation law is in agreement with that in Eq. (11.78)).
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Coordinate free formulation of
kernel field transforms and GM-convolutions

The associated G-bundles introduced in Chapter [11] allow to describe feature fields — and
therefore convolutional networks — on a global level. Given a sequence

Ao o M, Ay 25 M (12.1)

of G-associated feature vector bundles over M, we describe coordinate free convolutional
networks as sequences

T(Ag) —2 T(A) 22 | I

I(Ay) (12.2)

of parameterized layers Ly, ..., Ly which map between the corresponding feature spaces
I'(Ag),...,T'(An), i.e. between feature fields. While the field types (or transformation
laws) p; : G — GL(¢;) of the intermediate bundles A; := (GM x R%)/ ~,, fori =
1,..., N — 1 have to be specified by the user as a hyperparameter, the field types pg : G —
GL(cp) and py : G — GL(ep) of the network input and output are typically determined
by the learning task. The modular construction of neural networks allows to restrict attention
to individual layers, mapping between feature spaces I'(.A;,) and T' (Ao ) of dimensionality
Cin and ¢y and type p, and p.

The main goal of this chapter is to introduce the coordinate free formulation of GM -
convolutions, which are the central building blocks of GM-coordinate independent net-
works on Riemannian manifolds. To get started, and to introduce concepts that are required
later on, we will in Section first focus on the simpler case of 1 x1 GM -convolutions,
which apply point-like kernels. Section [12.2]shifts the focus to GM -convolutions and ker-
nel field transforms with spatially extended kernels. They are parameterized in terms of
smooth, global kernel fields, which are introduced in Section GM -convolutional
kernel fields are required to share weights between different spatial positions. In order for
this weight sharing to be GM -coordinate independent, the template kernels that parameter-
ize GM -convolutional kernel fields are required to be G-steerable (Eq. (I12.28))). The actual
kernel field transforms and GM -convolutions are introduced in Section[12.2.2] Their global
definition is guided by replacing the local coordinate expressions from Section[9.2] with their
global, coordinate free counterparts. As shown in Section[12.2.3] these coordinate free defi-
nitions reduce in local trivializations to the coordinate expressions from Chapter[9]in Part[I]
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12.1 1x1 GM-convolutions

1x1 GM-convolutions map input feature fields fi, € I'(Aj,) to output feature fields fo, €
I'(Aou) by linearly mapping each individual input feature vector fiy(p) € Ain, = R to
an output feature vector fou(p) € Aou,p = R at the same location p € M. The convo-
lutional character is implemented by sharing the linear map from Aj, , to Ay, between
different spatial locations. However, while the feature spaces Aj,, and A, , as well as
Aoutp and Aqy o are for different p, ¢ € M isomorphic to each other, there is no canoni-
cal isomorphism between them given if the considered structure group G is non-trivial. It
is therefore not obvious how the linear map could be shared between different locations.
As already suggested in the introduction of this chapter, this issue is resolved by consid-
ering G-equivariant kernels which are indifferent to the specific choice of isomorphism or
gauge. The arbitrariness of the trivialization which is chosen from the G-atlas reflects the
GM -coordinate independence of 1x1 GM -convolutions.

Mathematically, 1x1 GM-convolutions can be formulated either as specific vector bundle
M -morphisms or via the corresponding sections of (associated) homomorphism bundles
Hom(Ajn, Ao ). Since we require both concepts later on, we will introduce both viewpoints

in the following Sections [I2.1.T]and[12.1.2]

12.1.1 1Xx1 GM-convolutions as vector bundle M-morphisms

1x1 GM -convolutions can be formalized in terms of specific smooth vector bundle M-
morphisms which share weights over spatial positions. Ignoring the requirement for shared
weights for now, such a vector bundle M -morphism C is a smooth bundle map satisfying the
following commutative diagram:

A]n 4>' A()llt
(12.3)
AOL\(
The commutativity m, =7

o, © C ensures that each fiber Ay, ,, is mapped to the fiber Aoy p
over the same point p € M (which gives rise to the “M” in the term M -morphism). As
a vector bundle morphism, the restriction C |p Ainp = Aou,p to a single fiber is further

defined to be linear. Relative to a local trivialization \IJA of A;, and \I/A of Agut, the bundle

Aout

map is therefore at each point p € U4 represented by a matrlx

CA|p = ¢A -

AoutsP

oClyo (v € RuXin (12.4)

)

Its relationship to a second coordinatization C? is at p € U4 N UP given by

CPly = pan(9P%) Cp (9547, (12.5)
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which is evident from the commutative diagram below:

A
RC;" ¢ |p Rcoul
A A
BA wAmp\ C|p /wflounp BA
pin(gp ) Ain’P AOUt’P poul(gp )
B B
wAin P onua P
Rcm Rcoul
CPlp

(12.6)
The bundle map C acts on input feature fields f;, € T'(Aj,) to produce output feature fields
Juu=Co fin € TI'(Aou)- (12.7)

In terms of a commutative diagram, this mapping is visualized as:

.Am 4> Aout

(12.8)
m fout

In order for a vector bundle M-morphism Cg, , to represent a 1x1 GM -convolution, it
needs to be parameterized in terms of a 1x1 GM-convolution kernel template Ki.q €
Reux¢n which is shared with coordinatizations at all spatial positions. As argued before
in Section no particular gauge must thereby be preferred in order to ensure GM -
coordinate independence. It is therefore necessary to share the weights with all trivializa-
tions X € X of the G-atlas A G simultaneously, that is, to require:

cf§m|p = Kpa for any gauge X € X with p € Ux. (12.9)

From the transformation behavior between different coordinatizations in Eq. (I2.3)) it follows
that the kernel template has to satisfy the linear constraint

Po(9) Kix1 p(9) ™" = Kia Vg €G, (12.10)

that is, it has to be an intertwiner (an equivariant linear map, Def.[B.5.7). The vector space

Home (py, po) = {Kia € RO

Eiapo(9) = pou(9)Eva Yg € G} (12.11)

of intertwining maps characterizes the space of GM-coordinate independent
1x1-convolution kernels fully.  As already mentioned in Section [0.I.1] Schur’s
Lemma implies that the requirement on Kj.; to be an intertwiner prevents a
mapping between fields which transform under non-isomorphic irreducible representations
via 1x1 GM-convolutions. The more general GM -convolutions with spatially extended
kernels, defined in Section[12.2} will resolve this issue.
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With these preparations we are ready to give a concise definition of 1x1 GM-convolutions:
Definition 12.1.1 (1 X1 GM -convolution). A 1x1 GM -convolution is a map

Kia® : F(-Am) — F(-Aoul)7 fin — Kia ®fin = Clelo fin (12.12)

which is parameterized by an intertwining 1x1 GM-comvolution kernel Ki €
Home (p,,, pou)- Here Ck,.,, is the unique smooth vector bundle M -morphism between
Ain and Aoy which is in arbitrary gauges wAi“,p and wAnu[,p from the considered G-atlas

pointwise defined by
Chtialp = ¥, o Kpaot, . (12.13)

The independence of the chosen gauges (GM -coordinate independence) is guaranteed
by Ky being an intertwiner.

To show the independence of the chosen gauge explicitly, consider any G-related trivializa-
tions p, (9) ¥, , and Pout(9) Uy p for an arbitrary structure group element g € G, which
leave the construction of

Clel‘p = (pout(g) 1/],4““[7;0)_1 o Ky o (Pin (g) wAm,p)
= U o (pul9) K p,(9)) 0¥y,

outs P
— dJA:ip o Kix 0 Q/JAimp (12.14)
invariant. That such defined 1x1 GM -convolutions are indeed mapping to sections in

I'(Aoy) follows from Cg,,, being a bundle map. An overview of local coordinatizations
of 1x1 GM -convolutions is given in Fig.

12.1.2 1Xx1 GM-convolutions as homomorphism bundle sections

While the vector bundle M -morphism with gauge independent coordinatizations from
Def. [12.1.1| and Fig. fully specifies a 1x1 GM -convolution, we will now adopt an al-
ternative viewpoint which describes 1x1 GM -convolutions in terms of the homomorphism

s
bundle Hom(Ain, Agw) —=2s M. To this end, recall that the vector bundle morphism C
in Eq. (I2.3)) restricts to linear maps C|p, : Ainp — Aou,p Over each p € M. The set of
such linear maps (or vector space homomorphisms) between Ajy ,, and A,y , is denoted as
Hom(Ajp p, Aout,p). Since it is closed under linear combinations, it forms itself a vector
space. It can be shown that the disjoint union

Hom (Ain, Aow) =[] Hom(Ap, Aoup) (12.15)

peEM

of these homomorphism spaces forms a vector bundle, the homomorphism bundle between
Ajn and Ay, when being equipped with the projection map 7, : Hom(Ajp, Aow) — M
which sends elements in Hom(Ajy p, Aout,p) to p and a smooth structure induced from that
of Aj, and Agy [74]]. The fibers over p satisfy Hom(Aip , Aout,p) = Hom(R% R) =
Reu>¢n guch that we can take the typical fiber to be the vector space of real-valued coy X ¢in
matrices.
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Cglxl = (ld X K1><1)

[ 1

U x R¢n U x IRCou

B
\I{Aoul T

idx p, (g5 id % o (977)
‘ C A
. Kyx — t
U xR 2 7=1(1)) - m H(U) —— U x Rew

I(1><1®fin
)

Cityy, = (id x Kia)

Figure 12.1: Coordinatization of an 1x1 GM-convolution Kix1® : I'(Ain) — T'(Aou) and its corre-
sponding vector bundle A/-morphism Cr;., . The convolutional character is encoded into the morphism

by sharing a kernel matrix Kix; € R°"*n gver different spatial positions p € M. Since no gauge
is to be preferred, the kernel is furthermore shared over different trivializations Cﬁm and Cfém. The

commutativity of the diagram for any choices \I/j?n, \Ilfom and \I/Jff“, \I{f) . therefore enforces the con-

straint pou(g) Kixipin(g) "t = Kixa Vg € G which restricts the kernel matrix to be an intertwiner (an
equivariant linear map), that is, Ki.q € Home(p,,, pou) © R, Except for fin o m, # id.,, and

[Kixa®fin] 0, 7 id 4, the diagram commutes.

The trivializations
Uhom : T L (U) = Ux R™* H 5 (p, Yuomp(H)), (12.16)

Hom

where we abbreviated p = 7, (H), are induced from the trivializations of A;, and Ay by
defining

v -1
Uromp: Hom(Ain p, Aoup) — RO H sy o Ho (¢, ) (12.17)
in analogy to Eqs. (124) and (7.18). This implies transition maps

Y = wAi.,pOH © (wAm,p)_l
-1 —1
= wA]fuup © (dﬁm,p) HA wAi,p © <wAi»P)
= po (9% H p,, (6547
= Prom (674) HA (12.18)

A and UB on UANUB, where we introduced the homomorphism group
representation py - ¢ G — GL(R%*¢n) ag left and right multiplication with p,, and p,
for notational convenienceﬂ The homomorphism bundle Hom(Aj,, Aqy ) is by construction

between gauges ¥

'In general, a homomorphism bundle between two non-associated vector bundles with structure
groups (G1 and G would have a structure group G; X Gs. Since Aj, and Ao, are associated, they
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associated to TM, GM, A;, and Ay, that s, its trivializations transform synchronously with
those of the other bundles. As a G-associated vector bundle, it can be identified with (GM x
Reouxen) /~, . Fig. gives an overview of the local trivializations of Hom (Aj,, Aout)-

Note the similarity to the trivializations of the other associated G-bundles in Fig.

From the viewpoint of homomorphism bundles, unconstrained bundle maps as in Eq. (I12.3)
correspond to the action of unconstrained smooth homomorphism bundle sections

OHom : M +— Hom (A, Aow) suchthat 7, 0 0Hom = idas, (12.19)

which can be interpreted as 1 x 1 kernel fields that do not share weights. Their global ex-
istence is guaranteed by Hom(.A;,, Aoy) being a vector bundle. Sections corresponding
to 1x1 GM-convolutions require in addition that the linear transformations oyom(p) €
Hom (Aip,p, Aou,p) are determined by a template kernel Kj,q € R%*% which is shared
over different positions p € M and any choice of gauge. They can therefore for any p € M
be defined as

Ulel (p) = 1/}1;)}[1,])<K1><1)7 K1><1 € HOHlG (pmv pout) 9 (1220)

where the chosen trivialization Wy, is arbitrary if (and only if) K, satisfies the intertwiner
constraint

Prom(9) Epa = Kia Vg e G, (12.21)

which is equivalent to Eq. (T2.T0) | The gauge irrelevance of such sections is visualized in
the commutative diagram in Fig. [12.2b] (compare this to the equivalent bundle map trivial-

ization in Fig. [I2.T).

Summarizing remarks: A smooth 1x1 GM-convolution layer Kj,q® : T'(Ajp)
I'(Aout), fin = fou can equivalently be defined via a smooth bundle map as fou(p) :

ﬁ
CKyy © fin(p) or via a smooth homomorphism bundle section as fou(p) 1= 0k, (P) © fin(D)-

By definition, both trivialize in an arbitrarily chosen gauge W2 to fi (p) = Kua f2(p).

The GM -coordinate independence of this definition is guaranteed by the intertwining prop-
erty of the kernel in Eq. or, equivalently, Eq. (I2Z.2T). This can be seen by considering
a different trivialization via W, _:

Hom*

KiafB(p) = Kia (Pm(gf A) if(P))
= P (97) K £ (p)

pout (ngA) fojl?t (p)
= fB(p) (12.22)

out

transform synchronously under the same structure group G1 = G2 = G such that their transition maps
take values in the diagonal subgroup G of G x G.
The required smoothness of the section follows from the smoothness of the local trivializations.
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U X Rcoulxcin
u, |

) (ld X Ptom (QBA)' )

‘IJA
W;Q;(U) * U x RCoutXCin
7THom .

proj;
U

() Trivialization of Hom(.Ain, Aou). Being associated to TM, GM, Ai, and Ao,
the transition maps of the homomorphism bundle are determined by the same group
element g4 of the shared structure group G (compare this to Fig. . The ho-
momorphism representation p,, . is defined in Eq. (I2.I8). Unconstrained vector
bundle M-morphisms as shown in Eq. (I2Z.3) correspond to unconstrained smooth
sections of Hom (Ain, Aout)-

— -
H0:|l11(U) -_— U X HOmG (pin’ pnul)
N————’

C RCout X cin

UK1><1 @ TrHom

proj;

U

(b) The sections ok, : M — Hom(Ai, Aou) of the homomorphism bundle
which correspond to 1x1 GM -convolutions are exactly those which trivialize to the
same (intertwining) matrix K1 € Homea/(p,,; o) C R in all gauges. Such
sections correspond to bundle maps which trivialize as specified in Fig.[[2:1]

Figure 12.2: Local trivializations of the homomorphism bundle Hom (Ain, Aou ), which is the vector
bundle of linear maps between the spaces Ain, and Aoy, for any p € M. As usual we abbreviate
U=U*NUP. Except for 0, , © Ty 7 idbom(A;,, Ae) the diagrams commute.
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12.2 Kernel field transforms and GM-convolutions

We now turn to kernel field transforms and GM -convolutions with spatially extended ker-
nels. Section introduces general, unconstrained kernel fields and more specific GM -
convolutional kernel fields, the latter defined in terms of a shared, G-steerable template ker-
nel. General kernel field transforms and GM -convolutions are introduced in Section [12.2.2]
As both are defined globally, their formulation is necessarily coordinate free. Section[12.2.3]
expresses both operations relative to local trivializations, recovering our local definitions
from Section

12.2.1 Coordinate free kernels fields and G-steerable kernels

To detect spatial pattens in feature fields, convolutional networks apply spatially extended
kernels which linearly accumulate features from a local neighborhood around each point. In
Eq. (9:24) we defined (unconstrained) template kernels for a d-dimensional manifold and
¢in- and coy-dimensional input and output feature fields as maps K : RY — ReuwXcn which
assign a coy X Cjp matrix to each point of their domain. The definition of convolution kernels
as maps with domain R? 2 T,,M and codomain R *¢n 2 Hom(Ajp p, Aourp) SUggests a
coordinate free definition of kernels as maps between the tangent spaces and the correspond-
ing homomorphism spaces:

Definition 12.2.1 (Kernel field). We define (unconstrained) kernel fields of type p,, pou. 0N
a manifold M as smooth bundle M-morphisms between the tangent bundle TM and
the feature vector homomorphism bundle Hom ( Ay, Aow ). By its definition as an M-
morphism, a kernel field IC lets the following diagram commute:

™ —& s Hom(A, Aow)

(12.23)

71-Hz)m

M

Despite smoothly mapping between two vector bundles, K is not assumed to be a vector
bundle morphism, that is, the restrictions IC,, : T,M — Hom(Ajy p, Aoutp) are not

assumed to be linearE]

The name kernel field is motivated by the fact that such defined bundle maps K assign a
(potentially different) coordinate free kernel XCp, : 1, M — Hom(Aimp, Aout,p) to each point

p of the manifoldE] In practice, kernels K, are often designed to detect local patterns around
p and are therefore assumed to be compactly supported around the origin of T, M.

A coordinate free kernel IC,, at p is relative to gauges wlTAM.,p and wé.m,p of the G-atlases given
by the map

) -1
KR o R K = gl 0 Ko (dny,) - (12.24)

3This reflects that convolution kernels are in general not linear as maps K : R? — R%u=*¢in_Note
that this does not interfere with the linearity of K (¢v) € R%"*n (as map R — R°") for any ¢ € R?
or, here, the linearity of K, (v) € Hom(Ain p, Aou,p) (as map Ain,p — Aou,p) for any v € T, M.

“We expect that it is possible to work out a well defined notion of kernel bundles whose sections
are in one-to-one correspondence to our definition of kernel fields as bundle maps (this reformulation
would mirror the transition from Eq. (I2.3) to Eq. (IZ.19)).
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Fig.|9.2| visualizes a coordinate free kernel on 7,,M and its coordinatizations on R relative
to different gauges. From the commutative diagram

A
R4 ICP TR Cout X Cin
w,_[) ’(ﬂﬁV
IC')
g;]:BA' %M 4‘> Hom (Ain|pv Aout|p> Ptom (ngA) (1225)
‘/Id)IB‘i\I.p 1/’1?&J
d Cout X Cin
R 5 RS

P

it follows that different kernel coordinatizations are related by
B BA A BA\—1
ICP = pHom (gp ) ° ’Cp © (gp ) . (1226)

Note that this relation only implies GM -coordinate independence but does not constrain the
coordinate free kernel in any way. As before, the situation changes when sharing weights
over spatial positions.

In order for a kernel field g to correspond to a convolution, it needs to be fully specified by
a single template kernel K : R? — RCu*¢n which is shared over all spatial positions. We
are again forced to share weights with all gauges X € X simultaneously in order to preserve
their equivalence and thus GM-coordinate independence. As argued in Section the
appropriate way of sharing K with kernel coordinatizations IC;{ p involves a normalization

by the reference frame volume , / |17£( | and is defined by

K

The reason for the frame normalization factor is that convolutions will later be defined in
terms of integrals over the tangent spaces. We are therefore actually required to share the
integral operator itself in different coordinatizations, which is equivalent to identifying the

matrix-valued integration measures K (0) /|nX| do for any gauge X € Xatp € M

with a template measure K (¢) do. The form of the kernel sharing in Eq. (I2.27) follows by
equating both expressions.

Ki, = for any gauge X € X with p € U . (12.27)

Together with the relation /|77t = |det(gF#)|/|nF| between different frame volumes,
the kernel transformation law in Eq. (I2.26)) and the weight sharing in Eq. imply the
G-steerability kernel constraint

1 1

mpmm(g) oKog " =K Vged. (12.28)

Valid template kernels are thus given by the invariants under the simultaneous gauge
action of |det g|™!, pu..(9) and g—'. Writing out the representation p,, . acting on
Reux€n yia multiplication with p,, and pi;1 from the left and right, respectively, the
constraint in Eq. (I2.28) is seen to be equivalent to that in Eq. (9.37), i.e. K(gv) =

|det g| ™ pouc(9) K (9) pin(9) ™" Vg € G, v € R%
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We cast these insights into definitions:

Definition 12.2.2 (G-steerable kernel). G-steerable kernels are characterized by their in-
variance under the gauge action. The vector space of smooth G-steerable kernels that
map between field types p, and p,, is defined by

G .
Pin*Pout *

{K: R — R smooth ‘ |de%g| Pum(@) 0 Kog ' = K Vge G}
(12.29)

' 1 _ _
= { KR B smooth | [ p(9)K (97 0)p,(0) = K(9)

Vgeaveﬁﬂ,azm)

where py. (9)H = po(9)Hp, (9)~" for any H € R and G < GL(d). The
gauge invariance of G-steerable kernels allows for GM -coordinate independent weight
sharing.

G-steerable kernels were in [53]) introduced to equivariant deep learning, where finite groups
were assumed. The current formulation in Def. [I2.2.2] was proposed in [323]. A complete
solution for the G-steerable kernel spaces for arbitrary representations p. and p,,, of struc-
ture groups G < O(2) has been derived in [322]], an implementation is publicly available
at [38]. Mathematically, steerable kernel are equivalent to representation operators like for
instance the spherical tensor operators from quantum mechanics. A generalization of the
Wigner-Eckart theorem describes G-steerable kernels as being composed from harmonic
basis functions, Clebsch-Gordan coefficients and endomorphisms of irreducible represen-
tations [173]]. An implementation of this algorithm was described in [40] and is available
at [39]. More details on steerable kernels are found in ChapterE}

Definition 12.2.3 (GM -convolutional kernel field). A GM -convolutional kernel field g

of type p.., o Is @ kernel field which is determined by a shared, G-steerable template
kernel K € g{gnv Po” It is in arbitrary gauges wTXM,p and wf,imyp Jfrom the considered

G-atlas pointwise defined by:

ICKJ) = (wliim,p)_l ©

oYy (12.31)

K

The smoothness of Kk follows from the smoothness of the gauges, the metric and the
template kernel.

As in the case of 1x1 GM-convolutions, the arbitrariness of the particular choice of gauge
in Eq. (I2.31) — and therefore the GM -coordinate independence of the definition — is guar-
anteed by the G-steerability of K € 7{,? Pout To show this explicitly, one may define the

kernel field relative to some gauge B and then apply a transformation to any other gauge A,
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K = (id x K/y/|n®])

1

U X R Cout X Cin

N T

(id X pyom (9°4)-)

/CK —1 iibm ‘

Cout X Cin
m. (U) UxR
T T Hom
proj;
U
L Y
Kit = (id x K/\/InA])

Figure 12.3: Commutative diagram showing local coordinatizations of a GM -convolutional kernel
field K as defined in Def. [I2.2.3] Convolutional weight sharing requires the coordinate expression
of the kernel field Kk at any point p € M and any gauge X at p to be determined by the shared
template kernel K : RY — R a5 K = K/+/|nX|. The commutativity of the diagram then

implies the G-steerability constraint |det g| ™" py,,(9) 0 K 0 g™' = K Vg € G on the space 5{5 »

out

of template kernels. We want to emphasize that, despite looking similar to the diagram in Fig.

the diagram in the current figure should be seen as analog to that in Fig.[T2.26] The difference between
the current diagram and that in Fig. @1% that the linear maps in the homomorphism bundle are via
Krx : TM — Hom(Aj,, Aou) determined by an element of the tangent bundle 7'M instead of the
section ok, : M — Hom(Ain, Aouw).

which cancels out and therefore leads to an equivalent expression:

- K
,CK,P = (qplimp) ' ° \/W qul]?w.p
K

-1
= (Puon (95 ") Vitomp)  © VT el (97 Vi)
|det |,0Hom( EA)71 oKo gEA

= (djém,p) \/TA| © w’]‘?ﬂf,p
- K
= (wkﬁm,p) to W OijAM.p

Fig. gives an overview of the local trivializations of GM -convolutional kernel fields in
terms of a commutative diagram.

(12.32)

Note that the G-steerability constraint in Eq. (12.30) or (12.29) reduces to the constraint on
1x1 GM-convolution kernels in Eq. (I2.10) or (I2:2T) when being evaluated at the ori-
gin ¢ = 0 of R?, which is invariant under the action of any ¢ € G. The results on
1x1 G M -convolutions, derived in the previous section, are therefore seen to be a special
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case for the choice of point-like kernelsE] We further want to mention that the constraint
on spatially extended kernels does in general not require their codomain to be restricted to
Home (p,,, pou ), 1-€- the space of intertwiners. In contrast to 1x1 GM -convolutions, this al-
lows GM -convolutions with spatially extended kernels to map between fields that transform
according to non-isomorphic irreducible representations.

12.2.2 Kernel field transforms and GM-convolutions

Having defined both feature fields and kernel fields, we are ready to introduce kernel field
transforms and GM -convolutions. They are pointwise defined in terms of integral operators
which compute output feature vectors fou(p) at points p € M by matching the kernel C,,
at p with the feature field f;, “as seen from p”.

The local representation of an input field “as seen from p” is formally given by its transporter
pullback, which is visualized in Fig. It is defined as the usual pullback from M to T'M
via the Riemannian exponential map®|with the additional application of a parallel transporter
(Eq. (IT.84)), which is necessary in order to express the pulled back features in Aj, cxp (o)
as features in Aj, ,. Denoting this parallel transporter along the geodesic path v, (t) :=
exp((1 — t) v) between (0) = exp(v) and (1) = w(v) =: p by

Prpeexp(v) - Aexp@) = Ap (12.33)

we thus define the pulled back feature field representations on the tangent spaces as follows:

Definition 12.2.4 (Transporter pullback of feature field to TM). Given a feature field
f € T'(A), we define its (redundant) representation on the tangent bundle as

Exp*f: TM - A, v~ P )ofoexp(v). (12.34)

A, 7, (v) —exp(v

The Riemannian exponential map exp corresponds hereby to the Levi-Civita connec-
tion, while the transporter 7?4 relies on some G-compatible connection;

see Sections[8.2 and[I1.3]

From the construction it is clear that Exp*f (v) € A, forany v € T, M, that is, Exp* f
is a bundle M -morphism, satisfying the following commutative diagram:

Exp”f

s (V) <—exp(v)

T™ A

(12.35)

Despite smoothly mapping between two vector bundles, Exp™f is not assumed to be a
vector bundle morphism, that is, the restrictions Exp:7 f:T,M — A, are usually not
linear.

>To make this statement precise, one would have to generalize Def. 12.2.2| to operator-valued
distributions and define 1x1 GM -convolution kernels as operator-valued Dirac deltas.

SWe define the exponential map on the full tangent bundle as exp : TM — M, v —
eXPr (v) (v). Recall that we assumed the manifold to be geodesically complete, such that the expo-
nential map is well defined on the whole tangent bundle (and resort to zero-padding if this assumption
fails to hold).
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The restriction Exp, f := Exp”f |T,, oy of the transporter pullback’s domain to T;, M cap-
tures the feature field from the perspective of an observer at p as shown in Fig. 0.1} Note
that this definition resembles a local representation of the feature field in terms of geodesic
normal coordinates, with the difference that it is not restricted to the injectivity radius of
the exponential map[] We furthermore want to mention that the transporter may be replaced
with any other isomorphism between Aeyp,(,) and Ay, as done for instance in [280].

As stated before, kernel field transforms and GM -convolutions are defined as matching the
local feature field representations on the tangent spaces with kernels. Working towards these
definitions, note that the bundle M -morphisms of kernels K : TM — Hom(A;y, Aou) and
local field representations Exp™fi, : TM — Aj,, can be combined to yet another (nonlinear)
M -morphism from T'M to Agy,

KxE in
X BXp f HOHI Am,Aout XAm —> A"Ut

, (12.36)
T Tou

where ev : (K(v), Expfin(v)) +— K(v)Expfin(v) is the evaluation map on
Hom(Ajn, Aouw) X Ain. Kernel field transforms compute output feature vectors at p by inte-
grating this product of kernels and input fields over the respective tangent space 1, M :

Definition 12.2.5 (Kernel field transform). Let I be any smooth kernel field (Def.[12.2.1).
The corresponding Kernel field transform is a smooth integral transform

T : T(Ain) = T(Aow) (12.37)

which is pointwise defined byﬂ

[T (fin)] ( /IC Exp*fin(v) dv (12.38)

= //C(’U) am,pecxppv fin(exp,v) dv.

In order to be well defined, the integral needs to exist and the resulting output field
T (f) needs to be smooth. This requires IC to be chosen suitably, e.g. by assuming it
to decay rapidly or to be compactly supported.

Note that general kernel field transforms do not necessarily model convolutions as they do
not assume synapse weights (kernels) to be shared between spatial positions. Such general
kernel field transforms will become handy in the following Chapter [I3] where we derive a
requirement for spatial weight sharing from the requirement for isometry equivariance.

7 Any feature vector f(q) might therefore be represented multiple times on the same tangent space
T, M, once for each v € T, M with exp(v) = q. If this is not desired, one may restrict the kernel sup-
port to the injectivity radius of the exponential map, such that only the geodesically nearest occurrence
will be measured.

8The integration over T, M via the Riemannian volume density dv is discussed in Appendix@
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Appendix [[|discusses the existence and smoothness of kernel field transforms. A sufficient
condition for kernel field transforms to be well defined is the restriction of kernel supports
to balls of a fixed radius R > 0:

Theorem 12.2.6 (Kernel field transform existence for compactly supported kernels).
Let KC be a kernel field whose individual kernels Kp, at any p € M are (at most)
supported on a closed ball of radius R > 0 around the origin of T,M, that is,

supp(K,) € {veT,M||v]| <R} Vpe M. (12.39)

The corresponding kernel field transform J is then guaranteed to be well defined, i.e.
the integral in Eq. (12.38) exists and the output field T-(f) € I'(Aow) is smooth for
any smooth input field f € T'(A;,).

Proof: See Appendices[lland[l] O

The requirement to restrict the kernel support to a closed ball of certain radius is common
practice in deep learning. Note, however, that a compactly supported kernel is at odds
with scale equivariant convolutions, which, by the corresponding G-steerability kernel con-
straints, require infinitely far extending kernels. Current implementations of scale equiv-
ariant convolutions usually approximate scale equivariant kernel spaces by restricting their
support [197, 1334, [107. 359, (10l 2811 220] and are therefore covered by Theorem [12.2.6]

Based on general kernel field transforms, we define coordinate free GM -convolutions by
adding the assumption of spatial weight sharing, i.e. by assuming GM -convolutional kernel
fields:

Definition 12.2.7 (GM -convolution). Ler A;, and A, be G-associated feature vector
bundles with types p, and p,,, respectively. We define the GM-convolution with a

G-steerable kernel K € 9{5 o 8 the kernel field transform with the corresponding
GM -convolutional kernel field Cx (Def.[12.2.3):

Kx F(Am) — F(Aoul)a

fin HK*fin = ETICK (fln) = /ICK(U) Exp*fin(v) dv (12.40)
M

As GM -convolutions do not prefer any reference frame in the G-structure, they are guaran-
teed to generalize their inference over all poses of patterns which are related by the action of

the structure group G; see Eq. (9.42) and Fig.

12.2.3 Kernel field transforms and GM-convolutions in local coordinates

What is left to show is that the coordinate free definitions of transporter pullbacks, kernel
field transforms and GM -convolutions introduced in this section reduce to the coordinate
expressions from Part[[ when being expressed relative to some local trivialization.

The local coordinate expression of the transporter pullback Exp*f of a feature field f is, as
usual, defined by pre- and post-composing it with local trivializations of the corresponding
bundles, that is:
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1 UxR! 5 U xR, (12.41)
(p.0) = T o Exp™f o (¥11,) " (p.v)
= (p, i, oExpjfo (%L,p)*l(@)

Local gauge transformations at p € M are from this definition seen to be given by

[Exp”f

[Exp;f]7 = p(gP4) o [Expyf]™ o (924) 7. (12.42)

We visualize these coordinate expressions in terms of a commutative diagram, which is very
similar to that for the local trivializations of kernel fields in Fig.[12.3}

}B

[Expf]”

\I]A
N U) —A S UxRE
T4
proj,
L J

[Expf]”
(12.43)

For an implementation it is useful to further resolve the coordinate expression of the trans-

porter pullback into those of its individual components, i.e. of the transporter P ,
A, p+exp(v)

the feature field f and the exponential map exp. This is achieved by expanding it with an
. . . A -1 i
identity of the form id, ., = (wA,Cxp(v)) o wA,cxp(v
exp(v) is irrelevant as it ultimately drops out:

y where the choice of gauge A at

[Expsf]"(0) = [, o Bxplf o (4h,) "] (0) (12.44)
= wfp © 7?4A,p<—exp(7u) © f( €xp O(djg‘ﬂp) _1(0))
i -1 i -1
- w“fp ° 73l,A’UFCXP(’U) ° (wzfgxp(v)) ° ¢Al?gxp(v) ° f( P 0(7#?;\,1,;7) (O))

AA A A L
= PG ooty 1) - F (expo(¥n,) ()
As expected, we recover our definition from Eq. (9.21) in Section[9.2.1} which approves that
Def.[12.2.4]is indeed its coordinate free counterpart.
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The coordinate expression of a kernel field transform, which coincides with Eq. (9.30) in
Section[9.2.1] is given by the following theorem:

Theorem 12.2.8 (Kernel field transform in coordinates). Relative to some gauge A at
p € U4, the kernel field transform is given by the coordinate expression

[T fm / K2 (v*) [ Exp; fin}A(uA) VInd| dv? (12.45)
/ICA p(—expo(wTu 1(UA)> 'finA?(eXpo(w;}u‘p)il(vA)) \ |77;)4| dUé

where the gauges Aat exp(v) are chosen arbitrarily as they cancel out.ﬂ

Proof: The first expression is derived by a simple calculation which translates all involved
quantities into their corresponding coordinate expressions:

[ST (fm)]A(p) (12.46)
‘,m,p[ i (fin)] (0)
Vi / Ky (v) [Expy fi] (v) dv

T,M

&y / Ko (W)~ ™)) [BxD] fin] ()~ @) /1Al do?

@

(4)/ m.up wTMp) (A>>O(7/1Aﬁ’p)_1}
[t o [Bxwpdulo ikey) ™)

© / |:wHompO,C °© (¢T\1p ] [ Epr fm] (wé"\lﬁp)_l}(UA) MdUA

“)/KA [Bxp? fu] *(0) /I ] o

Step (1) expresses the output feature vector at p explicitly in terms of gauge i AA

actlng on the coordinate free kernel field transform. This coordinate free expression 1s
in step (2) expanded as defined in Def.[T2.2.3] Step (3) pulls the integral over T, M via
the chosen gauge back to R?, which is in more detail descrlbed in Appendlx@ Step (4)

inserts an identity map of the form id = (¢AA p) o 1/1‘4 and pulls wA . into the

integral while step (5) identifies the definition of 1, , from Eq. @ Lastly, we
identify the coordinate expressions of K, and Exp;‘7 fin from Eqs. (12.24) and (12.47).

The second expression follows from the first one by expanding the coordinate expres-
sion of the transporter pullback according to Eq. (12:44). O

°Note that the gauges at exp(v) might differ for different v € T, M and should more correctly be
labeled by A,. We suppress this dependency for brevity.
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The coordinate expression for the coordinate free GM -convolutions follows immediately:

Theorem 12.2.9 (GM -convolutions in coordinates). A coordinate free GM -convolution

Kx : T'(Apn) = T(Agw) with a G-steerable kernel K € 9{/?4) s relative to some

gauge A atp € U4 given by

[K*f]A(p) = [ZCK(f)}A(p) = /K(UA) [Exp;f]A(vA) dv?,  (1247)

that is, by the coordinate expression that was introduced in Eq. (9.39). This expression
may be written out further as done for general kernel field transforms in Eq. (12.43).

Proof: The result follows from Theorem [12.2.8] by observing that the coordinate free
GM -convolution K« is just a kernel field transform with the corresponding GM -
convolutional kernel field Kg; see Def. Specifically, the coordinate expres-
sion of a GM-convolutional kernel field Ky is according to Def. given by the

frame volume normalized G-steerable kernel K, that is, Kf‘é’p = K/,/Ing|. Insert-

ing this identity in Eq. (I2.45) leads to the claimed coordinate expression for GM-
convolutions. O

This result assures that a global, coordinate free GM -convolution can be implemented in
terms of its local coordinate expressions relative to some G-atlas of local trivializations that
cover M.
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Isometry equivariance

A main characteristic of the convolution operation and its various generalizations is their
equivariance w.r.t. symmetries of the underlying manifold. For instance, the conventional
convolution on Euclidean spaces is translation equivariant while spherical convolutions are
rotation equivariant. More generally, any locally compact group and their homogeneous
spaces admit group convolutions [114,[165] 48| [102], which were recently picked up by the
deep learning community to generalize convolutional networks to such spaces [52} [162, 156,
10]. However, as these approaches rely fundamentally on the global, transitive symmetries
of the homogeneous space, they do not immediately apply to general Riemannian manifolds.

GM -convolutions on the other hand shift the focus from global symmetries of the space
itself to local symmetries in the coordinatization of the space. As it turns out, the lo-
cal gauge equivariance of GM-convolutions, together with convolutional weight sharing,
induces their equivariance under the action of global symmetries. Stated more precisely,
GM -convolutions are equivariant under the action of G-structure preserving isometries
(Def. , which form a subgroup Isomgp; < Isom(M) of the full isometry group. The
requirement on the symmetry to be an isometry (i.e. to preserve the metric) comes hereby
from the use of exponential maps, which rely on the Levi-Civita connection and thus Rie-
mannian metric. The additional requirement on these isometries to preserve the G-structure
is a consequence of the definition of feature vector bundles as associated G-bundles, whose
elements have a well defined meaning only relative to those reference frames that are con-
tained in GM. Note that the latter is not really a restriction, as one may always choose
structure groups G > O(d), for which any isometry respects the corresponding G-structure.
On the contrary, this design allows for a precise control of the level of isometry equivari-
ance. For instance, the conventional convolution on Euclidean vector spaces relies on the
canonical {e}-structure of R?, visualized in Fig. and is therefore solely translation
equivariant. An SO(d)-structure on R%, visualized in Fig. is additionally preserved
by rotations, and thus corresponds to SE(d)-equivariant convolutions. Equivariance under
the full isometry group E(d) of R is implied when choosing an O(d)-structure on R,

The goal of this chapter is to derive theorems which formally characterize the isometry
equivariance of GM -convolutions and kernel field transforms. Section lays the foun-
dations of this investigation by introducing isometry groups of Riemannian manifolds and
discussing a range of well-known relations and constructions which they induce. Specifi-
cally, Section[I3.1.T]introduces isometries and isometry groups while Section[I3.1.2]defines
their induced action (“pushforwards”) on the associated bundles in a coordinate free setting.
In Section [13.1.3] we express these actions on bundles relative to local trivializations and
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discuss their passive interpretation as isometry induced gauge transformations, visualized in
Fig.[8.3] Section[I3.1.4]briefly states how the quantities involved in kernel field transforms
behave under the action of isometries.

Based on these properties, we study the isometry equivariance of kernel field transforms and
GM -convolutions in Section[I3.2] After defining the term “isometry equivariance” formally,
Section[I3.2.1| proves a central result, which asserts that the demand for isometry equivari-
ance requires the invariance of the kernel field under isometries; see Fig.[13.6 Section[13.2.2]
considers the more specific GM -convolutions and proves that they are by design equivari-
ant under any isometry that preserves the G-structure. This result implies in particular, that
OM -convolutions are equivariant w.r.t. any isometry.

The invariance constraint on kernel fields enforces that they share weights over the orbits of
the isometry group. This suggests that invariant kernel fields can equivalently be described
by representative kernels on orbit representatives, which we formalize in Section[I3.3] Sec-
tion discussed isometry induced quotient spaces and their representatives. In Sec-
tion[13.3.2]we use these mathematical definitions to prove that the space of isometry invariant
kernel fields is indeed isomorphic to kernel fields on quotient representatives. This implies
in particular that isometry equivariant kernel field transforms on homogeneous spaces are
necessarily convolutions, which closes the loop to prior work.

13.1 Isometries and their action on manifolds, bundles and fields

This section introduces most of the mathematical concepts required for our study of the isom-
etry equivariance of kernel field transforms and GM -convolutions. After defining isometries
in Section [I3.1.1] we discuss in Section [I3.1.2| how they induce natural actions on tangent
vectors and reference frames. For structure groups G < O(d), not any isometry is compati-
ble with any G-structure. We define the subgroup Isomgys < Isom (M) of those isometries
which do act on (induce automorphisms of) a G-structure GM and their G-associated fea-
ture bundles. While these constructions are kept coordinate free, Section [I3.1.3] expresses
the action of isometries on fiber bundles relative to local bundle trivializations. In preparation
for our investigation of isometry equivariant kernel field transforms later on, Section[13.1.4]
discusses how isometries commute with exponential maps and parallel transporters, which
allows to derive how they act on transporter pullbacks Exp; f of feature fields f. While
mostly staying mathematical, we draw connections to the application wherever possible.

13.1.1 Isometry groups

A (global) isometry ¢ : M — M is a diffeomorphism between Riemannian manifolds
(M,n) and (M, 7)), which preserves the metric. In terms of the pushforward (differential)

: TM — TM of tangent vectors, which we introduce in Appendix E and in Sec-
t10n mbelow this statement is made precise by requiring that isometries satisfy

Np(V, W) = Ng(p) (Prrn Vs PuppyW) VpeM, vyweTI,M, (13.1)

i.e. that they preserve distances and angles between tangent vectors. Intuitively, an isometry
is thought of as a distance preserving map between manifolds. Note that the inverse of an
isometry is necessarily an isometry as well. Since isometries (and their inverses) respect the
metric, they constitute the isomorphisms in the category of Riemannian manifolds.
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(a) Action of different subgroups of the isometry group on fields.  (b) Orbits of the isometry group.

~

Figure 13.1: Visualizations of the isometry group Isom(M) = O(2) of an egg M, which we will
use throughout this chapter to exemplify different concepts and constructions relating to isometries.
Fig. @ shows the action of the isometry group on (tangent or feature) vector fields. It can be
thought of as consisting of the subgroups of rotations 111 SO(2) and reflections in (R. The action of the
isometry group partitions the egg into orbits Isom(M).p = {q5 ! ¢ € Isom(M )} of points p € M,
shown in Fig. [I3.1B]in different colors. Note that not all orbits are homeomorphic to each other —
the orbits at the poles are single points while any other orbit traces out a circle around the egg. The
isometry group of the egg acts non-transitively on it, that is, not every point can be reached from any
other point. A kernel field transform is isometry equivariant if it commutes with the isometry action
on feature fields. We show that isometry equivariance is guaranteed if and only if the kernel field is
invariant under the action of isometries. This implies in particular that isometry equivariance require
weight sharing along the isometry orbits; see Fig. [13.6]

The set of all isometries ¢ : M — M from a Riemannian manifold to itself, equipped with
the usual function composition o : (¢1, P2) — @1 o ¢o, defines a group, known as isometry
group Isom(M) of M. This group is the automorphism group of a Riemannian manifold,
which contains all of its (metric) “symmetries”. It is a subgroup of the diffeomorphism group
Diff (M) of M. The full isometry group might have non-trivial subgroups, which we will in
the following denote by Z < Isom(M). An example is given in Fig.[13.1a] which visualizes

the isometry group Isom (M) = O(2) of an egg. The full isometry group splits (for instance)
into the subgroups of rotations in Z; 22 SO(2) and reflections in Z = R.

In general, the isometry group of a manifold is non-transitive (Def. [B23.8), that is, not every
point of M can be reached from any other point by its action. The manifold is then parti-
tioned into disjoint orbits (Def. [B.3.3)), visualized for the example of M being an (Easter)
egg in Fig.[13.10] The isometry group of a manifold M might be trivial, given that M is suf-
ficiently asymmetric. In this case there might still exist non-trivial isometries between open

subsets U4 and U4 of M, restricted to which Eq. (I3.I) holds. Fig. |l n shows an exam-
ple of a manifold which is globally asymmetric but has non-trivial isometries between local
subsets of itself. We will in the following only consider global isometries of M, however, all
concepts of the current Section [I3.1] generalize in an obvious way to isometries between lo-
cal subsets. Without proof, we claim that the same holds for the isometry equivariance of any
neural network operation which acts pointwise, for instance 1x1-convolutions, nonlineari-
ties or bias summation. The equivariance of kernel field transforms with spatially extended
kernels holds up to boundary effects.
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Figure 13.2:  An asymmetric manifold, whose
global isometry group is trivial. Since the asym-
metry is limited to the ears and the mouth of
“Suzanne”, the monkey, there are non-trivial lo-
calized symmetries left. For instance, the smooth

map ¢ : U4 — U between the red and green high-
lighted subsets preserves the metric locally. All
concepts developed in Section [13.1] as well as the
isometry equivariance of point-wise operations like
1x1-convolutions generalize immediately to such
isometries between local subsets. The isometry
equivariance of kernel field transforms with spatially
extended kernels generalizes up to boundary effects.

13.1.2 Isometry action on fiber bundles

Isometries act naturally on tangent vectors in 7'M and reference frames in F'M by “carrying
them along” with the group action as visualized in Fig. [I3.1a] If an isometry is in addi-
tion compatible with the G-structure, that is, if it gives rise to an automorphism of GM,
it furthermore acts on any associated G-bundle, in particular the feature vector bundles A.
We discuss these actions of isometries on the associated bundles and on feature fields in the
following.

Isometry action on the tangent bundle TM: Any isometry ¢ € Isom (M) gives rise to a
pushforward

Gygny - TM — TM , ¢ € Isom(M) (13.2)
on the tangent bundle, which is just the differential of ¢ as introduced in Appendix It
can at each point p € M be thought of as a linear approximation of ¢, which maps vectors
v e T,Mto ¢, (v) € TypM, thatis, it satisfies

Ty © Pernr = ¢o Ty (13.3)
As argued in Appendix the pushforward is invertible with (¢, ;)" = (¢ s
for which we will unambiguously write ij The pushforward of an element ¢ of the

isometry group is therefore seen to be an (isometric) vector bundle automorphism of 7'M
over ¢, satisfying the following commutative diagram:

(13.4)

By the definition of isometries, their pushforward preserves distances and angles, that is,

No(p) (Brn Vs Gumyw) = (v, w) VpeM, vyweT,M, ¢¢€Isom(M).
(13.5)

!The invertibility does not hold for pushforwards in general but only for those of diffeomorphisms
and thus isometries, which are themselves invertible.
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More details about pushforwards between tangent bundles are easily found in the literature,
for instance in [262].

Isometry action on the frame bundle FM: The pushforward on 7'M immediately in-
duces a corresponding principal bundle automorphism ¢, ,,, on /"M by pushing forward the
individual frame vectors:

QS*‘FM: FM — FMa [ei]gzl = ¢*‘FM([61-]?:1) = [Qb*mu(ei)]?:l ) ¢ € Isom(M)
(13.6)

It maps frames in F,M for arbitrary p € M to frames at F¢(p)M , that is, it satisfies
Ting © Gupyy = @ © Ty To see this, let [ep]gzl € F,M, then ¢ o 7rFM([ei];-’l:1) = ¢(p) and

d
v © *,Fﬂl([ei]g:1) = WFA‘WVJ([¢*‘TAWI(61')]1‘:1> = T © Gumi(€j) = ¢ omy, (e5) = ¢(p)
forany j = 1,...,d. It can further be checked to be invertible with (¢, ,,,,) ™" = (6™ ),
again abbreviated by *_Flu. The left action of the ¢, ,,, on the frame bundle commutes with

the right action <1 on its fibers, that is, for arbitrary g € GL(d) and ¢ € Isom(M) we have
that:

™

d

(QS*‘F;\[([ei]g:l)) 49 = [Qs*‘nw(ei)]i:l <9

— [Z] ¢*‘TM(6]‘> gji} j:1

def. of <, Eq. (IT26) )
d

(def. of ¢, ,,,. Eq. (36))
(
_ [ bor ( Zj e; gji)} L (linearity of ¢, ,,, )
(
(

d

= Guru ( [ Zj ejgjz} >i:1 def. of ¢, 1/, Eq. @)

= Duru ([eih‘izl < g) def. of <1, Eq. (IT.26) ) (13.7)

A gauge transformation of a frame at p € M by g € GL(d), followed by a pushforward to
@(p), is therefore equal to a pushforward of the untransformed frame, followed by a gauge
transformation by the same group element g but at ¢(p). Different frames in the fiber F,, M/
are hence mapped in such a way to frames at Fy,)M that their relative offset is preserved.
The derived properties of ¢ are summarized by the statement that the diagram

*, FM
¢*,FM

FM —— FM

g <g
[T Do s FM (13.8)
T e oY
M M
o]

commutes for any ¢ € Isom(M) and any g € GL(d). Satisfying the commutativity of
this diagram, the pushforward ¢, ,,, on the frame bundle is identified as a principal bundle

*, FM
automorphisnﬂ over ¢.

*I.e. a principal bundle isomorphism from the frame bundle to itself; cf. Eq. (TT.23).
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(a) Canonical {e}-structure of R? (b) An alternative {e}-structure on R?

Figure 13.3: Two specific choices of {e}-structures (global frame fields) {e}M on M = R?, which
we use to visualize the concept of G-structure preserving isometries. The full isometry group of M is
the Euclidean group Isom (M) = E(2), consisting of translations, rotations and reflections. Fig.|13.3al
shows the canonical {e}-structure of R?, which is invariant under translations but not under rotations or
reflections. More abstractly stated, translations make up the subgroup Isomy s = (R?, +) of isome-
tries that induce automorphisms of {e}/. In contrast, rotations or reflections map frames in {e}, M
to frames in F(,) M but fail to send them to {e}¢<p)M . They do therefore not induce automorphisms
of the {e}-structure and are not part of Isomy,,s. Group actions of such isometries on {e}M or any
of its {e}-associated bundles are not defined. Fig. shows an alternative choice of {e}-structure
on M = R? (or M = E,), which is only invariant under translations in the “up-down” direction, i.e.
Isomygps = (R, +). The examples in Figs. and exemplify that the G-structure automor-
phisms do not only depend on the structure group G but on the particular choice of G-structure GM.
The general case for G being non-trivial is harder to visualize since G,M will then not be a single
frame but a set of frames; see e.g. Fig.[[3.4]

Note that the inverses, which are shown explicitly in the diagram (13.4), are omitted to
reduce clutter.

Isometry action on G-structures GM: As G-structures are principal subbundles of the
frame bundle, one can consider the restriction of the domain of the pushforward on FM
to GM, that is,

Gurstl gy, : GM = FM, ¢ € Isom(M). (13.9)

It is hereby necessary to keep the full frame bundle F'M as codomain since there is in gen-
eral no guarantee that frames in GG, M are mapped to frames of G (,,) M but only to Fiy,) M.
Since G-structures are in general not closed under the action of isometries on F'M, it might
be impossible to define a group action of the full isometry group on GM or any other associ-
ated G-bundle. To remedy this shortcoming, we will in the following consider the subgroup
of those isometries that respect the G-structure, i.e. which map preferred frames in GM to
frames in GM..

Definition 13.1.1 (G-structure preserving isometries). Given a G-structure GM, we de-
fine the corresponding subgroup of G-structure preserving isometries Isomgays as

Isomgy = {¢ € Isom(M) |, ,,,(GpM) = GyyM Vpe M} < Isom(M).
(13.10)

For such isometries, we define the induced action on GM as

Ducrr = Pupptl iy © GM — GM , ¢ € Isomgyy - (13.11)
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(a) SE(2)-invariant SO(2)-structure on R?. (b) SO(3)-invariant SO(2)-structure on S=.

Figure 13.4: Two examples of SO(2)-structures SOM over the plane M = R? and the sphere

= S2. For M = R?, shown in Fig. the SO(2)-structure is invariant under translations
and rotations. As it consists only of right-handed frames (mind the arrow tips on the first and the cir-
cle tips on the second frame axes) it is not invariant under reflections. The isometries which preserve
SOM therefore form the group Isomson = SE(2), which is a subgroup of the full isometry group
Isom(M) = E(2). In the case of M = S?, shown in Fig. the SO(2)-structure is invariant under
rotations but not under reflections. The SO(2)-structure automorphisms are here Isomsoar = SO(3)
while the full isometry group is Isom(M) = O(3).

Such defined actions for ¢ € Isomgys are G-structure automorphisms, that is, they make
the following diagram commute for any g € G (which follows by restricting Eq (13:8) from
FM to GM and GL(d) to G):

aM (b*,GM GM

g <g

Tam Tam

M M
¢

Fig. Hshows two examples of {e}-structures on M = R?, i.e. global frame fields. From
these examples it is apparent that the subgroups Isomgps do really depend on the particular
choice of G-structure GM, not only on the structure group G. In Fig. !E'Ea we visualize an
SO(2)-structure on M = R2. Its isometry group Isomgops = SE(2 ) is larger than those of
the {e}-structures in Fig. - 13.3l An SO(2)-structure on the sphere S2, which is preserved by
all rotations Isomgops = SO(3), is shown in Fig.|1

For specific choices of structure groups G it is possible to make more general statements
about which isometries are contained in the subgroup Isomgy,. Most importantly, for or-
thonormal structure groups G = O(d) (which are compatible with 1) any isometry will
induce an automorphism of OM, that is, one always has Isompys = Isom(M) . To prove
this claim, let [e;]¢, € O,M C F,M be an orthonormal frame, which is by an arbitrary

isometry ¢ € Isom(M) being sent to ¢, ., |, [eilf=) = [@, 1y € ]l . see Eq. (T3.6). Ap-
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plying Eq. (13.5) to the individual axes of the pushforward frame yields
N(Deri€ir Burni€s) = mleiej) =6 Vi, jel,. ... d, (13.13)

which implies the orthonormality of of the pushforward frame ¢, H,| e )4, € Oy (M

and therefore allows to define ¢, ), =
this result implies:

for any ¢ € Isom(M ). More generally,

*, FM |OM

Isomgyr = Isom(M) VG > O(d) (13.14)
It is similarly possible to show
Isomgons = Isomy (M), (13.15)

that is, that any orientation preserving isometry in Isom (M) induces an automorphism
of an SO(d)-structure SOM. Note that these statements all depend only on the structure
group G but are independent from the specific choice of G-structure. This is ultimately a
result of only considering isometries, which are adapted to O(d)-structures by definition,
instead of considering more general diffeomorphisms. As mentioned before, the subgroup
Isomgps does in general depend on the specific choice of G-structure GM, not only the
structure group G.

Isometry action on associated vector bundles .4: From the pushforward of isometries in
Isomgps on GM one can construct a pushforward ¢, , on any G-associated vector bundle

A= (GM x R®)/~, by defining

bt A= A [l f] = ooa((le)in 1]) = (S lledin). 1] ¢ € lsomanr.
(13.16)

This action is well defined since the construction is by the right G-equivariance of ¢, ., in
Eq. (T3:12) independent from the chosen representative of the equivalence class. Similar to
before, one has 7, 0 ¢, , = ¢ o7, thatis, ¢, , maps feature vectors at A, to feature vectors
at Ay (), which can be checked by acting on a feature vector and using the corresponding
property of ¢, ;. Since ¢, , is defined by the action of ¢, , on the first factor in (GM x
R¢)/ ~, , it does not interfere with linear combinations, which act on the second factor as
defined in Eq. (TT.29). This implies that the pushforward on associated bundles maps linearly

between their fibers. The invertibility of ¢, , follows from the invertibility of ¢, ., such that

one gets again (¢, , )~ = (¢~ '), 4, which we write as d);j. These properties, together with
the fact that ¢, ,,, € Aut(GM) is in particular a principal bundle automorphism, identify

¢, 4 as an associated vector bundle automorphism, satisfying the following commutative
diagram:

A ¢*AA A
WA‘ ‘WA (13.17)
M — M
¢

The associated bundle resulting from the specific choices of p(g) = g as group representa-
tion and R? as typical fiber is via the bundle morphism x : (GM x R%)/~ — TM from
Eq. isomorphic to the tangent bundle 7'M (as G-bundle). Our definition of pushfor-
wards on associated G-bundles is consistent with this identification since xo¢, , = @, 1,,0X-
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To see this, let [[e;]%_;, o] € (GM x R?)/~ be an element of the isomorphic associated
bundle that is mapped to x ([[e]¢_,, 0]) = 3, €;0;. Thenwe have y o ¢, , ([[ei]Ly, 0]) =
X([[d)*_]}\l(el)];i:l’ ]) - Zi ¢*,'/M(ei>9_i. = d)*.'nw(zl‘ eivi) = d)*.n\/ o X(“eih‘i:h V]) ’
which shows the consistency of the definitions.

As an associated bundle, the pushforward ¢,,, on the homomorphism bundle
Hom(Ain, Aow) = (GM x R%wX%)/~y, s specified by Eq. (I3.16) as well. How-
ever, we will later on require an expression of ¢, ;. in terms of the pushforwards ¢, , and
&, 4, of Ain and Ay, respectively, which we will shortly derive here. For that purpose, let

H € Hom(Ain|p, Aout|p) be a homomorphism at p and f,, € Aj, ,, be a feature vector at p.
Then H(f,) is by definition a feature vector in Ay . In order to be consistently defined,
the pushforward of the input feature vector f,, being acted on by the pushforward of the
homomorphism H, needs to agree with the pushforward of the output feature vector H ( f,).
This implies

bt (U] = 60 HO (6o ) = [ H) (6 f)e (1319)
where we defined the pushforward on the homomorphism bundle as:
Briom * Hom(Ain, Aow) — Hom(Ain, Aow), H &, H *_j , ¢ € Isomgy
(13.19)
Note that the composition of an element H € Hom(Ajn, Aou) With ¢, , — on the left and
with qS*_j on the right mirrors the style of Eq. (12.17).

Isometry action on feature fields: The actions of isometries in Isomgy, on the associated

bundles give rise to actions on their sections, in particular on feature fields. This pushforward

of sections is defined as follows:

Definition 13.1.2 (Isometry pushforward of feature field:). Let f € T'(A) be a feature
field and let ¢ € Isomgys be a G-structure preserving isometry. The isometry acts on
the feature field via the pushforwarcﬂ

>: Isomgy xT'(A) = T(A), (¢,f) = ¢>f = ¢, 0f0p ' (13.20)

In terms of a commutative diagram, this definition is visualized as:

A D 4 A

f o> f = ¢*7Aofo¢’1 (13.21)

M — M

¢

Intuitively, this definition states that the pushforward section ¢ > f, evaluated at p € M,
returns the feature vector of f from ¢~!(p), pushed forward to p via @, 4 Note that such
pushforwards do indeed yield well defined sections which satisfy

O(QSDf) = T40° *_Aofogb_l
= ngoTerfoQS_l
= ¢oidpyog¢™!
= idy (13.22)

3Note the similarity of this definition to that of the induced representation action on Euclidean
feature fields in Def.[4.2.T] which can be viewed as coordinate expression of the pushforward.
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as required by Eq. (TT.19). Fig.[13.Ta]visualizes the action of isometries on fields. The action
of isometries on the transporter pullback Exp; f of a fields f is derived in Section [13.1.4
below.

13.1.3 Isometry action in local coordinates

Most of the derivations on the isometry equivariance of kernel field transforms in Sec-
tions and will be kept in a coordinate free setting. However, since GM-
convolutions are defined relative to a choice of G-atlases of the associated bundles, the
investigation of their isometry equivariance will require us to study coordinate expressions
of the isometry pushforwards ¢, ;,,, @, 1> P.cyy @nd @, , relative to local bundle trivializa-
tions. Coordinate expressions of the isometry action are furthermore useful in numerical
implementations, which are necessarily encoding feature fields relative to fields of reference
frames.

In the following, we assume gauges yA A and U7 »_on neighborhoods U A of pand U4 of

#(p) to be given. For convenience, let U4 = qb(UA) coincide with the image of U A under
the isometry, which is always possible without losing generality.

Pushforward on TM in coordinates: Recall that the pushforward on the tangent bundle
is a linear map from vectors v € 1, M to vectors ¢, ;v € Ty,) M. Relative to the given

gauges, the pushforward is therefore coordinatized by a field of matricef]

i 1A i !
954U = GL(d), pr= g5 (P) = Vo) © Penv© (Whiip) ¢ € Isom(M),
(13.23)

which transforms between the corresponding numerical coefficients wm ,p( v) of v at p and

wTu o ((b* ml) = ( )wmp( v) of ¢, ,,v at ¢(p). More pre01sely, 4 takes values in
the subgroup (GU O( )) of GL(d), which is generated by the elements of O(d) (due to
¢, 7, Preserving the metric) and G (since the transition functions might form a supergroup of

( )). The definition of the pushforward in local coordinates is visualized by the following
commutative diagram:

i Vil
R? & T,M A) Ty(pyM _ i) | pd (13.24)
90" (v)-

Fig.[8.5] gives a graphical interpretation of the pushforward in coordinates.

Pushforward on FM in coordinates: The coordinatization of the pushforward on the
frame bundle is defined in analogy to Eq. (13.23). It turns out to be given by the left action

4Given charts 4 : UA — xg(U‘Z) CR¥andz” : U* — 2*(U*) C R? of M, an isometry
¢ can be locally represented by a map 2 o ¢ o (mA)_l st (UA) -zt (UA) between coordinates.
For the special case that the gauges at p and ¢(p) correspond to the coordinate bases of those charts,
go is simply given by the Jacobian of * o ¢ o (xA)fl.
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of the same group element g¢ on trivialized frames as shown in the commutative diagram
below:

A
GL(d) 2 par _ P g LM Vo) GL(d) (13.25)
93" (p)-

To prove this claim, we compute the action on a trivialized frame, given by a matrix h €
GL(d) whose i-th column h. ; represents the i-th frame vector:

(081000 © G © (w?}f,p)”] ()
= [ o)) " 00) L)
= 0 ai((Bom o i) " (0) (
S (T (wﬁfﬁpﬁh:,i))fl_l) (def. of ¥ o (0T )
(

d ~
= (92 ) h:,i)H def. of g%, Eq. (1323) )

= ggA(p) -h (13.26)

def. of ¥, Eq. ((TA9) )
def. of ¢, ., Eq. (13:6) )

The action of the pushforward on local trivializations can be thought of as inducing a gauge
transformation. A graphical intuition for this statement was given in Fig. [8.5] where the
initial gauges at p and ¢(p) are visualized by choices of reference frames. A pushforward of
the frame at p to ¢(p) (red) does in general not agree with the original frame at ¢(p) (green).
The transition between these two frames is the induced gauge transformation by at ¢(p). We
will in the following construct this transformation; first in terms of local trivializations, then
in terms of the corresponding frame fields.

From the commutative diagram in Eq. (I3:23) it is clear that the gauge ngm : F,M —
GL(d) at p can via qzb ,, be pulled back to a gauge at ¢(p), which is given by

A -1
%Up ¢*m = (g;}A(p)) %,L o) FoyM — GL(d). (13.27)

The corresponding extension of the commutative diagram in Eq. (13:23) visualizes the equiv-
alence of both expressions and makes an algebraic proof superfluous:

y
y

_ i -1
'l/JF\[p ¢* o (gé‘A (p)) : wﬁu,w)

'Qbﬁw,p ¢* FM wm\m(p)

GL(d) +—— FM ——" 5 FyyM GL(d) (13.28)

J

924 (p)-
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The transition map (gauge transformation) between the isometry induced gauge w?\Ip qﬁ:;‘[

and the original gauge wﬁu_ o(p) At ¢(p) is read off to be given by the inverseﬂ group element

(Tﬂgwp ¢; FIM) °© (7#%{,4‘)(19))

Note that this group element does for G < O(d) not necessarily lie in the structure group,
that is, the isometry induced gauge might not be GG-compatible (it can not be added to an
existing G-atlas of FM). In the next paragraph on G-structures we will show that this
happens exactly when ¢ ¢ Isomgyy, i.e. for isometries which do not respect the G-structure.

= (g;%))‘l € (GUO(d)) < GL(d). (13.29)

To derive the isometry actlon on frame fields, consider the identity sections o : U A

;1& (U A) over UA and 0 : UA — T '(UA) over U. These sections model the orlglnal
frame fields from Fig.[8.5] The new frame field is then given by the pushforward section

6 >0t = By s © cAop™l UA - (U, (13.30)

M
which is equivalently defined to that in Eq. (I3.20). An alternative expression for the push-
forward frame field in terms of the right action of g(‘;‘A is found by applying 1/}?}”‘ 6(0)

Vi ([0 01 (6(0))) (13.31)

1/’}1%1.¢(p) Purut ot (p) def. of g 1> 0 Eq. (330 )
2" () Uiy o (p)

(

) (
95 (p) (identity section o, Eq. (TT33) )

(

(

equivalent expressions in Eq. (I3.27) )

= wﬁﬁm(p) (UA ((b(p))) g:;A(p) identity section o, Eq. (TT-34) )
= wg\w@) (oA (o(p) < g(‘;g(p)) right GL(d) equivariance, Eq. )

Since ZZ)}%,L (n) is an isomorphism, it follows that

(65 0M)(6(0) = bu o () = o (6(p)) <922 (p), (13.32)

that is, g(‘;‘A(p) does as expected describe the transformation between identity sections. This
isometry induced transformation between reference frames is in Fig. visualized by the
blue arrow between the (translucent) red and green frame.

., and the pushforward section ¢r>04 correspond
to each other in so far that the latter is the identity section of the former:

Vi, ok 00 ] (0(0) = i, 6L 6o () = VL0t () = e (1333)

The isometry transformed gauge w;‘},_p ot

Pushforward on GM in coordinates: As argued in the previous Section|13.1.2] the push-
forward on GM is only well defined for isometries ¢ in a subgroup Isomegas. Not surpris-
ingly, the corresponding isometry induced gauge transformations take values in the structure
group G:

The inverse is a matter of convention. It arises here since we defined ng as coordinate expression
of the covariant pushforward of frames while gauges transform contravariantly.
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Theorem 13.1.3 (Isomgyy in local trivializations). Let ¢ € Isom (M) be any isometry of
M. Then the following three statements are equivalent:

1. ¢ is G-structure preserving, that is, ¢ € Isomgyy.

2. The isometry pullback wg,p (;S;}M of any gauge 1/}1%”7[, of the G-atlas of FM that
defines GM is G-compatible with that G-atlas.

3. The coordinate expression of ¢

: A A
..py Telative to any gauges Vi, and Y, o

from the G-atlas of F M takes values in the structure group, that is, g;fm (p) € G
forany pin M.

Proof: The defining property of a G-structure preserving isometry ¢ € Isomgyy is that

it satisfies ¢, ,,(GpM) = M for any p € M; see Eq. (I3.10). In terms of
a given G-atlas of FM, Eq. (ﬁlﬁﬁb defined the G-structure at p € M as G,M :=

(ngw) ~(G) where wg[’p is an arbitrary gauge of the G-atlas. With this expression
we expand the left-hand side of the defining property of Isomgys:

¢*,F¢\1(GPM) = ¢*,FAI (wgw,p)il(G)
1

= (viel),) (@) (13.34)

Relative to any gauge wf-:‘w #(p) of the G-atlas at ¢(p), this can be further manipulated to

(@27 ®) o) (@)

= (W) (9240 G). (13.35)

¢*,F§\[ (GPM)

The right-hand side of the defining property of Isomgpy is in terms of wgm(ﬁ) given
by g

CoM = (U am) (G (13.36)

Setting both sides equal and using that %ég £6(7) is an isomorphism implies gﬁg (p)G =
G which leads to the claimed equivalence

G, it (GpM) = GyyM = g3 (p) €G (13.37)

of statements /. and 3. To prove the equivalence to statement 2., recall that gqﬁ‘g (p) is
by Eq. (13.29) equal to the gauge transformation from 1?1’%\1,;) $~ 1 to w%{, 6(p)" As G-

*, FM
atlases have by definition transition functions in the structure group G, the implications

(2.4+3.) follow, such that all three statements are seen to be equivalent. O

These results are of central importance for our later study of the isometry equivariance of
GM -convolutions. We will be able to show that such convolutions are equivariant under the
action of ¢ € Isomg), on feature fields, which relies on the fact that the GG-steerability of the

convolution kernels accounts for the isometry induced gauge transformations g;;‘A(p) eaqG.
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For G-structure automorphism inducing isometries ¢ € Isomgys, we can adapt the commu-
tative diagram for F'M in Eq. (13:28) to its cousin for GM:

A — A -1
wé‘M,p ¢*,(iw = (gﬁA(p)) : 1&(?3\,1‘4)([))

£ 'lb(gu D ?. GM W 1/)A

G e gy T g oM _ e o (13.38)
94 (p)-

Pushforward on A in coordinates: The pushforward of ¢ € Isomgy, on associated G-
bundles is similarly coordinatized as those of the other bundles. In terms of a commutative
diagram we get, not surprisingly,

A
*,A w
Vo g, P gy — 2 e (13.39)

y J

(924 ()

which follows when acting on feature vector coefficients f € R®:

(def. of (4,) ", Eq. (TT67) )
(def. of ¢, ,, Eq. (I3:16) )
) <95 (), fD (induced gauge transformation, Eq. (T3:32) )
(def. of ~,, Eq. (TT42) )
(def. of 1, Eq. (TT:66) ) (13.40)

Note that the expression p(gt‘;"Z (p)) requires gf’z (p) to be a structure group element since

p is a G-representation. This shows once again from another perspective that pushforwards
on A can only be defined for isometries in Isomg)y.

For completeness, we give the following local trivialization of the commutative diagram
from Eq. (I3:21), which might be useful when implementing coordinate independent CNNs
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and testing their Isomgys-equivariance:

6 % p(gi™)-

i wy 1774 Pra 1A 5 A1
UA xR +—2— 77 (U) ——2—— 7 (UA) ——— UA xR
proj, R o> f|2| proj,

UA UA
¢

(13.41)

13.1.4 Commutativity of isometry actions with the exponential map and
transporters

In the following section we will need an expression for the action of isometries on transporter
pullbacks Exp; f of feature fields f, which we derive here. For this purpose, we discuss the
behavior of the exponential map and parallel transporters under the action of isometries.

Isometries and the exponential map: As proven in [100]], isometries map geodesics to
geodesics and do therefore in particular commute with the exponential map{’| More specifi-
cally, the identity

eXPy(p) © By (V) = poexpy(v) Vv eT,M, ¢ € lsom(M), (13.42)

holds for any isometry and any tangent vector at p (still assuming a geodesically complete
manifold). It states that the result of the exponential map at p, evaluated with some vector
v and then being mapped through the isometry, equals the exponential map at ¢(p) when
being evaluated with the pushforward of v as visualized in Fig. [I3.3] (left). This statement
is diagrammatically expressed by the commutativity of (the upper square of) the following
diagram:

M ¢ M
exp exXp
. Y (13.43)
Trm Trag
M M
®

® The proof relies on the fact that the Levi-Civita connection V : T'(TM) x I'(TM) —
I(TM), (X,Y) — VxY, on which the Riemannian exponential map is based, commutes with
isometries: ¢ > (VxY) = Vypx (¢ >Y); see [100]
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qs*,r.\/v

XDy (p) P
= ¢(exp,v)

¢*,1:\/PYU
:7%/’07¢*,r\1v

Figure 13.5: Left: Isometries commute with the exponential map, that is, exp,,) © ¢, 5, (v) = ¢ o
exp, (v) for any vector v € T, M and isometry ¢ € Isom(M). Right: Isometries also commute with
the Levi-Civita transport of tangent vectors and feature vectors, that is, ¢, ;o B, = B ,,,0 P4

for arbitrary paths v : [0,1] — M and isometries ¢ € Isom(M). If an alternative, G-compatible
connection is used, we demand that the same commutativity property holds for them. The isometry-
invariance of exponential maps and transporters allows GM -convolutions to be equivariant under the
action of isometries.

Isometries and parallel transporters: The pushforward on the tangent bundle was
in [[LOO] further argued to commute with the corresponding Levi-Civita transporters, as visu-
alized in Fig. (right). If an alternative, G-compatible connection is chosen to transport
feature vectors, we demand that it commutes with the action of isometries as well. Since the
transporters and the pushforwards on F'M, GM and A are induced from those on T'M, one
can easily show that this property translates to them. Specifically for the associated feature
vector bundles this means that for arbitrary isometries ¢ € Isomgps and paths v we assume
the relation

2a°Fhy = P oy © P (13.44)
to hold, such that the following diagram commutes:
¢*.A
Ayo) = Agor(0)
P Prvon (13.45)
Ay ¢—> Agory(1)
*,A

Isometries and transporter pullbacks of feature fields: Knowing the transformation
laws of exponential maps and transporters under the action of isometries, we have everything
at hand that is required to derive the transformation law of transporter pullbacks Exp; fof
feature fields f:

Theorem 13.1.4 (Isometry action on transporter pullbacks of feature fields). Let f €
T'(A) be any feature field and let ¢ € Isomgys be any G-structure preserving isometry.
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Assume the feature vector transporters to commute with the action of Isomgyy, that is,
that Eq. (13.44) holds (which is automatically guaranteed for the Levi-Civita connec-
tion). The transporter pullback (Def.|12.2.4) of the pushforward field ¢1>f (Def.|13.1.2

is then given by:
Expy(¢ > f) = ¢, 0 [Expj-1¢yf]od (13.46)

*,TM
Proof: We start by letting the right-hand side act on an arbitrary vector v € T,M and work

progressively to the left-hand side by using the properties derived in this section:

Gun [BXDG-10) F] &, (V) (13.47)
=0T 1) expy oot () O © P @) 6z (V) (Det. (22
=Pa Py 61 o expy () O @7 O XPp(v) - (isom. acton on exyp. Eq. (I
= 7f4im péexp,(v) ¢, ©f o oexp,(v) (isometry action on P, , Eq. (T343)
= Dhp e cxp (v) ° (91> f) o exp,(v) (pushforward of fields, Eq. (T320)
= [Exp, (¢ > f)](v) (transporter pullback, Def.[[2.2.4)

]

Intuitively, this result just states that the transporter pullback of a pushforward field equals
the pushforward of the original field’s transporter pullback. Relative to local trivializations,
this pushforward can be interpreted as an isometry induced gauge transformation, which
was stated in Eq. (9.46). We will in the following assume that the G-compatible connection
which is chosen to transport feature vectors will always be Isomgy-invariant, and thus that

Eq. (13.46) holds.

That the transporter pullback and the isometry pushforward commute is a consequence of
the commutativity of the exponential map and parallel transporter, in terms of which the
transporter pullback is defined. Note that general diffeomorphisms do not preserve the metric
and thus the exponential map and the transporter pullback of feature fields. Being based
on these constructions, kernel field transforms and GM -convolutions can only be isometry
equivariant but not fully diffeomorphism equivariant.

13.2 Isometry equivariance of kernel field transforms and
GM-convolutions

We now turn to investigate under which conditions kernel field transforms and GM -
convolutions are equivariant w.r.t. the action of isometries on feature fields. As the action
on the G-associated feature vector bundles is only defined for GG-structure preserving isome-
tries, we will formulate all statements for the subgroup Isomgp; < Isom (M) or subgroups
7 < Isomg)y thereof. One can of course always consider structure groups G > O(d), for
which Isomgys = Isom(M).

The equivariance of a kernel field transform, and thus GM -convolutions, is defined as fol-
lows:

Definition 13.2.1 (Isometry equivariant kernel field transform).
Let T : T'(Ain) — T'(Aow) be a kernel field transform. Then T, is said to be equivari-
ant w.r.t the action of isometries in a subgroup T < Isomgys if it commutes with this

)

)
)
)
)
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action, that is, if the following property holds:
T (o>f) = o>(T(f)) V fel(An), 0T (13.48)

In terms of a diagram, ZC is equivariant w.r.t isometries in L if

T
(Ain) ———— T(Aow)
o> o> (13.49)
I'(A;p) T I'(Aow)
K

commutes for all ¢ € L.

A visualization of this definition is given in Fig.[0.3] In the following Section[13.2.T we will
derive a constraint on kernel fields in order for the corresponding kernel field transform to
be isometry equivariant. The geometrically intuitive result which we obtain is that the kernel
field itself is required to be invariant under the action of isometries, which implies a form of
weight sharing over the isometry orbits; see Fig. Section [T3.2.2] applies these insights
to the more specific case of GM -convolutions and GM -convolutional kernel fields. It turns
out that GM -convolutions are by the G-steerability of their template kernel automatically
equivariant with respect to any isometry in Isomgyy.

13.2.1 Isometry equivariance of general kernel field transforms

The main result of this section, Theorem [13.2.4} states that a kernel field transform J,. is
isometry equivariant if and only if its underlying kernel field K is invariant under isometries.
To make sense of this statement we start by defining the transformation behavior of kernel
fields when being acted on by isometries.

Definition 13.2.2 (Isometry action on kernel fields). Let K : TM — Hom (A, Aou) be
a kernel field as defined in Def.[12.2.1| An isometry ¢ € Isomgys acts on K via the
kernel field pushforward

G, = boymo Koo, (13.50)

*TM

Intuitively, this pushforward of kernel fields can be thought of as moving the individual
kernels IC,, at points p € M along the orbits of the isometry group to ¢(p).

Since kernel fields are defined to be bundle M -morphisms, that is, to satisfy m, K =
T - their pushforward is only well defined if it preserves this property. This is guaranteed
since the pushforward on the tangent bundle and homomorphism bundle are bundle maps,

satisfying 7., 0 ¢, ., = ¢ o 7y, (Eq. (13.4)) and 7y © B,y = @ © Ty (Eq. (I3.17)),

respectively:

-1
ﬂ—Hom ¢*,TI(IC = T‘—Hom ¢*‘H()m IC ¢*AT]\I
-1
= ¢ 7rHom IC ¢

* TM

—1
= ¢ T (ZS*‘TM

=¢ ¢_1 T
= g, (13.51)
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We visualize the definition of the isometry action on kernel fields by a commutative diagram:

- M
TrHom
™ (ZS*‘WIC Hom(Aim Aout)
¢ Prru s tiom (13.52)
K
™ Hom(Aim Aout)
T T Hom
~ M

The bottom part of this diagram shows the coordinate free kernel field IC from the diagram
in Eq. (I12.23) while the upper part shows its pushforward ¢, , K = ¢, ,, 0 K o ¢;T1M by
¢ € Isomgy. The commutativity of the leftmost arrow, which asserts that ¢, , moves
kernels from p to ¢(p), follows from ¢, ,,, and ¢, .. both being bundle maps over ¢.

We proceed by defining isometry invariant kernels fields — a visualization is found in

Fig.[13.6]

Definition 13.2.3 (Isometry invariant kernel fields). A kernel field K is said to be invari-
an{’| under isometries in T < Isomgyy if it satisfies the constraint ¢, , K = K for all
¢ € I. We denote the space of isometry invariant kernel fields by

KI

mvar

= {K: TM — Hom(Ain, Ag) smooth | 7, 0K =7, ,  (1353)
b K=K VpeT}.

By writing out ¢, ,, the invariance constraint reads

Gomo Koo ! =K VoeT, (13.54)

*,TM

which, after further expanding ¢, ,,.,, as defined in Eq. (I3.19), becomes:
b K(D0) ¢y = K(v)  VYveTM, VoeTl (13.55)

Note the similarity of these kernel field constraints in Eqgs. (13.54)) and (13.53)) with the G-
steerability constraint on template kernels in Eqs. (12.29) and (12.30), respectively. Indeed,
both constraints are closely related and imply each other to a certain extent as we will show
in the following Section[I3.2.2on isometry equivariant GM -convolutions.

The following theorem proves that kernel fields which are invariant under isometries do
indeed correspond to isometry equivariant kernel field transforms:

"Instead of saying that K is invariant, one could call it equivariant since it satisfies ttom © IO =
K o ¢, 1, V¢ € Z. This claim holds more generally, see Eq. (B:28) in Appendix[B.4]
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Figure 13.6: Visualization of an invariant kernel field /C
for the case of an isometry (sub)group Z = SO(2). The
invariance constraint requires ¢, , K := @, .. ICQ:;M =
K for any ¢ in Z. It enforces kernels to be shared over
the orbits Z.p := {¢(p) | ¢ € Z} of the action but allows
for different kernels on different orbits. Theorem [[3.2.4]
proves that invariant kernel fields and equivariant ker-
nel field transforms imply each other. This is intuitively
clear since a specific pattern in the feature fieldatp € M
will evoke the same response when being transported to
¢(p) if and only if the kernels at both points coincide.
For the choice of Z = O(2) as isometry group, the ker-
nels would additionally have to satisfy a reflectional con-

straint; see Fig.[T3.7]

Theorem 13.2.4 (Equivariant kernel field transform <> invariant kernel field).

A kernel field transform ‘716 : T(Am) = T(Aow) (Def: [12.2.5) is equivariant w.rt.

isometries in I < Isomgns according to Def.[I32.1]if and only if the underlying kernel
field K is invariant under isometries according to Def. that is,

Tl f) = o> T(f) = ¢,,K=K (13.56)
forany ¢ € T and any f € T'(A;p).

Proof: To prove this theorem, we write out the kernel field transforms and feature field
pushforwards on both sides of the isometry equivariance condition in Eq. (I13.48). The
statement follows from a comparison of both sides after a few algebraic manipulations.

We start with the right-hand side of Eq. (T3:43):
)

—
—

0T () = ¢ [T(H)] (67 (D))
@ By, /IC(U) [Exp;_l(p)f](v) dv
Ty—1,yM
@ 4 / K(v) 6= [Exp; (65 )] (6o (v) do
Ty—1yM
D[ oK) ot B on N do
T,M
® / [Gurn K 671 1(8) [Bxp (65> )] (8) di
T,M
D[ [..K)®) [Bxwy 0 D) (0) do (13:57)
T,M

Steps (1) and (2) expand the isometry action > on feature fields (Def[13.1.2) and
the kernel field transform (Def. [12.2.3). The transformation law of the field’s trans-
porter pullback in Theorem [13.1.4] which relies on the Isom-invariance of the G-
compatible connection, justifies step (3). Step (4) substitutes v with & = ¢, ,,,v. Since
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@ is an isometry, the change of volume equates to 1. Steps (5) and (6) identify the action
of the kernel pushforward ¢, ,, Def. The resulting statement is quite intuitive:
A transformation of the kernel field transform’s output corresponds to a simultaneous
transformation of its input and kernel field.

Writing out the left-hand side yields

Telor 1)) = [ K0 [Bwjon )]0 do, 359

,M
which is equivalent to the right-hand side up to the transformation of the kernel field.

Isometry equivariance requires both expressions to agree for arbitrary fields f €
I'(Aiy), points p € M and isometries ¢ € Z. This is the case if and only if ¢, , K = K
holds for any ¢ € Z, i.e. if the kernel field is invariant under the action of isometries.[J

Note that this proof would have been very cumbersome to work out in (a G-atlas of) local
trivializations. The global, coordinate free description of kernel field transforms allows for
a simple proof without having to worry that the isometries move features between different
local trivializations.

At this point we could proceed with a further investigation of isometry invariant kernel fields:
since the invariance constraint implies kernels to be shared over orbits of the isometry group,
a description of the entire kernel field on the full manifold is redundant. It is therefore
possible to reduce the description of such kernel fields to kernel fields on quotient spaces.
As this analysis is not required to prove the isometry equivariance of GM-convolutions and
requires some technical definitions, we postpone it to Section [13.3]

13.2.2 Isometry equivariance of GM-convolutions

Recall that GM -convolutions (Def. were defined as specific kernel field transforms
with GM -convolutional kernel fields (Def.[12.2.3). The results on the isometry equivariance
of kernel field transforms therefore immediately apply to GM -convolutions as well. How-
ever, in addition to the isometry invariance constraint in Eq. (I3.34), GM -convolutional ker-
nel fields need to satisfy the G-steerability constraint on the template kernel from Eq. (12.29)
and share weights over the G-structure according to Eq. (IZ.31). In order for the GM-
convolution to be isometry equivariant, all of these constraints have to be satisfied simul-
taneously. Intuitively, this implies that the convolutional weight sharing needs to agree
with the isometry induced weight sharing over orbits. Luckily it turns out that this is au-
tomatically the case for the isometries under consideration: GM -convolutions share weights
over the G-structure and the isometries in Isomgys preserve the G-structure such that GM -
convolutional kernel fields are guaranteed to be Isomgys invariant. In coordinates, this re-

flects in the Isomgps-induced gauge transformations g(‘;‘A (p) taking values in the structure
group G, such that they are explained away by the G-steerability of the template kernels.

To make these arguments more rigorous, consider a GM-convolution K* : I'(Ay) —
I'( Aoy ) with some G-steerable kernel K € g{gn) Po® which is by Def. just the kernel
field transform STICK with the GM -convolutional kernel field Kx. By Theorem the
GM -convolution is therefore exactly then Isomgps-equivariant if KCx is Isomgps-invariant,

i.e. when it satisfies ¢, , Kx = @, o © K © qﬁ;TIM = Kk for any ¢ € Isomgps. This
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constraint on the full kernel field is equivalently expressed by a set of constraints on the
individual convolution kernels that make up the field:

Gepom © K po ¢ = Koy VpeM, ¢ €lsomay (13.59)

Considering a specific point p € M, we choose arbitrary gauges Aat p and A at ¢(p) from
the G-atlas. The GM -convolutional kernel field is by Def.[12.2.3|at p and ¢(p) given by

K

i -1
p = (Viemp)  © o Pih, (13.60)
Ving
-1 K
and  Kio) = (Crmom)  © T CATPRE (13.61)
|77¢(p)‘

Plugging these expressmns into the constramt in Eq. (I13:39) for the fixed p and identifying
By tiom (¢Homﬁp)7 with (¢H0m , qﬁ*_H )7 yields, for any ¢ € Isomgy:

K

g

The isometry equivariance will therefore hold if the weight sharing via the isometry induced

A _ _ -1
(w'ﬁmp ¢* Hom ) © MJTMP ¢* ™ (wlﬁ’mvfb(l))) © © ﬂjTM b(p (13 62)

A
|77¢(p)

gauges 7%‘), (;5 agrees with the weight sharing via the original gauges w from o(p).
Recall that the 1sometry induced gauges are by Theorem [13.1.3] for 1sometr1es in Isomgps
guaranteed to be compatible with the G-atlases (of the corresponding bundle). As shown in
Eq. (I2:32), the particular choice of gauge, relative to which the G-steerable template kernel
is oriented, is irrelevant, as long as the gauges are G-compatible. Since all derivations were
independent from the chosen point p and the particular choice of gauges, this implies that
GM -convolutions are by design guaranteed to be Isomgpr-equivariant.

To gain a better intuition for this result it is worth to make the induced, G-valued gauge

transformations gA’Z (p) explicit. To this end, note that the commutativity of the dia-
grams in Egs. (13.39) and (13.24) implies 1/)H0m 2O Hlom = Plom (9¢ ( ))_1 ﬁma(p) and

z/zm‘p ¢*_m = (g<t> (p)) wm‘ 6(p)° Inserting these coordinate expressions into the con-
straint in Eq. (13.62) leads to the requirement that

- _ -1 K
(pHom (g:;A (p)) ' w]—im,cﬁ(}))) o

A -1
™ o (957 () o) (13.63)
p

A
° Vs g(p)

—1 K

= Wiamotn)  © ==
v ‘%(p)‘

needs to hold for any isometry ¢ in Isomgy,. By expanding the inverse on the left-hand side,

using that 4/ |17§\ =, /|77(’;‘(p)\ - | det gc‘;\g(p)| and dropping the gauges, which is possible
since they are isomorphisms, we end up with the constraint

i -1
Taetga )] o (gﬁ“‘(p)) oKo ( AA(p)) — K Véclsomay, (13.64)
]
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which looks exactly like the G-steerability kernel constraint on K from Def. [12.2.2} Recall
that the isometry induced gauge transformations gﬁA(p) are by Theorem [13.1.3|guaranteed
to be G-valued if ¢ is an element of Isomgp,. The constraint in Eq. (13.64) is therefore
always satisfied by the G-steerability of K.

The derived results on the Isomgy-invariance of GM -convolutional kernel fields g are
concisely summarized by the statement that the following diagram is guaranteed to be com-
mutative if K is G-steerable and if ¢ € Isomays is G-structure preserving:

i (P (95°) 0 K /I @ (95%) )

UA
V Wn

—1 A -1 A
T™ (U ) ¢*.’1( KK ’/THom (U )

A
\I]Hom

UA % Rd UA % R Cout X Cin

¢ X g:;lA‘ Burns ¢*,Hom ® X Pyom (QZ;‘A)

UAxRY —— (
™

\I/Ts'\rl
7& A m

ide/\/|777

1AA *gAAO(ﬁ I.UA

UA) 7T UA) _ Uﬁ % TR Cout X Cin
qj}?}l‘ﬂ

Here we defined the pullback g — G of the isometry pushforward
coordinatization from U A to U4 for notational convenience.

Together with Theorem [13.2.4] the Isomgys-invariance of GM -convolutional kernel fields
implies the Isomgys-equivariance of GM -convolutions:

Theorem 13.2.5 (Isometry equivariance of GM -convolutions). A GM -convolution
Kx : T(A;pn) — T'(Aow) with a G-steerable kernel K € ﬂ{G ot is equivariant with
respect to all G-structure preserving isometries ¢ € IsomGM, that is,

Kx(p>f) = ¢> (Kxf) V feDl(An), ¢ € Isomay - (13.65)
The following diagram commutes therefore for every ¢ € Isomgypy:
K
[(Ap) ———— T(Aow)
I'(Ain) T K. ['(Aou)
Proof: The proof was given in the discussion prior to the theorem. 0

Having this general result on GM -convolutions derived, we will now discuss some special
cases for specific choices of structure groups G. Firstly, for orthogonal structure groups
G = O(d) (or supergroups of it), the convolution will commute with any isometry:
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Theorem 13.2.6 (Full isometry equivariance of OM -convolutions). OM -convolutions
are equivariant w.r.t. the action of any isometry ¢ € Isom(M) on feature fields. More
generally, any GM -convolution for G-structures with structure groups G > O(d) is
fully isometry equivariant.

Proof: The statement follows from Theorem (13.2.3) by observing that Isomgy =
Isom(M) is guaranteed for structure groups G > O(d). The latter was discussed

in Eq. (13:14). O

This result relies essentially on the fact that isometries are defined as that subgroup of dif-
feomorphisms on M which induce O(d)-structure automorphisms. Less abstractly stated,
Isom (M) is by definition that subgroup of diffeomorphisms which respect the Riemannian
metric 7 of M and the corresponding O(d)-structure OM is equivalent information to the
metric.

On orientable Riemannian manifolds one can furthermore pick an orientation (frame hand-
edness), which together with the metric defines an SO(d)-structure SOM . The correspond-
ing isometries which lift to SO(d) structure automorphisms are the orientation preserving
isometries in Isom (M).

Theorem 13.2.7 (Isom (M) equivariance of SOM -convolutions). SOM-
convolutions are equivariant w.r.t. the action of orientation preserving isometries
¢ € Isom (M) on feature fields.

Proof: This result follows from Theorem (13.2.5) by observing that Isomgony, =
Isom (M). O

For instance, an SOM -convolution for M = R2, correspondmg to Fig m is equivari-
ant w.r.t. the action of the special Euclidean group Isom (R?) = SE(2). Similarly, an
SOM -convolution for M = S2, corresponding to Fig [13.4b| is rotation equivariant with
Isom, (S5%) = SO(3).

Note that the results of Theorems [13.2.6] and [13.2.7] depend only on the structure group
G but not on the particular choice of G-structure. For subgroups G of O(d) (or SO(d))
things become more complicated. In these cases the subgroups Isomgps of Isom (M) de-
pend on the specific embedding of the G-structure GM into F'M. This was for G = {e 2}
visualized in Fig. m Specifically, Fig. |1 shows the canonical {e}-structure of ]R
which is fully translation equivariant, that is, Isom{e}M = (R2%, +). In contrast, Fig. [l
shows an {e}-structure of R? which is only translation equivariant along one axis such that
Isomgys = (R',+). From the viewpoint of convolutional networks this result is very
intuitive: The {e}-steerable kernels in these examples are unconstrained, i.e. conventional
convolution kernels. They do therefore in general not carry any information about their
responses when being applied relative to gauge transformed reference frames. Since the
frames, and therefore kernels, in Fig.[I3.3b]are differently rotated along the “left-right” direc-
tion, the kernel responses change unpredictably when translating a signal in that direction. If
the template kernels would, however be SO(2)-steerable, they could account for the rotation
of frames. This case corresponds to the situation in Fig[I3.4a] i.e. an SOM-convolution.

13.3 Quotient kernel fields

Theorem [13.2.4] showed that the isometry equivariance of a kernel field transform requires
the invariance of the corresponding kernel field. Since the invariance constraint implies ker-
nels to be shared over orbits as visualized in Fig.[13.6] the mathematical description of such
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invariant kernel fields is redundant: a single kernel at one orbit representative is sufficient
to reconstruct the kernel field on the whole orbit. In Section [13.3.2] we derive equivalent,
reduced descriptions of invariant kernel fields in terms of kernels on orbit representatives.
These representative kernels are themselves constrained by the action of the stabilizer sub-
group of the orbit representative. We propose a (unique) lifting from representative kernels
to invariant kernel fields, which establishes an isomorphism between both descriptions. This
lifting isomorphism suggest a way of parameterizing and constructing isometry equivariant
kernel field transforms in an implementation. Before deriving these results in Section[13.3.2]
the following Section[I3.3.1] sets up the mathematical framework.

The derivations and results of this section are close in spirit to the theory of steerable CNNs
on homogeneous spaces [35, 56|, however, we generalize their results from homogeneous
spaces to general manifolds. When sticking to homogeneous spaces M, we prove that isom-
etry equivariant kernel field transforms are equivalent to GM -convolutions.

13.3.1 Isometry induced quotient spaces

The action of a symmetry group on a space partitions it into orbits, defined as the sets of
all points which are connected by the group action. The space of such orbits is the quotient
space w.r.t. this group action. In the following we will discuss the quotient spaces arising
from the actions of some isometry group Z < Isomgps both on the manifold and on the
fiber bundles. These definitions will later allow us to share weights over orbits by acting
with isometries on kernels.

Manifold quotients: Any point p € M traces out an orbit (Def.|[B.3.3)
Ip:={é(p)|vel} C M, (13.67)

which is defined as the set of all points reached by acting on p with any isometry in Z <
Isom(M). One can easily check that the relation “p and ¢ are elements of the same orbit”
is an equivalence relation (see footnote[TT) and thus partitions the manifold as visualized in

Fig. The quotient space (Def. [B.3.4]
I\M = {Zp|pe M} (13.68)

with respect to this equivalence relation is the space of all orbits, that is, each element of
T\M corresponds to a full orbit in M ﬂ The corresponding quotient map

Q,:M—T\M, p—~Tp (13.69)

identifies a point p € M with its orbit Z.p € Z\M. For each orbit one can select an arbitrary
orbit representative (Def.[B.3.5), formally determined by a section

ryI\M — M suchthat @, or, =idp, (13.70)

where the last condition ensures that the representative r,,(Z.p) is indeed an element of the
orbit Z.p. One is often interested in continuous (or smooth) sections, however, these do in
general not exist. We will therefore in the following not demand the orbit representatives to
be chosen continuously and make up for this shortcoming post-hoc if necessary. As usual
for sections, they are in general only right inverses of the quotient map but not left inverses,

8We write Z\M as a left quotient since Z acts on M from the left.
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that is, 7, 0 Q,, # idas. This is visualized by a commutative diagram

T\M M M Cu \M (13.71)

L J

idrar

similar to that in Eq. (IT.19) and a non-commutative diagram

My (13.72)
{ ” ]
idar

similar to that in Eq. (TT.20). The individual fibers preime(I .p) = Z.p C M of the quo-

tient map @), are given by the orbits themselves. Note that M % Z\M is in general
not a fiber bundle since the orbits are not necessarily homeomorphic to each other and can
therefore not be locally trivialized with a shared typical fiber F, as required by the commu-
tative diagram in Eq. (TT.1I). Each orbit therefore has an own type which is in close relation
to the stabilizer subgroups of the points on that particular orbit. The stabilizer subgroup

(Def.[B3.6)
Stab, := {{ €I |&(p)=p} < I (13.73)

of a point p € M is thereby defined as that subgroup of the isometry group which leaves p
fixed. In terms of the stabilizer subgroup, it holds that the orbit of a point is identified with

I.p = T/Stab,, (13.74)

which is known as orbit-stabilizer theorem To see this claim, let f, : Z — Z.p, ¢ —

¢(p) for some p € M and observe that f,(¢ o &) = ¢ o&(p) = ¢(p) = fp(¢) for any
£ € Stab,. It can easily be shown that indeed preimfp(qﬁ(p)) = ¢.Stab,, is a coset of

the stabilizer subgroup of p and thus that f, establishes the claimed isomorphism Z.p =
Z/ Stab,,.

To make these constructions more intuitive, consider the example in Fig. with 7 =
O(2). The orbits Z.n = {n} and Z.s = {s} of the north and south pole are just points,
which are fixed by Z. This agrees with, for instance, Z.n = Z/ Stab,, = Z/Z = {n} since
Stab,, = Z coincides with the full isometry group. For any other point p € M, the orbits
Z.p are circles. We have reflections Stab, = R (flipping over p) as stabilizer subgroup
and thus indeed get the circle Z/ Stab, = O(2)/®R = S* as orbit type. The quotient map
Q,, : M — I\M sends points ¢ € M to their orbits Q,,(¢) = Z.q in the quotient space
Z\M, shown on the right. Since the orbits can be traversed from the north to the south pole,
the quotient space Z\M has the topology of a line segment. The section r,, : Z\M — M
picks one representative point r,,(0) € M for any orbit o € Z\M. In general, this orbit
representative does not recover a projected point. For instance, we have that r,,Q,,(p) # p.
One can interpret the section as embedding the quotient space Z\M into the manifold, shown
as the black line r,,(Z\M) from the north to the south pole.

Bundle quotients: Since the isometry group acts not only on the manifold itself but via
pushforwards also on the associated bundles, these bundles are in a similar manner par-
titioned into orbits. To keep the discussion general, we are in the following considering
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n_—In Q,(n) Lw Ty @ (W) Qpy(w)
w
Q) Qny
bz
T \ | T
M To ‘ T " ™ Qi)
Qj‘[(p) \V h >/ N
i@y (V)
I\M TM I\T'M

(a) Quotient map and orbit representatives for M. (b) Quotient map and orbit representatives for TM .

Figure 13.7: Quotient maps @,, and @, and orbit representatives (sections) r,, and r,, for the actions
of the isometry group Z = O(2) on the manifold M in Fig. and on the tangent bundle 7'M in
Fig.[T3776] A detailed description of both visualizations is given in the main text.

a generic associated bundle E I2. M , which could stand for TM, FM, GM, A or
Hom(Ajn, Aou). We denote elements of the total space as e € E and let ¢, ,, be the push-
forward of ¢ on E as introduced in Section[13.1.2] The orbit of an element of the bundle is

then in analogy to Eq. (13.67) given by
Te = {¢,.(e)| ¢ €T} (13.75)

while the quotient space, consisting of bundle orbits, is analogously to Eq. (13.68) defined
as

I\E = {Z.e|ec E}. (13.76)
Similar to before, the (canonical) quotient map sends bundle elements to their orbit:
Q,:E—1I\E, e—~Te (13.77)
We define a (uniquely determined) projection map
gt T\E = T\M,  Qy(e) = Qo my(e) (13.78)

between the bundle quotients and manifold quotient as visualized in the following commu-
tative diagram:

Qp

I\E+—* _ E

WI\E[ ‘/WE (13.79)

M+ M
QM
Note that the definition in Eq. (I3.78) does not depend on the particular choice of orbit

representative since for any other ¢, ,(e) € @, (e) we obtain the same result: Q,, o 7, o

b, p(e) = Qopomye) = Q,, omy(e). Orbit representatives are formally determined by
a choice of section

7, I\E — E suchthat Q,or, =idng, (13.80)
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which we again do not demand to be continuous. However, for convenience we demand the
representatives of bundle orbits to lie above the representatives ,,(Z\M ) in the base space,
that is, to satisfy

(13.81)

TpCTy = Ty Mg

as shown in the commutative diagram below:

]
I\ ————— FE

WI\EL l@ (13.82)

I\M ———— M
M

The stabilizer subgroup of a bundle element e € E is defined as
Stabe := {£ €T [ &  e=e} < Stabr () < T. (13.83)

It is necessarily a subgroup of the stabilizer subgroup Stab () of the point m,(e) in the
base space, which is easily seen by £ € Stab, & £, ,e = e = (€. pe) = Emyle) =
my(e) & & € Stab, (e) - As before, the relation Z.e = 7/ Stab, holds.

We extend our example from Fig. m by considering the action of Z = O(2) on the
tangent bundle T'M of the egg M in Fig.[13.7b] The orbit (violet) of a non-zero vector
0 #w e T M (red) at the north pole n descrlbes a circle in T, M. This is consistent
with Z. w = =~ 7/Stab,, = O(2)/®R = S! since such a vector is stabilized by reflections
Stab,, = R along its axis. The orbit of 0 € T, M is a single point in 7'M, which is
stabilized by any isometry. Any other vector v € T,M (red), living in a tangent space
at a point p € M different from the poles, is by the action of the isometry group rotated
and reflected to other tangent spaces T (,)M on the orbit Z.p of p. The orbit Z.v (orange)
of any such vector, if not pointing exactly to the north or south, is given by an eastward
and a westward pointing copy of the vector in each of the tangent spaces over Z.p. We
have Stab, = {e} for such vectors and indeed the orbit Z.v = Z/ Stab, = O(2)/{e} is
homeomorphic to O(2) (or two circles). Vectors v” € T, M which do point exactly north- or
southwards are stabilized by reflections over the axis which they define, that is, Stab,, = R.
Their orbit is homeomorphic to a circle Z.v' = 7/ Stab,, = O(2)/R = S*.

The quotient map @Q,,, : TM — Z\T'M projects the tangent bundle to the bundle quotient
I\TM, shown in the rlght half of Fig. m To understand its structure, we consider all
qualitatively different cases: Firstly, note that the orbits of vectors at the poles correspond

to circles of a certain radius, such that the set of such orbits forms a line 7r (I n) = R

(pink ray under the black arrow). Similarly, the orbits of vectors at any other pointp € M
intersect all tangent spaces 7y, M over Z.p in two reflections and therefore form a half
plane 7r (I p) = R x R>( (orange). The section ., : Z\T'M — TM sends each bundle
quotlent element to some representative in 7M. By the requirement in Eq. (I3.8T), these
representatives are required to lie in the same fiber over the representatives r,,(Z\M) of the
manifold quotient Z\ M/, shown as the black line. For instance, v € T, M (red) is by the quo-
tient map sent to Q,,,(v) € Z\T'M (black). The section represents Q,,,(v) by 7,,Q,,,(v)
(also black), which is an element of TTMQM(p)M and does in general differ from v.



13.3. Quotient kernel fields 253

13.3.2 Quotient representative kernel fields and stabilizer constraints

To motivate the construction of quotient representative kernel fields and stabilizer con-
straints, consider the more explicit formulation

Gepmo Kpo ¢ = Koy VpeM, g€, (13.84)

of the isometry invariance constraint from Def. [[3.2.3] which follows by writing out
Eq. for any point p € M individually. This formulation emphasizes that the con-
straint leads to shared weights along the manifold orbits T.p € T\M as visualized in
Figs. and It implies that the kernel K, at an arbitrary representative point
r = 7r,(0) of any orbit o = Z.r fully specifies the kernel field on the rest of the orbit,
i.e. at all points ¢(r) where ¢ € Z. The kernel [C, at the representative point 7 is itself
constrained by the stabilizer subgroup of r:

Eepm 0 Kr o€ = K, V€ Stab, . (13.85)

This implies that any isometry invariant kernel field can be parameterized in terms of a field
of kernels on manifold orbit representatives r € r,,(Z\M) which satisfy Eq. (13.83).

In case that the stabilizer subgroup at r happens to be non-trivial, the stabilizer constraint
in Eq. implies further symmetries of the kernel K, at r itself. For instance, in the
example in Fig. one has the stabilizer subgroup Stab, = R on the highlighted orbit,
enforcing a reflectional symmetry of the kernels. Such stabilizer symmetries allows to com-
press the description of isometry invariant kernel fields further: it turns out to be sufficient
to know the values KC(w) of the kernel field on the tangent bundle quotient representatives
w € 1y, (Z\T'M) C T'M only. In Fig. this corresponds to knowing the kernel values on
the orange highlighted half space, from which the full field on the orbit can be reconstructed
by the reflectional and rotational symmetries in Z = O(2).

Theorem |13.3.1| below makes the latter claim precise by proving that the space KL of

mvar
isometry invariant kernel fields is isomorphic to a space ﬂ{iot of kernel fields on tangent

bundle orbit representatives r,, (Z\T'M). f](%mt is characterized by maximally reduced con-

straints and thus encodes the kernel fields in K, in a non-redundant way. It can therefore

be viewed as the distilled degrees of freedom contained in KZ . In Theorem [13.3.2| we

formulate a third isomorphic space f]A{unot, which equivalently describes isometry invariant
kernel fields in terms of the stabilizer subgroup constrained kernels /C,. from Eq. (13.83).

While the formulation of isometry invariant kernel fields in terms of ‘7{unot involves stronger

constraints than that in terms of CI{unm, it might be more convenient for implementations,
since it describes kernels on full tangent spaces instead of kernels on quotients of tangent

spaces.

Reconstruction isometries: In order to reconstruct full invariant kernel fields in KZ, .
from single kernels on orbit representatives, the representative kernels need to be redis-
tributed over the full manifold by applying the kernel pushforward in Eq. with
p = r fixed to the chosen representative points. For the kernel reconstruction at some
point ¢ € M, this requires some isometry ¢ which maps the orbit representative ,,Q,,(q) €
ry(ZI\M) C M back to ¢ € M, that is, which satisfies ¢(r,,Q,,(¢)) = ¢. To make this
more precise, recall that kernel fields K : TM — Hom(Ai,, Aoy) are defined as maps
with domain T'M, encoding the kernel alignments in addition to their position. We therefore
need to consider more specific isometries which push tangent bundle orbit representatives



254 Chapter 13. Isometry equivariance

Figure 13.7: Visualization of an isometry in-

variant kernel field, Def. [[3.2.3] and its full

reconstruction from kernels on quotient rep-

resentatives only. In contrast to Fig [T3.6] we

assume here an isometry group Z = O(2) in-

T = v € TM  stead of SO(2). The visualized kernels there-

[/ %\ Y \/ fore have a reflectional symmetry, which is

N/ 7 enforced by the stabilizer subgroups Stab,, 22

R of points on the orbit Z.7w,, (v). Due
: N\ Ly to its symmetry, the full kernel field K

‘. Y . f. TM — Hom(Ain, Aou) can be reconstructed

{ from its restriction to the bundle quotient rep-

(I)rn I(U)*.TM resentative 7, (Z\T'M) C TM; see Theo-

rem [[3.3.1] For instance, the shown kernels

are fully determined by the partial kernel on

TTMQT\/(U) the orange half space. The reconstruction at

) v € TM is done by evaluating the quo-

€1 (INTM) CTM ey representative kernel at r,, Q,,(v) €

70 (Z\T'M) and pushing the kernel via the

reconstruction isometry ®, (v) € Z, defined in Eq. (I3.86), back to v. We want to mention that

the visualized antisymmetric kernels would result when mapping between feature fields of even and

odd parity, while kernels between feature fields of the same parity would be symmetric.

Ty @pas (V) € 75y, (Z\TM) € T'M back to vectors v € TM. These reconstruction isome-
tries are defined by

@, :TM — I suchthat @, (v), 5, 75 Qn (V) =v VveTM (13.86)

We recommend to consult Fig. [T3.7) to get an intuition for the reconstruction isometries:
graphically, ®, (v) is defined as any isometry which pushes the black vector r,, Q,, (v)
on the orange "orbit Z.v back to the red vector v on the same orbit. Note that o,

is only unique up to the stabilizer subgroups of the orbit representatives since for any
§ € Stab, o (v) it follows that ®, (v)¢ satisfies the defining constraint in Eq. (T3.86)

as wellm [0, (0) €], 1 T @iy (V) = Pr (V) 1y, 7y Qo (v) = 0. Al of the following
constructions are shown to be independent from this ambiguity. The action of reconstruction
isometries on the base space M follows by applymg the tangent bundle projection to both
sides of the defining constraint in Eq.

3

TA[CI)TT\,(U)*,HI Tras @ (v) (Def. of . . Eq. (13:36) )

v V) T Ty Qg (V) (Pushforward is a bundle map, Eq. (T3:3) )

vl V) T Ty Qg () (Def. of bundle sections, Eq. (I3:81) )
(V) 1y, Qyy Ty (V) (Def. of 7., Eq. (379) ) (13.87)

T (V) =

@@**@*

T

“Since the sections Tpy, are in general not continuous, ®;, can in general not be demanded to be
continuous either.

19:Furthermore, the defining constraint on ®,. .., 18 fulfilled when left multiplying .. (v) with any
¢ € Stab,. This does, however, not add any new degrees of freedom since Stab, = Stabr

s Qrng (V)
and C o 1\1(1}) = q:‘r“[(’l}) [(I)T'u\[(,u) (@Tm[(v)] = (I)T'uu(v)c with C € StabTTMQTM(U).
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A visual summary of the properties of ®,. , that s, its actions on 7'M and M, is given in the
following commutative diagram

idT]\J
( N
CI)T X T, OQ
TM ™ ™ ™ I « TTM (I\TM) ev TM
T idz X 7y, Ty (13.88)
M I xry(I\M) ———5—— M
- J

idas

where the evaluation maps ev are, overloading the notation, given by ev : Z X M —
M, (¢,p) — ¢(p)andev : T x TM — TM, (¢,v) — ¢, ,,,(v), respectively.

Quotient representative kernel fields: As argued above, the symmetries which are
present in an isometry invariant feature field € KZ . should allow for its full recon-
(Z\Hom) to tangent bundle

struction from its restriction K|, (z\rar) : TTU (I\NTM) = 1y,
. (I\TM ) C TM"!| To construct a (unique) /ift A which recovers
K= A(IC|TT” \rary) from K. r, (T\TM)» We expand tangent vectors v in the domain of

KC via the reconstruction isometry @, from Eq. (I3.86) and make use of the invariance
(equivariance) of the kernel field in Eq. (I3.54). This leads to:

Kw) = K ©T,M(U)*,'m1 T QTM (v)
= P (V) pton K Ty @y (0)
= Pr (V) 5iom ’C|rT1,(I\TM ) Trar @ (V)

=t [A(Kly,, @ean)] (v) (13.89)

Note that this construction is well defined despite the ambiguity of @, ~w.rt. the right
multiplication with elements in Stab,. oy Qg (V) This is easily seen by observmg that for any

w € TM, any £ € Stab,, and any IC S G(EW one has &, .. K(w) = K(§, ,,,w) = K(w),

which implies that Stab,c(w) > Stab,,, and thus that the final result does not depend on the
particular choice of the ambiguous ;. .

orbit representatives 7;

Since the lift A recovers invariant kernel fields from their restriction to tangent bundle orbit
representatives, it can be viewed as the inverse map of the restriction (of invariant kernel
fields). This viewpoint implies that the lift establishes an isomorphism A : KL = — KT

quot invar

between the image of the restriction ﬂ{quot, which we still need to characterize, and KL :

//—\)
KL KHE
wot ¢ - invar
AT = ()]

(13.90)

7y (T\TM)

"n the following we might abbreviate Hom(Ain, Aou) and T\ Hom(Ain, Aow) with Hom and
Z\Hom, respectively.
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In order to characterize the space 9{qzuot which makes A to an isomorphism, it is sufficient to
list the properties of restricted fields Q := IC|,,TU(I\TM € K  for K € KL

qll()t mvar*

= First of all, since A~ is given by the restriction of the domain to 7.
that any Q € KZ  is required to be of the form Q :

quot

T (Z\T'M), it is clear
I\TM> - rH()m (I\HOHI) .

T\[ (

Secondly, the property of kernel fields to be bundle M -morphisms translates under the
restriction A~! to the requirement on Q to satisfy 7, o Q(w) = 7, (w) for any
w € 1, (I\TM)

™ (

« Thirdly, Q is required to satisfy the (vector) stabilizer constraint &, . Q(w) = Q(w)
for any representative vector w € 7, (Z\T'M) and any & € Stab,,. This requirement is
a residual from the invariance constraint in Eq. (I3.54)), surviving the restriction.

It can be deduced by considering the full constraint ¢, ,,, Q¢ m( w) = Q(w) for

any w € 71, (Z\T'M) and any isometry ¢ € Z which additionally satisfies that
Gy (W) € rT” (Z\TM), i.e. that the pushforward ¢, ,, (w) stays within the restricted
domain of Q. Note that ¢, ,,,(w) € Z.w and that r,,,(Z\T'M) intersects each orbit
exactly once. This implies that Z.w N r,,,(Z\T'M) = {w} such that ¢ € Z is required
to satisfy ¢, (w) = w, thatis, ¢ € Stab,,. The claimed (vector) stabilizer constraint
follows from these considerations.

For an intuition we refer back to Fig. where the black representative vector
w = 7,,,Q,(v) is stabilized only by the trivial isometry £ = {e}, implying that the
corresponding value of Q is unconstrained. Vectors w’ € r,,,(Z\T'M) which point ex-
actly north- or southwards, i.e. which lie on the dashed reflection axis, are stabilized b
reflections in Stab,,, = R, implying a constraint on the corresponding kernel values@

= As alast requirement, Q needs to lift to a smooth kernel field, that is, A(Q) is required
to be smooth. Unfortunately, the smoothness (or even continuity) of A(Q) does not
automatically follow from the smoothness (continuity) of Q since A is defined in terms
of r,, and (I)TT\,’ which can in general not be demanded to be smooth (continuous).

Before summarizing and proving these claims rigorously in Theorem @]below we give a

visual overview of the relation between Q = IC‘TT\[ (@\rM) € f]{quot and its lift L = A(Q) €

KL .. in terms of commutative diagrams

K=A(Q)

[ 1

™ g Gerog, L X Tin(T\Hom) ——o5—— Hom (13.91)

™

"2The exact constraint depends on the action &, ,,,,, on Hom(Ain, Aou ), Which depends on p,, and
thus on p, and p,,. The visualized kernel in Fig. would correspond to p,, . being the sign-
flip (odd parity) representation of the reflection group, which enforces antisymmetric kernels. The
antisymmetry requires Q to be constrained to Q(w’) = —Q(w") = 0 for w’ on the reflection axis; cf.

Table [’5;1]



13.3. Quotient kernel fields 257

and

TM Hom

Trar © Qna Titom © Qttom

Q

T (I\NTM) > T (2 \Hom)

7y (T\M)

v © QM

M
(13.92)
In the last diagram, the commutativity of the top square follows by inserting the definition of
the lift, which yields ry; Q. A(Q) = 1y Quo Pr (V) 1on @ T Qpyy = Q7 Q- The
commutative of the bottom left and right squares follows from Egs. @ and

Theorem 13.3.1 (Tangent quotient representative kernel fields). The space of isometry
invariant kernel fields KL . from Def.|13.2.3|is isomorphic to the space g{qzuol of (vec-
tor) stabilizer subgroup constrained kernel fields on tangent bundle quotient represen-
tatives, defined asfﬁ

CI{unm = {Q: Ty (I\NTM ) — 1,

Hom

(I\HOI’H) ‘ 7-‘-Hnmo Q = 7TTM7 A(Q) SmOOth7

Eurim Q) = Q(w) ¥ w € ryy (T\TM), € € Stab,, |
(13.93)

The (unique) lifting isomorphism A : CI{unm — KZ .. between both spaces is hereby
given by

A(Q) : TM — Hom(Ain, Aow), (13.94)
v = [A(Q)] (v) = (bTH\[(U)*,HOmQ TTMQTM (v).

Its inverse A= : KL —— g{unot is given by the restriction of invariant kernel fields to

the bundle quotient representatives r,,,(Z\T'M) C TM:
AYK) ¢ vy, (Z\TM) — 7, (Z\Hom), (13.95)

Hom

w = [ATH )] (w) = Kl @\ran (w)

“This definition of K., is in cyclic dependency with that of A in Eq. (I3.94). This could be

avoided on the expense of 1) having to define spaces G(qzuol and KZ  without smoothness requirements,

in terms of which 2) A 5/(—;1;[ — f]/{}/ could be defined, which would 3) allow to demand the

invar

smoothness requirements in g(im in terms of A.
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Proof: In order to prove that A : ﬂ(im — KL is an isomorphism, we need to show that

1) A~! is indeed an inverse of A, that 2) the defining properties of KZ _ and KZ

. PN L. - invar quot
are satisfied after lifting and restricting and that 3) the constructions do not depend on

arbitrary choices. In order to not overload this section, we outsource the full proof to
Appendix The individual steps of the proof are listed below:

la) Ao A7l = idgyz , thatis, A1 is aright inverse of A
1b) A1 oA = idquuol, that is, A—! is a left inverse of A

2a) my0A(Q) = 7, forany Q € CF{unm,
M -morphism

oA~Y(K) = m,,, forany K € KE,

nvar

that is, the lift A(Q) is a bundle

2b) w

Hom

2¢) GumMQ) ¢ = A(Q) V¢ € T, that is, A(Q) satisfies the full isometry
invariance (equivariance) constraint

2d) &ypom [NHE) [ (w) = [ATHK)](w) YV w e 7, (Z\TM), £ € Stab,, that
is, A1 (K) satisfies the stabilizer constraint

3) All constructions and proofs are independent from the particular choice of ;.
The smoothness of lifted quotient representative kernel fields holds by definition. [
The arbitrariness in the choice of section 7.

s allows for different, isomorphic quotient kernel
fields, expressed on different bundle quotient representatives.

Instead of maximally restricting the kernel field to bundle orbit representatives in r,, ,(Z\M ),
one could choose to restrict the description to 775; (r,,(Z\M)) only, i.e. to complete tangent

spaces T, M for any r € r, (Z\M). In Fig. (I3.7), this would correspond to modeling the
(reflection symmetric) kernel on the full tangent space shown in the front instead of only
one half. The requirements on such restricted kernels can be derived by following the same
rationale as before and results in the constraint in Eq. (I3.83). We obtain a similar theorem

to Theorem (13.3.1):

Theorem 13.3.2 (Manifold quotient representative kernel fields). The space of isometry
invariant kernel fields Kx _ from Def-|13.2.3|is isomorphic to the space {]{qfuot of (man-

mvar
ifold) stabilizer subgroup constrained kernel fields on the tangent spaces over manifold

quotient representatives r,,(Z\M), defined as:

Ko = { Qs m b (ry (D\M)) = 7L (1, (D\M)) | 7,0 @ = 7y, A(Q) smooth,

™ Hom

& tiom @|r§*}1‘1 = Q‘T Vrer, (I\M), (€ Stabr}

(13.96)

The lifting isomorphism A gA{(ﬁot — KL isin terms of A and a restriction defined
as

A= Ao (.)|TTM(I\TM) (13.97)
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and therefore essentially agrees with A:

~

A(Q) : TM — Hom(Ajp, Aow), (13.98)
v [MQ)](v) 1= @y, (1), 10, Q Ty Qs (v)

Its inverse A1 Wivar — g{iot is given by the restriction of invariant kernel fields to

the tangent spaces over manifold quotient representatives: ﬂ;& (TM (Z\M )) CTM:

ATHK) s 7y (Z\M)) = 7t (ry, (T\M)), (13.99)
~ =1 ~\ ~

@~ [ATH(K)|(@) = /c|% (r, @y (@)
Proof: The proof is essentially analogous to that of Theorem[I3.3.1|with the slight difference
that the stronger constraint &, . 9|, §;T1V = Q| Vrernr,(I\M), < Stab, is

required. Since it would not add much in addition to what is presented in Appendix [K. 1}
we omit the proof.

The following commutative diagram shows the isomorphisms between the three equivalent
descriptions of invariant kernel fields:

A
{ Q A 1
- 5 —
g{(ﬁot - g(quot D — g{i%var
QO =¢(. Al — (.
/[ ( )‘TTM(I\TIM) A ( )‘w;‘;(rM(I\]\l)) J
-1
A :(')‘TTM(I\TJ\/I)

(13.100)

Relation to GM-convolutions: The difference between Isomgys-equivariant GM-
convolutions and general Isomps-equivariant kernel field transforms via Isomgy-invariant
kernel fields is that the former share G-steerable kernels over the whole manifold while
the latter are only required to share Stab,-steerable kernels over orbits Isomgnr.p €
Isomgp\M. The requirement to share weights over the whole manifold is not strictly nec-
essary but is — supported by Occam’s razor — likely to be a good inductive bias in practice. It
can be viewed as an analog to the assumption that the same physical laws apply throughout
the whole universe.

Assume now that M is a homogeneous space (Def. with respect to the action of
some isometry group Z < Isomgyy, that is, for any two points p, g € M there is at least
one isometry ¢ € Z that connects both points, i.e. ¢ = ¢(p). In this case there is only
one single orbit Z.p, which is just M itself, and the stabilizers Stab, of all points p € M
coincide up to isomorphism. The quotient space Z\M is a singleton which is represented
by a single representative point r = r,,(Z\M) in M. By Theorem the space of
Z-invariant kernel fields is equivalently expressed by a kernel field on orbit representatives.
Since we have only a single representative point 7 for homogeneous spaces, the full isometry
invariant kernel field is in this case equivalent to a single kernel on 7;.M . This representative
kernel is required to satisfy the stabilizer subgroup constraint in Eq. (I3.96)). Via the lifting

isomorphism A in Eq. (I3.98), the representative kernel is shared over the whole manifold.
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This sounds very similar to the definition of GM -convolutions, which share a single, G-
steerability constrained kernel over the whole manifold. Theorem [I3.3.3]below asserts that
there is indeed an equivalence between convolutions and equivariant kernel field transforms
on homogeneous spaces. The coordinate free Stab,.-steerability from the stabilizer con-
straint thereby translates (non-canonically) to the H-steerability of template kernels, where
H = Stab, with H < G is an isomorphic representation of Stab,. relative to some coordi-
natization. One can view the isometry (sub)group Z < Isomg)y as a principal Stab,.-bundle
over M, whose (non-canonical) embedding into GM gives rise to a H-(sub)structure HM
of GM. The sharing of a Stab,.-steerable kernel via the lifting isomorphism, which operates
per action of Z, then corresponds exactly to the sharing of an H-steerable kernel over HM.
This implies that Z-equivariant kernel fields transforms on homogeneous spaces do indeed
correspond to some HM -convolution.

Theorem 13.3.3 (Equivariance on homogeneous M implies convolution). Ler M be a
manifold equipped with a G-structure GM. Assume that there is an isometry group
T < Isomgys which acts transitively on M, making it a homogeneous space. Let
r € M be an arbitrary representative point of M and Stab,. < T its stabilizer. Then

1) There exists a H-(sub)structure HM C GM on M with:
- H = Stab, < T is a subgroup of G N O(d)

— HM is an embedding of T (as principal Stab,.-bundle T — T/ Stab,.)
into GM, which is preserved by T, that is, Isompp = T

2) Any ZL-equivariant kernel field transform shares a single H-steerable kernel
over the whole space M and is equivalent to a HM -convolution with that
kernel.

The specific choice of H-structure depends on the chosen isomorphism H = Stab,. but
is irrelevant since L-equivariant kernel field transforms can be equivalently expressed
in any such choice.

Proof: The proof is found in Appendix O

Our definition of isometry equivariant kernel field transforms is on homogeneous spaces
essentially equivalent to the steerable convolutions on homogeneous spaces as proposed
by Cohen et al. [53][56], with Aff(G)-equivariant Euclidean steerable CNNs from Partas
a special case. The proven equivalence between isometry equivariant kernel field transforms
and HM -convolutions on homogeneous spaces therefore asserts that HM -convolutions and
steerable convolutions are essentially similar in this case. However, while steerable convo-
lutions are only defined on homogeneous spaces, HM -convolutions generalize to general
Riemannian manifolds. More details on convolutions on homogeneous spaces are discussed
in the related work Appendix [
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Introduction & overview

The formulation of coordinate independent CNNs in terms of associated G-bundles over Rie-
mannian manifolds is quite general and covers a wide range of possible model instantiations.
To substantiate this claim, we review a large body of convolutional models from the literature
and explain them from the unifying viewpoint of coordinate independent CNNs. Most of the
papers in the literature do not explicitly formulate their models in terms of G-structures and
associated G-bundles. The implicitly assumed G-structures and group representations are
therefore deduced from the models’ weight sharing patterns, kernel symmetries and equiv-
ariance properties; see for instance Fig.[16.4] Table[I4.T)on page[273|summarizes the result-
ing taxonomy of coordinate independent CNNs. The following chapters discuss the covered
models and their properties in detail.

Chapter|[T3]starts with a general discussion of the design choices and implementation aspects
of coordinate independent CNNs and provides an overview of the models covered in the
following chapters. Chapterﬂrevisits the Aff(G)-equivariant (steerable) convolutions on
Euclidean spaces Eq from Part ] in the differential geometric formulation. These models
rely on Aff(G)-invariant G-structures as shown in Fig. [15.3] Chapter [16] covers models
that operate on punctured Euclidean spaces Eq\{0}; see Figs. [16.1} [16.3]or[16.4] They are
equivariant w.r.t. rotations around the chosen origin {0} but are not translation equivariant.
Spherical and icosahedral CNNs are discussed in Chapter|[l7} Most of these models assume
the G-structures that are visualized in Figs. [17.2a] and [17.2b| and are therefore SO(3) or
SO(2)-equivariant, respectively. Chapterérewews GM convolutions on general surfaces
which are mostly discretized as meshes.







CHAPTER 1 4

Design choices and overview

A coordinate independent CNN is in theory fully specified by

1) achoice of Riemannian manifold (M, n)
2) its G-structure GM

3) a G-compatible connection which specifies feature transporters 7, v

4) the field types or G-representations p of each feature space, and

5) a choice of G-equivariant nonlinearities.

The geodesics, exponential and logarithmic maps follow from the canonical Levi-Civita con-

nection on M F_] The isometry group Isomgys w.r.t. which the network is equivariant follows

from the metric n and the G-structure GM. All kernel spaces f]{f pon 1€ determined by
in’"ou

the group representations of the feature spaces between which they map. Weight sharing is
performed by placing a G-steerable template kernel relative to an arbitrary G-frame in G}, M
for each point p € M.

In practice, the user is faced with additional design questions, for instance concerning the
discretization of the geometry, the encoding of feature fields, numerical algorithms for com-
puting geodesics and transporters, etc. This chapter gives a high level overview of all relevant
design choices. More specific details are found in the following Chapters[I3] [16] [[7]and [T§]

Discretizations of manifolds and feature fields: The implementations differ in their rep-
resentation of the manifolds and sampling of the feature fields.

Euclidean spaces E, admit regular pixels grids, for instance Z? or the hexagonal grid [125].
More generally, locally regular grids are suitable for locally flat manifolds like the Mobius
strip and the icosahedron; see Figs. and Feature fields on Euclidean spaces may
furthermore be sampled on a non-regular point cloud. This is for instance useful when
processing atomic environments, where the atom positions serve as sampling locations [301]].

An important difference between the two approaches is that regular pixel grids are not equiv-
ariant w.rt. continuous translations in (R%, +), but only w.r.t. the subgroup of discrete

'Tt might seem strange to compute geodesics and feature transporters based on potentially differ-
ent connections. When the transporter connection differs from Levi-Civita, this is usually due to the
Levi-Civita connection not being G-compatible with the chosen G-structure when G < O(d). Some
examples are given in the paragraph on G-compatible connections below.
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translations which preserves the grid, for instance (Z?, 4). CNNs on regular grids are fur-
thermore usually applying spatial pooling operations which reduce the models’ equivariance
even further. Specifically, given that the pooling operation has a stride of n pixels, it is equiv-
ariant w.r.t. translations in (nZ<, +). After L pooling layers in a convolutional network, this
implies that the model as a whole is only equivariant w.r.t. translations in (n*Z<, +) — this
issue was empirically investigated in [6]]. Zhang [348] propose to remedy this issue by re-
placing stride n pooling layers with stride 1 pooling layers (with the same pooling window
size), a low-pass filtering, and an n-pixel subsampling. The additional low-pass filtering
between the pooling and subsampling operations prevents aliasing effects, which is shown
to mjlke the networks sufficiently more stable under translations which are not elements of
(nZ?,+).

Curved spaces like the 2-sphere S? do in general not admit regular sampling grids. A seem-
ingly obvious discretization is in terms of a regular sampling grid in spherical coordinates
(Eq. and Fig.[17.3), however, as these coordinates are non-isometric, they oversample
the signal towards the poles [351} 295]. Approximately uniform sampling grids on S? are
the “generalized spiral set” [S8] or the icospherical grid [139} [148]]. Alternatively, feature
fields may be discretized in the spectral domain. For the sphere, this is done via an expansion
in terms of spherical harmonics for scalar fields, spin-weighted spherical harmonics for irrep
fields or Wigner D-matrices for general feature fields [83} 186, 54} [163].

General surfaces are most commonly represented by triangle meshes; see Section [I8.1.2]
Feature fields can then be sampled on the mesh vertices, edges or faces [65]. A higher
resolution of the feature fields can be achieved by encoding them via texture maps [180} [131]].
Alternatively, surfaces may be represented as point clouds [294] [141]].

G-structures GM and structure groups G: The specific choice of G-structure to be re-
spected by the network depends on the learning task and the topology of M (if continuity or
smoothness of the convolution is demanded). In general, M comes equipped with an O(d)-
structure, i.e. a bundle of orthonormal reference frames with respect to the given Riemannian
metric. A lift to structure groups G' with O(d) < G < GL(d) is uniquely determined by G-
valued gauge transformations of orthonormal frames. Reductions of the structure group to
G < O(d) are, in contrast, not necessarily unique, and encode additional geometric informa-
tion. For instance, a reduction to G = SO(d) requires an orientation on the manifold The
following chapters discuss further (mostly implicitly made) choices of G-structures found
in the literature; see for instance Figs. [15.3] [16.1] [16.2] [16.3} [16.4][T7.2] or[I7.6] They are
either determined by a demand for the equivariance under the isometry group Isomgays,
canonically given on the manifold or, specifically for {e}-structures, algorithmically fixed
via some heuristic. Recall that {e}-structures are on non-parallelizable manifolds (by defi-
nition) necessarily discontinuous.

The most commonly encountered structure groups in the literature are the following:
* trivial group {e}, corresponding to non-coordinate independent CNN's with uncon-
strained kernels
* reflection group (R = 7,/27, flipping the first frame axis

v special orthogonal groups SO(d) (continuous rotations)

2For a single, connected manifold, this choice is arbitrary as long as the kernel initialization is sym-
metric w.r.t. both orientations. In this case the network will simply learn reflected kernels for different
orientations. When considering a dataset consisting of multiple manifolds, their relative orientation is
relevant for a correct generalization.
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= orthogonal groups O(d) (continuous rotations and reflections)

= scaling group & = (R>g, *),

Since the last three groups are continuous Lie groups, they are in numerical implementa-
tions sometimes approximated by finite subgroups. For instance, SO(2) and O(2) are often
modeled by cyclic groups Cy or dihedral groups Dy, while three-dimensional rotations and
reflections in O(3) can be approximated by polyhedral groups (symmetry groups of Platonic
solids, e.g. the icosahedron). To reduce the complexity of the classification of models in
Table[I4.T)we chose to not distinguish between the continuous symmetries and their approx-
imations by finite subgroups. We will, however, state such approximations in our detailed
discussion of the models in the following chapters.

G-compatible connections: All of the models consider either the canonical Levi-Civita
connection on M or the unique trivial connection which is induced by an {e}-structure.
The choice of connection becomes irrelevant (thus unspecified) for networks which operate
solely on scalar fields, whose transport is always trivial.

More specifically, all Euclidean CNNs from Chapter [I5|use Levi-Civita transporters, which
transport vectors such that they remain parallel in the usual sense on Euclidean spaces E;
see Fig. This is possible since the Levi-Civita connection is_G-compatible with the
models’ G-structures (defined in Eq. (T5.1) and visualized in Fig.[15.3) ]

The models on the punctured Euclidean spaces E4\{0} from Chapter are either based on
{e}-structures and/or consider scalar fields. They utilize therefore trivial connections which
differ from the canonical Levi-Civita connection on E4\{0}.

All spherical CNNs that rely on the SO(2)-structure in Fig. (reviewed in Section
transport features according to the Levi-Civita connection on S* (Fig. . Those which
operate on the {e}-structure in Fig. (reviewed in Section are again considering a
trivial connection since the spherical Levi-Civita connection is incompatible with this {e}-
structure. The icosahedral CNN with Cg-structure, Fig.[17.6¢| transports features according
to the Cg-compatible icosahedral Levi-Civita connectionl

All CNNs on general surfaces that are listed in rows (41-43) of Table [14.1] assume oriented
surfaces that are equipped with an SO(2)-structure. They transport features with the SO(2)-
compatible Levi-Civita connection of the surfaces. The other surface CNNs are based on
{e}-structures and/or operate on scalar fields — their feature transport is therefore trivial.

Our Mobius strip convolutions transport features via the Levi-Civita connection, which is
compatible with the assumed R-structure.

Recall that the Levi-Civita connection is uniquely determined by the metric, and is therefore
generally isometry invariant; cf. footnote |6 in Section As trivial {e}-compatible
connections are uniquely specified by the {e}-structure they share its symmetries, that is,
they are invariant under the action of Isomyeys. This implies by Theorem that the
GM -convolutions, which are based on these connections, are Isomgy,-equivariant.

Transporter pullbacks and alternative projections to T, M: The transporter pullback
Exp; f, defined in Def. |12.2.4{ and Eq. (9.21), represents a feature field f in a geodesic
parametrization on the tangent space 7,0 . The transportation part of the operation

3In contrast, the Euclidean {e}-structure in Fig.|13.3b|would be incompatible with the Levi-Civita
connection on E,.

“Discrete Levi-Civita connections on meshes are discussed in Section|18.1.2|and [60] [62].
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is determined by the G-compatible connection. Geodesics — and therefore exponential
maps exp,, : 1, M — M — have closed form expressions on Euclidean spaces E4 and the
sphere S2. Specifically, the exponential maps on 4 reduce in Cartesian coordinates to the
vector summation in Eq. , such that Euclidean GM -convolutions reduce to conven-
tional convolutions on R“; see Theorem Geodesics on S? are well known to be
given by the great circles of the sphere. If the sphere is viewed as being embedded in R?,
the exponential map is explicitly given by Eq. (17.10). The geodesics on general surface
meshes are not described by closed form solutions but are computed numerically; see Sec-
tion In contrast to the smooth setting, one needs to distinguishes between “shortest”
and “straightest” geodesics on meshes [231]].

The pullback of feature fields into geodesic normal coordinates is not the only way of repre-
senting feature fields on the tangent spaces. In the literature on spherical CNNss it is rather
common to use gnomonic projections, which are visualized in Fig. Theorem
shows that this projection can be viewed as a special case of our more general geodesic
parameterization after applying a radial warp to the kernels. The corresponding models
are therefore exactly identified as GM -convolutions. Surfaces which are embedded in an
ambient space like R might furthermore rely on various projections in the embedding
space; see for instance the last three models that are discussed in Section @ Note that
these approaches are truly different from ours, i.e. these three models are not exactly GM -
convolutions.

G-representations and nonlinearities: Almost all models consider either of the trivial
representation, irreducible representations or regular representations as field types. Ex-
ceptions are quotient representations, more general induced representations, tensor product
representations and, specifically for G = SO(3), the quaternion representation. Infinite-
dimensional representations, in particular regular and quotient representations of Lie groups,
are in implementations discretized. This can either happen via Monte Carlo sampling or by
falling back to the corresponding representations of finite subgroups as discussed above.

The nonlinearities are required to be equivariant w.r.t. the action of the chosen G-
representations. Since scalar fields are G-invariant, they are acted on by usual nonlinear-
ities like ReLU. Feature fields that transform according to permutation representations, most
importantly regular representations, are acted on channel-wise. All other field types require
custom-tailored nonlinearities — we refer back to Section [6.5] and [322] for a more detailed
discussion of specific choices.

G-steerable kernel spaces: G\ -convolutions map input fields of type p,, to output fields

of type p,,. by convolving them with G-steerable kernels K € f](/? Dot Since the space

KE of G-steerable kernels, Def. [12.2.2] is a vector space, it is usually parameterized

pin7p0ut

in terms of a basis {K1, ..., Ky} of K" Pout” Before computing the convolution, the

learned kernel K = Zf\il w; K; is expanded in this basis, where {wy, ..., wy} are real-
valued weights to be optimized. Provably complete kernel spaces for the groups G < O(2)
were implemented in [322] 38] and for G < O(3) in [40, B9]. A generalization of the
Wigner-Eckart theorem characterizes the kernel space bases for general compact structure
groups G [173]. We refer the reader for more details on steerable kernels back to Chapter 3}

In practice, the majority of authors does not use a representation theoretic formulation of
feature fields and steerable kernels, but formulate them based on intuition. Specifically, most
authors assume a given input field type and propose various convolution operations which
are engineered such that the resulting output field transforms in an equivariant (or coordinate
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independent) mannerE] While these approaches propose certain G-steerable kernels that map
between p, -fields and p,,-fields, these kernels do sometimes not span the complete space

of possible kernels. This applies for instance to the MDGCNNs and PFCNNs, which are
discussed in Section[18.2]

SThis is opposed to our approach, which fixes the input and output fields and subsequently asks for
the resulting constraint on convolution kernels.
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Table 14.1: Classification of convolutional networks in the literature from the viewpoint of coordinate independent CNNs. Bold lines separate different ge-
ometries. The affine group equivariant convolutions on Euclidean spaces Eq (rows 1-30) are reviewed in Chapter[I5] Chapter[I6]discusses GM-convolutions
on punctured Euclidean spaces Eq\{0} = 5941 R (rows 31-34). Details on spherical CNNs (rows 35-40) are found in Chapter The models in rows
(41-45) operate on general surfaces, mostly represented by triangle meshes; see Chapter[T8] The last two lines list our Mbius convolutions from Chapter[T0]
(R%,+), R and § denote the translation, reflection and scaling group, respectively, while Cy and Dy are cyclic and dihedral groups. Infinite-dimensional
representations are in implementations discretized or sampled. For instance, the regular representations of SO(2) or O(2) are typically approximated by the
regular representations of cyclic or dihedral groups Cy or Dy.






CHAPTER 1 5

Euclidean coordinate independent CNNs

This chapter considers equivariant convolutions on Euclidean spaces, which are undoubt-
edly of greatest practical relevance [166]. Convolutional networks on Euclidean spaces are
applied for analyzing planar and volumetric images, audio signals, videos, physical events
in (pseudo-Euclidean) Minkowski spacetime or planar environments in reinforcement learn-
ing. The prototypical convolutional model architecture — both on Euclidean spaces and in
general — is the conventional translation equivariant CNN by LeCun et al. [175], which was
covered in Chapter [3] These models were in Chapter 4] generalized to Euclidean steerable
CNNs, which are equivariant under actions of affine symmetry groups. The current chap-
ter demonstrates that both conventional and steerable CNNs are special cases of coordinate
independent CNNs on Euclidean spaces, equipped with Aff(G)-invariant G-structures as
visualized in Fig.[15.3]

A major difference in the formulation of steerable and coordinate independent CNNss is that
they focus on global affine group actions and local gauge transformations, respectively.
That steerable CNNs can be described as coordinate independent CNNs implies that they
are actually also locally gauge equivariant, despite not deliberately being designed for it.
That this is the case was intuitively clear since steerable kernels are G-equivariant w.r.t.
transformations of their field of view, as shown in Fig. 4.6 but could not be proven in the
non-gauge theoretic framework of steerable CNNs.

The equivariance of coordinate independent CNNs under global isometries, visualized for
Euclidean spaces in Fig. [[5.1] was proven in Theorem [13.2.5] Theorem [15.2.2] in Sec-
tion[I5.2]below asserts that the stronger statement of affine group equivariance can be made
on Euclidean spaces. The underlying reason for this result is that the geodesics and Levi-
Civita transporters are on Euclidean spaces not only preserved by isometries, but also by
general affine transformations.

Convolutions on Euclidean spaces are classically formulated in coordinates (Fig. [15.2} left
and right), that is, considering Euclidean vector spaces R? instead of more general (coor-
dinate free) Euclidean affine spaces Eq (Fig. middle). An advantage of formulating
convolutions this way is that R? comes with all mathematical structure that is required for
the definitions. However, R? is equipped with an excess of structure, for instance a choice
of origin or its canonical {e}-structure. By designing neural networks to be equivariant,
their inference is post-hoc made independent from this structure. Specifically, translation
equivariance equalizes the particular choice of origin, while G-steerability guarantees that
the frames of the canonical {e}-structure are just a specific choice of gauge fixing among
structurally equivalent G-transformed frames. Steerable CNNs could therefore be viewed as
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Figure 15.1: Visualization of the full isometry group Isom(E4) = E(d) = (R%, +) x O(d) of Eu-
clidean spaces E, for d = 2. It contains subgroups of translations (R?, +), rotations SO(d) and re-
flections R. Rotations and reflections form the orthogonal group O(d) =SO(d) xR while translations
and rotations form the special Euclidean group SE(d) = (R%, +) x SO(d). The models in this chapter
are not only isometry equivariant, but more generally under affine groups Aff(G) = (R%, +) x G.

operating on G-structures that are (canonical) G-lifts
GM = (@M <G = {[e)l, g |[ell, € @M, g G} (15.1)

of the canonical {e}-structure {e}M of M = R<. Intuitively, these lifted G-structures are
defined by augmenting every canonical reference frame in {e}M with any other G-related
frame (its right G-orbit in F'M); see Fig.

An alternative and more clean approach is to not include the undesired excess structure of
R? in the first place, but to model convolutions directly on Euclidean affine spaces Eq. These
come naturally with an affine and metric structure — if more geometric structure is desired, it
can be added by specifying an atlas of affine charts t : Eg — R?, from which a G-structure
is induced. This viewpoint implies that steerable convolutions on RY are just the coordinate
representations of (affine group equivariant) GM -convolutions on B4, which is formally
proven in Theorem[I5.2.1] The particular choice of chart corresponds in an implementation
on the (arbitrary) choice of pixel grid.

The main objective of this chapter is to recover the Euclidean steerable CNNs from Chapter
from the differential geometric formulation of coordinate independent CNNs. Section[15.
discusses thereby the affine geometry of E; and explains how atlases of affine charts with
transition maps in Aff(G) (Fig. induce Aff(G)-invariant G-structures (Fig.[15.3). Sec-
tion considers GM -convolutions on these G-structures and proves their global Aff(G)-
equivariance. Specific instantiations of such models in the literature, listed in rows (1-30) of
Table [[4.1] are discussed in Section[13.3}

15.1 Affine geometry of Euclidean spaces E 4

Before discussing coordinate free convolutions on Euclidean spaces, we need to understand
the underlying geometry. Euclidean spaces E; are by definition affine spaces, that is, they
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tBAgBA .= .z'Bo(xA)_l € Aff(G)

R2 /IE2 \ RQ

:L'A J;B {S—
~ =< >ﬂ: N > 4 ;—

\
\ \
@0 (B0

Figure 15.2: Visualization of affine charts % : E; — R, which assign global coordinates to Eu-
clidean spaces. Both E; and R¢ are affine spaces, such that one can demand the charts to be affine

maps, which preserve collinearity and ratios of distances. We define an Aff(G)-atlas ﬂff(c) as con-

Y

\

sisting of charts that are related by transition functions 24 g% := 2% o (z*)~! that are elements
in Aff(G). Charts in an Aff(G)-atlas differ at most in their choice of origin (z*)~*(0) and a G-
transformation. A choice of an Aff(G)-atlas, consisting of charts =~ , induces a G-atlas A of gauges
dz™. The corresponding G-structure GM, which is in Fig. exemplified for different groups G,
is invariant under the action of Aff(G). Theorem proves that GM -convolutions on such G-
structures are Aff(G)-equivariant.

(Lizards adapted under the Creative Commons Attribution 4.0 International|license|by courtesy of Twitter.)

come with an associated vector space of dimension d, which defines translations on E,.
In addition to being affine spaces, Euclidean spaces are endowed with an Euclidean metric
(distance function). This distance function corresponds to a Riemannian metric 7, i.e. an
O(d)-structure OM on the (Riemannian) manifold M = E,. This metric has the property
that its curvature vanishes everywhere, that is, E; is globally flat.

A standard example for Euclidean spaces are the vector spaces R%, however, general Eu-
clidean spaces consider less structure. In particular, they do not come with a vector space
structure and do thus not have a preferred origin. Furthermore, they are in general not
equipped with Cartesian coordinates. We will therefore start with bare Euclidean spaces
E4 and discuss how the relevant geometric structure is added to them. One could in princi-
ple consider any G-structure, however, we are specifically interested in those G-structures
that recover the classical steerable CNNs from the Chapter ] which explain all models in
rows (1-30) of Table Such Aff(G)-invariant G-structures are induced from Aff(G)-
atlases, consisting of charts of E; whose transition functions take values in Aff(G); see
Fig.[15.2] More infos about the relation between coordinate charts and gauges can be found
in Appendix [C}

15.1.1 Affine charts and Aff(G)-atlases

A Euclidean space E4 of dimension d is homeomorphic to R¢, and admits therefore global
charts

4 E; —» R, (15.2)

In the following we will always require these charts to be affine maps, i.e. isomorphisms of
affine spaces, which preserve collinearity (i.e. they map straight lines to straight lines) and
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ratios of distances. Since compositions of affine maps are affine maps, it follows that the
chart transition functions

2P0 (@)™ RT 5 R (15.3)

are affine transformations of R%, i.e. elements in Aff(GL(d)). The transition functions
decompose therefore uniquely into a translation t54 € (R?, +) and an element g4 €

GL(d):
tBAGBA = 2Bo (xA)_l (15.4)

The notation gB4 is hereby not accidental as these group elements agree with the gauge
transformations that are induced by chart transitions, which is proven in Theorem [15.1.7]
below.

Given a choice of affine group Aff(G), we define Aff(G)-atlases of E, as those atlases of
global charts from E,4 to R, whose chart transition functions take values in Aff(G):

Definition 15.1.1 (Aff (G)-atlas of Euclidean space). Let X be an index set labeling

charts and, for any X € X, let X : Eq — R% be a global affine chart of Eq. The
atlas

A @ = {(Bq,2¥) | X € x} (15.5)

is said to be an Aff (G)-atlas if all of its chart transition functions take values in Aff (GQ),
that is, if

2Bo(z4) '€ AF(G) VA BeX. (15.6)

Fig. visualizes affine charts and the Aff(G)-valued chart transition maps between them.

15.1.2 Induced G-atlases and G-structures

Any global coordinate chart 24 : E; — R¢ induces a global gauge, which is pointwise
given by the chart gradients

Vi, = dri . T,M — R?, (15.7)

see Eq. (C.30) in Appendix [C.3]and Table[C.I] An atlas of charts corresponds therefore to
an atlas of gauges. In particular, given that the charts form an Aff (G)-atlas, it is guaranteed
that the gauge transformations are G-valued, that is, that the induced gauges form a G-atlas:
Theorem 15.1.2 (Aff (G)-atlases of charts induce G-atlases of gauges).

Let ﬂEAdH(G) = {(Eq,2")| X € X} be an Aff(G)-atlas of charts. The induced atlas of
gauges

A = {(Bq,dz™) | X € x} (15.8)

is then guaranteed to be a G-atlas. In particular, if the chart transition maps are given
by B o (asA)f1 = tBAGBA the transition maps between gauges are at any point
p € Eq given by ng e
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L L L & & K
L L x* K K

(a) Aff({e})-atlas induced {e}-structure. (b) Aff(SO(2))-atlas induced SO(2)-structure.

[ L L
e e I

(c) Aff(R)-atlas induced R-structure. (d) Aff(8)-atlas induced §-structure.

Figure 15.3: Visualization of different G-structures GM on Euclidean spaces M = E; which are
induced by an Aff(G)-atlas of charts (Def. [I5.1.1). Fig. shows the translation invariant {e}-
structure {e}M that corresponds to conventional Euclidean convolutions. The other three G-structures
correspond to non-trivial G-steerable CNNs as defined in Chapter [} They generalize locally over
all poses that are related by the specific set of reference frames in G, M. As the G-structures are
Aff(G)-invariant (implied by Theorem , the G-steerable convolutions are globally equivariant
w.rt. Aff(G) (Theorem [15.2.2). Instead of defining the G-structures via an Aff(G)-atlas of charts,
one could define them via a G-lift GM := {e}M <1G of the canonical {e}-structure of R (Eq. (I5:1)),
which augments the frames in the {e}-structure with all G-related frames.

Proof: The transition functions between chart induced gauges coincide by Eq. (C:43) with
the Jacobian of the chart transition maps, that is,

BA 5 B 5 .Ay—1 9P
gy = dxyo (dxp) T OzA

. (15.9)

x4 (p)

The last expression is the usual abuse of notation for Jacobians of chart transition maps,
which was in Eq. (C:39) in components defined as

B
axu

A
025 |oa (p)

. (15.10)

x4 (p)

= 8V(xf o (xA)_1>

. o . -1 C L
Using that the chart transition maps are given by 2 o (xA) = tBA¢BA this implies

BA B_(,.A\"1 BA BA BA

(gp )ul/ = ay(.’I)#O(LIJ ) >('r)’;cA(p) = a’/(g T+t )u’x/‘(p) = g/»“’ ’
(15.11)
that is, that the induced gauge transformations ng 4 are G-valued and agree with g4
(which justifies the notation). As this argument holds for any p € E; and any charts
A, B € X, this implies that the induced atlas of gauges is a G-atlas. O
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As discussed in Section [I1.4] any G-atlas of gauges implies a G-structure GM. According
to Eq. (I1.56), GM is pointwise determined by

-1
GM = (Yp,) (G), (15.12)
where the particular choice of gauge A € X is arbitrary. The frames in G, M are the co-

du:l - [((;Zx?)il(e“)]zzl and all G-transformations of them. As

the maximal Aff(G)-atlas is by definition Aff(G)-invariant, the same holds for the induced
G-structure (with the action defined via any chart, as clarified and proven below). Fig.
shows such G-structures for different affine groups. In the next section we prove that the
corresponding GM -convolutions are equivariant under the action of Aff(G).

ordinate bases [3% ’ p]
n

As it turns out, GM —@L, E is (non-canonically) isomorphic to Aff(G) L Aff(GQ)/G =
R? as a principal bundle, where

g: Aff(G) > RY, tgt (15.13)

is the canonical quotient map of the affine group (after identifying cosets tG with trans-
lations t)ﬂ Non-surprisingly, this principal bundle isomorphism depends on the choice of
chart.

Theorem 15.1.3 (Principal bundle isomorphism between Aff(G) and GM). Let GM be

an Aff(@)-atlas induced G-structure on Bq. Then GM is isomorphic to Aff(G) s R?
as a principal bundle, i.e. there are isomorphisms

-1

o’ Aff(G) = GM, tg— (Yo ay1) (9) (15.14)
and
(z4) 7 R 5 Ry (15.15)
such that the following diagram commutes:
A .
Af(G) x G — 2 X o q
| |
AfE(G) o’ GM (15.16)
q JTFGM
R? E
@) ’

The inverse of a” is hereby given by
t=a"0 Wan,j([ei]zdzl)

9= Vs gty (€li=1)

(QAY1 : GM — Aff(G), [e)]l, ~— tg where {
a5

Note that the isomorphisms are in one-to-one correspondence to the Aft (G)-compatible
charts of the considered atlas.

'We implicitly employ a canonical isomorphism Aff(G)/G = R?, tG > t, where ¢ denotes a
translation group element in (R, 4) on the left-hand side and a vector in R on the right-hand side.
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Proof: To prove the statement, we need to show that a* and (o) ™! are indeed inverse to
each other, that o is a bundle map over (z*)~! and that a* is right G-equivariant.
That (ozA)_1 is both a well defined left and right inverse of o is easily checked by
the reader. That o is a bundle map over (z4)~! means that the bottom square of
the diagram commutes. This is seen by observing that (z4)~! o g(tg) = (z4)~1(t)
and 7, © a’(tg) = Ty © (T,Z)GAM’(T,A)—l(t)) 1(g) = (24)71(t) agree for any tg €
Aff(G). The commutativity of the upper square in the diagram, i.e. the right G-
equivariance of o}, follows from the fact that o (tg - §) = (1/)(;]\[‘(%/4)71@))_1(”(]@) =
(1/JGAM.(IA)—1(25>) 71(9) 1§ = a(tg) < g holds for any tg € Aff(G) and any § € G. The
second step made use of the fact that 1/, (,4)-1, is right G-equivariant (Eq. (I1.60)),

which implies the equivariance of its inverse. Together, these properties show that vt
is a principal bundle isomorphism. g

15.1.3 Coordinate free affine transformations

As we want to prove the equivariance of GM -convolutions under affine transformations in a
coordinate free setting, we need to introduce groups of affine transformations of E,4, instead
of R? as above. The charts will relate these coordinate free affine groups to the affine groups

Aff(G) of R4
We start with the full group

Aff(Eq) = {¢:Eq — Eq| ¢ is an affine transformation of Eq } (15.18)

of affine transformations of a Euclidean space E,. It is easy to prove that Aff(E;) is isomor-
phic to Aff(GL(d)), with isomorphisms given by ¢ +— 24¢ (2) = for an arbitrary choice
of chart . This statement is proven in a more general setting in Theorem |15.1.6{below.

As in the case of isometries, we define subgroups Affgy; < Aff(E,;) of G-structure preserv-
ing affine transformations:

Definition 15.1.4 (G-structure preserving affine transformations). Let GM be any G-
structure on Ey. We define the corresponding subgroup of G-structure preserving affine
transformations as

Affcy = {QS S AH(Ed) | ¢*.FMGPM = G¢,(p)M Vp € Ed} < Aff(Ed) .
(15.19)

Compare this definition to that of Isomgys in Def.|13.1.1] As in the case of Isomgyy, the
gauge transformations that are induced by affine transformations in Affg,, are guaranteed
to be G-valued. This statement is formalized by the following theorem, which is essentially

analogous to Theorem|13.1.3

Theorem 15.1.5 (Affgpy in local trivializations). Let ¢ € Aff(Ey) be any isometry of
M = Eg. Then the following three statements are equivalent:

1. ¢ is G-structure preserving, that is, ¢ € Affgyy.

2. The affine transformation pullback wéw qﬁ;FIM of any gauge d)g[’p of the G-
atlas of FM that defines GM is G-compatible with that G-atlas.
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. my Telative to any gauges z/J;f‘up and MJ?‘W )
from the G-atlas of FM takes values in the structure group, that is,

g¢ ( ) = wmwp G rmt (wF’\Ip) dx¢(p) ¢* ™ (CZ‘T )_ is G-valued.

Proof: The proof is analogous to that of Theorem [I3.1.3] More generally, the statement
holds for arbitrary G-structure preserving diffeomorphisms. (]

3. The coordinate expression of ¢

Affine group action induced gauge transformations describe the transformation of the coordi-
nate expressions of bundle elements, e.g. tangent or feature vector coefficients. The action of
the affine transformation ¢ on the manifold E, itself can also be described in coordinates R.
This is achieved by a left and right multiplication of ¢ with any (affine) chart, which we can
w.l.o0.g. take to be equal at the source and target location since we are only considering global
charts. The resulting coordinate expression tﬁA g(‘;‘A, defined by the following commutative
diagram,
A ¢’ mA

R L E, E,4 R° (15.20)

L J

AA _AA
1" 9

is guaranteed to take values in Aff(G) if ¢ preserves the G-structure.

Theorem 15.1.6 (Affgps in global affine charts). Let GM be the G-structure induced by
some Aff(G)-atlas and let x* : Eq — R be a chart of this atlas. The coordinate

expression of an element ¢ € Affgys relative to x* is then given by
e (27! = )¢t € AR(G) (15.21)
where
t44 =24 ¢ («4) 7 (0) e (R4, +) (15.22)
and g =dad ) b (o) €@ (15.23)
The element g(‘;‘A € G in the coordinate expression coincides hereby with the induced

gauge transformation g;f‘A (p) € G from Theorem|l5.1.5|at any point p € Eg.

Furthermore, the coordinatization map

Affars — AR(Q), ¢ — 2t (z2) 7", (15.24)
is a group isomorphism.

Proof: Since 2 and ¢ are affine maps, 2 ¢ (z) =1 : RY — R? is an affine transformation

of R%, i.e. an element of Aff(GL(d)) (or some subgroup of it). This implies that a first
order Taylor expansion of the expression is exact. The application of the coordinate
expression to an arbitrary element € R? can therefore be written in terms of the
following Taylor expansion around the origin 0 of R%:

G DI

_ng_’_ Al

[$A¢ (J/,A)fl] (1‘) _ [$A¢ (IA)fl] (0) +
=1t p
(

= (tytgst) x (15.25)
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Here we implicitly defined the translation ¢ € R and the Jacobian g/ € R**¢ and
identified them with group elements, which is possible since all involved morphisms are
invertible.

That the Jacobian g;ﬁA agrees with the induced gauge transformation g;ﬁA (p) at an
arbitrary point p € M is shown by rewriting it via Eq. (C.21)) in terms of differentials:

0 _
gyt = o [z ¢ (z?) 1]1‘/237,4(1))

= tpad[z® ¢ (xA)_l]zA(p) (tga)
_ -1
= Lpd d.TqA;(p) dop (dx;‘) ! (tga)
5 A 5 Ay—

= dzfiy) Gy (doy) !

= 95" (p) (15.26)
In the penultimate step we identified the differential d¢ as an alternative notation for
the pushforward ¢, ;,, and identified the chart gradients dz? := ipa dz? as defined in
Eq. (C.30). The index p is dropped in the notation gﬁA = g,‘;‘A (p) due to its arbitrari-
ness.
That t;‘A g;‘A is not only an element element of Aff(GL(d)) but of its subgroup Aff(G)
is clear since Theorem|15.1.5|states that g;;‘A(p) € G forany ¢ € Affgy,.

-1

To prove that the coordinatization map C4 : Affgys — Aff(G), ¢ — 24 ¢ (24)~!
is indeed a group isomorphism, we need to show that it is 1) a group homomorphism,
2) injective and 3) surjective. That C is a group homomorphism follows immediately
from its definition since
CA@9) = a6 (e)) " = 2t g (") et d (") = @) CM(9)
(15.27)
holds for any (;5,(;3 € Affgry. The injectivity of CA~ requires that, for any <b,<5 €
Affgyy, the equality C4(¢) = C4(¢) implies ¢ = ¢. That this is the case is clear
since C4(¢) = CA(9) is equivalent to 24 ¢ (J:A)71 =24 ¢ (z4) ~' which implies
the equality of ¢ and ¢ since ' is an isomorphism. Lastly, C is surjective if and
only if for any tg € Aff(G) there exists some ¢ € Affgys, such that C4(¢) = tg.
As an ansatz, let ¢ = (wA)71 tg x4, such that C4(¢) = tg. What remains to be
shown is that this construction of ¢ is indeed an element of Affgy,. As one can easily
check, g;fm = g € G, such that ¢ € Affgys follows from Theorem |15.1.5) with
which surjectivity holds. Overall, this proves that C4 : Affgy; — Aff(G) is a group
isomorphism if Affgy is induced by an Aff(G)-atlas. O

The isomorphism between Affgy, and Aff(G) is not unique, as it depends on the particular
chart considered. Different choices are related by the inner automorphisms of Aff(G) since
CP(¢) = 2P ¢ (x")7! (15.28)
= 284 LeA ¢ (z4) " LeA (2B) !
= (tBAgBAY 04 (g) (tBAGBA) L
This concludes our analysis of the Euclidean geometry and Aff(G)-invariant G-structures

that are required for the definition of coordinate free Euclidean convolutions in the next
section.
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15.2 Affine group equivariant CNNs on Euclidean spaces E4

We now turn to investigate Euclidean GM-convolutions on the Aff(G)-atlas induced
G-structures. Section shows hereby that these GM -convolutions boil down to classi-
cal G-steerable convolutions on R? when being expressed in a chart. The coordinate chart
independence is thereby guaranteed by the steerable convolutions’ Aff(G)-equivariance,
which is demonstrated in Section Section proves the GM-convolutions’
Affapr-equivariance in the coordinate free setting.

15.2.1 Recovering steerable convolutions on R4

GM -convolutions rely crucially on the transporter pullback Exp; f of feature fields, which
in turn depends on parallel transporters and the exponential map. On Euclidean spaces, these
operations take a particularly simple form, which we discuss first.

As stated before, Levi-Civita transporters move tangent vectors such over Euclidean spaces
that they remain parallel in the usual sense on Euclidean spaces; see Fig. Let 24 :
E; — R? be any global chart of an Aff(G)-atlas. As the induced frame field is “parallel”,
the transporters along any path v become trivial when being expressed relative to the induced

gauges dm]‘;‘:
AA _
9y =e for any path « (15.29)

This implies in particular that the feature vector transporters are in this gauge given by iden-
tity maps, i.e.

p(g8?) = idge  forany path . (15.30)

When expressing the exponential map in a chart, it reduces to a summation of the point and
vector coordinate expressions in R%:

xA(expp v) = xA(p)+(ix;‘(v) (15.31)

We furthermore need to express feature fields in coordinates, that is, we pull them via the
inverse global chart back from E; to R4,

FA = fAo(z2) 7 RT 5 RC, (15.32)
which is visualized by the following commutative diagram:

FA

[ 1

R¢ Eq4 R° (15.33)

CL’A fA

With these ingredients at hand, the transporter pullback, Eq. (9.21)), of feature fields on
Euclidean spaces can in coordinates be expressed as

[Exp;f]A(v) = P(Qﬁﬁ expp((fac;‘)'l(vf‘)> fA €XPp <(d‘rﬁ)_l(0)>

= f4 (90‘4)71 z* exp,, (((Z:vﬁ)fl(vn
= F*(a*(p) + ). (15.34)
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Expressing the GM -convolution on E, relative to a chart on R?, we find that it reduces to a
steerable correlation. This correlation is furthermore equivalent to a steerable convolution
with a point-inverted kernel. Note that the terms “convolution” and “correlation” are in deep
learning commonly used interchangeably, and that CNNs are usually implemented using
correlations instead of convolutions. As the kernels are learned, and their G-steerability is
unaffected by point inversion, convolutions and correlations are in practice equivalent.

Theorem 15.2.1 (Euclidean GM -convolutions in coordinates).
Let GM be a G-structure induced by an Aft(G)-atlas of charts as defined in Sec-
tion _ When being expressed relative to any global chart x* : Eg — R of this
Aff(G)-atlas, the GM -convolution takes the form of a steerable correlation x_, on R4:

A
E)ut

(x) = [Kx, Efl(x) == | K(o) Fi(x +9)do (15.35)
Rd

Let K denote a flipped kernel, defined by ?(v) := K (—v), which is G-steerable iff K
is. The GM -convolutions with a kernel K is then furthermore equivalent to a steerable

convolution * with ? on R4:
EA(x) = [K « FA() - ? (y) do (15.36)

out

Proof: The Euclidean correlation is derived by expressing the GM -convolution %, in co-
ordinates, Eq. (9.39), and inserting the transporter pullback’s coordinate expression,
Fa. (539

FA@) = fA(@N) @) = [K xgy fiul (@) (@) (15.37)

= /Rd K(v) [EXp?zA)—l(I) fin]A(V) dv

= K(v) EA (x+0) do
R4

That the steerability of K and ? imply each other is clear since the GG-steerability
constraint, Eq. @]) needs to hold for any v € RY, in particular also —o, and thus
point-inverted kernels.

The equivalence of correlations and convolutions up to a kernel reflection is well known
and quickly shown:

(K 5,0 Fol (@) = Rdmvmmw)dv: [ Ky —2) Fuly) dy

? Fa(y) dy = [? * F{n] (x),

The second step substituted y = = + 0. 0

That correlations with G-steerable kernels are Aff(G)-equivariant follows directly from the
corresponding steerable convolution’s equivariance. The following calculation asserts this
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claim for completeness explicitly:
[K %, (tg >y Fo)| (@) = [K %, (p,(9) Fn (t9) )] (2) (15.38)

= | K(9) p,(9) Ea((tg)™ (x +0)) do

= RdK() pu(9) Fn(g~ (x +0—1)) do
= RdK(gf)) pu(9) Fn(g~ ' (x = t) +9) |det g do

= [ ple) KO Fuly™ e = 0)+7) a0
= Pou(9) [K 5 Fa] (971 (2 = 1))
—tgbpt[K* Fy] ()

Do and >, denote hereby the induced Aff(G)-representation actions on feature fields as
defined in Eq. .

15.2.2 Affine chart independence

Before proceeding to our proof of the Euclidean GM -convolutions’ Affgas-equivariance in
a coordinate free setting, we consider its Aff (G)—chart independence — as we will see, both
notions are closely related.

The transformation law of the feature field pullbacks to R when switching between charts
follows directly from the transition functions and can from the commutativity of the diagram

\/B

{84 gBA A) (15.39)

be read off to be given by
B — p(gBA) A (tBAgBA)—l _ (tBAgBA) >, FA, (15.40)
that is, by the induced representation action, Eq. (#.3), of the chart transition maps tBAgBA,

Coordinate chart independence means then that the GM -convolution’s coordinate expres-
sions in different affine charts 2 and = imply each other, i.e.

K« FEP = Kx, (tP4gP4 >y EY) = tPgP s, (K, Fl)  (1541)

BA _BA A B
=1 g ‘>»00 F = F(‘)ulv

out
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where we leveraged the Aff(G)-equivariance of the steerable correlation (Eq. (I5.38)). The
active Aff(G)-equivariance of classical G-steerable correlations or convolutions on R? is
therefore seen to imply the passive Aff(G) coordinate independence of Euclidean GM -
convolutions and vice versa. The two are two sides of the same coin. In addition, one can
prove the Affgj-equivariance of the GM -convolution in the coordinate free setting, which
we will do next.

15.2.3 Affine group equivariance

To prove the Affgas-equivariance of Euclidean GM -convolutions, we first define the trans-
formation law of coordinate free feature fields f € I'(A) under affine transformations
¢ € Affgyy, denoted as pushforward, asﬂﬂ

p>f=0¢,,fot. (15.42)

The (Levi-Civita) transporter pullback of an affine transformed feature field ¢ > f is relative
to an affine chart z* given by:

[Expi(6 > )] (0)
Y [Expt (g, f 6] (0)

D (512 ity (0) Ui (DS 671) expy (dag) T (0)

P <—exp,

—~

-

=idge

20 e (W) o] £ @ 007 (@) 0] expy (A7) (0)
= [ 2o ) i £ @[ 07 @) 7 o exmy (A7) )]
2 oo FH (a8 @ )+ 0)

© [(tQAgng) >, FA} (z(p) + 9) (15.43)

It relates to the transporter pullback of the untransformed field via the induced representa-
tion > ,, acting with the coordinate expression t;‘A g(;‘A of ¢ (Eq. (I5.21)). The first two
steps make use of Eq. (15.42) and the definition of the transporter pullback in coordinates,
where (¢, , f ¢~ 1A = 17 (P f ¢~ 1). To translate all morphisms into the correspond-

. . . . S -1
ing coordinate expressions, step three inserts identities idge = (wf ¢—1<p)) wf 1) and

idpa = (xA)_le, which are in step four rebracketed to clarify which combinations re-
sult in the coordinate expressions after step five. Recall for step 5 that, by Theorem [15.1.6]
g(‘;m (p) = g(‘;‘A for any p in [E;. As stated above, the last step identifies the resulting trans-
formation law in coordinates as the action of the induced representation.

With this result we can prove the Affq,/-equivariance of Euclidean convolutions in the co-
ordinate free setting. This generalizes Theorem[I3.2.5] proving the isometry equivariance of
GM -convolutions for the specific case of Euclidean spaces.

“This is the same definition of pushforwards as for isometries; see Def.[13.1.2
3Since the feature vector bundle is defined as a G-bundle, i.e. associated to GM, pushforwards
can only be defined for the G-structure preserving affine transformations in Affgay.
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Theorem 15.2.2 (Affine equivariance of Euclidean GM -convolutions). Let GM be a G-
structure that is induced by some Aff(G)-atlas of the Euclidean space M = E 4 and as-
sume feature vectors to be transported according to the Levi-Civita connection on Eg.
The corresponding GM -convolutions is then guaranteed to be equivariant under the
action of G-structure preserving affine transformations Affgy; = Aff(G). In equa-
tions, we have for arbitrary feature fields fi, € T'(An) and G-steerable kernels
Ke XS that

Pin>Pout
[K* (¢ fin)] = o> [Kx fu] Vo€ Affau, (15.44)
i.e. that the following diagram commutes for any ¢ in Affgps:

T(An) —25 5 T(A,)

Kx Kx (15.45)

['(Aou) T I'(Aout)

Proof: Let 24 : E; — RY be any global chart of the considered Aff(G)-atlas and let
p € E4. Our proof of the Affgas-equivariance is then performed by expressing the
convolution relative to these coordinates and making use of the Aff(G)-equivariance of
G-steerable correlations (and convolutions) on R? from Eq. (15.38):

v K (0> f)] (0) (15.46)
= y K(v) [Exp;(qﬁ > fm)] A(v) do (GM-conv. in coords., Eq. 039))

= K(v) [(tgAg:;A) Do EHA] (l‘A (p) + v) do  (transformed pullback, Eq. (15.43))

R
= {K K (tﬁAg:?A Do F;f)] (IA (p)) (identified correlation *_, on R?)
= {tﬁAg:;A > pout (K - EHA)] (1“4 (p)) (Aff(@)-equivariance of *,..» Eq. (133%))

= Dout (gﬁA) (K X F;f) ((tﬁAgﬁA) “lpA (p)) (induced representation D> o> EQ- @3))

= Pout (g(‘;‘A) (K * i FIHA) (xA ((ﬁ*l (p))) (coordinate expression of ¢, Eq. (T5.21))

= Pout (g(‘;‘A) /RdK(O) Ef (IA (qb*l (p)) + v) do (expanded correlation x_, on R4 )

= Dout (g:;‘A) /Rd K(v) [EXqu(p) fin]A(v) do (Euclidean pullback, Eq. (T5.34))

= Pout (QfA)ibA‘?u”Wl(p) [K * fm] (ﬁil(p) (GM-conv. in coords., Eq. §39))
= -Aljunp Gy s, [K * fm] ot (p) (pushforward in coordinates, Eq. (T3:39) )
= %:u“p [¢> > [K * fm]] (p) (AffGM action on fields, Eq. @))

The statement follows since 1)”  is an isomorphism. (]

out 5
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In summary, Euclidean GM -convolutions with Aff(G)-atlas induced G-structures have the
following two properties:

Aff(G)-coordinate independence: They are guaranteed to produce equivalent results in any

chart of the Aff(G)-atlas ﬂEAd () This property was shown in Eq. (1541 and is

in Fig. [T5.2] visualized as the transformation between charts.

Affear-equivariance: As proven in Theorem|[15.2.2]they are equivariant under active trans-
formations of feature fields by Affgy, = Aff(G). In Fig.[15.2] this would cor-
respond to a transformation of the signal on E;, which would reflect in an active
transformation on its representation relative to the same chart.

The proofs of both properties rely ultimately on the active Aff(G)-equivariance of classical
G-steerable convolutions and correlations on R,

15.3 Euclidean CNN:s in the literature

All of the models in rows (1-30) of Table are Aff(G)-equivariant GM -convolutions (or
steerable convolutions) on Euclidean spaces £y, as discussed in this chapter (or Chapter [4)).
They differ in the dimensionality d of the Euclidean space, the structure group G and thus
global symmetry group Aff(G), the group representations or field types p and choices of dis-
cretizations. This section discusses the models briefly by grouping them by their field types
into irrep models, regular representation models (corresponding to group convolutions) and
variations of them, quotient representation models and others. As these models are essen-
tially steerable CNNs, some of them were already explained in the benchmark experiment
Section In contrast to Section the models here are not restricted to d = 2 di-
mensions and cover non-compact structure groups, including scaling and the Lorentz group.
The differential geometric formulation allows furthermore to interpret group and quotient
convolutions from a different viewpoint, which generalizes to arbitrary manifolds.

Row (1) of Table lists Euclidean GM -convolutions on translation invariant {e}-
structures as visualized in Fig. Due to the triviality of the structure group G = {e}, no
(non-trivial) gauge transformations exist and the only possible choice of group representation
is the trivial representation. The G-steerability constraint becomes therefore trivial, such that
the si)ace of admissible convolution kernels remains unrestricted. When being pulled back
to R® via a chart, the GM -convolution becomes by Theorem a conventional convolu-
tion (or correlation). Theorem [[5.2.2] asserts its translational equivariance. The models are
therefore seen to correspond to the conventional Euclidean CNNs by LeCun et al. [[175]].

All of the other Euclidean models in rows (2-30) consider non-trivial structure groups. They
can be thought of as conventional convolutions on R¢ with the additional constraint on the
kernels to be G-steerable, which guarantees their Aff (G)-equivariance.

Irrep features: The networks in rows (4, 6, 11, 12, 20, 24, 27) and (30) operate on feature
fields that transform according to irreducible representations (irreps) of G. For G = SO(2),
listed in row (6) and already covered in Table [6.6] this leads to so-called harmonic net-
works [333][322]]. This name is motivated by the fact that SO(2)-irrep steerable convolution
kernels are circular harmonics. The additional reflectional constraint for G = O(2), listed in
row (14), adds parity selection rules that fix the phase of the circular harmonics, suppressing
half of the degrees of freedom as compared to the G = SO(2) case. Both kernel spaces were
derived in Section[5.3.4} see in particular Tables[5.2]and[5.3]
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The models by [323] 3011 211} 161}, 3 [184] in row (20) consider irreps of G = SO(3)
and can therefore be seen as the analog to the models in row (6) in three dimensions. The
space of valid kernels to map between fields that transform according to irreps (Wigner D-
matrices) of orders [ and J is here spanned by all spherical harmonics of the 2(min(l, J)+1)
orders j with |l — J| < j <1+ J; Fig.visualizes these selection rules. Irrep models for
G = O(3), listed in row (24), are again adding parity selection rules, which enforce here that
convolutions between fields of the same parity require even parity spherical harmonics, while
transitions between field parities require odd parity kernels. A variation of this approach is
listed in row (27) [233]. A convolution of an input scalar field, i.e. [ = 0, with spherical
harmonics of order j yields irrep fields of the corresponding order J = j. However, instead
of processing these irrep features further via convolutions, the authors compute their norm.
This results in scalar fields, which are in the next layer processed in the same manner.

The model from [274] in row (30) does not assume the standard Euclidean metric but the
Minkowski metric. Its structure group is the Lorentz group G = SO(d — 1, 1) and the global
symmetry group is the Poincaré group. In addition to building the equivariant network, the
authors propose an algorithm to compute the irreps of Lie groups from the structure constants
of their Lie algebra.

A special case of irreps are trivial representations (row 11), which describe G-invariant
feature vectors (scalars). Due to their invariance, such features can not encode differences
between any patterns in G-related poses. The constraint on kernels that map between scalar
fields becomes K (go) = Taerg I (0) for any 0 € R? and any g € G, enforcing kernels
that are (in every channel individually) invariant under the action of GG. The first column of
Fig.[5.2] the first row of Fig.[5.3]and the upper left entry of Table [5.1] show such kernels for
G = 0(2), G = O(3) and G = R, respectively. Interpreting the pixel grid of an image as
a graph and applying a standard graph convolution to it corresponds to a trivially steerable
convolution with O(2)-invariant kernels since standard graph convolutions apply isotropic
kernels [144]].

An advantage of irrep features from a practical viewpoint is their low dimensionality and
thus memory consumption per feature field. However, empirical results show that irrep field
based steerable convolutions usually achieve a lower performance than other field types, for
instance those based on regular representations. This statement is reflected in our evaluation
of M&bius convolutions in Section[T0.5]and the benchmark of isometry equivariant Euclidean
steerable CNNs in Table [6.6]

Regular features and group convolutions: The probably most prominent class of field
types for equivariant CNNs are regular representations of the structure groups. As defined
in Def. regular representations operate on functions f : G — R, which assign a fea-
ture response to every G-pose of a kernel. The regular representation acts thereby by G-
translating these functions, that is, [pree(G)F | (9) = F (G~ *g). Specifically for finite groups
this implies feature fields with the number of channels ¢ = |G| given by the order of the
group; see Remark [B.5.19] As non-finite groups imply non-finite regular representations,
the corresponding features are in practice discretized, which can for instance be done by
considering a finite subgroup of the structure group or by Monte Carlo sampling. Since
regular feature fields f € T'(A) assign a function f4(p) : G — R to each point p € M
(when being expressed relative to any gauge A at p), they are equivalent to real-valued func-

tions f : GM — R on the G-structure GM | For the case of GM being induced by an

“Theorem in AppendixE] proves this isomorphism C*°(GM) = T'(A,,,) for the practically
relevant case of GG being a finite group.
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Aff(G)-atlas, this is furthermore equivalent to real-valued functions f : Aff(G) — R on
Aff(G) =2 GM (along the isomorphism in Eq. (I5.14)). Equivariant linear maps between
functions on the group Aff(G) are group convolutions, which means that affine group con-
volution based CNNs are covered by our framework — this relation was in the context of
steerable CNNs already proven in Section above. Regular representation based GM -
convolutions are in this regard best thought of as generalizations of group convolutions to
the differential geometric setting.

Aff(G)-group convolutions are in Table listed in rows (2,3,5,7,13,17,19,22,25,28) and
(29). As these models typically process scalar field inputs, like grayscale images, they apply
an initial convolution from scalar fields to regular fields, followed by group convolutions,
i.e. convolutions from regular to regular fields. As regular representations are permutation
representations, they typically apply pointwise nonlinearities like ReLLUs to each of the field
channels individually.

The reflection equivariant CNN on E5 from [322] in row (5) applies (R-steerable kernels as
derived in Section[5.2]and visualized in the bottom right entry of Table[5.1] Since the reflec-
tion group is finite with order |R| = 2, the regular feature fields have two channels, each
of which is associated to one of the two frame orientations of the R-structure in Fig.
The resulting model is globally (R?, +) x R = Aff(R) equivariant.

To construct SE(2) = Aff(SO(2)) equivariant group convolutions one would in theory have
to consider the SO(2)-structure in Fig. with feature fields transforming according to
the regular representation of SO(2). In practice, most of the models in row (7) of Table
approximate this via regular representations of the finite cyclic subgroups Cy < SO(2),
consisting of discrete rotations by multiples of 27t /N, as described in Chapter@ As the order
of these groups is |Cy| = N, the corresponding feature fields are N-dimensional. While
the model performance is initially significantly increasing with NV, it is empirically found
to saturate at approximately 8 to 12 sampled directions; see Fig. [6.4] or [324] 322| [10]. For
an intuition on the spaces of Cy-steerable kernels we refer to the visualizations in Fig.
or 324, [12,[10].

The E(2) = Aff(O(2)) equivariant group convolutions in row (13) are similarly approx-
imated via dihedral subgroups Dy < O(2), which consist of N rotations, each in two
reflections. The feature fields are in this case |Dy| = 2/N-dimensional.

Simultaneous equivariance under translations and scaling is achieved by the (R?, +) x & =
Aff(S8) group convolutions in rows (2) and (17). The scaling group is hereby commonly dis-
cretized. As this would still lead to a (countably) infinite group order, the implementations
introduce cutoffs, i.e. minimal and maximal scales as shown by the frames in Fig. [15.3d|
Note that this leads to similar boundary effects as for conventional convolutions at the bor-
der of an image. The model in row (19) combines rotation and scaling equivariance, i.e.
G = SO(2) x 8. As the steerability constraints for G = SO(2) and G = & affect only
the kernels’ angular and radial parts, respectively, G = (SO(2) x &)-steerable kernels are
easily constructed from these solutions.

The models in rows (22) and (25) are equivariant w.r.t. translations, rotations and, for the
latter, reflections of three-dimensional Euclidean spaces E3. While Finzi et al. [91] choose
a Monte-Carlo discretization of the regular representation, the models in [40} 333] [329] are
based on different discrete subgroups of SO(3) or O(3). A current limitation of group
convolution based rotation and reflection equivariant models in three dimensions is their
high memory and compute requirement. For instance, the symmetry group of the cube,
which has still a quite coarse resolution of rotations by 7 /2, already consists of |G| = 48
group elements, implying 48-dimensional feature fields in three-dimensional space. On the
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other hand, the large number of symmetries reflects the greatly enhanced data efficiency
of such models: the authors of [329] report the same performance of an equivariant model
in comparison to a non-equivariant ({e}-steerable) network despite training on a 10 times
smaller dataset.

The models in rows (28) and (29) convolve on E3, however, they consider cyclic and dihedral
structure groups Cy4 and Dy, i.e. planar rotations and reflections around the (thus defined)
z-axis. Their steerable kernels are therefore similar to those of the models from rows (7) and
(13) but extend additionally in a new z-direction.

Regular to scalar and vector pooling: A variation of group convolutional networks are
the models in rows (9,10,15,18) and (23), which are labeled by regular&trivial and

pool . .

regular——>vector. After applying a convolution to regular feature fields, they perform a
max-pooling operation over G-responses (Eq. (6.2), which results in scalar (trivial) fields
[52L [195L1322] 107} 4]], or a max-pooling together with an argmax, from which vector fields
can be computed [196,[322]]. Subsequent convolutions map from the resulting scalar or vec-
tor fields back to regular feature fields. As the pooling operations reduce the number of
channels significantly from |G| to 1 or d, respectively, the models become more memory
and compute efficient than conventional group convolutions. On the downside, the pooling
is accompanied with a loss of information, which is empirically found to decrease the model
performance [322].

Quotient features: Rows (8,14) and (26) list models whose feature fields transform ac-
cording to quotient representations of the structure group, which are permutation representa-
tions that are similar to regular representations. Given a subgroup G of G, the corresponding
quotient representation acts on scalar functions f : G/ G — R on the quotient space G/ G

via translation, that is, [pgi(/nG(g) r (g@) =r (g7 'g @) see Def.|B.5.20| The dimension-
ality of the feature fields is therefore given by the index |G .G | of G in G, which is for

finite groups equal to |G|/|G|. Feature fields that transform under quotient representations
can be seen as symmetry-constrained regular feaiure ﬁAelds that are forced to take the same
value on all group elements in the same coset ¢G of G in G. In the differential geometric
settlng, these models can be viewed as assigning kernel responses to equlvalence classes of

G-related frames — and therefore to different choices of G-substructures GM in GM.

A specific example are the representations in row (26), which are associated with the quo-
tient O(3)/ O(2) = S2. Instead of allowing for arbitrary convolution kernels, the kernel
constraint leads here to kernels which are invariant under rotations around the z-axis; see
the visualizations in [[136]. More details and a graphical intuition on quotient representation
based feature fields can be found in Appendix C of [322]. The theory proposed in [162]
covers quotient fields from an alternative viewpoint of group convolutions on right quotient
spaces.

Induced representations: A generalization of regular and quotient representations are in-
duced representations like the induced SO(2)-irreps in row (16) of Table - Given any

SO(2)-irrep p : SO(2) — GL(n), the induced representation Ind o P 0(2) — GL(c)

of O(2) with ¢ = n-|0(2) : SO(2)] = 2n acts in the followmg Way reflections per-
mute two n-dimensional, orthogonal subspaces of R?” which correspond to the two cosets
in O(2)/SO(2) while rotations act on the individual subspaces via p. For p being the triv-
ial representation of SO(2) this recovers quotient representations as discussed above. In
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comparison to O(2)-irrep feature fields, the induced SO(2)-irrep fields show a significantly
improved performance. A more detailed description and empirical evaluation of these field
types can be found in [322].

Quaternion representation: The last type of representation listed in Table is the
quaternion representation of three-dimensional rotations in row (21) [345]]. It makes use of
the usual representation of rotations via quaternions, which relies the identification of unit
quaternions with SU(2) and the existence of a surjective group homomorphism from SU(2)
to SO(3). Note that the quaternion representation is actually a projective representation of

SO(3).

Discretization: While our theory is formulated on continuous Euclidean spaces, imple-
mentations sample feature fields usually on discrete subsets. The most common discretiza-
tion of Eg is in terms of the pixel grid Z¢. An alternative are hexagonal planar grids on E;
as investigated by Hoogeboom et al. [125]]. If such regular pixel grids are chosen, a basis
of G-steerable kernels can be precomputed and sampled on this grid. Data like events in
spacetime [274] or molecules in R? [301} (161} [3, 211] are instead usually represented by
irregular point clouds. In this case the kernels need to be given analytically, which allows
their online sampling during the forward pass.

Finally, we want to mention that there exist globally Aff(G)-equivariant models which
are not locally G-equivariant. An example is TI-pooling (transformation-invariant pool-
ing) [174], which feeds a set of globally transformed feature fields through a conventional
Euclidean CNN and finally pools the resulting features over these transformations, which
results in an invariant descriptor. While this model is not an Aff(G)-equivariant GM -
convolution as described in this Chapter, it is nonetheless constructed from an Aff({e}) =
(Rd, +)-equivariant (conventional) {e}M -convolution.






CHAPTER 1 6

Rotation equivariant CNNs on punctured Euclidean spaces

The models in rows (31-34) of Table [T4.1] provide an interesting alternative for rotation
equivariant convolutions on punctured Euclidean spaces E4\{0}. They rely on G-structures
that are invariant under rotations around the chosen origin {0}, as visualized for instance in
Fig.[I6.1] By specifying a preferred origin, these models lose the property to be translation
equivariant)'| However, if the G-structure is additionally invariant under scaling, which is for
instance the case when it is induced by hyperspherical coordinates with a logarithmic radial
component as shown in Fig.[I6.3] the models become equivariant w.r.t. the direct product
SO(d) x & of the rotation and scaling group. Similarly, rotation and reflection invariant G-
structures, visualized in Fig.[16.2] imply the O(d)-equivariance of the corresponding GM -
convolutions.

The models relate to spherical CNNs, discussed in Chapter [T7] below, in two ways. Firstly,
they assume rotationally invariant G-structures on E4\{0} = S?~! x R.(, which can
be seen as being composed of multiple rotationally invariant G-structures on (d —1)-
dimensional spherical shells S?~! at different radii. The models can therefore be thought

I'This issue can be resolved by combining the network with a translation invariant origin predictor
network [84]. Note that the rotation equivariance of the combined model is only preserved if this origin
predictor is SE(d)-equivariant.

(a) SO(2)-invariant {e}-structure as im- (b) Cs-invariant {e}-structure as implic-
plicitly assumed by Finzi et al. [91]. itly assumed by Chidester et al. [47].

Figure 16.1: Two examples of {e}-structures on the punctured plane E2\{0} which 1) are invariant
under rotations around the origin {0} and 2) consist of orthonormal frames relative to the standard
Euclidean metric. The corresponding GM-convolutions are rotation equivariant but not translation
equivariant (in fact, E2\{0} does not even admit translations).
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of as (hyper)spherical CNNs with an additional radial dimension R~ [238]], which is in
Fig.[16.4] visualized for the case of d = 3 dimensions. Secondly, the polar coordinate sys-
tems of [84] [OT] 47 (Figs. and induce G-structures that exhibit the same type of
singularity at their origin like those of the punctured spherical CNNs in Fig. at the
poles. Note that the punctured Euclidean plane E;\{0} and the punctured sphere S\ {n, s}
(with north and south poles {n, s} removed) are both topologically equivalent to a cylinder
St x R = S! x R and that the cylindrical {e}-structures visualized in Figs.
(left) and [T7.2b] are diffeomorphic.

A major difference in comparison to the SE(d)-equivariant networks from the previous chap-
ter is that the models of the current chapter are only globally SO(d)-equivariant around the
origin instead of locally SO(d)-equivariant (SO(d)-steerable). While the globally equivari-
ant models do not require SO(d)-steerable kernels, they still require at least SO(d — 1)-
steerable kernels. This is the case since SO(d) is a SO(d — 1)-bundle over the spherical
shells S9=1 = SO(d)/ SO(d — 1) on which the G-structure is required to be SO(d) rota-
tion equivariant. For d = 2 this allows for {e}-structures and non-steerable kernels since
SO(d — 1) = SO(1) = {e}; see Fig. or[16.3] For d = 3 this requires at least a
SO(d — 1) = SO(2)-structure on the individual spherical shells, which is visualized in
Fig.

After these general remarks we will in the following briefly review the individual models
on E;\{0} found in the literature from the viewpoint of coordinate independent CNNs. We
start with the models in row (31) of Table which are equivariant w.r.t. SO(2) rotations
around a chosen origin of [£5 and proceed with the models in row (32), which are additionally
scale equivariant. The network listed in row (33), which we discuss last, is globally O(3)-
equivariant around the origin of E3.

16.1 Global rotation equivariance on E.\ {0}

We start with the conceptually simplest models, which are globally rotation equivariant net-
works that rely on solely rotation invariant {e }-structures on Eo\ {0} [91]47]. These models
assume the standard Euclidean metric on Eo\ {0}, relative to which the frames are orthonor-
mal. Together, these two requirements imply {e }-structures as shown in Fig.

In addition to the considered G-structures, the networks depend on the specific implemen-
tation of the transporter pullback and thus on the geodesics and parallel transporters. The
geodesics are in both models assumed to be the standard geodesics on Euclidean spaces
(i.e. straight lines), corresponding to the Levi-Civita connection of the Euclidean metric. As
E>\{0} is not geodesically complete, zero-padding has to be used for exponential maps that
would end at the origin. Note that this does not have an impact on the final result as the lost
geodesics are of measure zero.

The parallel transport of feature vectors, on the other hand, does not correspond to the Levi-
Civita connection since the Levi-Civita connection is not compatible with the {e}-structures.
Instead, the models assume the unique {e}-compatible frivial connections which are implied
by the respective {e}-structures According to the trivial connections, the numerical coeffi-
cients of feature vectors do not transform when being transported, despite the frames being
rotated relative to the usual notion of parallelism on Euclidean spaces. In practice, this just

2 An animation of the {e}-compatible transport corresponding to Fig. can be found on
Wikipedial


https://en.wikipedia.org/wiki/Levi-Civita_connection#Parallel_transport
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Figure 16.2: An O(2)-invariant (R-structure
on E;\{0}, which is constructed by adding a
reflected versions to each frame of the {e}-
structure in Fig. [[6.0a] The corresponding
GM -convolution is simultaneously equivari-
ant w.r.t. global rotations and reflections in
Isomgys = O(2) around the origin.

means that the transporters p( g::"Z ) = idge can be ignored in the implementation — which is
the reason that they are not being discussed in the original papers [91},47].

As rotations leave the considered {e}-structures invariant and are at the same time isome-
tries, we have Isomy; = SO(2) for the model by Finzi et al. [91] (Fig. [16.1a) and
Isomgyps = Cg for the model by Chidester et al. [47] (Fig. [16.1b). Theorem as-
serts then that the corresponding GM -convolutions are Isom.s-equivariant, which is in
agreement with the statements made by the authors.

Before going on we want to mention that the Cg-invariant {e}-structure in Fig. is
not continuous and does therefore not guarantee a continuous (or smooth) inference. An
advantage of this {e}-structure from an engineering viewpoint is that it is locally isomet-
ric to the canonical {e}-structure of R?, which allows to run conventional Euclidean con-
volution routines on each octant. The authors discuss the generalization to Cy-invariant
{e}-structures, which become in the limit N — oo equivalent to the SO(2)-invariant {e}-

structure in Fig.[16.1a]

It is furthermore possible to make the models globally O(2)-equivariant by using reflection
steerable kernels instead of unconstrained kernels. From a theoretic viewpoint this corre-
sponds to the Isomgys = O(2)-invariant R-structure RM on Eo\{0} shown in Fig.[16.2]
Note that RM is a R-bundle over Eo\ {0}, whose restriction to circles of constant radius is
as a principal bundle isomorphic to O(2), interpreted as R-bundle over the quotient space

0(2)/R = ST

16.2 Global rotation and scale equivariance on E;\ {0}
via log-polar coordinates

By making the rotation invariant G-structures from the last section additionally scale invari-
ant, the corresponding GM -convolutions become equivariant w.r.t. the direct product group
SO(2) x 8. Such G-structures are induced by log-polar coordinates, shown in Fig.
which allow for a convenient implementation of the GM -convolution in terms of conven-
tional Euclidean convolutions on the coordinate representation R?. The translation equiv-
ariance of convolutions on R? corresponds then to the SO(2) x §-equivariance on Eo\{0}.
For clarity, we start by describing the model in terms of log-polar coordinates as proposed
by Esteves et al. [84])’| Subsequently, we investigate how this model and its properties are
explained in our framework.

3The idea to implement rotation invariant correlations via log-polar transforms appeared already in
the 80’s [255)134].
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E,\{0} R?

0 27 47

Figure 16.3: Log-polar coordinates x : R* — R*\{0} : (¢, &) — (€° cos(¢p), e sin(ip)) map angles
¢ € R and log-radii ¢ = log||p|| € R to points p in R*\{0}. After choosing Cartesian coordinates
of E2\{0} =2 R?\{0}, this yields a coordinatization of E2\{0} by R?. The log-polar coordinates
imply an {e}-structure on E2\{0}, consisting of reference frames [%, a%] that are aligned with
the coordinate grid. They furthermore induce a Riemannian metric, which differs from the usual
Euclidean metric and relative to which the induced frames are orthonormal. GM -convolutions on the
{e}-structure correspond to conventional Euclidean convolutions in the coordinates R?. Translations
(A, AE) € (R?,+) on R? correspond via  to rotations and rescalings of E2\ {0}, where the rotation
angles and rescaling factors are given by Ay and e, respectively. The translation equivariance of the
convolution in coordinates R? implies therefore the SO(2) x $-equivariance of the GM-convolution
on E;\{0}. This result is in agreement with the isometry equivariance of the GM -convolution since
the transformations in Isomga; = SO(2) X & are isometries relative to the induced metric. Esteves
et al. [84] implement such GM -convolutions in terms of conventional convolutions on R?.

Log-polar coordinates of the punctured Euclidean vector space R?\{0} are defined in terms
of the smooth surjection

x: R? =5 RAO\{0}, (¢,€) — (e cos(p), e sin(y)), (16.1)

which assigns points p = x(¢,£) in R?\{0} to a given polar angle ¢ € R and log-radius
¢ = log||p|| € R. This map is 27-periodic in the angular coordinate (note the repetition of
the blue stripe on the right-hand side of Fig.[T6.3) and is therefore in particular non-injective.
A restriction to [0, 27) x R would be bijective and continuous, however, not homeomorphic
— this will require us below to consider at least two charts to cover the punctured plane.
Cartesian coordinates identify R?\ {0} with E5\ {0}, and therefore allow to assign log-polar
coordinates to the latter. As different (right-handed) Cartesian coordinate systems that are
centered in the origin of E\{0} differ only by rotations, the assignment of log-polar coor-
dinates is ambiguous by a shift in the angular component.

Given a feature map f : R?\{0} — R¢ (an {e}M -associated feature field, as clarified below),

Esteves et al. [84] consider its pullback f = foyx :R? — R¢ via log-polar coordinates,
defined by the commutativity of the following diagram:

f

R — X L RA™{0} —L 5 Re (16.2)

L

f

A rotation and scaling equivariant group convolution of the feature field f on R?\{0} is then
defined by 1) pulling it via y back to coordinates R? 2) applying a conventional Euclidean
convolution there and 3) mapping the result back to R?\{0}. This procedure is well defined
since x is smooth, such that smooth feature maps (feature fields) f result in smooth and
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periodic pullbacks f . Since convolutions are position-independent, their output feature map
will still be periodic and smooth, and corresponds therefore uniquely to a smooth feature
map on RQ\{O}

The rotation and scaling equivariance of the implied group convolution on R?\ {0} follows
from the translation equivariance of the coordinate function XE] Let (¢, &) be any coordinates
in R? and let (A, AE) be any translation in (R?, +). The point of R?\ {0} that corresponds
to translated coordinates (¢4 Ay, £+ AE) relates then to the point corresponding to non-
translated coordinates (¢, £) via a scaling by the factor e”¢ and rotation by the angle A:

X(p+Dp, € +A8) = efas (E?SEZZ’ H ﬁfﬁ)))

_ o (C?S(ASD
sin(Agp

)

)
- cos(Ap) —sin(
= (Gniag oo

= (Ap, AE) > x(p, &) (16.3)
In terms of a diagram, this means that

R2

X X (16.4)

R0} — R\ {0}

commutes for arbitrary translations. Together with the translation equivariance of con-
ventional convolutions on R2, this implies that rotated and scaled input feature maps on
R2\{0} will lead to rotated and scaled output feature maps on R?\{0}, i.e. the SO(2) x -
equivariance of the convolution on R?\ {0}. More details on this viewpoint are found in [84]
and [[15].

We will now revisit this convolution operation and its properties from the viewpoint of co-
ordinate free GM -convolutions. To do so, we consider an atlas of charts that are consistent
with the log-polar coordinates, and discuss the induced {e}-structure, gauges, Riemannian
metric, geodesics and parallel transport that it implies. The claimed SO(2) x & -equivariance
follows immediately from the Isom./-equivariance of GM -convolutions. For notational
convenience, we will again identify Eo\{0} via some choice of Cartesian coordinates with
R2\{0}.

As the restriction y : [0, 27) x R — R?\ {0} of the log-polar coordinates  to non-redundant
angles is bijective and continuous, one might be tempted to take its inverse as a coordinate

Ap, A&)>

“To see this, note that y is a quotient map (since its angular part is a quotient map R — S =
R/27Z). For continuous (instead of smooth) feature maps the statement follows from the universal
property of quotient spaces; see e.g. |Wikipedia, As the smoothness of a function is defined as its
continuous differentiability, the universal property can be applied recursively to show that the statement
holds for smooth feature maps as well.

That this is possible relies on the fact that there is a group homomorphism (R?, 4) — SO(2) x
8, (Ap, AE) — (Ray, €2%), defined by the group isomorphism exp : (R, 4+) — & on the second
factor and the group homomorphism (quotient map) R : (R',+) — SO(2) = (R', +)/27Z on the
second factor, where Ra ., denotes the rotation matrix by an angle of Ae.


https://en.wikipedia.org/wiki/Quotient_space_(topology)#Properties
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chart. This is, however, not possible, since ¥ is not a homeomorphism, as required for charts.
Instead, we consider an atlas consisting of two charts that are defined in terms of restrictions
of  and that cover R?\{0}. One particular choice is to define chart codomains as open sets
VA =(0,2r) x Rand VB = (—¢, €) x R for some 0 < € < 7 and, for X = A, B, define

charts on UX = x(VX) as 2% := (X|VX)_1 : UX — VX Intuitively, this atlas achieves
the same as the naive attempt to define charts as the inverse . The important difference is,
however, that the charts are diffeomorphic, which is necessary to assure the smoothness of
all operations.

As usual, these charts induce local frame fields and bundle trivializations on U4 and U5,
respectively. It is easy to see that the transition maps ng = %|xA(p) on UANUP are
trivial, which implies that the union of the frame fields defines a smooth {e}-structure {e}M
on R?\{0}. These coordinate bases, which are in the literature often denoted as [%, 8%},
are shown in Fig. (left). Our calculation in Eq. above implies that the induced
{e}-structure is SO(2) x & -invariant.

The charts induce furthermore a Riemannian metric, which differs from the usual Euclidean
metric on R?\{0}. It is defined as the pullback of the Euclidean metric (-, -)g in the charts’
codomains, and is therefore pointwise given by

(v, w) = (da (v), day (W), (16.5)

where v,w € T,M and X denotes either chart with p € U X The chart induced {e}-
structure consists by construction of frames that are orthonormal w.r.t. this chart induced
metric, even though these frames grow with the radius when measured relative to the stan-
dard Euclidean metric. The Levi-Civita connection of the induced metric differs from the
usual Euclidean connection and implies therefore alternative geodesics and parallel trans-
porters. As the metric is pulled back via the charts, the geodesics correspond to straight lines
in the charts’ codomains — an example are the coordinate lines on R*\{0} in Fig. The
parallel transport corresponds to the usual transport in the charts’ codomains as well, which
implies that it keeps transported vectors in a fixed angle to the coordinate lines on R?\{0};
cf. footnote[2] Note that this is the same transport as already discussed above in the models
corresponding to Figs. [T6.1] where it was not the transport corresponding to the Levi-Civita
connection since these models assumed the standard metric on R?\{0} instead of the chart
induced metric.

The {e}-structure preserving isometries Isomy s = SO(2) xS relative to the chart in-
duced metric are given by rotations and rescaling of the {e}-structure relative to the usual
Euclidean metric. Theoremimplies the SO(2) x §-equivariance of the corresponding
GM -convolution — which recovers the statement made by Esteves et al. [84] in our theory.
As stated above, the fact that the metric is induced via the charts means that all operations
reduce to the usual Euclidean operations when being expressed in the chart. The GM -
convolution is therefore best implemented via a conventional convolution on the chart, as
proposed by Esteves et al. [84].

Note that the SO(2)x S-equivariance of the GM-convolution is easily extended to
O(2) x §-equivariance, which includes reflections. This is implemented by performing a
reflection equivariant convolution in the chart, which corresponds to the R-structure shown
in Fig.[15.3cl On R?\{0}, this implies a R-structure that looks similar to that in Fig.
above, with the difference that the R-structure is additionally invariant under a global rescal-
ing.
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16.3 Global rotation equivariance on E3\ {0}

The ideas presented above can be generalized to the three-dimensional setting, i.e. to the
punctured Euclidean space E3\{0}. Globally rotation equivariant GM-convolutions corre-
spond here to G-structures that are invariant under SO(3) rotations around the origin. While
the radial dependency of such G-structures is left unconstrained, the demand for rotational
invariance imposes a constraint on their form over spherical shells at fixed radii, which are
the orbits of the action of SO(3) on E3\{0}. The fact that the sphere S = SO(3)/SO(2)
is a homogeneous space of SO(3) with stabilizer subgroups isomorphic to SO(2) implies
that the structure group of an SO(3)-invariant G-structure can not be reduced further than
G = SO(2); see Fig. We are therefore essentially considering spherical CNNs with
an additional radial dimension. For a review on spherical CNNs we refer the reader forward

to Chapter

Ramasinghe et al. [238]] identified this situation and designed SO(3)-equivariant convolu-
tions on E3\{0}. Before coming to our classification as GM -convolution, listed in row (33)
of Table[T4.1] we briefly review the authors’ formulation and implementation. Their imple-
mentation is based on spherical CNNs with the addition that 1) kernels extend in the radial
direction and 2) are shared over shells at different radii; see Fig. [13_7(] (left). As commonly
done for spherical CNNs, the angular dependency of the kernels is encoded via their Fourier
spectrum on S2, that is, in terms of spherical harmonics expansion coefficients. The sharing
of these expansion coefficients implies that the shared kernels cover the same solid angle for
all radii, implying that the kernels dilate in angular direction linearly with the mdiusE] In
the discretized implementation, the spherical shells are located at equidistant radii — which
implies that the kernels do not dilate in radial direction. From these insights we infer the
specific G-structure that the model assumes below. The kernels themselves are constrained
such that they are invariant under SO(2) rotations around the radial axis through their cen-
ter, which is often referred to as zonal kernels; see Fig. and [83]. As proven in [83]]
and [238]], the convolution with such kernels is SO(3)-equivariant. That this is the case is
intuitively clear since rotations of the spherical shells have SO(2) as stabilizer subgroup,
w.r.t. which the zonal kernels are invariant. As we will argue below, the model is actually
O(3)-equivariant, that is, additionally equivariant under reflections.

To recover this model from the viewpoint of GM -convolutions, we
need to determine the corresponding G-structure on M = E3\{0}.
As stated above, the SO(3)-equivariance of the model requires the
G-structure to be invariant under the action of SO(3) but does not
constrain their radial variation. To infer this radial dependency of
the G-structure, recall that we defined convolutional weight shar-
ing at p € M as aligning the template kernel K : R? — RCu*¢n
relative to some (arbitrary) frame in G, M of the tangent spaces gioure 165 A zonal
T, M. The kernel sharing considered by Ramasinghe et al. [238]  (isotropic)  kernel s
lets us therefore draw conclusions about the implicitly considered —simultaneously ~SO(2)-
G-structure. The authors share kernels such that their area tan- and O(2)-steerable; cf.
gent to the spherical shells extends with growing distance from the Egs. (I6.6) and (16.7).
origin (they cover the same solid angle at each radius) while their

radial thickness remains constant. Fig. @] (left) shows this radial variation of the shared
kernels while Fig. [16.4] (middle) shows the corresponding scaling of exemplary reference
frames. Together with the required SO(3)-invariance of the G-structure, this implies (at
least) an SO(2)-structure, whose restriction to one spherical shell is visualized in Fig.

®The dilation is here measured relative to the standard Euclidean metric of Ez\{0}.
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Ed\{()} = S2 X ]R>0

Figure 16.4: The G-structure that was implicitly assumed by Ramasinghe et al. [238] can be de-
duced from the weight sharing scheme. Left: Weight sharing of (isotropic) convolution kernels over
E3\{0} = S? x R as proposed in [238]]. The kernels are defined to cover the same solid angle,
independent of the distance from the origin, such that their diameter grows linearly with this distance.
The kernels’ extent in radial direction is independent from the distance from the origin.. Middle: In
our theory, kernels are shared relative to reference frames of the G-structure. To recover the proposed
weight sharing scheme, GM needs to consist of frames whose axes in angular direction grow linearly
with the radial distance from the origin, while the axes in radial directions need to keep their size fixed
(both relative to the standard Euclidean metric). Such frames imply an alternative Riemannian metric
on E3\{0}. Right: As the resulting GM -convolution should be SO(3)-equivariant, the G-structure is
required to be invariant under rotations around the origin. This requires (at least) an SO(2)-structure,
whose restriction to one spherical shell is shown in the right part of the figure. Compare this to the
SO(3)-invariant SO(2)-structure of spherical CNNs in Fig.

(right)ﬂ The considered metric follows from this G-structure, since its frames define the
relevant notion of orthonormality. Note that this metric differs from the usual Euclidean
metric.

By construction, we have rotations Isomgy; = SO(3) as G-structure preserving isome-
tries. GM -convolutions defined by this G-structure, which may differ in their input and
output field type, will therefore (by Theorem [I3.2.5) be rotation equivariant. The specific
GM -convolution assumed by Ramasinghe et al. [238], i.e. the assumed field types, can be
deduced from the fact that the authors assume zonal kernels: such kernels arise naturally
when considering scalar fields, i.e. trivial field representations, since the kernel constraint,
Eq. (9:37), becomes in this case

K(go)=K(v) VoeR?* gecS0(2), (16.6)

enforcing isotropic (zonal) kernelsﬁ These kernels are listed in the upper left entry of the
SO(2)-steerable kernel space solution Table[5.2}

As a variation of the model, one could consider the O(2)-structure that follows from the
SO(2)-structure by adding reflected reference frames (reflecting over an arbitrary axis within
the planes tangent to the spherical shells, keeping the radial frame vectors still pointing out-
Wards)ﬂ In this case one has G-structure preserving isometries Isomgys = O(3) that consist

"The two-dimensional analog would look similar to the G-structure in Fig. but with all frame
vectors in radial direction having unit norm (relative to the Euclidean metric).

8Kernels which map between “scalar fields”, i.e. fields that transform according to the trivial
representation of G, are always G-invariant. For G = SO(2), this implies isotropic (zonal) kernels,
while G = R implies the reflection invariant kernels in the upper left entry of Table

This O(2)-structure is the analog of the O(1) = R-structure in Fig. for d=3 instead of d=2.
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of global rotations and reflections around the origin, and therefore O(3)-equivariant GM -
convolutions. An interesting special case in the current context is that of GM -convolutions
that map between scalar fields, for which the kernel constraint reads

K(go)=K(v) VoeR? geO(2). (16.7)

This seems like a stronger constraint than that in Eq. (I16.6) above: instead of only demanding
kernels to be rotationally invariant, it requires them additionally to be invariant under reflec-
tions. However, since rotation invariant kernels are already invariant under reflections, this
leads again to zonal kernels, and therefore exactly the same kernel space as for SO(2) EG] This
implies that the model by Ramasinghe et al. [238] is actually not only SO(3)-equivariant, as
claimed by the authors, but more generally O(3)-equivariant, which justifies our classifica-
tion in row (33) of Table[T4.T] Note that this is a special case that applies only for scalar fields
— the spaces of SO(2)- and O(2)-steerable kernels differ for general group representations;
cf. the kernel space solution Tables[5.2] and

How does the model by Ramasinghe et al. [238] relate to that of Esteves et al. [84],
which relies on the G-structure shown in Fig. A key difference between the two ap-
proaches is that the G-structure in Fig. consists of frames whose outward pointing axes
grow with the radial distance from the origin, which is not the case for the G-structure in
Fig. If we modify the latter to consist of frames whose radial axes grow linearly with
the frames’ distance from the origin, one would have Isomgy; = SO(3) x & (instead of
Isomgps = SO(3)). The corresponding GM -convolution would therefore additionally be
scale equivariant. In an implementation, this could easily be realized by spacing the discrete
spherical shells considered by Ramasinghe et al. [238] exponentially instead of uniformly
(corresponding to a uniform spacing of the logarithmized radius).

Lastly, we briefly discuss the convolution by Boomsma and Frellsen [20] that is listed in row
(34) of Table It relies on a radial projection of the signal on spherical shells to a cir-
cumscribing cube. To define a convolution on the cube, the authors cut it open at some of its
edges and flatten it out; see Fig. 2 in their work. Subsequently, they perform a conventional
two-dimensional convolution on the flattened cube faces. Extending this operation with a
third, radial dimension, defines a convolution on E3\{0}. As the radial shells are in the
discretized implementation again spaced equidistantly, this operation corresponds to a GM -
convolution on an {e}-structure that varies radially as shown in Fig. The projection
from the spherical shells to the cube implies a distortion of the frames on each of the cubes
faces, and thus to a distortion of the metric on the spherical shells. The {e}-structure is dis-
continuous at most of the cuts and does therefore not allow the convolution to preserve the
continuity of feature fields. Since S? is not parallelizable, this issue can not be resolved with-
out assuming a non-trivial structure group G. The {e}-structure as a whole is not preserved
by any isometries, implying that the model’s global equivariance group Isom; = {e}
is trivial. However, as the restriction of the {e}-structure to the four “vertical” faces of
the cube is invariant under rotations by multiples of 7/2, the model is in practice partially
equivariant w.r.t. global C4-rotations around the vertical axis. For datasets whose samples
are centered around the origin {0} and are rotationally symmetric in distribution, this prop-
erty is empirically shown to lead to an improved performance in comparison to conventional
convolutions on E3. The authors are furthermore investigating the effect of different weight
sharing schemes over the radial dimension, finding that full weight sharing works best in
practice.

“More formally, we are searching for kernels that satisfy K (go) = K(v) Vg € G, that is,
which are invariant on the orbits G.o = {go|g € G} € G\R? of points v in R, As the orbits
0(2).0 = SO(2).v agree for any ¢ € R, the resulting kernel spaces are the same.
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Spherical coordinate independent CNNs

Beyond convolutions on Euclidean spaces, convolutions on the 2-sphere S? are of great
practical relevance. Applications include omnidirectional vision tasks, global weather fore-
casting, or the analysis of the cosmic microwave background. Instead of being translation
equivariant, spherical convolutions are typically required to be rotation equivariant. The
isometry group Isom(S?) = O(3) of the sphere and its decomposition in the most relevant
subgroups is visualized in Fig.[T7.1]

A major difference between Euclidean spaces Eq and the sphere S? is that the latter is not
parallelizable, i.e. does not allow for a global, continuous frame field. Reductions of the
structure group beyond G = SO(2) are topologically obstructed, which means that spherical
convolutions require at least SO(2)-steerable kernels if they should preserve the continuity of
feature fields. The corresponding SO(2)-structure, which is fully determined by the sphere’s
metric and orientation, is shown in Fig. GM -convolutions on this globally rotation
invariant G-structure are guaranteed to be Isomgops = SO(3)-equivariant.

Despite the unavoidable topological obstruction, many authors proposed spherical CNNs
that do not apply SO(2)-steerable kernels. The most prevalent choice of {e}-structure cor-
responding to such convolutions is the frame field shown in Fig.[T7.2b] whose orthonormal
reference frames (Eq. (I7.6)) are aligned with the coordinate grid of spherical coordinates.
Note that this frame field comes with singularities at the poles, where the convolutions be-
comes discontinuous. To reconcile such models with our theory, in particular the smoothness
assumption of the G-structures, they need to be described as convolutions on a topological
cylinder with sphere-like metric. The isometry group of this punctured sphere S2\{n, s}
without poles n, s € S? is the subgroup O(2) (Fig. (middle and right)) of the sphere’s
full isometry group O(3). The visualized {e}-structure is preserved by azimuthal rotations
in Isomgy s = SO(2), i.e. rotations around the axis through the poles.

From an engineering perspective, both approaches have their justification: fully isotropic
applications like the analysis of the cosmic microwave background in Fig. [I.4arequire fully
SO(3)-equivariant models on S2. Learning tasks that come with a preferred rotation axis,
which is for instance the case for the earth or panoramic images with a distinguished “up”
and “down” direction, might benefit from the additional geometric information encoded in
the {e}-structure. Our empirical results form Sectionsuggest that it is in such cases often
useful to work with a combination of both approaches: initial layers with fully equivariant
convolutions can exploit local symmetries in the data, while subsequent “group restricted”
layers with only azimuthal equivariance can learn to discriminate based on the preferred
axis; see Sectiond.4]and [323].
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¢ € S0(2) 6 € S0(2) 6 ER

é € SO(3) €00

¢ € O(3) = Isom(S?)

Figure 17.1: Visualization of the 2-sphere’s isometry group Isom(S?) = O(3) and its various sub-
groups. The isometry group can be thought of as being composed of the orientation preserving rotations
in Isom (S?) = SO(3) and reflections R via the direct product O(3) = SO(3) x R. SO(3), in turn,
is generated by SO(2) rotations around any two non-parallel axes, which is used in the Euler angle
parametrization. See the main text for more relevant subgroups and their relations.

We start by describing the sphere’s geometry in Section[T7.1} Section [I7.2] discusses fully
SO(3) and O(3)-equivariant spherical GM -convolutions, which rely on SO(2) or O(2)-
structures as shown in Fig. Globally SO(2) and O(2)-equivariant spherical CNNs,
corresponding to the {e}-structure in Fig.[17.2b| or the corresponding R-structure, respec-
tively, are reviewed in Section[I7.3] Section[I'7.4]focuses on icosahedral approximations of
spherical convolutions, which allow for compute-efficient implementations since the icosa-
hedron is piecewise flat and admits regular sampling grids; see Fig. |17.5 The SO(2)-
structure and {e}-structure in Figs. [17.2a] and [17.2b] are hereby approximated by the Cg-
structure and the {e}-structures in Figs.[17.6¢|and|[17.6al or [17.6b} respectively.

17.1 Geometry of the 2-sphere S2

As a basis for our discussion of spherical CNNgs, this section discusses the differential ge-
ometry of the (unit) sphere M = S2. It is usually defined as the subset

S? = {peR?||p|=1} (17.1)

of those points in R? that have unit distance from the origin. As an embedded surface, it
inherits a Riemannian metric (first fundamental form) from the embedding space R3. When
interpreting the tangent spaces 7, M literally as those two-dimensional subspaces of R? that
contain all tangent vectors at p € S2, then the metric, exponential maps, parallel trans-
porters, frames and gauges can all be expressed in terms of usual vector space operations in
R3. Before coming to these concrete expressions, which come handy when implementing
spherical CNNs, we discuss some properties of the sphere from a more abstract angle.

The isometry group of the sphere is given by
Isom(S?) = O(3), (17.2)



17.1. Geometry of the 2-sphere S2 307

i

b S

(a) SO(2)-structure SOM on the 2-sphere M = (b) {e}-structure {e}M on a punctured 2-sphere
52, preserved by general three-dimensional M = 5*\{n, s}, preserved by azimuthal ro-
rotations in Isomgon = SO(3). tations in Isomgeyps = SO(2).

Figure 17.2: Common G-structures underlying spherical CNNs. Topological obstructions prevent
a reduction of the 2-sphere’s structure group beyond G = SO(2). Fig. [I7.2a] shows the standard
SO(2)-structure on S*, which is in agreement with the embedding metric (Eq. m)) induced from
the inner product of R3. It is invariant under rotations in Isomsoa = SO(3), implying the rotation
equivariance of the corresponding GM -convolution. Note that the fibers G,M and G, M at different
points p and q are isomorphic but not canonically so — frame colors in the visualization seem to suggest
such an isomorphism, however, they are randomly chosen and carry no meaning. Fig. [[7.2b]shows a
sphere that is punctured at two antipodal poles. This turns the sphere into a topological cylinder
S*\{n, s} = S* x (—%, Z) with sphere like metric — which allows for a complete reduction to a trivial
structure group. The figure shows the most prominent choice of {e}-structure, which corresponds to
orthonormal frames that are aligned with the coordinate grid of spherical coordinates; cf. Fig. m
As this {e}-structure is invariant under azimuthal rotations around the polar axis, the corresponding
GM -convolutions are Isomygp; = SO(2)-equivariant. Note that the puncturing of the sphere is just a
means of hiding the models’ discontinuity at the poles.

i.e. three-dimensional rotations and reflections, which are visualized in Fig.[T7.1] The action
of any isometry ¢ € O(3) coincides with its usual action on R? via matrix multiplication,
restricted to the embedded sphere S C R®. Note that this yields indeed a well defined
action on S? since O(3) consists by definition of all distance and angle preserving linear
maps, and thus preserves the sphere. As the sphere is orientable, it comes with a subgroup
of orientation preserving isometries

Isom, (S?) = SO(3), (17.3)

consisting of all three-dimensional rotations. Further subgroups that are relevant in the deep
learning context are the following: any choice of rotation axis determines a subgroup of
two-dimensional rotations, isomorphic to SO(2), and all of these subgroups are conjugated
to each other. Similarly, any choice of two-dimensional subspace of R? corresponds to a
subgroup of reflections over this plane, which is isomorphic to {R. The subgroups of two-
dimensional rotations around two non-parallel rotation axes generate SO(3), which relates
to the Euler angle parametrization of SO(3). A choice of reflection plane and any rotation
axis within this plane generates the semidirect product subgroup O(2) = SO(2) x R. If the
rotation axis is instead chosen to be orthogonal to the reflection plane, the two-dimensional
rotations and reflections commute, and generate therefore subgroups isomorphic to the direct
product SO(2) x R. O(3) has furthermore discrete subgroups, the most practically relevant
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of which are the symmetry groups of the platonic solids, for instance of the icosahedron,
shown in Fig. [17.5]

O(3) acts transitively (Def. on the sphere, that is, for any two points p and ¢ of S2,
there exists at least one isometry ¢ € O(3) such that ¢ = ¢(p). The actions of O(3) on
5?2 are not fixed point free (Def.[B.3.10): any point p € S? is stabilized (Def. by the
subgroup Stab, = O(2) < O(3), consisting of rotations and reflections around the axis

spanned by p in R3. Together, these two properties imply that the sphere is a homogeneous
space (Def.[B.3.11) of O(3) and is algebraically realized as the quotient space

0(3)/0(2) = 57, (17.4)

which consists of cosets of the form ¢.O(2). A similar statement holds for SO(3), which
has stabilizer subgroups Stab, =2 SO(2) < SO(3) and thus

SO(3)/S0(2) = 52, (17.5)

With these relations, Theorem|13.3.3|proves that any O(3) or SO(3)-equivariant kernel field
transform on S? is equivalent to a GM -convolution with G being O(2) or SO(2), respec-
tively. This result is in line with the classical viewpoint of group equivariant CNNs on ho-
mogeneous spaces [56] — the precise relation between the two is clarified in Theorem[17.2.2]
below. Recall that isometries preserve the Riemannian metric by definition. That O(3) acts
transitively on S? with stabilizer O(2) implies therefore that the Riemannian geometry of
S? “looks similar” at each point and in each direction and orientation — S? is a maximally
symmetric space.

As a Riemannian manifold, S? comes by design with an O(2)-structure. A restriction to
right-handed frames, which is possible since the sphere is orientable, yields the SO(2)-
structure in Fig. which is preserved by rotations in SO(3). One can show that these
two G-structures OM and SOM are as principal bundles isomorphic to O(3) and SO(3),
respectively. The specific isomorphism is hereby given by a choice of frame from the G-
structure, that is to be identified with the identity group element.

The hairy ball theorem states that no continuous vector field exists on S, which implies in
particular that no (continuous) {e}-structure can exist. A reduction of the structure group
beyond SO(2) requires therefore a change in the topology of the manifold. For example,
puncturing the sphere at an arbitrary point p € S yields a surface that is homeomorphic to
the Euclidean plane, and is therefore parallelizable"| Puncturing the sphere at two arbitrarily
chosen antipodal points, as shown in Fig. turns the topology of the sphere into that of
a cylinder and thus allows for {e}-structures. The most common choice of {e}-structure on
the punctured sphere 5%\ {n, s} is the SO(2)-invariant {e}-structure in Figs and[17.3]

Its frames
0 1 0
[wwmwﬂ (170

are aligned with the usual spherical coordinates, which are in physics conventions (i.e. with
@ and 0 denoting the azimuthal angle and inclination against the zy-plane, respectively)
given by the following surjective, 2m-periodic map:

cos(0) cos ¢
) (17.7)

Xt (-3,%) xR = S*\{n,s}, @@H<m@$¢

' An exhaustive list of all finite subgroups of SO(3) can be found at nLab\
2This process corresponds for instance to the stereographic projection of the sphere.


https://ncatlab.org/nlab/show/SO%283%29#finite_subgroups
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Some {e}-steerable CNNs are implemented by representing feature fields on S%\{n, s}
in spherical coordinates; see Section below. As the coordinate map x is not iso-
metric, these methods require an alternative metric (or {e}-structure) on the coordinates
(-7/2, m/2) x R C R?; see the stretched frames in Fig.(right).

Since S? is compact, it is geodesically complete. The geodesics are given by the great circles
of the sphere, i.e. those circles that correspond to the intersection of the sphere with a plane
through the origin of R3. The exponential maps expp(v) follow these great circles through p
in direction of v for a distance of [|v||. Logarithmic maps log,,(q) are therefore for all points
q € S?\-p, which are not antipodal to p, given by the unique vector in the shorter direction
along the great circle through p and ¢, with [[log,(q)|| given by the arc-length along this
path. Geodesics between antipodal points p and —p are not unique, such that the logarithmic
map does not exist.

Explicit geometry of S2 as embedded surface in R®

As stated above, the tangent spaces of S C R? are in the classical differential geometry
of surfaces defined as two-dimensional subspaces of the embedding space R3. A specific
tangent space 7, M at p € S? is in this interpretation given by

T,M = {veR®|(p,v) =0} C R?, (17.8)

i.e. the space of all vectors that are orthogonal to the surface normal at p, which coincides
for the sphere with p itself. Note that, despite being expressed relative to the standard frame
of R3, these tangent vectors are coordinate free object in the sense that they are not described
by 2-tuples of coefficients v4 € R? relative to some gauge ¢£‘u’p of T,,M . The identification
of tangent spaces with subspaces of the embedding space allows to express many of the
abstract algebraic relations in terms of vector space operations on R3. In the remainder of
this section we will state such expressions for the metric, exponential and logarithmic maps,
frames, gauges, Levi-Civita transporters along geodesics and induced gauge transformations.

By definition, S? inherits its Riemannian metric from the embedding space. This induced
metric is for any v, w € T,M C R? given by

np(v,w) = (v, w)gs , (17.9)

i.e. the standard inner product of R3, restricted to 1,M. To reduce clutter, we drop the
subscript R3 in the notation (-, -)gs in the remainder of this section.

The exponential map exp,, maps vectors v € T,M to points ¢ = exp,(v) € S? at a
distance of ||v|| along the great circle in direction of v. Lying on the same great circle,

p and q relate via a rotation by an angle of & = ||v||/r = ||v|| around the rotation axis
a = Hi iZ” = 1\7|XT|1\]’ where the equations simplify since the sphere has unit radius r» =
lp|| = 1 and the vectors p and v are orthogonal in R3. Using Rodrigues’ rotation formula,

q = pcos(a) + (a x p)sin(a) + ala,p)(1 — cos(a)), together with the orthogonality
{a,p) =0anda x p = ﬁ(p X V)X p= H,lTH(<p,p>v + (p,v)p) = 7oy this leads to the
explicit expression
exp,: R* DT,M — S> CR®, v exp,(v) =pcos ([v]]) + HU—” sin (||v]])
v
(17.10)



310 Chapter 17. Spherical coordinate independent CNNs

for the exponential map.

An explicit expression of the logarithmic map is found along the same line of reasoning: the
norm of log,, (¢), where ¢ € S*\~p, coincides with the rotation angle ov = arccos((p, q)).
Its direction is given by the direction tangent to the great circle, which may be expressed in

terms of the normalized projection = —— ¢t of ¢ on . Overall, the logarithmic
f th lized projection ¥y = =242 of g on T, M. Overall, the logarith
map is therefore instantiated as
q—\p,q)p
log,, : S*\-p — Br,m(0,7), g log,(q) = arccos((p, q)) ||q§pq;p|| , (17.11)

where Bz, (0, 7) C T,M C R3 denotes the open ball of injectivity-radius 7 around the
origin of T,M.

Reference frames on S? are by definition just 2-tuples of linearly independent tangent vec-
tors. When expressing the axes of a reference frame explicitly as vectors in the embedding
space R3, this frame can be identified with the 3 x 2 rank 2 matrix

A A
A A 6,14’1 6124’1 A 3x2
. X
[61 , 62] = | €12 €| =tE; € R (17.12)
€13 €23

It defines the vector space isomorphism
E} = [ef ef] : R 5 T,M, v Efv? = vief +vs'es (17.13)

from vector coefficients to coordinate free tangent vectors. The tangent spaces T,M are
therefore exactly the image of E;f.

The corresponding gauges zbﬁ\,,ﬁp T,M — R? are technically just the inverses of the frames,
when being interpreted as maps Ez‘;\ : R? — T,M. In contrast, when being interpreted as

3 x 2 matrices that map R? non-surjectively to R?, Eg‘ is non-invertible but only admits a
pseudo-inverse

(ENY = (ENHTENT(ENT e R, (17.14)

Geometrically, this matrix acts by 1) projecting vectors in R? to the image of E#, which is
just E2(R?) = T,M C R®, and 2) applying the inverse of the isomorphism E! : R? —
T,M on this subspace. This means that the pseudo-inverse is indeed the inverse of EZ‘:‘ on
the tangent space, implying that the gauge map is given by

+
Vit LM = R?, v (B2 0. (17.15)
Written out, the gauge map acts according to

A A A AN "L/a
Uinip(v) =<<62’61> <ez’ej>) <<el’v>> (17.16)

<62 a6114> <62 ) €2 > <€‘24, 1)>

_ 1 (e ef) (e, ed)) (e 0)
<6147614><6124’6124> - <614v6124><6124’614> _<612476114> (ef,e{‘) <€§47U>
Note that, in general, (ef‘, v) # vZA. However, if (and only if) EZ;“ is an orthonormal frame,
i.e. for G < O(2), the gauge map is simply given by the projection of the tangent vector on
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the frame axes:

A
€ 7U .
(V) = (EA)TU = << ; ) for orthonormal frames, i.e. (e]', e]') = 6
2
(17.17)

The explicit expression for the coordinate free Levi-Civita transporters along geodesics is
similar to that of the exponential map, with the difference that Rodrigues’ rotation formula
is not applied to rotate the source to the target point but tangent vectors between source and
target. Let +y be the shortest geodesic between p € S? and ¢ € S?\-p. The rotation from p
to g along this geodesic is then given by the axis @ = p X ¢ and angle a = arccos((p, q>)
In terms of these quantities, the Levi-Civita transport of an embedded tangent vector v €
1,M C R3 along the geodesic 7 is given by the rotated vector

P, (v) = veos(a) + (a x v)sin(a) + (ala,v)) (1 — cos(e)) (17.18)
inTyM C R3. Relative to gauges wﬁm and 1#1‘9;1‘(1 at the start point ¢ and end point ¢ of the
geodesic, this transporter is expressed by the group element

) S K ]
G = Y 0Py o (Uh) T = (BN 0By, 0 B (17.19)

Isometry induced gauge transformations are relative to the explicit reference frames similarly
given by the following matrix multiplication:

~ . L
95 () = Vi o @0 (Uh) = (Eiy) ¢ Ep (17.20)

17.2  Fully rotation equivariant spherical CNNs

This section discusses the fully SO(3) or O(3)-equivariant spherical convolutions that are
listed in rows (35-37) of Table [I4.I] They can all be understood as specific instances of
GM-convolutions on either the SO(2)-structure in Fig. or the corresponding O(2)-
structure, which is additionally closed under frame reflections.

Instead of organizing this discussion in terms of the considered structure groups and group
representations, we assort the models by the theoretical frameworks in which they are devel-
oped: Kicanaoglu et al. [[148]] define a pixel grid on the sphere and formulate the convolution
directly as GM -convolution, that is, in terms of gauges, steerable kernels and feature vec-
tor transporters. An alternative framework is that of graph convolutions on spherical pixel
meshes [228][338]]. Such graph convolutions correspond to GM -convolutions with isotropic
kernels. They map therefore between (directionally insensitive) scalar fields. Lastly, we
come to implementations that consider (steerable) convolution kernels on S? instead of our
kernels on the tangent spaces [83), 154} [163} I86]. Theorem proves that such spheri-
cal steerable kernels can be identified with G-steerable kernels on the tangent spaces, when
being expressed in geodesic normal coordinates. Based on this result, we prove in Theo-
rem [17.2.2] that convolutions with spherical kernels are equivalent to our GM -convolutions.
For completeness, we need to mention that such models are typically implemented in the
spectral domain. We do not focus on this viewpoint but refer the interested reader to the
review by Esteves [82].
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Spherical GM-convolutions: We start with the spherical CNN by Kicanaoglu et al. [148]]
since its formulation agrees precisely with our more general theory when being applied to the
spherical geometry. The authors assume the SO(2)-structure from Fig. and therefore
SO(2)-steerable feature fields and convolution kernels. Feature fields are discretized in terms
of feature vectors that are assigned to a sampling grid on the sphere. While the method
is in principle independent from the particular sampling scheme, the authors propose to
discretize the spherical geometry by an icosphere mesh. This mesh is constructed by taking
an embedded icosahedron, repeatedly subdividing its faces as shown in Fig.[T7.5] and finally
projecting the grid vertices radially to the sphere, i.e. to unit norm. The sampled feature
fields are numerically represented by a set of coefficient vectors f4(p) € R® at the grid
vertices p, which are expressed relative to some arbitrarily chosen right-handed orthonormal
frames [e‘f‘, 6‘24} at the vertices In practice, the frames are represented by a single tangent
vector of unit norm, from which the second frame vector follows uniquely since the frames
are right-handed.

To compute the coordinate independent convolution [K x f](p) from Eq. (9:39), Kicanaoglu
et al. [148] need to contract the SO(2)-steerable kernel K with the transporter pullback
[Exp,, f ]4 of the feature field f, Eq. (0.21). As usual in deep learning, K is hereby assumed
to be compactly supported, such that it covers only a few vertices in a one-ring or two-ring
neighborhood V,, around a center vertex p. In the continuous theory, the transporter pullback
takes features from all points expp(wﬁw)_l(v) for v € R? and transports them back to p.
In practice, the feature fields are only sampled at the grid vertices g, which correspond to the
tangent vector coefficients v;‘q = q/zﬁ\j.p log,(q) € R? relative to gauge A at vertex pﬂ The
logarithmic maps log,,(q) are thereby computed as defined in Eq. (I7.T1). The Levi-Civita

transporters p(gﬁ‘_“q) along the geodesics from g to p are in principle given by Eq. (17.19).
Since the frames are all right-handed and orthonormal, and since the transport corresponds

to the Levi-Civita connection on 52, the group elements gp g are SO(2)-valued. They are

therefore fully determined by the angle between the transported first frame axis 7, (ef)

from ¢ and the first frame axis e{‘ at p. With these ingredients at hand, the authors propose
to approximate the continuous convolution integral by the discrete sum

(K« f]" /K [Exp, f14( ~ 3 K@) p(gid) ) a7z

qEN,

over neighboring mesh nodes. The missing normalization factor can be thought of as being
absorbed in the learnable parameters w; € R of the SO(2)-steerable convolution kernel
K = Y, w;K,. As an alternative to this naive approximation, the authors propose an
optimized quadrature integration scheme, which is empirically shown to improve the model’s
SO(3) isometry equivariance.

The model is in Table[T4.T]listed as processing feature fields that transform according to the
regular representation of SO(2). In their implementation, Kicanaoglu et al. [148] consider
irrep fields of SO(2) in the convolutions. A change of basis before and after the convo-
lutions transforms these feature fields to regular feature fields, which are then acted on by
pointwise nonlinearities like e.g. ReLU. The infinite-dimensional regular representation of

3This corresponds to an independent choice of gauge w}qﬂﬁ’?p on any open neighborhood U#? of
each vertex p.

“If the exponential map is not restricted to the injectivity radius, each vertex g is represented by
multiple tangent vectors. This is in practice no issue since the kernel is assumed to be locally supported
within the injectivity radius.
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SO(2) is hereby approximated by regular representations of discrete cyclic subgroups Cy,
whose irreps are just the irreps of SO(2) up to a bandlimiting frequency of | N/2]; see e.g.
Appendix FE.2 of [322]. The change of basis between the representations is in this specific
case just the usual discrete Fourier transform.

Spherical graph convolutions: The spherical CNNs by Perraudin et al. [228] and Yang
et al. [338]], which are listed in row (37) of Table are based on conventional graph
convolutions [[152]. Pixel meshes on the sphere are hereby interpreted as graphs. The graph
convolutional networks process signals on the sphere by multiplying them with degree x
polynomials Y _, wy, L* of the graph’s Laplacian matrix L, where w;, € R are trainable
parameters. Since the Laplacian matrix has non-zero entries only for adjacent nodes, the k-th
order term affects only the k-hop neighborhood around each node. On a regular mesh with
unweighted graph edges, the contribution of a neighboring node ¢ to the accumulated fea-
ture at p depends only on their graph distance (“radius”), but not on the particular neighbor
(“direction”). The graph convolution applies therefore in such cases isotropic kernels on the
graph. The considered pixel graph on the sphere satisfy these properties approximately. As
their embedding on the sphere is furthermore such, that the nodes are geodesically approxi-
mately equidistant, the topological isotropy of the graph convolution kernels corresponds to
their metric isotropy on the sphere.

The isometry group O(3) of the sphere induces O(2)-valued gauge transformation, that is, it
acts by moving patterns to a new location and in a new orientation. Due to the convolutional
weight sharing and the isotropy of the kernels, the graph convolutions are trivially isometry
equivariant. As already argued in Eq. (I6.7), isotropic kernels are in our framework recov-
ered as O(2)-steerable kernels that map between scalar fields. The O(3)-equivariance of the
convolution is in our theory explained by the O(3)-invariance of the sphere’s O(2)-structure.

Spherical convolutions with kernels on S?: As a homogeneous space, the sphere admits
group (or quotient space) convolutions [[162] and more general steerable convolutions on
homogeneous spaces [56]E] Instead of defining the convolution kernels on the tangent spaces
or on graph neighborhoods, these approaches define kernels immediately as matrix-valued
function on the sphere, that is, as

K+ §2 3 RCuwXCin (17.22)

Cohen et al. [56] showed that these kernels are required to satisfy a symmetry constraint in
order to guarantee the equivariance of the convolution. We argue in the following that such
kernels on S? are equivalent to G-steerable kernels on the tangent spaces (Theorem ,
which implies that the spherical CNNs covered in [S6] and [162] can be viewed as GM -
convolutions (Theorem|17.2.2)). The identification between the two kinds of kernels is hereby
made by pulling the spherical kernels via the exponential map back to the tangent spaces.
Before explaining this operation, we briefly discuss the models proposed in [54} 83,186, [163]]
as specific instances of spherical convolutions with spherical kernels. For a more details on
these models, specifically on their formulation in Fourier space, we refer the reader to the
comprehensive review by Esteves [82]].

We start our discussion with the group convolutional spherical CNN by Cohen et al. [54]],
listed in row (36) of Table This model processes stacks of ¢;, scalar fields

f: 8% 5 R (17.23)

3 A more general review of convolutions on homogeneous spaces is found in Appendix@
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on the sphere by matching them with spherical kernels, Eq. (I7.22), in any SO(3) trans-
formed pose. In equations, this operation is defined as

wosef)@) = [ k7o) A 0es0E.  are

Note that the resulting feature map is viewed as a stack of ¢ scalar functions on the symme-
try group SO(3). Such feature maps of the form f : SO(3) — R (with the new number of
input channels corresponding to the previous layer’s output channels) are processed further
by group convolutions of the form

[k *so@) fl(0) = / K

SO(3)
where x : SO(3) — R%u«*¢n is now a matrix-valued function on SO(3) and dw is the Haar
measure on SO(3). From the viewpoint of steerable CNNs on homogeneous spaces [56]]
and GM -convolutions, scalar functions on SO(3) are viewed as feature fields on S? =
SO(3)/SO(2), that transform according to the regular representation of the fibers (stabilizer
subgroups) SO(2); cf. Section [4.5|and Appendix [J| The initial convolution in Eq.
applies in this interpretation SO(2)-steerable kernels between scalar and regular fields, while
the group convolution in Eq. applies SO(2)-steerable kernels between regular fields
on S<.

Esteves et al. [[83] apply spherical convolutions as in Eq. with the additional assump-
tion that the kernels are zonal, that is, invariant under SO(2) rotations around the polar axis;
cf. Fig. While the integral technically still gives responses in SO(3), the kernel sym-
metry implies that these responses are constant on the fibers SO(2) of SO(3), when being
interpreted as bundle over S2. The resulting feature fields are therefore identified as scalar
fields on 52, which allows for a repeated application of this type of convolution. Note that
the zonal symmetry of the kernel is consistent with the steerability kernel constraint between
scalar fields (trivial representations) that we encountered before in Eq. (I6.6) and the upper
left entry of Table[5.2] As already discussed in the previous Section[16.3] this constraint is
equivalent to the O(2)-steerability constraint between scalar fields in Eq. (I6.7), which im-
plies that the model of Esteves et al. [83] is actually O(3)-equivariant. It is in spirit similar to
the spherical graph convolutions discussed above, but is derived from a different viewpoint
and is discretized differently in the implementation.

(¢ w) f(w) dw $ € SO(3), (17.25)

Esteves et al. [86] generalize this model from scalar fields to general spin weighted spherical
functions. These functions depend not only on the position p € S? on the sphere, but in
addition on the particular choice of right-handed, orthonormal reference frame at that point.
They are associated to the irreps ps of SO(2), where the integer s € Z is denoted as the
functions’ spin weightﬂ Their values for the different frames SO, M of the SO(2)-structure
SOM are constrained such that gauge transformations of the frame by g € SO(2) lead to a
transformation of the function value by p;(g). In equations, they are therefore defined by[]

of :SOM — C suchthat ,f([e1,e2] < g) = ps(g) . f([e1, e2]) (17.26)
V le1,e2] € SO,M, g € SO(2);

see [24] for more details and alternative definitions. Note the similarity of this symmetry
constraint to the equivalence relation

[ledizy <9, ] ~p. [leddizg, ps(9)f] (17.27)

®One can generalize this concept to spin representations, labeled by half-integer spin weights.
7 A real-valued implementation would instead consider spin weighted functions of the form S
SOM — RY™(Ps) wwhere p, are the irreps of SO(2) over the real numbers.
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from Eq. (IT.42), which is underlying the definition of associated bundles. Spin weighted
spherical functions are indeed equivalent to sections of the associated bundles (SOM x
C)/ ~,.; see for instance Proposition 1.6.3 in [326]. They appear in our theory simply
as SO(2)-irrep fields, including scalar fields for s = 0 and vector fields for s = 1. The
neural networks proposed by Esteves et al. [86] convolve spin weighted features with spin
weighted kernels on the sphere. This operation corresponds to a convolution with SO(2)-
steerable kernels where p, and p,, are irreps — these kernels were derived in Section@]and
are listed in Table[3.2]

The models in [54] |83l [86] are initially formulated in the spatial domain, i.e. as process-
ing functions on S? as discussed above. They are, however, implemented in the spec-
tral domain, which is possible thanks to generalized convolution theorems on S? and on
SO(3) [1911 162} [157]. Kondor et al. [163]] generalize these approaches, proposing a model
that is based on learned linear combinations of all feature fields’ Fourier modes of the same
frequency. The authors argue that this approach covers the full space of SO(3)-equivariant
linear maps between feature fields on the sphere. On the other hand, Cohen et al. [56] show
that any such map can in the spatial domain be written as a convolution with SO(2)-steerable
spherical kernels. A notable property of the model proposed by Kondor et al. [163] is that it
operates fully in Fourier space: instead of transforming back to the spatial domain and ap-
plying pointwise nonlinearities like ReLUs there, as done in the previous approaches, the au-
thors compute the tensor product (Def.[B.5.4) between all feature fields and decompose them
subsequently via the Clebsch-Gordan decomposition (Def.[B.5.17) back into irreducible fea-
tures (Fourier modes). This is computationally beneficial, however, comes at the expense of
losing the locality of the nonlinearities. Certain learning tasks, especially in the natural sci-
ences, might benefit from such nonlinearities since physical interactions are often described
by tensor products.

As argued in [56} [53]], all of these models can be viewed as applying steerable kernels on S?
that map between scalar fields [83], regular feature fields [54] or irrep fields [86) [163]. In
the remainder of this section and Appendix [[] we show that they can as well be viewed as
GM -convolutions. The claim that spherical convolutions with steerable kernels on S? are
equivalent to GM -convolutions is thereby made precise in Theorem This theorem
relies crucially on Theorem[I7.2.T] which establishes an isomorphism between the spherical
steerable kernels and G-steerable kernels on the tangent spaces.

Let Z be any transitive isometry group of the sphere, i.e. Z = O(3) or Z = SO(3). Cohen
et al. [S6] describe Z-equivariant spherical convolutions in terms of Stab,,-steerable spher-
ical kernels & : 5% — RCu«X¢n where Stab,, < Z is the stabilizer subgroup of any point
n € S2, e.g. the north pole. As these kernels are defined on the sphere, which is topologi-
cally distinct from R?, it is not directly possible to define an isomorphism between them and
G-steerable kernels. However, as the south pole —n is a set of measure zero, we can replace
the integration domain 52 of the spherical convolutions with S?\-n without changing the
result. With this adaptation, the spherical steerable kernels of Cohen et al. [S6] are defined
as

FStabn . {Ii 0 §2\-n — RCwXCn
pin’poul

K(E(P)) =Pou (98 ™ () - k() - p (957 (p))
V pe S*\-n, &€ Stab, } (17.28)

when being translated to our notation. Since the kernels are globally defined on the sphere,
their values in R%=*n are expressed relative to potentially different gauges N at n, where
the kernel is centered, P at p € 52, where the kernel contracts a feature f P (p) € R and
X at £(p), where this feature moves under the action of £ € Stab,,. This kernel constraint
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relates all kernel values that lie on the orbits Stab,,.p = {£(p) | £ € Stab,, } via their isome-

try induced gauge transformations g ' (p) and g™V (n); see Egs. (T3.38) and (ﬂm Our
equivalent G-steerable kernels, where G = Stab,,, is given by

G,Bp2 (0,7 ) _
Wpin,pfﬁ( )= {K: Bg2(0,7) = R | K(go) = po(9)- K (9)-p,(9) "
Vo € Br2(0,7), g € G}.
(17.29)
The kernel domain is hereby restricted from R? to the open ball Bg:(0,7) = {0 €

R?|||o]| < 7} of radius 7 around the origin of R? — which can via the exponential map

be identified with S?\-n. Note that Ko, o BR2 ©7) s well defined since Stab,, = G contains

isometries, implying G = O(2) or G = SO( ), under whose action B2 (0, 7) is closed.
We furthermore dropped the determinant factor from the more general G-steerability con-
straint in Eq. (5.4) since |det g| = 1 for G < O(2). Our kernel constraint is considerably
simpler than that of Cohen et al. [S6] since it describes the kernel locally relative to a single
gauge, instead of globally relative to an atlas of gauges. Note further that we dropped the
smoothness assumption on the kernels, since the smoothness or continuity of feature fields
is not discussed by Cohen et al. [56]. This property could easily be added by demanding that
the G-steerable kernels converge to the same value for ||v|| going to 7, corresponding via the
exponential map to the south pole.

The spaces of Stab,,-steerable kernels on S2\-n and G-steerable kernels on Bg: (0, 7) are
isomorphic, that is, their kernels are identified by an invertible map €2 that respects the kernel
constraints:

g{G s Bg2(0,m) /—\) Stabn

Pin>Pout e —— Pmypou(
Q—l

(17.30)

This isomorphism (or rather its inverse Q1) can be viewed as the analog of the transporter
pullback of feature fields: it pulls the kernel values from points exp,, (w%,‘n)_lv in S?\-n
back to geodesic normal coordinates v € Bg2(0, 7). To express the kernel values from all

points p € S?\-n relative to the same gauge, it applies Levi-Civita transporters p(g,]xfp)
from p along the geodesics to the north pole n. In addition, it rescales the kernel values

by the Riemannian volume element \/ 8/ 8v : \/ |det np 80 > m
i 3

the geodesic normal coordinate system (coordlnate chart) 0 : S%\-n — BR2 (0,7), p+—
o(p) :== ¥, log, pl The following theorem defines and proves the kernel space isomor-
phism formally.

) )] relative to

8Cohen et al. [56] denote the isometry induced gauge transformations by h(p,¢) instead of
gfp(p), assuming that the gauges X at £(p) and P at p are the same. Their definition of h(p, &)
is similar to our Eq. .

°Note that the coordinate bases [%J » %| 2]
0 : S*\-n — Bg2(0,7) are for G < O(2) not contained in GM. These bases play no role for the
GM -convolution but appear only to correct for the Riemannian volume when integrating in geodesic
normal coordinates over the sphere.

that are induced by the geodesic normal coordinates
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Theorem 17.2.1 (Spherical steerable kernels in geodesic coordinates). Let 7 be any
transitive isometry group of S* and let Stab,, be its stabilizer subgroup at the north
pole n € S2. Given any choice of gauge V2, at this pole, let G < GL(2)
be the isomorphic structure group that represents Stab,, in coordinates according to

~ -1
Stab, = G, & — N, 0& 1,0 (VN,,) . The space 9{2:?;:; of Stab,,-steerable

kernels on S*\—n by Cohen et al. [36] (Eq. (IT.28)) is then isomorphic to the space

%ﬁﬁ(o,w) of G-steerable kernels on the open ball Bg2(0, ) (Eq. (I7.29)). The ker-
nel space isomorphism
G,By2(0,71) ~ Stab,,
O Kolpin > Ko (17.31)
is given by
QK): S%\-n — Réw>cn (17.32)

p = [QE)](p) = K (¥, 108, 0) £ (955,) / Ini ™|

if the kernel is expressed relative to (potentially independent) gauges N at n and P
at p. Its inverse is given by

Q Y(k): Bge(0,7) — RO (17.33)

0 o [T ()] (0) 2= expa (V) ) palaX) Y I,
where we abbreviated p := exp,, (wﬁj,n)flv.

Proof: By inserting the two expressions, one can easily see that Q! is a well defined inverse
of Q since Q0 Q™ = id stan, and Q71 o Q = idq{c,s]R<2 (0.m. The technical part of

pin"a out Jip. P
in’“out
the proof is to show that the two kernel constraints imply each other, which is done in
Appendix [C.1] O

Note that the volume scaling factor is not necessary to establish the isomorphism between
the kernel spaces but is required to make the spherical convolution integral over S?\-n
equivalent to the GM -convolution integral over Bz (0, ).

Cohen et al. [55]] define the convolution [k xg2 f] of a feature field f € T'(.A;,) with spherical
steerable kernels xk € 5{22?;2:[ in coordinates. Given gauges P at p and ¢ at ), let ¢, € T be
the unique isometry that moves the north pole to p, i.e. ¢,(n) = p, and that maps the frame
at n to the frame at p, that is, (), o, 0™ (n) = 0" (p) or, equivalently, g (n) = e. Let
furthermore X be the gauge at ¢, 1(g). The spherical convolution is then in [55] relative to
these gauges pointwise defined by

s 170 = [ 56,10 0, (929 @) 1%(a) dg (17.34)
g2
= / w0y ) pu(933(0)) F2(0) da,
S2\—p

where we removed the antipodal point —p in the second step without changing the resultm
Intuitively, this operation computes an output feature at p by 1) taking both the kernel and

1%This formulation is more general than that in Eq. (T7.24). The latter is recovered for kernels that
map scalar fields to regular feature fields.
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the input field, 2) rotating them via ¢,; ! such that p moves to the north pole (via the induced
gauge transformation for the feature vector) and 3) integrating their product over the sphere.
Instead of sharing weights directly over the tangent spaces, as we do, this operation is there-
fore sharing weights via the isometry action. By the definition of ¢,, both definitions of
weight sharing orient the kernel at the target location p such that it is aligned with the chosen

frame o’ (p) at this location. The following theorem proves that the GM -convolution with

G,By2 (0,7) . . . . . .
akernel K € K P Pfft( ™ is equivalent to the spherical convolution with the corresponding

spherical kernel Q(K) € g{izf"}i&,

Theorem 17.2.2 (Spherical steerable convolutions as GM-convolutions). Let Stab,, be

the stabilizer subgroup of any transitive isometry group T of S? and let G < GL(2) be

. . G,By2(0,
any isomorphic structure group. Let furthermore K € K P ,,([ff‘( ™) be any G-steerable

kernel on the open ball By:(0,7) of radius  (Eq. (I7.29)) and let Q(K) € J{,Et?,}j);

be its corresponding Stab,,-steerable kernel on S*\-n (Egs. (T7.28) and (T7.32)). The
GM -convolution (here for clarity denoted by xcyr) with K is then equivalent to the
spherical convolution (xs2, Eq. ) by Cohen et al. [55] with the spherical kernel
O(K), that is,

QK) s f = K*au | (17.35)
holds for any spherical feature field f € T'( A, ).
Proof: The proof is given in Appendix (]

This proof justifies our claim that the models from [54}83} 186} [163]], discussed in this section,
are all special cases of GM -convolutions.

17.3 Azimuthal rotation equivariant spherical CNNs on cylindrical
topologies

Besides fully SO(3) or O(3)-equivariant spherical convolutions, many spherical CNNs are
designed to be equivariant w.r.t. azimuthal rotations around a specified polar axis. All of
the models discussed in this section rely either on the SO(2)-invariant {e}-structure that
is shown in Figs. and or, alternatively, that in Fig. Due to the triviality
of the structure group G = {e}, the kernel spaces remain unconstrained ({e}-steerable).
Features are transported according to the unique {e}-compatible trivial connection which
differs from the usual spherical Levi-Civita connection. With this information, and with the
explicit exponential maps in Eq. (I7.10), the spherical GM -convolutions in this section are
in theory fully specified. In practice, the implementations, listed in row (38) of Table [[4.1]
differ in their numerical implementations, which we discuss in the following.

Concurrent with our definition of convolutional weight sharing, the models in [58} 1351} 295}
77,1203] share a given template kernel over the tangent spaces by orienting it relative to the
frames of the considered {e}-structure in Fig. However, seemingly contrary to GM -
convolutions, the matching of these kernels with the feature field is not done via exponential
maps (or transporter pullbacks), but via the gnomonic projection. This gnomonic projection
is at any point p defined by

p+v
lp+ vl

Gp: T,M — H CS* v (17.36)
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Figure 17.2: Gnomonic projection
w b Gp: T,M — H_ of the tangent space

- at p to the upper hemisphere Hg C
- S? around p. When interpreting the

sphere as being embedded in R?, the
gnomonic projection G, (v) (blue) is

_ ptv given by the sum of p € S* C R?

~ el (purple) and v € T,M C R®
_ : (yellow) in ambient space, followed
= exp,w(v)

by a normalization back to the
sphere. Theorem [I7.3.1] proves that
this operation is equivalent to a pro-
jection of a radially warped vec-
tor w(v) = arctan(||v\|)ﬁ S
Br,m (0, ) (red) via the exponential
map (green) The gnomonic projec-
tion based spherical convolutions in
(5811351112951 77, 203] are therefore special cases of spherical GM -convolutions with radially warped
kernels. GM-convolutions are more general since they allow for kernel projections over the whole
sphere instead of the upper hemisphere only.

which is visualized in Fig.[17.2] The summation of p € S? C R? with tangent vectors
veT,MC R3 is hereby performed in the embedding space R3 and the normalization
prOJects the result back to the sphere. The codomain of the gnomonic projection is the
“upper” hemisphere

H :={qe 5| (p.q)ps >0} C 5° (17.37)

centered around p. Given this difference in the kernel projections, it might seems like
the models in [58| 351} 295 [77, 203]] are not (or only approximately) explained as GM -
convolution. The following theorem proves, however, that the gnomonic projection is equiv-
alent to a projection via the exponential map after applying a radial warp

w: T,M — Bpu(0,%), v arctan(HvH) (17.38)

o]
to the tangent spaces, which contracts tangent vectors to an open ball of radius 7/2 around
the origin:

Theorem 17.3.1 (Gnomonic projections as warped exponential maps). The gnomonic
projection G, of T,,M to the upper hemisphere Hz C 52, defined in Eq. (17.36), is
equivalent to a projection of its radial warp w(T,M) = B, (0, 5), Eq. (I7.38), via
the exponential map, that is, the following diagram commutes:

W6
wl - H2 C §2 (1739
- exp
Br,m (0, %) P
In equations,
Gp(v) = exp,ow(v) (17.40)

holds for any p € S? and any v € 1,M.
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Proof: The proof is given by the following simple calculation, which holds for any p € 52
and any v € T, M:

w(v)
||w(v)||
p - cos(arctan(||v]])) + ” ”

—
—
—

p-cos(|lw(w)l) + -sin(flw(v)])

exp, ow(v)

—~
Y
—

- sin(arctan(||v|)))

_ptv
L+ [l
p+uv

[p+

Y e (v) (17.41)

The first two steps make use of the explicit definition of the embedded sphere’s expo-
nential map, Eq @P and the radial warp, Eq. - The third step follows since

cos o arctan(z) = = and sin o arctan(z) = \/1+7 In the fourth step we used

that ||p|| = 1 and (p, >R3 = 0, while the last step identified the gnomonic projection,
Eq. (T7.36). O

A
1)

—
Nz

This theorem implies that the gnomonic projection based convolutions in [S8) 3511 295|
77, 203]) are indeed specific GM -convolutions after identifying the kernels via the radial
warp w|''| Note that this identification holds not only for {e}-steerable kernels but for
any subgroup G < O(2) since the corresponding G-steerability constraints affect only the
kernels’ angular parts but are independent from the warped radial parts. We furthermore
want to mention that the exponential map based projection of GM -convolutions is insofar
more general than the gnomonic kernel projection that it can describe kernels that extend
beyond the upper hemisphere Hg around p. Note that both kernel projections become in
the practically relevant limit of small kernels even without the radial warp equivalent since

arctan (||v]]) = [|v]| + O(]jv]|?).

The implementations in [58} 1351}, 295} [77, [203]] are in the continuum all equivalent to each
other and to our GM -convolution, however, their numerical discretizations differ. Coors
et al. [S8]], Eder and Frahm [77]] and Martin et al. [203]] discretize feature fields on (approx-
imately) uniform sampling grids on the sphere. Specifically, Coors et al. [S8] and Martin
et al. [203]] use the “generalized spiral set on S2” from [254] as sampling points, while Eder
and Frahm [77] use the vertices of an icosphere. Since the gnomonic projections of kernel
sampling grids on the tangent spaces do not match the spherical sampling grid, the authors
interpolate bilinearly between them. The kernel sampling coefficients can hereby be pre-
computed in an offline step. The actual convolution computes then an output feature field by
contracting the projected, interpolated kernels at each point with the input field.

Zhao et al. [351]] and Tateno et al. [295] discretize their spherical feature fields f
S2\{n, s} — R€ instead in form of a regular pixel grid on an equirectangular projection
of the sphere. Mathematically, the equirectangular projection, visualized in Fig.[I7.3] is for-

malized as the pullback x*f = fox: (—5, 5) x R — R¢, of the image by the spherical

"Technically, the equivalence of both convolutions requires furthermore a radially dependent
change of the kernel amplitude to account for the change in the volume measure when warping the
kernel. As the kernels are anyways learned, this difference does not matter.
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Figure 17.3: Visualization of the SO(2)-invariant {e}-structure that is considered by most models

discussed in Section m All of the frames [%, COSI( o) %] are aligned towards the north pole and

are orthonormal w.r.t. the embedding metric of the sphere in R®. The spherical coordinate map  :
(—=2,2) x R = S*\{n, s} from Eq. (T7.7) allows to pull spherical feature fields back to feature

ﬁelczis c2)n spherical angles (—7%, 3) x R, which is denoted as equirectangular projection. Since ¥ is
non-isometric, the spherical {e}-structure is in coordinates deformed by a latitude dependent factor
of 1/ cos(6), which diverges towards the poles. The spherical convolution on this {e}-structure is
in [58} [77, 203] implemented by projecting and interpolating a kernel sampling grid on the tangent
spaces to a feature field sampling grid on the sphere. If the feature fields are instead sampled on the
equirectangular projection, the kernel sampling grid is in a second step mapped further from the sphere

to a deformed sampling grid on (=%, Z) x R [351] [293]]. Note that regular sampling grids on the

27 2
equirectangular projection oversample the signal (relative to the spherical metric) towards the poles.

coordinate map x from Eq. (17.7):
/

(-2,2) xR —2—— §%\{n,5} —— R° (17.42)
L j)

xX"f
As in the previous approaches, the authors project a kernel sampling grid via the gnomonic
projection from the tangent spaces to the sphere. In an additional step, they map it via
X to the equirectangular projection where they compute interpolation coefficients between
the projected kernel sampling grid and the feature field sampling gird. Since the deforma-
tion incurred by the equirectangular projection is independent from the longitude ¢ € R,

it is sufficient to compute it only once for each latitude 6 € (—5, 5). The following dia-

gram, which commutes by the definitions of K ;Phefe and K ;q“i‘“‘, gives an overview of the
gnomonic projection of a kernel K : R? — RCuX¢n to the sphere [58, [77, 203]] and to its
equirectangular projection [351}[295] (note that G, is invertible on H 5):

equirect
K TR Cout X Cin Ky
sphere
K
R? ¢+ T,M H? X H(H?)
Viirp ? Gp = exp,ow P X N
C (=%,5)xR

(17.43)
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A major disadvantage of discretizing spherical feature fields via a regular pixel grid on the
equirectangular projection is that this approach oversamples the signal towards the poles.

Further variants of spherical convolutions on the equirectangular projection were proposed
by Su and Grauman [287, 288]]. Instead of precomputing the deformed kernel sampling pat-
tern, Su and Grauman [287] untie the weight sharing such that each latitude applies its own,
independent kernel in a 1-dimensional Euclidean convolution. The network is then on each
latitude being pretrained to recover the result that would be obtained when convolving with
a kernel that is shared over the tangent spaces as discussed above. If convolutional weight
sharing is a suitable inductive bias, this method should optimally converge to the geometry
based methods by Zhao et al. [351]], Tateno et al. [295]. Su and Grauman [288]] develop
this approach further and employ a meta-network that predicts a deformed kernel based on a
shared input template kernel and the target latitude. Both of these approaches share weights
over the circular orbits (lines of constant latitude) of the considered isometry group SO(2)
of S?\{n, s}; cf. Fig. They are therefore identified as kernel field transforms with
SO(2)-invariant kernel fields, which are by Theorem SO(2)-equivariant.

Given a spherical feature field in equirectangular projection, it might furthermore be tempt-
ing to process it directly with a conventional Euclidean CNN, skipping the kernel projection
from the tangent spaces, as done for instance in [1711128]. As discussed in Chapter[I5] such
Euclidean convolutions correspond to GM -convolutions on the canonical {e}-structure of

(—% g) x R C R?, visualized in Figs. and (top right). This {e}-structure con-

sists of frames [%, %] , which are orthonormal w.r.t. the Euclidean metric of (— 5 g) X R.
These frames are, however, not orthonormal w.r.t. the spherical metric, Eq. , which is
in Fig. (top left) reflected in the frame contraction by a factor of cos() in longitudinal
direction. A GM -convolution on this {e}-structure corresponds therefore geometrically nor
to a spherical convolution. It rather corresponds to a GM -convolution on a cylinder, which

is via the isometric coordinate map

cos ¢

T xS, 0o () o

embedded in R3. In contrast, the {e}-structure that is shown in Figs.[17.2bland[17.3|consists

of frames [%, Fl(e)a@]’ which are orthonormal w.r.t. the spherical metric. Note that
@

these frames and the spherical metric are stretched by a factor of 1/ cos(8) relative to their
canonical Euclidean counterparts on (7% g) x R.

Jiang et al. [139] propose an alternative approach for spherical convolutions on the {e}-
structure shown in Figs. and Instead of defining kernels on the tangent spaces,
they process the signal via second order partial differential operators of the form wiq +

Wea oL+ Wea 02 + Wi aplace (812 + 822) where 9; denotes the partial derivative in the direction

of the i-th frame axis and the weights w(.y € R« are optimized during training. That
the weights are position-independent corresponds to our spatial weight sharing. Together
with the SO(2)-invariance of the {e}-structure, along which the differential operators are
aligned, this guarantees the SO(2)-equivariance of the operation. In the continuous theory,
this model corresponds to a {e}M -convolution in the limit of infinitesimally small kernels
or, equivalently, to a convolution with {e}-steerable PDOs by Jenner and Weiler [137]. In
practice, Jiang et al. [[139] sample the feature field on an icosphere mesh and represent the
differential operators in terms of spatially extended stencils on the mesh vertices. This makes
the method equivalent to a GM -convolution with spatially extended kernels.



17.3. Azimuthal rotation equivariant spherical CNNs on cylindrical topologies 323

vol3

X o
- (non-isometric) 0
52\ {n,s} E s -

us
2
0 ) 27
n
Loi] @ 7
(non-isometric) (isometric)

L

L

Ll

L (-5:5) x5!

s

Figure 17.4: The spherical coordinate map x : (-3,%) x R — S*\{n, s}, Eq. (T7-7), sends an-
gles (0, @) to points on the sphere. It is non-isometric, which means that the pushforward of or-

thonormal frames [ 2, -2 ] w.rt. the Euclidean metric on (-%,%) x R does not yield frames that
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are orthonormal w.r.t. tlfe spherical metric. A conventional Euclidean convolution in coordinates

(7g, g) x R does therefore not correspond to a spherical convolution — its kernels would be con-

tracted by a factor of cos(6) in longitudinal direction. Since distances are measured in terms of an-

gles this operation corresponds rather to a convolution on a cylinder, which is via the isometric map

X:(-5.5) xR— (-5,5) x S, lEim) embedded in R®. A spherical convolution requires
17.3

the {e}-structure that is shown in Fig.

The model of Lee et al. operates again on an icosphere, however, with a drastically
changed (non-smooth) {e}-structure: instead of aligning the reference frames such that they
all point towards the north pole, the frames point alternatingly towards the north or south.
This design is motivated by the pixelation of the icosphere, whose triangular faces are fac-
ing either north or southwards. Adjacent pixels can therefore be processed by kernels that
are rotated by 180° relative to each other. The authors argue that the training process should
make up for this rotation by learning accordingly steerable kernels. Despite the drastic kernel
rotations, the {e}-structure is invariant under those azimuthal rotations that map northwards
pointing frames on themselves, resulting in an approximate SO(2)-equivariance of the con-
volution.

The models discussed in this section are easily extended to other solids of revolution (SO(2)-
invariant manifolds) like the cylinder from Fig. [I7.4] or the egg from Fig. They are
furthermore adapted to be O(2)-equivariant when considering a lift of the {e}-structures to
R-structures, which corresponds to using R-steerable kernels as shown in Fig.
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Figure 17.5: The icosahedron is a Platonic solid that is in [187] used as a piecewise flat
approximation of the spherical geometry. It consists of 12 vertices, 20 equilateral triangular faces
and 30 edges. It admits a regular sampling grid, which is constructed by iteratively subdividing each
triangle into four smaller triangles. After r iterations, this procedure results in a grid of 5- 227! + 2
vertices. The three highlighted patches show the qualitatively different geometry of neighborhoods
around vertices on faces (red), edges (green) and icosahedron vertices (blue). The red neighborhood
is obviously flat. While the green neighborhood is bent in the embedding space, its intrinsic Gaussian
curvature is again vanishing. That this is the case reflects in the facts that it can be flattened out
isometrically (i.e. without being cut) and, equivalently, that the Levi-Civita transport along a closed
path around the central node is the identity map. The blue neighborhood needs to be cut along one
edge in order to be flattened out. The angle defect, i.e. the angle by which the cut is spread when
flattening the cusp, equals %”. When parallel transporting a vector once around the central vertex of
the neighborhood, it gets rotated by this angle defect. Instead of having constant positive Gaussian
curvature like the sphere S?, the icosahedron’s curvature is concentrated (singular) at its vertices and
vanishes everywhere else.

17.4 Icosahedral approximations of spherical CNNs

The sphere S2 is in computational sciences commonly approximated by Platonic solids, i.e.
regular convex polyhedra. In the context of deep learning, interest has mostly been focused
on the icosahedron, Fig.[T7.5] which approximates the sphere most closely among the pla-
tonic solids [261]]. While the Riemannian geometry of the sphere is only approximated,
Platonic solids have the advantage to be piecewise flat and admit regular meshes. These
properties allow for the use of planar convolution routines as described in Part[[ which are
computationally better optimized than the methods from the previous two sections. This
section discusses the icosahedral CNNs from [[187], [346] and [57], which rely on the G-
structures that are shown in Figs. [17.6a] [T7.6b] and [T7.6¢| respectively. Before coming to
their implementations in terms of the atlas of affine charts in Fig.[T7.7] we give more details
on the icosahedral geometry and the considered G-structures.

Icosahedral geometry: The icosahedron is a discrete two-dimensional manifold consist-
ing of 20 equilateral triangular faces, 12 vertices and 30 edges. As done for the 2-sphere,
we define the icosahedron as being embedded in R, from which it inherits the embedding
metric in Eq. (I7.9). The embedded tangent spaces T, M C R3 on the faces are hereby de-
fined such that their normals coincide with the face normals. Tangent spaces on the vertices
and edges could be defined via the average of the adjacent faces’ normals as discussed in the
following Chapter[I8] However, as we consider feature fields as being sampled on the icosa-
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hedron faces (which is almost everywhere), we are independent form this choice. Assuming
the Levi-Civita connection, the parallel transport of tangent vectors over faces acts such that
it keeps them parallel in the embedding space R3. When being parallel transported across an
edge, tangent vectors keep the same angle relative to the edge on either side — this transport
may intuitively be thought of as 1) flattening the two adjacent faces out 2) transporting the
vector over the edge as usual on a two-dimensional Euclidean space, and 3) bending the
two faces back to their original embedding; see Fig.[18.2]and [60]. Geodesics are therefore
piecewise linear in R?, crossing edges such that their angle of emanation equals their angle
of incidence. Exponential maps expp(v) are thus easily computed by tracing out a piecewise
constant path for a distance of ||v||. In practice, the authors of [187, 57 346]] sample feature
fields on a regular mesh and consider only those tangent vectors that map to the neighboring
mesh vertices.

Fig. shows disc-like neighborhoods around exemplary points on faces (red), edges
(green) and vertices (blue) of the icosahedron. The red neighborhood is fully contained
within a face, and is therefore flat. The green neighborhood is bent in the embedding space,
however, its intrinsic (Riemannian or Gaussian) curvature is still zero since the Levi-Civita
transport of vectors once around the central vertex preserves them as they are. That this is
the case is equivalent to the fact that the green neighborhood can be flattened out isometri-
cally, i.e. without stretching or cutting it. This isometric flattening is not possible for the
blue type of neighborhoods around vertices, which have to be cut open at one of the edges
in order to be flattened out. Being constructed from five equilateral triangles, the flattened
cusp exhibits an angle defect of %’T. The holonomy of any closed path around any (single)
vertex, that is, the angle between an arbitrary vector and its transport once around the loop,
is given exactly by this angle defect. Overall, these results imply that the (discrete) Gaussian
curvature of the icosahedron is zero everywhere but at the vertices, where it is singular with
holonomy %”. The simple geometry of the icosahedron allows for it to be cut open and glob-
ally flattened out as visualized in Fig. which was in [[187, 57, 1346] used for an efficient
implementation of icosahedral GM -convolutions.

The icosahedron’s full isometry group Isom(M) = I, < O(3) is finite and consists of
120 elements. It can be thought of as being constructed as the direct product I xR of the
subgroup (R of reflections and the subgroup Isom (M) = I < SO(3) of orientation preserv-
ing isometries, containing 60 rotations. Each vertex p is stabilized by five discrete rotations
around the axis through p and its antipodal vertex, which form the cyclic group C; < SO(2).
The vertex p is furthermore stabilized by reflections over the plane defined by the rotation
axis and any edge emanating from p, such that its full stabilizer subgroup is given by the di-
hedral group Stab,, = D5 < O(2). The equivariance of icosahedral GM -convolutions w.r.t.
isometry groups I, I, D5 or C5 was in [57]] shown to approximate the full O(3), SO(3),
O(2) or SO(2) equivariance of spherical CNNs reasonably well when continuous rotational
data augmentation is used|]

Icosahedral G-structures: The icosahedral GM-convolutions by Liu et al. [187]
and Zhang et al. [346] (implicitly) assume {e}-structures, while that by Cohen et al. [57]
assumes a Cg-structure. Fig. visualizes the idea behind these G-structures, which we
explain in the following three paragraphs in more detail.

"2This was in [57] empirically shown for I < SO(3). That this result generalizes to I, < O(3)
is clear since the groups differ only by reflections, w.r.t. which icosahedral GM -convolutions can be
made exactly equivariant. It holds furthermore for D5 < O(2) and C5 < SO(2), since these are
subgroups of I, < O(3).
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(a) Grid-aligned icosahedral (b) North-aligned icosahedral (c) Grid-aligned icosahedral
{e}-structure from [187]. {e}-structure from [346]. Cg-structure from [57]).

Figure 17.6: Conceptual idea of the G-structures assumed in [[187} 3461 [57]. For space reasons, only
two adjacent faces next to the north pole of the flattened icosahedron (Fig. [T7.7) are shown. The
{e}-structure in Fig. is defined by aligning all frames along the “horizontal” edges of the faces
(assuming the polar axis to be vertical). Fig. shows an alternative {e}-structure whose frames are
aligned towards the north pole. It is in contrast to the previous {e}-structure continuous since frames
on the cut edges agree with each other when gluing the edges back together. The Cg-structure in
Fig.|17.6¢|is constructed by adding frames that are rotated by multiples of %" to the {e}-structure from
Fig.[17.6al Since this angle agrees with the angle defect at the cut edges, the thus defined Cg-structure
is smooth (continuous). Note that the two {e}-structures are incompatible with (i.e. not closed under)
the Levi-Civita transport but imply an alternative trivial connection. The Cg-structure, in contrast, is
compatible with the Levi-Civita transport.

The {e}-structure by Liu et al. [187], shown in Fig. is defined by aligning the first
frame axes with the “horizontal” edges of the corresponding triangular faces. When flat-
tening the icosahedron into a plane as shown in Fig.[17.7] all frames of this {e}-structure
are parallel in this plane, which greatly simplifies the implementation of the corresponding
GM -convolutions. As usual, the {e}-structure specifies a unique trivial connection accord-
ing to which features are transported. This trivial connection agrees within the faces, on
edges which are not cut in Fig.[T7.7)and on the magenta cut edge with the Levi-Civita con-
nection. However, its transport over the remaining cut edges differs from the Levi-Civita
transport since the frames of the {e}-structure rotate there discontinuously by an angle
of %”. As the {e}-structure is preserved by rotations in Cy around the polar axis, its GM -
convolutions are approximately SO(2)-equivariant, i.e. approximate the models from the
previous Section However, the {e}-structure — and therefore the network inference
— is non-continuous over the edges with non-zero angle defect. Furthermore, the reference
frames do not point exactly towards the north pole, as it is the case for the spherical {e}-

structure from Section [I7.3]and Fig. [I7.2b]

Zhang et al. [346] propose to resolve the latter two issues by working with the {e}-structure
in Fig. It is defined such that the frames point exactly along the projection of the polar
axis onto the faces, i.e. towards the north pole. This {e}-structure is continuous everywhere
except at the north and south polesE| It is in this sense a better approximation of the spherical
{e}-structure from Fig. The {e}-structure implies again a unique trivial connection.
Its transport agrees with the Levi-Civita transport over edges, however, it differs from it when
transporting over faces since it rotates vectors smoothly along with the frames. As the other
{e}—structure, this frame field is invariant under azimuthal rotations in Cs, and approximates
thus azimuthal rotation equivariant spherical CNNs.

The Cg-structure in Fig. [17.6¢] by Cohen et al. [57] is defined by augmenting the frames
of the {e}-structure from with those frames that are rotated by multiples of %’T
It is clearly continuous since the angles between the set of preferred frames at each point
equal exactly the angle defects at the cut edges. It is in contrast to the previous two {e}-

To see this, imagine to glue the cut edge in Fig. [17.6b| back together: the frames on the left and
right half of the edge are then being mapped together, which is not the case in Fig.
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structures compatible with the Levi-Civita transport since the structure group Cg agrees
with the icosahedron’s holonomy group. The Cg-structure is furthermore preserved under
the action of the icosahedron’s orientation preserving isometries I. GM-convolutions on
this Cg-structure approximate therefore the fully SO(3) rotation equivariant spherical CNNs
from Section

Implementations: To implement the GM-convolutions on the corresponding G-
structures, Liu et al. [187], Zhang et al. [346] and Cohen et al. [[57]] assume a regular grid on
the icosahedron’s faces; see Fig.[I7.5] This regular hexagonal grid is constructed by itera-
tively subdividing edges, replacing each triangle with four smaller ones. At resolution 7, this
yields a grid with 5 - 22"+1 1 2 vertices. Note that this grid is by construction exactly sym-
metric under isometries of the icosahedron, which leads to an exact Isomgys-equivariance
of the discretized GM -convolutionsE] Liu et al. [187] proposed to represent icosahedral
feature fields relative to the atlas of charts that is shown in Fig. The charts have the
advantage that they map the hexagonal grids on the icosahedron’s faces to common square
pixel grids. Note, however, that orthonormal frames on the icosahedron are in this repre-
sentation deformed, such that they are not orthonormal relative to the canonical Euclidean
metric. Hexagonal convolution kernels on the icosahedron are deformed accordingly and can
be implemented in terms of square kernels which are masked such that two of their corners
are filled with zeros.

The GM-convolution by Liu et al. [187] assumes frames that are all parallel and can there-
fore in the interior of the charts, where the kernel support does not extend over its boundaries,
be implemented via a conventional Euclidean convolution; see Chapter 3] At points that are
close to an edge between different charts, the kernel accumulates features from beyond the
cut. As already discussed and visualized in Section [I0.4] and Fig. [T0.3] this is conveniently
implemented via a transport padding operation which pads a border of parallel transported
features around the array of square pixels before running the convolution operation. For the
trivial transport implicitly assumed by Liu et al. [187], this padding operation just copies a
row of features at each edge without transforming them. Since the authors assume the trivial
structure group G = {e}, the hexagonal kernels remain unconstrained.

The implementation of Cohen et al. [S7] is mostly similar, however, it differs crucially in that
it uses Levi-Civita transporters and Cg-steerable kernels. Instead of directly padding rows of
pixels across edges, the Levi-Civita transport requires that the features are steered either by
g = e for all internal edges and the magenta edge or by an angle of i%’r over all edges with

angle defect %’T, with the sign depending on the transport direction. Cohen et al. [S7]] assume
the regular representation of Cg as field type and constrain the convolution kernels to satisfy
the corresponding steerability constraint. After transport padding, their GM -convolution is
implemented as a conventional Euclidean convolution with these steerable kernels, i.e. an
Aff(Cg)-steerable convolution from Chapter [f] on the chart codomains. Note that this GM -
convolution is within the faces, i.e. except for the transport padding, similar to the HexaConv
by Hoogeboom et al. [125].

Since the GM -convolution by Zhang et al. [346] assumes a trivial structure group G =
{e}, the transport padding is again implemented as a trivial copy of pixels without steering
and the kernels are again left unconstrained. However, as the frames of the {e}-structure
are aligned towards the north pole, they are not longer parallel in the rectangular square
pixel representation, which prevents an immediate implementation in terms of conventional

14The icosphere grid, used by some of the models from Sections and[17.3] is defined by project-
ing the nodes of this grid to unit radial distance from the origin, i.e. to S2. The models in this section
do not assume this projection but convolve directly over the piecewise flat icosahedral geometry.
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Figure 17.7: The implementations in [187] represent feature fields relative to an atlas that
covers the icosahedron with five charts. To construct these charts, one cuts the icosahedron along the
colored edges and flattens it out. Five regions, consisting of four triangles each, are then sheared to
rectangular chart codomains. This operation maps the hexagonal grid to a grid of square pixels, such
that icosahedral feature fields can be encoded by a set of five rectangular arrays. Note that reference
frames and kernels are deformed accordingly on the chart codomains. The Levi-Civita transport over

all colored edges but the magenta one picks up a rotation of 27, with the sign depending on the
transport direction. This is implemented by transport padding rows of pixels along the cut edges as
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convolutions. Instead, the kernels have to be applied in a different rotation at each grid
point. As the hexagonal kernel can be rotated by < without using interpolation, and since
the alignments towards the north pole differ at most by this angle from each other, the authors
propose the following efficient approximating of this ogeration: they convolve twice on each
face, once with the original kernel and once with its <~ rotated version. The two response
fields are then linearly combined, with the precomputed interpolation weights depending on
the angles of the north-aligned reference frames relative to the two kernel alignments (i.e.
relative to the pixel grid). This implementation is therefore approximately twice as costly as

those in [[187,157].

An alternative implementation of spherical convolutions on the icosahedron was proposed
by Eder et al. [78]. The authors project the spherical signal on planes spanned by the 20
faces (denoted as tangent images) and subsequently run a conventional CNN on each of
these images. We did not include this network in our list as it processes these representations
independently from each other, that is, it does not transport or pad features between them,
and is therefore not exactly described as GM -convolution.

As mentioned before, the empirical results by Kicanaoglu et al. [148] suggest that the icosa-
hedral geometry approximates the spherical geometry reasonably well for deep learning ap-
plications. More specifically, the authors compare their spherical CNN on an icosphere
grid with the piecewise flat icosahedral CNN by Cohen et al. [S7] and find that both per-
form similarly despite the deformed geometry of the latter. The equivariance of icosahedral
CNNs under continuous rotations in SO(3) is found to be violated significantly, however,
this seems to be a mere overfitting effect as it is easily and without loss of model perfor-
mance counteracted by leveraging SO(3) data augmentation.

As always, we want to mention that the Cg-equivariant CNNs by Liu et al. [187] and
Zhang et al. [346] can easily be made D5-equivariant by considering a (R-structure and thus
reflection-steerable kernels. Similarly, the I-equivariant CNN by Cohen et al. [57] can be
made equivariant under the full isometry group Ij, of the icosahedron by making the kernels
Dg-steerable instead of Cg-steerable.






CHAPTER 1 8

Coordinate independent CNNs on general surfaces

Instead of operating on a fixed geometry, the GM-convolutions in the current chapter are
defined on general manifolds. We restrict our review to surfaces (d = 2) since we are not
aware of implementations on (general) higher-dimensional manifolds. The signals to be
processed could either be directly given by the dataset or are computed from the surfaces’
geometries. Examples for the former would be color textures or physical quantities like
temperature fields or the wall stress of a pressurized container. The latter could for instance
be Gaussian and principal curvatures, SHOT descriptors or wave kernel signatures. Most
applications so far focus on classifying the surfaces [131} [140, 327]], segmenting parts of
them [232, [131} 1327, [339] or finding correspondences between different surfaces [204} 22}
259.,1327,167]. Further applications are the prediction of physical quantities like mechanical
stress [293] or the synthesis of color textures [304} 343]] or geometric deformations [119].

The design of Euclidean and spherical CNNs is strongly guided by the requirement for
global symmetry equivariance. Since general surfaces come usually with trivial isometry
groups this guiding principle falls away, which leaves us with a large freedom in the choice
of G-structures. The models that we review in this chapter can be classified into rotation-
steerable and {e}-steerable surface convolutions. Both approaches address the issue of a
missing canonical direction on surfaces, however, they do it in a fundamentally different
way. Rotation-steerable models account for the lack of reference direction by their equiv-
ariant design, treating all directions equivalently. Their underlying SO(2)-structure is — up
to a practically irrelevant choice of orientationﬂ — fixed by the Riemannian metric. The
rotation steerable models differ therefore mainly in their choice of field types. The {e}-
steerable models are non-equivariant and are therefore not associated to a (non-trivial) field
type. However, they differ from each other by the specific choice of {e}-structure that is
used to determine the kernel alignments.

This chapter is organized as follows: we start in Section [I8.1.1 with a brief overview of the
classical differential geometry of surfaces, discussing in particular the difference between
their intrinsic and extrinsic geometry. In practice, most implementations operate on dis-
cretized surfaces. Section gives an overview of the geometry of triangular surface
meshes, which are arguably the most common surface discretizations in the deep learning
literature. In Section [I8.2] we discuss rotation-steerable surface convolutions. Heuristics for
fixing the frame fields that define {e}-steerable surface convolutions are reviewed in Sec-
tion 1831

!"The chosen orientation is on a (connected, orientable) manifold arbitrary when kernels are learned:
if the opposite orientation was chosen, the training would just result in oppositely oriented kernels.
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For completeness, we mention in the following paragraph a few alternative approaches to
define surface convolutions before coming to the actual content of this chapter.

Surface CNNs beyond GM-convolutions

While quite some surface CNNs can be interpreted as GM -convolutions, many alternative
network designs have been proposed. These methods rely for instance on graph convolu-
tions on surface meshes, spectral approaches, multi view renderings of surface embeddings,
volumetric methods in the embedding space, differential operators, or other operators which
operate immediately on the mesh data structures. The following brief review is intended to
give an overview of the different directions which have been explored.

One method to classify or segment embedded surfaces is to render them from multiple view-
points and process the renderings with conventional Euclidean CNNs. The resulting fea-
tures are then aggregated by pooling over the viewpoints [285) [236] or via a consensus
method [224]]. Esteves et al. [85] choose to place the camera viewpoints on a sphere ac-
cording to a discrete subgroup of SO(3), for instance the icosahedral group. The resulting
features are then processed jointly via a discrete group convolution (not a surface convolu-
tion).

Instead of projecting the surface by rendering it, it can be projected to R? by defining a
chart. Sinha et al. [278] define approximately authalic (area preserving) global charts on
spherical topologies. These charts are discontinuous and in general not conformal (angle
preserving). A conventional Euclidean CNN is used to process the resulting images. The
discontinuities can be circumvented by pulling the surface features back along toric [199]
or more general [115} [13]] covering maps. The subsequent Euclidean convolution on the
pullback can not be interpreted as a GM -convolution since the sheets of the covering map
induce different, incompatible {e}-structures on the surface. Li et al. [I80] use an atlas of
(approximately) isometric charts — as discussed at the end of Section[I8.3] this corresponds
indeed to a GM -convolution.

Volumetric methods process embedded surfaces with conventional Euclidean CNNs in the
embedding space R?, for instance by interpreting the vertices of a surface mesh as a point
cloud 234} 235, 1300] or by voxelizing the input. Point cloud based methods are reviewed
in [112]. Mescheder et al. [207] and Peng et al. [226] argue that an implicit surface
parametrization is more economical and propose networks which model surfaces as deci-
sion boundaries.

Spectral approaches are inspired by the convolution theorem. The Fourier basis on a mani-
fold is thereby given by the eigenfunctions of the Laplace-Beltrami operator. Spectral neural
networks process feature maps by manipulating their Fourier spectrum with learned linear
operators. As the Fourier basis is non-localized, Boscaini et al. [21]] use instead a windowed
Fourier transform; an alternative are the localized manifold harmonics of Melzi et al. [206].
Bruna et al. [28] interpret surface meshes as graphs. They are therefore applying graph
Fourier transforms, which are based on the eigenfunctions of the graph Laplacian.

Sharp et al. [269] suggest a model which is based on differential operators. Scalar features
are propagated via heat diffusion with a learnable diffusion time. As the Laplacian (occur-
ring in the heat equation) is isotropic, it can not respond selectively to pattern in specific
rotations. The authors are therefore additionally applying a gradient operator, followed by
taking scalar products of the resulting tangent vector-valued features. Note that both oper-
ations are gauge invariant. The networks can be implemented on all data structures which
admit partial differential operators, for instance point clouds or meshes.
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Quite some networks do not operate on the Riemannian manifold structure but rather on the
data structure which represents the surfaces numerically. An example are networks which
interpret the nodes and edges of a surface mesh as forming a graph and consequently apply
graph networks. The isometry equivariance of graph networks was investigated in [144]
126]]. Verma et al. [309] proposed a graph network with dynamic filters, i.e. filters that
are during the forward pass predicted from the features. The model of Milano et al. [210]
operates on the primal and dual graphs of meshes and utilizes attention mechanisms.

Spiral nets process features on meshes via local spiral operators [[183}[108]]. These operators
enumerate features by following a spiral path outwards from the central node. A response
is computed by applying a LSTM to the resulting sequence of features or an MLP to their
concatenation. The choice of first neighbor and spiraling direction corresponds to a choice
of {e}-structure. Hanocka et al. [117] and Hertz et al. [119] define convolutions on mesh
faces and edges, respectively. Both models are made invariant to the arbitrariness in the
mesh element ordering, which could be generalized to a permutation equivariant design.

For more in-depth reviews of such methods we point the reader to Bronstein et al. [26] and
Guo et al. [112].

18.1 Geometry of embedded surfaces

This section gives a brief introduction to the geometry of surfaces. Some concepts of the
differential geometry of smooth embedded surfaces are discussed in Section [I§.T.1} Sec-
tion [I8.1.2]attempts to give an overview of possible ways to discretize differential quantities
on surface meshes.

For a more in depth treatment of parameterized surfaces, we refer the reader to [99]. A
concise and intuitive introduction to the topic and its relation to computational (discretized)
geometry can be found in [60].

18.1.1 Classical differential geometry of embedded surfaces

Classically, surfaces have been described extrinsically, that is, as being immersed (or em-
bedded) in an Euclidean ambient space R3. This immersion can be defined in multiple
equivalent ways, for instance local parametrizations, Monge patches or implicit functions.
Local surface parametrizations are smooth maps

x:REOV > MCR3 (18.1)

which immerse open subsets V' of R? into the ambient space R3. They are required to be
regular, that is, their partial derivatives
Ix
€, = )
al‘i
are required to be linearly independent in R®. The derivatives e;(x1,72) € R® and
ea(w1,x2) € R3 span the embedded tangent spaces T,M C R3 at p = x(x1, :CQ) Sur-

face normals in the embedding space are therefore well defined and given by n = HZ §2 T

i=1,2 (18.2)

>The derivative vectors e; correspond in the intrinsic chart formalism to coordinate bases; see

Appendix [C.3.T}
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An atlas of compatible local surface parametrizations allows to describe surfaces that differ
topologically from the plane on a global level.

The Riemannian metric of the surface — in this context often denoted as its first fundamental
form — is induced from the embedding space. In accordance with the analogous definition

for the embedded sphere S? in Eq. (T7.9) we have:
Np(v,w) = (v,w)gs Vo,we T,M (18.3)

Letv = Z@ 0;e; and w = ZZ w;e; be tangent vectors in 7, that are expressed in terms
of their coefficient vectors o, «w € R? relative to the coordinate basis. The metric is relative
to this basis represented by a symmetric coefficient matrix

E F
I = <F G) (18.4)

with elementﬂE = (ey,e1)ps, F = (e1,e2)ps = (e2,e1)rs and G = (ea, e9)gs. This
matrix acts on vector coefficients according to n,(v, w) = o' Tw. The first fundamental
form encodes the intrinsic geometry of a surface as a two-dimensional Riemannian manifold,
i.e. that part of the geometry which is independent of its immersion into the ambient space.

A surface’s extrinsic geometry, i.e. details about its particular immersion into the ambi-
ent space, is captured by its second fundamental form. Relative to e; and e this form is
represented by the matrix

I = (AZ z\]\{) (18.5)
with elements L = <n,g%<>R3 = <n,g—2>R3, M = <n,%>]Rs = <n,g—;>R3 =

Oes _ 8%x _ e .
(n, 522 )ps and N = (n, o Jrs = (1, 522 )5~ These elements measure essentially how

the coordinate bases — and thus tangent spaces — bend in ambient space (into the normal

direction) when moving along the coordinate lines. It can for instance be used to determine
the normal curvature

(v) ol To

kn(v) = ——

" pT To

of the surface at p in direction of v = ), 0;e; € T, M. Intuitively, this normal curvature can
be understood as the curvature of the curve defined by the intersection of the surface with
the plane spanned by the direction v and the normal n at that point. This curvature agrees
with the inverse radius = 1/k,,(v) of the osculating circle to the curve at p, and therefore
measures how the surface bends into the normal direction when moving in the direction
of v; see [60] for great visualizations of this situation. Other quantities of interest in the
study of immersed surfaces are their principal, mean and Gaussian curvatures, which can be
expressed in terms of the normal curvatures and are exemplified in Fig. [I8.1] The directions
(unit vectors in 7, M) Umax and vy, in which the normal curvature at a given point p are
maximal or minimal are denoted as principal directions at p. The corresponding curvatures

(18.6)

Rmax = Fn (Umax) and Rmin = Rn(vmin) (187)
are the principal curvatures at p. Their mean value

Kmax T Fmin

Fmean = —— 5 (18.8)

3In modern notation, the coefficients of a (coordinate free) metric g relative to a given basis are
often denoted by g,....
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L TEy?

Figure 18.1: Embedded surfaces of qualitatively different extrinsic curvatures. Left: The plane is
characterized by vanishing principal and Gaussian curvatures Kmax = Kmin = KGass = 0. Middle
left: A cylinder has one direction of positive curvature and one of vanishing curvature, i.e. Kmax > 0
and Kmin = 0. Its Gaussian curvature Kgauss = 0 is therefore zero as well. The plane and the cylinder
are locally isometric, that is, their intrinsic geometry is locally indistinguishable. Note that the plane
can be rolled up (developed) to form a cylinder — the difference between the two is just the embedding
into ambient space. Middle right: An ellipsoid is characterized by its positive principal and Gaussian
curvatures Kmax > 0, Kmin > 0 and Kgauss > 0 at every point. Right: The surface of a saddle bends in
opposite directions, implying opposite signs of the principal curvatures Kmax > 0 and Kmin < 0. As a
result, the Gaussian curvature Kgauss < 0 is negative.

is known as mean curvature. The mean curvature is zero at “saddle-like” points where
Kmin = —Kmax. Minimal surfaces have zero mean curvature at every point. The product

RGauss = Kmax * Rmin (18.9)

of the principal curvatures is denoted as Gaussian curvature. This curvature is positive if
the principal curvatures have the same sign, which is for instance the case for ellipsoids. In
order for the Gaussian curvature to be negative, the signs of the principal curvatures need to
differ, as around hyperbolic (saddle-like) regions. The Gaussian curvature is zero if either
(or both) of the principal curvature values is (are) zero, i.e. if the surface has a flat direction.
An example for a manifold with zero Gaussian curvature is the cylinder. Such surfaces are
said to be developable, which means that they can be flattened out into a plane without
being distorted, or, more rigorously formulated, they are locally isometric to the plane. Carl
Friedrich Gauss proved in his theorema egregium that the Gaussian curvature of a surface is
actually an intrinsic property, i.e. that it does not depend on how the surface is immersed into
ambient space. It is in one-to-one correspondence with the (intrinsic) Riemannian curvature
tensor of a surface (and thus also to its Ricci and scalar curvature). An important property
of the Gaussian curvature is that its integral over a topological disk D C M equals the
holonomy dsp, i.e. the angle by which a vector is rotated when (Levi-Civita) transporting it
once around the disk boundary 9D:

/ Koas dp = Sop (18.10)
D

As we will see below, this relation can be used to generalize the Gaussian curvature to
meshes, where the holonomy dsp agrees with the angle defect of an unfolded loop of faces
(like the blue neighborhood in Fig.[T7.5).

Since GM -convolutions depend only on the intrinsic geometry of a surface, the reader might
wonder why we are discussing their extrinsic properties like principal curvatures. The reason
is that GM -convolutions may nonetheless be informed about a surface’s extrinsic geometry,
for instance by encoding it in feature fields. The extrinsic geometry may furthermore be used
to heuristically align the frames of an {e}-structure and thus kernels. For example, Jin et al.
[140] and Li et al. [[L80]] align the frames along the z-axis of the ambient space R3, while
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Boscaini et al. [22] and Tatarchenko et al. [294] align the frames along the surface’s dominant
principal curvature direction. Note that these heuristics are not always well defined: for
instance, the projection of the z-axis on a “horizontal” tangent space (in the ambient space)
is zero, and the dominant principal curvature direction might not be defined, as it is the case
on the sphere.

18.1.2 Discretized geometry of surface meshes

In principle, it would be possible to describe GM -convolutions on local surface parametriza-
tions as described in the last section. While this approach might be suitable for certain simple
or symmetric geometries like ellipsoids, hyperboloids or tori, it seems impractical for more
complex geometries. In practice, surfaces come mostly discretized, for instance in form of
triangle meshes, quad meshes, halfedge meshes, subdivision surfaces or point clouds. Due
to their widespread use — both in general and specifically in the description of the surface
GM -convolutions that we review in the next two sections — we will in the following focus
primarily on triangle meshes. Our goal for the remainder of the current section is therefore
to take the quantities and definitions from the smooth theory and discuss their discrete coun-
terparts on triangle meshes. Unfortunately, these discrete analogues are usually not unique,
such that a plethora of inequivalent definitions existsﬂ We will in the following try to give a
general idea about some of the most common approaches of discretizing the smooth geom-
etry of surfaces in terms of triangle meshes.

Topology, geometry and embedding of triangle meshes: Triangle meshes (), F) are
commonly encoded in terms of a set

VCN (18.11)
of vertices and a set
FC{{ijk}i#j#keV} (18.12)
of triangular faces, satisfying that each vertex is contained in at least one of the facesE] A set
E={{i,j}|i#je{i j K} forsome {i, j k'} € F} (18.13)
of edges, bounding the faces, follows immediately. In practice, one is often given a set
P={p eR*|ieV} (18.14)

of vertex positions, specifying an embedding of the mesh in the ambient space R3. This
embedding implies lengths

Uy = llps — il (18.15)

“Meyer et al. [209] describe this situation as follows: “Despite extensive use of triangle meshes in
Computer Graphics, there is no consensus on the most appropriate way to estimate simple geometric
attributes such as normal vectors and curvatures on discrete surfaces.”. Similarly, Crane [60] claims:
“There is no one “right” way to discretize a given geometric quantity, but rather many different ways,
each suited to a particular purpose.”

>Faces may alternatively be defined as ordered 3-tuples of vertices. The ordering of the vertices (or
rather the equivalence classes of orderings under an even number of permutations) may then be used
to encode the faces’ orientations. We will instead encode face orientations as in our smooth theory by
a choice of handedness of reference frames.
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of edges {1, j} and areas

1
Agijny = 505 = pi) x (ox — i) | (18.16)
of faces {i, 7, k}.

We are specifically interested in surface meshes, which are required to satisfy additional
conditions. In order to formulate these conditions, note that the mesh elements {ig, . . ., i, }
(where n = 0,1 or 2 for vertices, edges or faces) imply n-simplices, defined as the convex
hulls

convex ({ig, ..., in}) = (18.17)
{Zn o % Pi; Zn ajzlandajzo‘v’jzo,...,n} C R%.
= .

§=0
The set that comprises all of these simplices (mesh elements) forms a pure 2-simplicial
complex [68}160]]. That the 2-simplicial complex is pure means that each 0-simplex (vertex)
and 1-simplex (edge) is a subset of at least one 2-simplex (face). In other words, there are
no disconnected vertices or edges in the mesh. The underlying space

U convex({io,...,in}) "= |J convex({i.j.k}) < R® (18.18)
{i0ye- yin YFEVUEUF {i.j.k}eF

of the simplicial complex is defined as the union of all of its simplices, equipped with the
usual topology as a subset of R3. A mesh is then said to be a surface mesh (manifold
mesh) if the underlying space is a topological surface (manifold), optionally with boundary.
Intuitively, this requires 1) that each edge is adjacent to two faces (or one at boundaries) and
2) that the faces around each vertex form a topological disk (or a half-disk at boundaries).

Such defined surface meshes are discrete counterparts to embedded Riemannian surfaces.
However, since GM -convolutions are independent from the extrinsic geometry of the under-
lying manifold, it is instructive to briefly discuss their intrinsic geometry. Take therefore the
vertex, edge and face sets V, £ and F, but discard the embedding locations P of the vertices.
Together, these sets form an abstract 2-simplicial complex V U £ U F , defined as a family
of abstract simplices {ig, ..., %, } that is closed under taking subsets [60]. If this (now ab-
stract) 2-simplicial complex is 1) pure and 2) such that the “Star” of every vertex (given by
the simplices containing that vertex) form a combinatorial disk, it forms an abstract simpli-
cial surface (which is exactly the case if the embedded mesh is a surface mesh). Abstract
simplicial surfaces can be viewed as combinatorial counterparts of topological manifolds.
They admit to compute topological invariants, for instance the Euler characteristic

Xewier = |V| — |E] + | F|. (18.19)

As a topological invariant, the Euler characteristic agrees for any two homeomorphic spaces,
in particular for a smooth manifold and any of its triangulations. For instance, the icosahe-

dron from Section [17.4]has X<, = 12 — 30 + 20 = 2, which agrees with X5, = 2 for
the 2-sphere.

To arrive at an intrinsic description of a triangulated surface’s geometry, one assigns edge
lengths l;; € R to edges {3, j} € £. For consistency, these lengths are required to satisfy
the triangle inequality I, ;3 + l1jk} > (ki) for any face {7, j, k} € F. The edge lengths
imply Euclidean metrics (distance functions) on the faces, and therefore a piecewise defined
Euclidean metric on the whole surface. It corresponds to a Riemannian metric (or first fun-
damental form) which is Euclidean away from vertices and “cone-like” (singular) on a small
neighborhood around the vertices [61} 68].
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In order to close the circle to our initial, extrinsic definition of triangle meshes, on needs to
embed the mesh into ambient space R3. The necessary information on the extrinsic geometry
is given by equipping the mesh with a second fundamental form. In the discrete setting, this
form can be defined as a choice of dihedral angle (bending angle) between any two adjacent
triangles, i.e. one angle per non-boundary edge of the mesh. Provided that this data is chosen
consistentlyﬂ it is possible to reconstruct the embedding, i.e. vertex positions P, up to rigid
motions in E(3) [185] 320]. While an embedding of the surface is not necessary for the
intrinsic GM -convolutions, all of the papers listed in rows (41-45) of Table evaluate
their models on embedded triangle meshes.

Tangent spaces and vector fields: To describe vector fields on meshes, and to equip the
meshes with geometric structure like connections, it is necessary to define a notion of tan-
gent spaces that are attached to them. Multiple incompatible definitions, tailored towards
the specific application in mind, occur in the literature. Since vector fields are commonly
sampled at discrete locations, the discrete tangent bundles are often only partially defined,
for instance only on faces, edges or vertices. We briefly review some of these definitions, a
more detailed survey can be found in [65]].

Since the faces (2-simplices) of an embedded mesh are flat, one can naturally define their
tangent spaces as those two-dimensional subspaces of R? in which they are contained [62,
60, 320]]. Specifically, given a face {7, j, k} € F, one may define the tangent spaces T, M =
span(p; — pi, pr — pi) C R for every p € convex({i, j, k}) as the linear span of any two
edge vectors. The alignment of the tangent space in ambient space is often represented in
terms of the face normal n = (p; —p;) X (pr —p;). Discrete tangent (or feature) vector fields
can in face based representations be defined as being face-wise constant, i.e. represented by
a single tangent (or feature) vector per face. Relative to a choice of reference frame on
each of the faces, such tangent and feature vector fields are encoded by 2|F| or ¢|F| vector
coefficients, respectively. Note that such vector fields do not extend to vertices or edges.
Due to their discontinuity, the notion of differential operators, acting on such fields, is quite
limited [65]] (which is irrelevant for our specific application). A linear interpolation scheme
of face based vector fields was proposed in [181].

As there is no natural normal direction at the vertices of a mesh, there are multiple common
definitions of vertex tangent spaces. Vertex normals can for instance be defined as an area
weighted average of the adjacent faces’ normals [185] [172} |67]. Besides area weighting,
uniform weights or tip angle weights are sometimes used [60]. Another option is to define
normal vectors via a mean curvature normal operator [209]. The resulting normal agrees
with normals derived via area gradients, but differs from those that are derived via volume
gradients or sphere inscribed normals; see [60].

Alternatively, one can define vertex tangent spaces in an intrinsic way, simply by defining
them as two-dimensional vector spaces that are attached to the vertex. Their relation to the
mesh geometry in a local neighborhood around the vertex is hereby encoded by representing
the one-ring neighborhood in the tangent planes. The arguably most prominent of such
approaches is based on a rescaling of the total angle

;= Y. Ol (18.20)
{i,j,k}eF

Pr—Dil|
{4, j, k} adjacent to vertex i € V. If this angle is exactly 27, the local neighborhood around

ehi ; i -  ( Pi=Pi_ _pe—p; :
which is summed from the tip angles 6 i.jJ} = AIccos < el > of all the triangles

8The discrete first and second fundamental forms are required to satisfy an integrability condition,
similar to the Gauss’s equation and the Mainardi-Codazzi equations in the smooth setting [320].
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the vertex is intrinsically flat; see for instance the red or green neighborhood in Fig.
An angle ©; < 2, as for the blue neighborhood, signals a positive discrete Gaussian cur-
vature (properly defined below) Kgauss,i = 27 — ©;, i.e. a cone-like neighborhood. An
angle ©; > 27 corresponds similarly to a saddle-like neighborhood with negative Gaussian
curvature. The approach followed in [231} 1347, [158} 1268, 160] is then to flatten the one-ring
neighborhood out by isotropically rescaling polar angles by a factor of s; = é—’: to the total
$;0; = 27 of a Euclidean (tangent) space. A vector field can is in this setting be represented
by one vector per vertex. A choice of gauge, which are often aligned with one of the edges,
allows then to encode tangent or feature vector fields in terms 2|V| or c|V| coefficients, re-
spectively. Zhang et al. [347]] proposed to interpolate the vectors with a piecewise linear hat
function weighting from the vertices to the faces. The direction of the vectors is thereby
determined by a usual Euclidean transport on the flattened tangent spaces. As pointed out
by de Goes et al. [65], this interpolation is not continuous. To resolve this issue, the same
authors propose in [186] to define a smooth structure on the triangle mesh and to represent
the one-ring neighborhoods in smooth charts. A smooth interpolation is then performed by
transporting vectors via a smooth simplicial connection on the mesh, which is optimized
to be as close as possible to the original embedding space induced Levi-Civita connection.
Note that both approaches are effectively flattening the geometry around the vertices, that is,
they do not exactly operate on the triangle mesh.

Yet another approach, rooted in discrete exterior calculus [68},181], is to define tangent vectors
v=uwhe T}, M in terms of I-forms w € I,y M by leveraging the (metric-dependent) musical
isomorphism {7 : T*M — TM (“index raising”). Since simplicial 1-forms are naturally
assigned to edges (1-simplices), this leads to an vector fields which are parameterized in
terms of one vector per edge and thus 2|&| coefficients after choosing frames. However, as
argued by de Goes et al. [65] a piecewise linear interpolation of the vectors over the faces
will again lead to discontinuities. It is furthermore not clear to us how this approach could
be generalized to general associated vector bundles and thus feature fields.

Given any of the above constructions of tangent spaces, local reference frames are readily
defined as 2-tuples of linearly independent tangent vectors. A common choice is thereby
to align the first frame axis with one of the adjacent edges of the current simplex (mesh
element). Specifically for the case of orthonormal, right-handed frames, i.e. whenever G <
SO(2), a choice of (oriented) edge determines a frame completely. Tangent vectors are
then often represented in polar coordinates, with the angle measured relative to the reference
edge. If the tangent spaces are modeled extrinsically, that is, as two-dimensional subspaces
of the ambient space R, it is most common to represent the frames explicitly as a 2-tuple
of vectors in T,M C R3. The definitions of frames and gauges are then fully equivalent to

those in Eqs. (I7.17) and (I7.12) in Section[T7.1]

G-structures are, as usual, defined as bundles of frames, which are in each tangent space re-
lated through GG-valued gauge transformations. In the computer graphics community, there
is a particular interest in N-direction fields (or unit N-RoSy fields), which are there de-
fined as a collection of N unit vector fields, such that the NV vectors in each tangent space
are spaced by an angle of 27r/N. Since any unit vector implies on an oriented manifold
a corresponding right-handed, orthonormal frame, /NV-direction fields are seen to be equiv-
alent to Cy-structures. An example is the Cg-structure on the icosahedron in Fig.
which effectively assigns 6 unit directions to each point, except for the poles, where it has
singularities of index % (or angle %’r). The interactive design of smooth direction fields,
with user defined singularities amongst other constraints, is an active field of research in
the computer graphics community [181} 242} [172} 62| [158 [186l [268]]. Some of the surface
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GM -convolutions that we review in the following section use such algorithms to compute a
Cy-structure [1311339]).

Riemannian metric and isometries: Having a mesh equipped with tangent spaces, one
can define a Riemannian metric on it. The most common case that of isometrically embedded
meshes with tangent spaces modeled as two-dimensional subspaces of the ambient space R3.
As described before in Eqgs. (I7.9) and (I8.3), the metric is then induced by restricting the
standard Euclidean inner product (-, -)gs of the embedding space to the tangent spaces.

If the tangent spaces are modeled intrinsically, a metric can be fixed by choosing an O(d)-
structure, i.e. reference frames that are defined to be orthonormal. Somewhat less tau-
tological, if one is given edge lengths [(; 1, and therefore a piecewise defined Euclidean
distance function on the surface as discussed above, the choice of O(d)-structure is required
to be compatible with these lengths. Specifically, the logarithmic map should result in tan-
gent vectors of (Riemannian) norm |log,(q)| = ¢ if the points p and g are separated by
a Euclidean distance d € Rx>(. Note that this statement requires a consistent definition of
Levi-Civita connection on the mesh, which we discuss further below.

Isometries are intrinsically defined as usual, that is, as those mappings of the mesh to it-
self, which preserve the metric. Extrinsically, the isometry group is comprised of those
isometries ¢ € E(2) of the embedding space, which leave the mesh invariant. Most of the
papers in rows (41-45) of Table [I4.1] consider datasets whose meshes have a trivial isome-
try group. However, local neighborhoods of the meshes are often nonetheless isometric (or
approximately isometric) to each other, which was exemplified in Fig.[I3.2] As discussed in
Section the isometry equivariance of GM -convolutions will still hold locally if the
kernels’ field of view is sufficiently small.

Connections, transporters and geodesics on triangle meshes: The last ingredient that
we need to implement GM -convolutions on meshes is the transporter pullback Exp; of fea-
ture fields, Eq. (9:2T). We are therefore required to know how to 1) parallel transport feature
vectors over meshes and 2) compute geodesics on meshes, specifically the exponential map
or, depending on the implementation, the logarithmic map. All of these mappings depend
ultimately on a choice of connection on the mesh. In the smooth setting, a connection is
essentially a collection of infinitesimal transporters between adjacent tangent spaces. One
defines discretized connections on meshes therefore usually as transporters between adja-
cent mesh elements. The particular choice of tangent bundle discretization, options of which
were discussed above, influences the particular definition of connection. In the following,
we review some discretizations of connections found in the literature and explain how they
can be used to compute transporters and geodesics.

The simplest case to consider is the transport or connection between two adjacent faces.
Recall that the Levi-Civita transport on a flat plane is defined as shifting a vector such that
it stays parallel in the usual Euclidean sense; see Fig. [8.4a] As connections are inherently
intrinsic, they do not depend on the particular embedding of this plane into ambient space,
which tells us how to transport on any developable surface. It tells us in particular how
to transport between two adjacent triangles, since they can be unfolded (developed) into a
plane as visualized in Fig. [I8.2] The Levi-Civita connection between faces can therefore
be thought of as 1) flattening the faces 2) transporting the vector as usual on the plane and
3) folding the faces back to their original embedding [62} 213 160]. The resulting transporter

PTM{M., K (1) between the faces {i,j,k} and {4, 7,1} can optionally be expressed in

terms of a group element géf‘} K= i 1} in GL(2). Since the Levi-Civita connection is a
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Figure 18.2: Parallel transport between mesh faces. The local geometry of two adjacent faces is de-
velopable, that is, it is intrinsically flat and can be unfolded into a plane. The Levi-Civita transport
between the faces is therefore given by shifting a vector over the unfolded faces, followed by bend-
ing the faces back to their original embedding. This parallel transport between adjacent faces can be
viewed as the discrete analog of the continuous Levi-Civita connection in the smooth setting [62].

Given any choice of reference frames, the transport 73TM7 Gk (i) is represented by a group ele-

ment géﬁ i— {513 € GL(2) (or SO(2) when considering right-handed, orthonormal frames). More
general connections apply an additional linear transformation to the coordinate free vector when transi-
tioning between the faces. Alternative definitions of discrete connections, for instance for the transport
between vertices along edges, are discussed in the main text.

metric connection, it results for the specific case of orthonormal frames in group elements
in O(2), and for oriented orthonormal frames in SO(2)-elements or rotation angles.

As proposed by Crane et al. [62], it is possible to generalize this construction beyond Levi-
Civita connections: instead of merely shifting vectors between the flattened faces, more
general connections apply an additional linear transformation, for instance an additional ro-
tation. While this additional transformation will be reflected by a corresponding transforma-
tion of the transporter’s coordinate expression gfl‘.f;‘.‘ K i, 1} it is conceptually independent
from it and can be defined in a purely coordinate free setting. The authors use this idea
to construct smooth trivial connections, which are defined by having a transport of zero
holonomy around any possible loop, and which are optimized to be as smooth as possi-
ble, except for at some singularities, which are topologically enforced [62]]. They consider
furthermore connections which apply (coordinate free) rotations by ZW“ and can be used to
construct N-direction fields, corresponding to Cy-structures. In our applications, we will
always consider Levi-Civita connections to compute geodesics. The models reviewed in the
following Section assume a structure group G = SO(2) on oriented meshes and utilize
Levi-Civita transporters for feature vectors. In contrast, the models in Section m assume
a trivial structure group G = {e} and therefore allow only for {e}-structure compatible
trivial connections. They transport features such that their coefficient vectors relative to the
{e}-structure frames remain invariant, i.e. merely copy their numerical values.

Given embedded tangent spaces 1T,M C R? at other mesh elements like vertices or edges,
this approach is naturally generalized to transitions between arbitrary mesh elements [67]:
instead of aligning the faces, one could e.g. align the vertex tangent space with the adjacent
face before shifting the vector. Geometrically, this operation can be thought of as the trans-
port over a mesh whose vertices and edges are cut off in an infinitesimal neighborhood, an
are replaced with a polygonal face.

An alternative definition of discrete connections is given in [[158]] and [268]]. The authors of
both papers model tangent spaces only at the vertices, where they are defined in terms of the
rescaling of the total incident angle, Eq. , to 2, as discussed above. A connection
on the mesh is then given by transporters over all edges {i,j} € &, which link the adja-
cent vertices’ tangent spaces. Since the geometric notion of unfolding triangles is hereby
missing, the edge transporters are encoded via group elements relative to a source and ref-
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erence frame. Specifically for the Levi-Civita connection, and orthonormal, right-handed
reference frames, these group elements lie in SO(2). The utility of this construction for the
direct transport along arbitrary paths over the manifold is unclear, however, it is useful to
solve PDEs that depend on the covariant derivative. Sharp et al. [268]] showed that a solution
of the vector heat equation allows nonetheless to use such connections to (indirectly) com-
pute the parallel transport between arbitrary points on a mesh. Liu et al. [186] propose yet
another construction, namely smooth simplicial connections between and within all mesh
elements. They discuss furthermore how such connections can be optimized to be as close
to the (non-smooth) Levi-Civita connection as possible.

A given connection determines the parallel transport along a path. In the smooth setting,
where connections are infinitesimal transporters, the finite transport is computed by inte-
grating the connection along the path. In the discrete setting, the transport is accordingly
given by composing the individual transformations that constitute the connection between
the mesh elements that are crossed by the path. For the Levi-Civita connection, this process
corresponds to a flattening of all the mesh elements along the path, followed by shifting the
vector over it; see Fig. 7 in [[172]. The vector heat equation based method by Sharp et al.
[268] computes the transport of vectors specifically along geodesics. Since it solves for the
transport from a source location to any other location on the manifold simultaneously, this
approach can be more efficient than integrating the transport for every single path individu-
ally.

The curvature of a connection is in the smooth setting defined as the holonomy of its trans-
port around an infinitesimally small disk. The curvature at a vertex is in the discrete setting
similarly defined as the holonomy of the transport around this vertex. For the Levi-Civita
connection, this is just the Gaussian curvature, which is given by the angle defect

KGauss,i = 0; = 2m — ©;, (18.21)

where ©); is the total tip angle from Eq. (I8.20). We refer again to the icosahedron as
example, which has vanishing curvature everywhere, except for its original twelve vertices,
where the angle defect (curvature) equals %’r. Trivial connections have by construction zero
curvature.

Lastly, we need to discuss geodesics. In the smooth setting, geodesics are defined as straight-
est paths, which is formalized by the statement that the covariant derivatives of their tangent
vectors along the curve vanish, that is, V44 = 0. This is equivalent to the requirement
that the transport of a tangent vector (tp) along the geodesic remains tangent to it, i.e.

PTM’W(tl)(_W(tO)"y(to) = #(t1) for arbitrary to and ¢,. Furthermore, the shortest path be-

tween any two points on a connected manifold is given by a geodesic. As pointed out by
Polthier and Schmies [231]], this equivalence of shortest and straightest paths does not longer
hold on meshes, such that one needs to distinguish between the two concepts.

Recall that the exponential map exp,, : 1,M — M is defined as mapping vectors v to that
point which is reached when walking for a distance of ||v|| from p along the (unit speed)
geodesic in direction of v. This concept is readily generalized to meshes, where one follows
the straightest geodesic in the direction of v for distance ||v||. As in the smooth setting,
one may define such straightest geodesics on meshes as those curves that keep their tangent
vector parallel to the curve. This property is naturally satisfied on the planar faces (or along
edges), such that the resulting geodesic is piecewise linear, with the only nontrivial points
being those where the geodesics transitions between adjacent mesh elements. The outgoing
direction of the geodesic after such a transition is thereby determined by the connection,
i.e. by the transport of the incoming tangent direction to the next mesh element. If one
considers the Levi-Civita connection, which we always do to compute geodesics, this results
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in an ordinary straight line after unfolding the mesh elements into a plane. To implement the
discrete exponential map, it is sufficient to trace out such a straightest geodesic until reaching
the distance ||v]].

Logarithmic maps log,, : M — T, M, on the other hand, can be thought of as computing the

shortest geodesics between points p and qﬂ They return that vector 10gp(q) in T, M which
is tangent to this geodesic at p and whose norm equals the geodesic distance between the
points. A prominent way of computing geodesic distances from a source point (or set) p is
to solve the eikonal equation

V7| =1 subjectto 7(p) =0, (18.22)

where V denotes the covariant derivative. The first part of this PDE enforces the natural
requirement that the gradient of the distance function should be one, while the second part
fixes the distance at the source to zero. A Fast Marching algorithm, which solves the eikonal
equation on triangle meshes, was proposed by Kimmel and Sethian [150]. Given the distance
function 7, the geodesic -y between p and any other point ¢ can be traced back by following
the distance gradient starting from g, i.e. by solving the ODE

4= —Vr. (18.23)

With this information, we know that |log,,(q)|| = 7(¢), with the direction of log, () given
by geodesic path at p. The solution by Mitchell et al. [213]] generalizes the Dijkstra algorithm
for computing distances along edges of a graph to a continuous version, which can cross
faces and therefore operate on meshes. It computes a distance function by propagating a
wavefront starting from p. The heat method by Crane et al. [63]] computes geodesic distances
by exploiting Varadhan’s formula, which establishes a connection to the heat kernel. Their
algorithm is essentially solving the heat equation & = Aw with initial condition uy = d(p),
i.e. it diffuses a “heat spike” from the source point p. For short diffusion times, the gradient
Vu points exactly in the opposite direction of the geodesic distances’ gradient. Since it is
known that the geodesic distance gradient has unit magnitude (Eq. (I8:22)), one can compute
the distance field from this information. The method is substantially faster than previous
algorithms. Sharp et al. [268] generalize this method to the vector heat equation, which
allows to diffuse vector-valued quantities instead of scalar heat. The algorithm can be used
to transport vectors from a source point (or set) over the whole manifold, but it also suitable
for solving with high accuracy for logarithmic maps.

18.2 Rotation-steerable surface convolutions

In this section we review the SO(2), Cy and Dy-steerable surface convolutions that are
listed in rows (41-44) of Table @ All of these models have in common that they address
the ambiguity of reference directions on general surfaces via a locally rotation equivariant
(or invariant) design, which distinguishes them from the {e}-steerable models discussed in
the following Section @} Before discussing the individual models in detail, we start with
a higher level overview of common design choices and possible numerical discretizations.

General remarks and overview: All of the models that are reviewed in this section op-
erate on triangle surface meshes and are rotation-steerable. The continuous structure group

"Strictly speaking, the logarithmic map log,, can only be defined on that subset of M to which
exp,, maps injectively.
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G = SO(2) is for all models that assume regular field representations (rows (42) and (43))
discretized by cyclic groups Cy, i.e. [N equally spaced directions. The model by Huang et al.
[L31]] assumes a more specific structure group D,. Note that the purely rotation-steerable ar-
chitectures operate only on oriented surfaces without violating the smoothness (continuity)
of their inference. Non-oriented surfaces require additional reflection-steerability, i.e. struc-
ture groups O(2) or Dy . This requirement is often easily satisfiable with minor adaptations,
most importantly by using further restricted kernel spaces.

In accordance with the definition of GM -convolutions, the models parameterize features
in the local neighborhood around each sampling point in terms of geodesic normal coor-
dinates. Almost all of the models sample feature fields on the mesh vertices; only Huang
et al. [131]] samples features densely on the mesh faces. The continuous convolution integral
in Eq. (9.39), which matches the features in geodesic normal coordinates with a steerable
kernel, can be discretized in different ways. The majority of models discretize this integral
at a vertex p € ) as a summation over its neighboring vertices NV, C V. Features from
these vertices ¢ € N, are then matched with the values of the continuous kernel at point
UVrasp logp(q) € R?, where 1&{‘”‘ » 18 the gauge corresponding to the chosen reference frame
at p. Together with the transport from g to p, this results in the discretization

A0 = 0 AK (i, log,(a) p(aid,) fik(a), (18.24)
qEN,

where A, € R are suitably chosen area weights that sum to the total mesh area, > qev Bg =
f s Ldp. Common choices are barycentric area weights of the form

1
wg =3 Z Afijar s (18.25)
{i:j:Q}e}—

with the sum running over all triangles that are adjacent to vertex g, or Voronoi areas [310].
Since the discretization in Eq. (18.24)) sums over neighboring vertices, the algorithms com-
pute log maps via shortest geodesics between g and p; see Section [I8.1.2]and [231]].

Instead of computing logarithmic maps of neighboring vertices, one can alternatively dis-
cretize the convolution integral on the kernel domain R2. The authors of [204] use an
equiangular and equiradial binning of geodesic polar coordinates. They compute the expo-
nential map for each sampling point (r, ¢), that is, they shoot a straightest geodesic ([231])
of length r in direction ¢ relative to the reference frame. As these geodesics end in general in
a face, the feature vectors from adjacent vertices need to be interpolated, for instance based
on barycentric coordinates. Yang et al. [339] approximate the geodesic neighborhood via a
“parallel transport unfolding” algorithm [29].

Table [T4.1] organizes the models by their respective field types, i.e. by the group repre-
sentations p that specify their transformation laws under gauge transformations. The only
non-trivial field types used so far are (complex) irreducible representations of SO(2) [327]]
and regular representations of SO(2), discretized by regular representations of a discrete
subgroup Cy [232} 293] [67] [339]. Regular representations of SO(2) act by definition on
functions on L?(SO(2)), that is, on features which assign “one value per direction”. In the
discretized version, we have L? (CN) ~RIC I = RN , where each of the IV dimensions of a
regular feature vector corresponds to one of the directions in {k%’r‘ k=0,...,N—1 } The
correspondence to regular representations is in most of these papers implicit — the network
architectures are rather derived from a more intuitive viewpoint. It turns out that the authors
use only a subset of the complete space of steerable kernels that map between Cy-regular
feature fields. We substantiate this claim further below when discussing the models in detail.
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A construction of the complete kernel space is given in [322], a visualization can be found
in Fig. 3 of [324]]. The remaining models are based on trivial representations, i.e. scalar
fields. One approach to compute scalar fields is to apply a kernel in N directions, result-
ing in an intermediate Cy-regular feature field, followed by a pooling operation over the N
responses [204] 217, 293]]. Since gauge transformations in Cy will lead to a mere cyclic
shift (a permutation) of the feature’s direction channels, the pooling operations are invariant
under gauge transformations, i.e. result in scalar fields. Huang et al. [131]] uses immediately
Dg-invariant kernels; see Fig. As gauge transformation leave such kernels invariant,
the resulting feature fields are invariant as well, i.e. scalar fields.

Lastly, we can compare the models by the feature transporters that they assume. All of the
convolutional networks in [327, 232, 293\ 167]] assume the canonical Levi-Civita transporters
on the mesh. As all of the models in [204} 217, [293| [131] rely on scalar fields their parallel
transport is trivial. An alternative approach was followed by Yang et al. [339] who compute
a Cy-valued connection on the mesh. This connection is flat (trivial) everywhere except for
at a few singularities with a holonomy of k%" forsome k = 0,..., N — 1 and fixed N. The
authors optimize their Cy-valued connection such that it approximates the SO(2)-valued
Levi-Civita connection as close as possible; see also [62]. Note that this approach is similar
to the local flattening of spherical CNNs into icosahedral CNNs (N = 6) from Section[17.4]
but applies to general meshes.

With these general remarks in mind, we focus on some more specific design choices that are
made in the models.

Harmonic Surface Networks: The Harmonic Surface Networks by Wiersma et al. [327],
listed in row (41) of Table[T4.1] are a prototypical example of GM -convolutions on meshes.
They generalize Harmonic Networks [335]] — whose features transform according to the com-
plex irreps of G = SO(2); see rows (35-38) of Tablein Chapter@— from the Euclidean
plane to general curved spaces. The authors define their convolution as in Eq. (I8:24), using
the barycentric area weights from Eq. (I8.23). Levi-Civita transporters and logarithmic maps
are computed via the vector heat method [268]], which is not restricted to triangle meshes but
allows to apply the model to polygon meshes and point clouds. The SO(2)-equivariant non-
linearities used by the models act only on the absolute value of the complex features but
leave their argument invariant.

As proven in [173}[322]], the SO(2)-steerable kernel spaces that are used by the authors are
complete over the complex field. However, if the complex feature fields are implemented
in terms of two channels that contain their real and complex parts, they should rather be
viewed as transforming according to the real irreps of SO(2), as derived in Section m
The kernel constraint allows in this case for additional steerable kernels; see Appendix F.5
of [322] for a detailed discussion. We furthermore want to mention that empirical evidence
suggests that networks which are based on irrep fields perform significantly worse that those
that are based on regular representations; see e.g. the benchmark in [322]]. Note that Har-
monic Surface Networks can easily be turned into networks that operate on regular feature
fields by employing the “regular nonlinearity” from [67]], which essentially applies a Fourier
transformation of a stack of irrep fields to transform them into a regular feature field.

Multi Directional Geodesic CNNs: Poulenard and Ovsjanikov [232] proposed Multi Di-
rectional Geodesic CNNs (MDGCNNSs) which operate on so-called directional functions. As
we argue in the following, directional functions are equivalent to regular feature fields and
MDGCNN:S are specific GM -convolutions between such features. The authors define direc-
tional functions as real-valued function that depend on points p € M and unit directions
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Figure 18.3: Visualization of the directional functions by Poulenard and Ovsjanikov [232]. Directional
functions assign a real-valued response (colored dots) to each direction (unit vector) in S;M Cc T,M
(black circle). When expressing these functions relative to right-handed, orthonormal reference frames
or gauges wﬁﬂp, the coordinate representations assign real-valued responses to unit vectors in S* C
R2. The transformation law between these coordinate representations is given by a rotation of the
feature values on S*. Mathematically, this transformation law is identified as the action of the regular
representation of SO(2); see Eq. (I8.:28). Directional functions are therefore regular feature fields,
and the surface CNN of Poulenard and Ovsjanikov [232] is based on GM -convolutions between such
fields. A diagrammatic version of this figure is given in Eq. (I8:29).

v € T,M, |lv|| = 1. Denoting the circle of unit directions in 7, M by
S;M = {veT,M||jv| =1} = S', (18.26)
a directional feature at p is defined as a map
FoSIM SR (18.27)

from unit directions in the tangent plane to real-valued responsesﬂ A choice of right-handed,
orthonormal reference frame fixes a reference direction relative to which the directional func-
tion can be expressed. Let d)f}up be the gauge corresponding to a chosen frame, which maps

the unit directions in S} M C T, M to “coordinate unit directions” in S* C R?. The coordi-
nate expression of the directional function is then given by

A —1

Fp ==1Fo (wg\ﬂpbéM) : §1 9 R, (18.28)

8The full directional function can then be defined as a map from S M, the bundle with fibers S;M R
to real values.
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that is, it assigns real-valued responses to the unit coefficient vectors on R2. From the com-
mutativity of the diagram

9"
( Vi P | spm 7/’5\1.;7 | SiM l
R? 5 &t SAM Sl c R?
F (18.29)
Fi F?
R

one can read off that the coordinate expressions of directional functions obey the following
transformation law:

FE = Fo B =t pealef) £ 1830

The second equality identified the transformation law between the coordinate expressions
as the action of the regular representation (Def. , which justifies our statement that
directional functions are just regular feature ﬁeldsié Fig. shows a directional function
and its coordinate representations relative to different frames.

The multi directional geodesic convolutions by Poulenard and Ovsjanikov [232] map in
a coordinate independent manner between directional functions by contracting them with
equivariant kernels in a geodesic parametrization around each vertex. This observation im-
plies that these convolutions are specific GM -convolutions between regular feature fields.
A difference in the formulation of multi directional geodesic convolutions is that their trans-
porter pullback does not transport the whole regular feature vector (directional function) back
along the geodesics, but only that single response that corresponds to the tangent direction
of the geodesic. Instead of matching the transported features with a matrix-valued kernel,
multi directional convolutions match the single transported response with a scalar kernel.
The equivalence of both operations is restored by imposing a corresponding sparsity pattern
to our matrix-valued SO(2)-steerable kernels, effectively zeroing out those responses that
are not transported back by MDGCNNs. While multi directional geodesic convolutions are
just GM -convolutions between regular feature fields, they do therefore not use the complete
space of G-steerable kernels between regular feature fields. This sparsity makes MDGCNNs
computationally efficient, however, the memory cost remains the same and it is unclear how
severely this choice limits their expressional capacity.

The infinite number of directions in SO(2) (or S} M or S*) is in practice discretized to the N
equally spaced directions in the cyclic group Cy, e.g. the 8 directions that are visualized in
Fig. Since the Levi-Civita transport along features is in general SO(2)-valued instead
of Cy-valued, the authors use a linear interpolation between the N discrete directions.

As discussed above, MDGCNNSs transport only those specific responses of the features back
which correspond to the direction of the emanating geodesic relative to the local reference
frame at p. This direction is undefined at the origin v = 0 € T,M, which prevents
self-interactions of the vertices. The authors resolve this issue by applying an additional
1x1-convolution which adds the missing self-interaction back. As derived in Section[9.1.1]

°Strictly speaking, the regular representation of SO(2) acts on functions SO(2) — R. However,
we can canonically identify such functions with functions on S* by identifying (1,0) € S* with

{e} € SO(2).
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Figure 18.3: Degrees of freedom of a Cy-steerable kernel
K :R? 5 R™Y which maps between feature fields that transform
according to the regular representation pre; : Cv — GL(N) for N = 4;
see Table [B]] and [322]. The kernel constraint, Eq. (9.37), enforces
the color-coded weight sharing pattern. The PFCNNs of Yang et al.
[339] convolve features on each sheet of their N-direction field (Cy-
structure) with rotated versions of a single scalar-valued kernel but do
not include interaction between the different sheets. This shared kernel
corresponds to the diagonal entries (green) of the complete kernel space.
Oft-diagonal entries, which are implicitly forced to zero, would correspond
to interactions between the sheets.
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the 1x1-convolution kernels are required to be intertwiners in order to preserve the coordi-
nate independence of the model. This requirement is indeed satisfied by MDGCNNSET] as
the 1x1-convolution matrix is constructed such that it mixes whole regular feature vectors
with the same weight instead of linearly combining their channels independently. This is
implemented by representing m;, regular Cy-features not as a ¢ = N -my,-dimensional fea-
ture vector but as an array of shape (IV, my,), and then applying a (shared) matrix of shape
(Mout, Min) over the last axis which results in an output array of shape (N, my).

Parallel Frame CNNs: The Parallel Frame CNNs (PFCNNs) by Yang et al. [339] rely on
N-direction frame fields, which are just G-structures GM for cyclic structure groups G =
Cx. Recall from our discussion above that these fields encode a connection which is trivial
everywhere but at a few singularities and which is optimized to approximate the original
Levi-Civita connection. As this G-structure is precomputed in an offline step, we take it in
the following as given and focus on the actual PFCNN convolution. It turns out that this
operation is equivalent to a GM -convolution between Cy-regular feature fields, however,
again assuming specific sparsity pattern in the kernels that is implied by the particular net-
work design.

The feature spaces of PFCNNs are the spaces C°°(GM) of real-valued functions on GM.

Since GM —% M is for G = Cy a |G| = N-fold cover of M, such feature fields can
analogously be seen as assigning a tuple of N real numbers to each point p € M. As
the N sheets of the covering space are furthermore identified with N directions (given by
the first frame axes), these features are equivalent to the (discretized) directional functions
of Poulenard and Ovsjanikov [232]. Theorem [J.0.1]in Appendix [J] proves furthermore that
there is an isomorphism

C=(GM) = T(A,,) (18.31)

between the features of PFCNNs and our regular feature fields. PFCNNs are therefore
performing coordinate independent convolutions between (an equivalent to) regular feature
fields, and are thus identified as (specific) regular GM -convolutions.

The formulation of parallel frame convolutions seems at first glance to be quite different
from ours: instead of convolving the full NV-dimensional regular feature fields with a matrix-
valued Cp-steerable kernel K : R2 — RVN*N PECNNs convolve their scalar functions on
each of the NV sheets independently with a shared scalar-valued kernel which is aligned
with the frame of the respective sheet. This operation is in our framework interpreted as a
convolution with a matrix-valued Cy -steerable kernel whose only non-zero values are on its
diagonal and are rotated relative to each other, which is visualized by the green entries in

10Personal correspondence with the author.
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Figure 18.4: Two mesh regions which are topologically equivalent but geometrically distinct. One ap-
proach to define convolutions on meshes is to consider their underlying graph (V, £), which captures
the mesh topology, and run a graph neural network on it. Lacking information about the mesh geom-
etry, (conventional) graph neural networks can not distinguish between the two visualized neighbor-
hoods. Geometrically, they apply isotropic kernels. The Gauge Equivariant Mesh CNNs by de Haan
et al. [67] address this issue by projecting the neighboring vertices g; on the tangent planes and as-
signing them angles 6,,, relative to some reference edge, i.e. gauge (red). Requiring the coordinate
independence of the convolutions leads to G-steerable kernels. While the model can discriminate based
on the direction of the neighboring nodes, it ignores their distance. It furthermore deviates from our
geodesic parametrization in that its kernel support is based on the local edge connectivity instead of
geodesic distances.

Fig.[I8.3] The missing coupling between features on different sheets implies that the off-
diagonal entries (yellow, blue and red) of the complete steerable kernel space are implicitly
set to zero. As already stated for MDGCNNS, the sparsity pattern of this regular GM -
convolution makes it computationally more efficient than a dense GM -convolution but is
likely to affect its performance and does not save memory cost.

Gauge equivariant Mesh CNNs: The Gauge Equivariant Mesh CNN (GEMCNN) by
de Haan et al. [67] is motivated by the shortcomings of conventional graph neural networks
for the processing of feature fields on meshes. Specifically, vanilla graph neural networks
could be used to process vertex-sampled feature fields on meshes by convolving over the
graph (V, £) that is induced by the mesh. The issue with this approach is that the graph
encodes only the mesh topology, but is not able to capture its geometry. Conventional graph
convolutions do accordingly not distinguish between the ordering of edges, which corre-
sponds on meshes to the use of isotropic kernels that map between scalar fields. Fig.
shows two regions of a mesh with distinct geometry but equivalent topology — for conven-
tional graph convolutions both neighborhoods look the same. GEMCNNs address this issue
by choosing a reference edge at each vertex p € ), relative to which the direction of all
other edges {p, ¢;} € £ to the one-ring of neighbors ¢; € N,, C V is measured in terms of
angles 0,4, € [0,2m). A choice of reference edge corresponds to a choice of orthonormal,
right-handed frame. Different choices are related by gauge transformations in the structure

group G = SO(2).

As in our theory, the feature spaces of GEMCNNSs are defined as sections of associated vec-
tor bundles, i.e. as spaces of c-dimensional feature fields whose coefficients transform under
gauge transformations according to some group representation p : SO(2) — GL(c). Each
edge is assigned an SO(2)-valued Levi-Civita transporter. The convolution operation is de-
manded to be independent from the choice of reference edge, which leads to the requirement
on the kernels to be G-steerable (gauge equivariant). In contrast to our formulation, the ker-
nels are not directly applied in geodesic normal coordinates but pass messages only from the
one-ring neighborhoods V,, := {q € V| {p, ¢} € £} to that node p around which the kernel
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is centered[T| The kernels are furthermore radially insensitive — in how far this affects the
model performance remains an open question.

The authors decided for (real) irreps as field types for the convolution, however, they per-
form a change of basis to regular representations to apply ReLU nonlinearities, which is
why we list them in row (42) of Table instead of row (41) Specifically, the au-
thors use the change of basis Q € RY* that decomposes the regular representation
preg : Cnv — GL(NV) of Cy into its irrep components to transform a stack of irrep fields into
one regular feature field; cf. Section For Cp, this matrix is just the discrete Fourier
transform. After applying the ReLU nonlinearity to each of the N channels of the regular
feature field individually — which is a Cy-equivariant operation since regular representations
are permutation representations — the features are transformed back to a stack of irrep fields
for the following convolution operation. This design has the advantage that the features can
be transported exactly with SO(2)-valued transporters, without having to fall back to an in-
terpolation scheme, as done by Poulenard and Ovsjanikov [232]]. Note, however, that the full
network is due to the use of the regular nonlinearities only Cy-equivariant.

That the authors use the real irreps of SO(2) means that their kernel spaces are approxi-
mately twice as large as those of the Harmonic Surface Networks by Wiersma et al. [327];
cf. the discussions in [322 [173]].

Geodesic CNNs: The earliest work on geodesic convolutions that we are aware of is that of
Masci et al. [204]. The authors identified the rotational ambiguity of geodesic polar coordi-
nates on an oriented Riemannian manifold and address it via a rotation invariant architecture.
Their Geodesic convolutions represent a scalar field relative to arbitrarily oriented geodesic
polar coordinates. As the field type is trivial, the transporter pullback to geodesic coordinates
does not require (non-trivial) transporters. The feature field in geodesic coordinates is then
matched with a scalar kernel, which is applied in N equally spaced rotations by angles Qﬁﬂk
relative to the reference frame, where k£ = 0,..., N — 1. Since a gauge transformation by
%’Tl for some [ € {0,..., N — 1} rotates all kernels accordingly, it result in a cyclic permu-
tation of the responses by [ steps. This operation corresponds therefore in our framework to
a Cy-steerable convolution from scalar fields to Cy-regular feature fields. Instead of pro-
cessing these fields further via regular group convolutions — as done in MDGCNNs [232],
PFCNNS [339] and GEMCNNS s [67] — the authors apply a max-pooling operation over the
N responses. Since Cy-valued gauge transformation result in cyclic shifts of the intermedi-
ate regular feature fields, the pooling operation is gauge-invariant, i.e. produces scalar fields.
While this networks design is simple to implement, it prevents features form encoding di-
rectional information. Further variations of this networks design can be found in [205} [217]].

ZerNet: Next, we turn to ZerNet by Sun et al. [293]. To avoid confusion, we point out
that the authors proposed two models, which we list in rows (42) and (43) of Table [14.1}
respectively. We describe both models, starting with their common design choices.

The key concept underlying ZerNets is their parameterization of convolution kernels in terms
of Zernike polynomials, which form an orthogonal basis of functions on the closed unit disk

"For a (sufficiently) regular grid and compactly supported kernel in geodesic coordinates both
approaches become equivalent.
"2The equivalence of p-fields to their irrep decomposition (Theorem|B.5.16) was discussed in Sec-

tion @
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Bg2(0, 1) around the origin of R2. In polar coordinates, Zernike polynomials are given by
even: 7" : [0,1] x [0,27) — [-1,1], (18.32)
(r, )b—)Rm(T)COb( ®) neN, 0<m<n
odd:  Z;™: [0,1] x [0,27) — [~1,1], (18.33)
(r,) = Ry (r) sin(me) neN, 1<m<n,

where R are the Zernike radial polynomials. That (suitably normalized) Zernike polyno-
mials are orthonormal means that they satisfy the orthonormality relations

27
(zr, Z,i)BRZ(OJ) = /0/0 ZM(r, @) Zh(r, @) rdrdp = Suk 0. (18.34)

A function on the unit disk, for instance a scalar kernel K : Bg2(0,1) — R, can be expanded
in the Zernike polynomial basis:

K(rg) =Y > Krzr(rye) (18.35)

neN m=—n

To retrieve the expansion coefficients of a given function on the unit disk, one projects it on
the Zernike basis:

2w
K" = <K, Z7T>BR2(0,1) = /0 ; K(r,p) Z(r, @) rdrdp (18.36)

The inner product between two functions K and Exp; f4 on the unit disk can with these
relations be expressed in terms of their expansion coefficients:

(K B0 ) 5 o (18.37)

27
= / K (r,¢) Exp) fA(r, @) rdrde

//wz Z Kz (re) ) Z EprfA] ZL (r, ) rdr dy

neN m=—-n keN I=—k

—Z Z Z Z/ / Z™(r, ) ZL(r, @) rdrde Km[Exp fA]

neN m=—nkeN [=—k

=Y Z ™ [ Exp}, f“‘]

neN m=—n

ank 5ml

As suggested by the choices K and Exp;‘7 [ for these functions, the authors use this prop-
erty to match kernels with the pullback of the feature fields to geodesic polar coordinates.

The kernel coefficients K. ', which are set to zero beyond a user specified threshold, are op-

—_— m
timized as learnable parameters of the network. The expansion coefficients [Exp; f A] ., of
the feature field’s transporter pullback are computed by solving a linear system of equations.

An advantage of the kernel parameterization in terms of Zernike polynomials is that they are
by definition SO(2)-steerable kernels. Specifically, the pairs (Z1, Z, ™) " of kernels for a
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givenn € Nand 1 < m < n form a pair of kernels that are rotated by multiplying them
with the m-th order real irrep of SO(2),

(Z5) a0 = (Soinde) omm?)) () . asaw

n n

while the kernels Zg, i.e. for m = 0, transform trivially (they are isotropic). Note that the

expansion coefficients K"* of a kernel K transform inversely to the basis. The authors use
this transformation law to rotate kernels analytically in terms of their expansion coefficients.
The rotation steerability of the Zernike polynomials’ is independent from their radial parts
but relies on the fact that their angular parts are circular harmonics (Fig.|5.2)), which are the
harmonic basis functions in the Peter-Weyl decomposition (Theorem of L2(SO(2)).
Due to their steerability properties, circular harmonic bases have been extensively used to
parameterize real [324, [110] and complex [335] 327] convolution kernels since at least the
*80s [1127, 2511195, [118]]. In fact, as discussed in detail in Sectionlﬁland [322,1173]], circular
harmonics are underlying any SO(2)-steerable kernel.

The first and main model design described by Sun et al. [293] is similar to that by Masci
et al. [204]. A scalar field is pulled back to geodesic normal coordinates, where it is matched
with a scalar kernel that is applied in N discrete rotations, resulting in an intermediate Cp -
regular feature field. A subsequent max-pooling operation over the IV responses yields then
a Cy-invariant output, i.e. an output scalar field. The difference to the implementation by
Masci et al. [204] is that this operation is performed in the Zernike polynomial basis as
specified in Eq. (I8:37). This choice corresponds ultimately to an alternative interpolation
scheme. The second model design, described Section 4.4 of [293], is a reimplementation
of the MDGCNNSs from Poulenard and Ovsjanikov [232] in the Zernike polynomial basis.
The authors observe that this design leads to a significantly improved performance since the
regular feature fields are able to encode directional information.

TextureNet: The last rotation steerable model that we discuss is the
TextureNet by Huang et al. [131]. In contrast to the previous models,
TextureNets assume a Dy-structure, which could easily be general-
ized to a Dy -structure. This D4-structure is precomputed via Quadri-
Flow, a 3rd party software package which can be used to compute
4-RoSy fields that are optimized to be smooth and have few singular-
ities [130]]. As the name suggests, TextureNets process input feature Fi .

. . igure 18.5: A Dy-
fields t_hat are represented as textures, apd are of potentlally higher ;= o0t kernel of
resolution than the mesh. The convolution kernels are applied at a 3 3 pixels is pa-
dense set of sampling locations, which are uniformly distributed over  rameterized by three
the mesh’s faces. At each sampling point the scalar feature field is  degrees of freedom.
pulled back into geodesic normal coordinates and represented relative
to an arbitrary frame of the Dy-structure. It is then matched with a D4-invariant 3 x 3 kernel.
As visualized in Fig. [I8.3] the 9 pixels of such kernels are described by 3 degrees of free-
dom. The convolution is implemented in terms of three 1x1-convolutions whose responses
are subsequently binned and aggregated in each of the tangent spaces. The additional reflec-
tion steerability of the kernels implies that TextureNets are well defined on non-orientable
surfaces. However, as the features of TextureNet are scalar fields they can neither encode
directions nor orientations. To overcome this issue, it is necessary to use non-trivial Dy or
O(2)-steerable kernels.
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18.3 {e}-steerable surface convolutions

This section reviews the networks from [217, [140, 259, 294 (141}, [180], which have in
common that they rely on {e}-structures on the surfaces. From the viewpoint of GM-
convolutions, these architectures differ mainly in the specific choice of heuristic that de-
termines the {e}-structure.

Assuming a trivial structure group G = {e}, the models apply {e}-steerable (i.e. uncon-
strained) kernels, which are aligned along the frames of the chosen {e}-structure. The field
types (group representations) are necessarily trivial. The same holds for all parallel trans-
porters, which are necessarily {e}-structure compatible. Transporter pullbacks Exp; fof
feature fields f to the tangent spaces reduce therefore to pullbacks expy, f by the usual ex-
ponential map, that is, they don’t apply (non-trivial) transporters. Recall that continuous
{e}-structures exist only on parallelizable manifolds, implying that the networks’ inference
is inevitably discontinuous on non-parallelizable surfaces. The heuristics that determine the
frame fields are furthermore not always well defined, or are instable under deformations of
the surfaces’ geometry, as further discussed below.

The models of Monti et al. [217], Jin et al. [140]] and Schonsheck et al. [259] operate on
triangular meshes and process feature fields that are sampled at the vertices. Tatarchenko
et al. [294] and Jin et al. [[141]] propose networks that operate on surface point clouds while
the architecture of Li et al. [[180]] defines convolutions on texture atlases of meshes.

Geodesic MoNets: The first model family that we discuss are the MoNets by Monti et al.
[217]. The authors discuss a variety of models on graphs and manifolds, most of which are
not explained as GM -convolutions. These models have in common that they apply kernels
relative to some choice of “pseudo-coordinates” on the manifold or graph — we are here
only interested in those MoNets that rely on geodesic normal coordinates and are therefore
identified as GM -convolutions.

As stated above, the main difference between {e}-steerable surface convolutions is their
particular choice of {e}-structure. Inspired by previous work of Boscaini et al. [22 the
authors choose to align the reference frames of the {e}-structure with the principal curvature
direction of the manifold. Note that this heuristic is not well defined when the principal
curvatures Kmax = Kmin agree, i.e. when the principal curvature direction is degenerate. An
extreme example is the 2-sphere S2, where the principal curvature direction is nowhere well
defined. Even when the principal curvatures are unequal, they determine only an undirected
line, disambiguating reference frames up to a Cy-structure (with the two constituent frames
pointing along the two directions along the line). To make the network independent form the
choice of frame, they should therefore actually apply Cs-steerable kernels. Moreover, the
principal curvature directions are instable under deformations of the surface. As an example,
imagine the principal curvature direction at the north pole (on the positive z-axis) of the 2-
sphere S2: an infinitesimal squeezing of the sphere along the x-axis results in a principal
curvature direction along the x-axis while an infinitesimal stretching along the x-axis results
in a principal curvature direction along the y-axis. We furthermore want to mention that
principal curvatures depend on the embedding of a manifold, that is, the approach is non-
intrinsic.

3The Anisotropic CNNs by Boscaini et al. [22] assume the same principal curvature direction based
{e}-structure. However, their kernels are not defined in geodesic normal coordinates but are based on
anisotropic heat kernels on the manifold. Monti et al. [217] claim that such heat kernels correspond to
anisotropic Gaussian kernels in geodesic coordinates — if this statement is true, Anisotropic CNNs can
be viewed as GM -convolutions.
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3DMCNN: Jin et al. [140] proposed a 3D Mesh CNN (3DMCNN) that convolves over the
surfaces of scanned faces to recognize expressions like happiness, anger or surprise. As the
face-masks are topologically planes (with holes at the eyes) they are parallelizable, which
allows for smooth GM -convolutions for G = {e}.

The convolution kernel is discretized into one central sampling point and eight other points
at a fixed radial distance R and angles p; = k%ﬂ, k = 0,...,7in polar coordinates. The
kernels — and thus the frames that constitute the {e}-structure — are rotated such that they are
aligned with the z-axis of the embedding space R®. This approach seems reasonable since
the face masks are parallelizable and, more importantly, aligned upright. To match a such
oriented kernel with a feature field, geodesics of length R are shot in the eight directions.
Barycentric coordinates are used to interpolate the signal from the surrounding vertices to
the end point of the geodesic.

Parallel Transport Convolutions: As a last mesh-based {e}-steerable convolution we
discuss the Parallel Transport Convolutions (PTCs) by Schonsheck et al. [259]]. The key idea
of PTCs is to define the convolution kernel at some “origin” pg € M and share it with any
other location p € M by Levi-Civita transporting it along the shortest geodesics between pg
and p. To formulate this weight sharing procedure in more detail, consider the closed disks
Br,m (0,R) C 1, M of radius % around the origins of the tangent spaces, where R € R q is
the injectivity radius of the manifold. Let furthermore M), r := exp,(Br,n (0, R)) C M
be the images of these disks under the exponential map, which include all points whose
geodesic distance from p is smaller than or equal to R. Schonsheck et al. [259]] define their
(unconstrained) scalar convolution kernels than as real-valued functions

Kpy: My, p — R (18.39)

05
on the neighborhood around the origin py, i.e. directly on the manifold. To share the kernel
with other locations p € M, the authors compute the shortest geodesics between py and
the target locations p via Fast Marching. They parallel transport the kernel then along these
geodesics, which is done by pulling them back to the tangent spaces. In equations, the kernel
at p is defined as

IA(p: Myr—R, g~ I?p(q) = IA(pO 0 exp,, op ! olog,(q), (18.40)

TM, po—p

which is visualized by the following commutative diagram:

7313\1,1)0—>p

exp,,, exp,,
MPO;R — BTp0M<07R) BTpNI(OvR) _— Mp7R

L : J

Ky, kp

(18.41)
The existence of the logarithmic map is guaranteed since the domain is restricted to points ¢
within the injectivity radius. To compute the convolution response at p, the transported
kernel is matched with the (scalar) feature field on M), r.

In order to describe PTCs as GM -convolutions, we need to identify the corresponding {e}-
structure and {e}-steerable kernel on R?. A compatible {e}-structure is fixed by choosing

. d L .
an arbitrary frame [ef‘ (po)] ,—, at the origin pg. The frames at any other location p are then
determined by Levi-Civita transporting this initial frame along the shortest geodesics, that
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is, they are defined ag""|

[e;“(p)}le = PFMWP[ f‘(po)]f:l. (18.42)

Note that this definition implies in particular the following equivalent relation for the corre-
sponding gauges, which is easily seen by applying it to the frame field:

d’cup = w(*\lpo o (18.43)

GM,po—p

iven the reference frame at pg, we can express in geodesic normal coordinates, whic
G the ref fi t po Ky, d 1 dinat hich
gives rise to our usual notion of template kernel on R?:

—1

K : Bp2(0,R) - R, 0 K(0) := Ky, oexp,, o (Vi) (9) (18.44)

To show that our weight sharing via the such constructed {e}-structure is indeed consistent

with that by Schonsheck et al. [259], we reproduce the kernels K p at p by mapping our
template kernel K down to the manifold:

~

A A -1 A
Ko wTMp o Ing = K, 0 €XPp, © (wTM.pU) o wTALp ° Ing

= Kp, oexp, o ’PT;;pO_)p olog,
=K, (18.45)

The second step in this calculation used the equivalent to Eq. (I8.43) for the tangent bundle
transporter and gauges. All definitions, and their consistency, are concisely summarized by
the statement that the following diagram commutes:

eXP,, P PO —D eXpp
4)

Mpo,R<—BT MOR BTIWOR) —>Mp’R
wm,,o\ A%TM[)
Bg2(0, R)
Ky, JK K,
N R J

(18.46)
Since we constructed our {e}-structure by choosing an initial frame at pg, the reader might
wonder about the implications of this choice. A different choice of initial frame will result
in a corresponding transformation of the geodesic normal coordinates at pg, and therefore
of the template kernel K (Eq. (18:44)). However, since the {e}-structure is constructed by
transporting the initial frame, all of its reference frames will transform accordingly. The
transformation of the template kernel will then cancel out with the transformation of the
{e}-structure such that all choices of initial frames are ultimately equivalent.

The {e}-structures underlying PTCs depend crucially on the choice of origin pg from which
the frame field is constructed — different choices of origins can lead to very different {e}-
structures. As most manifolds do not come with a canonical notion of origin, the proposed
heuristic seems somewhat arbitrary. Transport based {e}-structures, and thus PTCs, are

"Since this relation defines the {e}-structure, we need to use the Levi-Civita transporters on the
full frame bundle F'M.
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furthermore discontinuous at the cut locus. This implies in particular that they are close to
the cut locus unstable under deformations of the surfaces’ geometry since such deformations
may shift the cut locus. In contrast to the heuristics of the previous models, the heuristic of
PTCs depends solely on the intrinsic geometry of the surface, that is, it is not based on its
embedding in ambient space.

To avoid confusion, we need to mention that Schonsheck et al. [259]] construct in their imple-
mentation (Section 3.2) another frame field, which should not be confused the {e}-structure
that we described above. This frame field is required for the numerical computation of the
Levi-Civita connection on the mesh, according to which the kernels are then transported.
Our analysis above is purely based on their coordinate free definition of the model, most
importantly the definition of weight sharing in (our) Eq. (I8.40).

Note furthermore that the implicitly assumed feature vector transporters in the transporter
pullback rely necessarily on the {e}-compatible trivial connection that is implied by the
{e}-structure. The feature transport agrees along the geodesics emanating from py, based on
which the {e}-structure was constructed, with Levi-Civita transporters. Transporters along
any other path differ in general from the Levi-Civita transport.

Tangent convolutions: The fangent convolutions by Tatarchenko et al. [294]] operate on
point clouds P C R® whose points are assumed to lie on a surface. Tangent spaces at the
sampling points are computed via a local principal component analysis (LPCA). The LPCA
atp € P is essentially computing the eigenvectors e; € R3, i =1, 2, 3, of the covariance ma-
trix of all points within a spherical neighborhood NV, ={q € P||lq — p|| < R} of radius R
around p. As the point cloud is sampled from a surface, one of the eigenvalues should be
close to zero. The corresponding eigenvector eg is taken as the normal vector of the em-
bedded tangent plane T,M C R3 at p. The two other eigenvectors span an orthonormal
frame [eq, es] on the tangent plane, such that the collection of LPCA eigenvectors implies
an {e}-structure on the point cloud. Note that the eigenvector with the largest eigenvalue
points in the direction of minimal principal curvature, that is, one has £, (€1) = Kmin and
Kn(€2) = Kmax. The considered {e}-structure is therefore similar to that of Boscaini et al.
[21] and Monti et al. [217], however, the frames are rotated by 7 /2 since they are aligned
with the minimal instead of maximal curvature directionE] Since the sign of the eigenvectors
is arbitrary, this heuristic fixes frames actually only up to rotations by 7. To address this am-
biguity, tangent convolutions would either have to disambiguate between the two directions
or fall back to Co-steerable kernels.

Instead of representing the feature field in geodesic normal coordinates, tangent convolutions
project the features along the normal direction on the tangent planeE] They are then interpo-
lated to a regular grid of N x NN pixels. As this grid is aligned with the reference frame, it
can be viewed as a discretization of the tangent space coordinatization wﬁjﬁp(TpM ) = R2.
The convolution computes features then by taking the inner product with a N x N pixel
kernel.

NPTC-net: Jin et al. [I41] proposed NPTC-nets on surface point clouds P C R3. Like
tangent convolutions, NPTC-nets compute tangent planes via a local principal component
analysis, however, their {e}-structure is independent from the LPCA. The {e}-structure that

15Since all reference frames are rotated by the same angle, this difference is irrelevant if the kernels
are learned.

This choice makes tangent convolutions (and NPTC-nets) different from GM -convolutions. In
the limit of small kernels relative to the curvature of the surface both projections of feature fields to the
tangent spaces become equivalent.
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is underlying NPTC-nets is rather aligned with the gradient of the geodesic distance function
from some initial point py € P. To solve for the distance function, Jin et al. [[141]] solve the
Eikonal equation via a Fast Marching algorithm. Instead of operating directly on the point
cloud as done for instance in [63], the authors propose to use a sparse voxel grid whose
voxels lie in a narrow band around the point cloud. Having computed the distance function
on the voxel grid, which should produce approximately geodesic distances, its gradient is
computed and projected on the tangent planes. The projected vector determines the first
frame axes of the {e}-structure. Note that such defined frame fields are singular at py.

Jin et al. [141]] observe that this {e}-structure implies a trivial connection on the surface (de-
fined such that the frame field is closed under this transport). The frame field (or convolution
kernels) can be understood as being transported according to this trivial connection, which
motivates the “PTC” (parallel transport convolution) in the model name. Note, however, that
NPTC-nets rely in contrast to the PTCs of Schonsheck et al. [259] not on the Levi-Civita
transport. Moreover, this statement can be made for any {e}-structure and corresponding
trivial connection.

Like tangent convolutions, NPTC-nets project the features in the ambient space to the tangent
plane. Instead of using a projection along the normal direction, the authors use a nearest
neighbor interpolation with distances measured in ambient space. The convolution kernel
is then oriented along the frames of the {e}-structure and matched with the interpolated
feature field. Given a convolution kernel X : R? — R, the authors formulate its assignment
to that tangent spaces as K o @/)ﬁ,,p : T,M — R where ¢£‘”,p = ({ef!, v), (ef',v))". This
procedure matches our definition of weight sharing and gauges (Eq. (I7.17)) exactly.

Cross-atlas convolutions: An entirely different approach was followed by Li et al. [180].
Their cross-atlas convolutions compute a texture atlas whose charts are optimized to be
approximately isometric. The convolution operation is then performed on the texture atlas,
with pixel offset maps modeling the transition maps between charts.

Before running the actual convolutions, an atlas of charts is computed. From an abstract
viewpoint, the charts map patches of the surface to R?, such that the whole surface is cov-
ered. Concretely, they map patches of a c-channel input feature field (texture) in a non-
overlapping way to an array of dimensions (X, Y, ¢). Since the patches in the array should
approximately represent geodesic neighborhoods on the surface, the charts should be ap-
proximately isometric, i.e. minimize distortions. To satisfy this requirement, the surface is
cut such into patches that the mutual angles between all triangle normals within a patch stay
below a user specified threshold — note that this approach is based on the surfaces’ extrinsic
geometry. After optimizing the patches on the surface, the feature field is on each patch pro-
jected along a dominant projection direction. A bin-packing algorithm packs the projected
patches densely into the texture map of shape (X, Y, ¢). To resolve the directional ambiguity
of the patches they are required to be rotation aligned. This is achieved by demanding that
the projections of the ambient space’s z-axis to each patch are all aligned in the texture map.

The convolution operates directly on the texture map. It groups the pixels into three different
categories which are processed in a different manner. Pixels which are in the interior of a
patch, such that the kernel does not range out of the patch, are convolved via conventional
Euclidean convolutions. Since the charts are approximately isometric, this corresponds ap-
proximately to a geodesic convolution on the patch interior regions on the surface. Pixels
that are outside of the patches are not processed, their value is fixed to zero. The interesting
case is that of pixels which are close to the boundary of the patches. As the convolution
kernel ranges for such pixels out of the current patch, it requires transition maps which
query features from a neighboring patch on the surface. The query location is computed by
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1) finding the original point on the surface that corresponds to the current kernel location,
2) shooting a geodesic to find the kernel sampling location on the surface and 3) mapping
this location to the corresponding pixel in the texture map. Using these transition maps the
patches are stitched together according to the surface geometry and the convolution on the
texture map corresponds approximately to a geodesic convolution on the surface. In the
limit of the normal angle threshold going to zero, the approximating converges to an exact
geodesic convolution. However, the patches shrink then down to individual faces, leading to
more non-trivial transition maps.

Cross-atlas convolutions correspond in this limit to GM -convolutions whose {e}-structure
is induced from the charts. The {e}-structure is at the boundaries between adjacent patches
discontinuous, however, the jumps should due to the rotation alignment of the patches in
the texture map in most cases be minimized. The discontinuities are expected to be large at
patches of the surface which are approximately horizontal.

For completeness, we want to point to the atlas based methods by Sinha et al. [278] and
Maron et al. [199]. Both consider non-isometric projections of the surface to a planar
domain, which implies that the subsequent Euclidean convolutions do not correspond to
geodesic convolutions on the surface.



18.3. {e}-steerable surface convolutions 359







APPENDIX

R - o2
u"!’?ﬁ‘






APPENDIX A

List of theorems and definitions

Translation equivariant CNNs on Euclidean spaces

[Definition 3.1.1  Euclidean feature maps as regular translation group representations| 34

[Theorem 3.2.1  Regular translation intertwiners are convolutions|. . . . . . . . . 36
[Theorem 3.2.2 Translation equivariant bias summation| . . . . . ... .. ... 38
|[Theorem 3.2.3 Translation equivariant local nonlinearities| . . . . . . . .. ... 39
|Theorem 3.2.4 Translation equivariance of local max pooling| . . . . . .. . .. 39
[Theorem 3.2.5 ‘Translation equivariance of local average pooling| . . . . . . .. 40
|Theorem 3.2.6 ‘Translation subgroup equivariance of subsampling|. . . . . . . . 40
|Theorem 3.2.7 Translation invariance of global max pooling|. . . . . . ... .. 41
|Theorem 3.2.8 ‘Translation 1nvariance of global average pooling| . . . . . . . .. 41

Aff(G)-steerable CNNs on Euclidean spaces

Definition 42,1 Euclidean feature fields| . . . . . . ... ...... ... ... .. 46
[Theorem 43.1  Steerable convolutions] . . . . . . ... ... . ... ...... 51
[Theorem 4.3.2  Affine equivariant bias summation| . . . . . . . ... ... ... 54
[Theorem 4.3.3  Affine equivariant local nonlinearities| . . . . . ... ... ... 55
[Theorem 4.3.4  Affine equivariance of local max pooling for permutation reps|. . 57

[Theorem 4.3.5 Affine equivariance of local norm max pooling for unitary reps| . 58

|Theorem 4.3.6 Affine equivariance of local average pooling| . . . . . . ... .. 59

[Theorem 4.3.7 Affine equivariance of global max pooling for permutation reps| . 60

[Theorem 4.3.8 Affine equivariance of global norm max pooling for unitary reps| 60

|Theorem 4.3.9 Affine equivariance of global average pooling| . . . . . ... .. 61

[Theorem 4.5.1 Aff(G) group convolutions as G-regular steerable convolutions| . 64




364

Appendix A. List of theorems and definitions

G-steerable kernels

[Theorem 5.3.1

Wigner-Eckart theorem for GG-steerable kernels| . . . . . .. .. 79

GM-coordinate independent neural networks

[Definition 12.1.1 1x1 GM-convolution|. . . . . . . . . .. .. ... ... .... 210
Definition 12.2.1 Kerpelfield . . . . . . ... ... ... ... ... ... 214
Definition 12.2.2 G-steerable kernell . . . . . . ... ... ... .. ... .... 216
Definition 12.2.3 GM-convolutional kernel field| . . . . . ... ..... ... .. 216
[Definition 12.2.4 Transporter pullback of feature fieldto 7M|. . . . . . .. .. .. 218
Definition 12.2.5 Kernel field transforml. . . . .. ... ... ... .. ... .. 219
[Theorem 12.2.6  Kernel field transform existence for compactly supported kernels| 220
Definition 1227 GM-convolution] . . . . . .. .. ... .. ... .. ... .... 220
[Theorem 12.2.8  Kernel field transform in coordinates| . . . . . . ... ... ... 222
[Theorem 12.2.9 GAM-convolutions in coordinates| . . . . . . . .. ... ..... 223

Isometry equivariance of coordinate independent CNNs

[Definition 13.1.1 G-structure preserving 1sometries| . . . . . . . . . . . . . ... 230
[Definition 13.1.2  Isometry pushforward of feature field:| . . . . . .. ... .. .. 233
[Theorem 13.1.3  Isomgys 1n local trivializations| . . . . . . . . . . . . ... ... 237
[Theorem 13.1.4  Isometry action on transporter pullbacks of feature fields| . . . . 240
[Definition 13.2.1 Isometry equivariant kernel field transform|. . . . . . .. .. .. 241
[Definition 13.2.2 Isometry action on kernel fields|. . . . . . .. ... ... .... 242
[Definition 13.2.3 Isometry invariant kernel fields| . . . . . . ... ... ... ... 243
[Theorem 13.2.4  Equivariant kernel field transform < invariant kernel field|. . . . 244
[Theorem 13.2.5  Isometry equivariance of GM -convolutions| . . . . . . . .. .. 247
[Theorem 13.2.6  Full isometry equivariance of OM-convolutions| . . . . . . . . . 248
[Theorem 13.2.7  Isom, (M ) equivariance of SOM -convolutions| . . . . . . . . . 248
[Theorem 13.3.1  Tangent quotient representative kernel fields| . . . . . . . . . .. 257
[Theorem 13.3.2  Manifold quotient representative kernel fields| . . . . . . . . .. 258
[Theorem 13.3.3  Equivariance on homogeneous M implies convolution| . . . . . . 260

Aff(G)-equivariant GM-convolutions on Euclidean spaces:

[Definition 15.1.1 Aff(G)-atlas of Euclidean space| . . . . .. .. ... ... ... 278
[Theorem 15.1.2  Aff(G)-atlases of charts induce G-atlases of gauges| . . . . . . . 278
[Theorem 15.1.3  Principal bundle isomorphism between Aff(G) and GM| . . . . . 280




365

|Definition 15.1.4  G-structure preserving affine transformations| . . . . . ... .. 281
[Theorem 15.1.5  Affgp inlocal trivializations| . . . . . . . . . . .. .. ... .. 281
[Theorem 15.1.6  Affgys in global affinecharts| . . . . . ... ... ........ 282
(Iheorem 15.2.1 Euchidean GM -convolutions in coordinatesl . . . . . . . . ... 285
[Theorem 15.2.2  Affine equivariance of Euclidean GM -convolutions| . . . . . . . 288

Spherical GM-convolutions

[Theorem 17.2.1  Spherical steerable kernels in geodesic coordinates| . . . . . . . 317
[Theorem 17.2.2  Spherical steerable convolutions as GM-convolutions| . . . . . . 318
[Theorem 17.3.1  Gnomonic projections as warped exponential maps| . . . . . . . 319

Symmetry groups — basic definitions

[Definition B.I.I  Group| . . . . . . . . . . . . e 367
[Definition B.1.2  Abeliangroup|. . . . . . . . ... ... ... ... ... ... . 368
[Definition B.1.3 Group homomorphism| . . . . . ... ... ... ... ..... 369
[Definition B.1.4 ~ Group 1somorphism|. . . . . . . . .. ... ... ... 369

Subgroups and products of groups

[Definition B.2.1 Subgroup| . . . . . . ... ... .. oL 370
Defimition B.2.2 Cosets| . . . . .. ... ... oo 370
[Definition B.2.3  Normal subgroup| . . . . . . . ... ... ... .. ....... 370
[Definition B.2.4  Direct product of groups| . . . . . ... ... ... ... .... 370
Definition B.2.5  Semidirect product of groups| . . . . . . . .. ... L. 371

Group actions, orbits and quotient spaces

[Definition B.3.1 Left groupaction| . . . . . . ... ... ... .. ........ 372
|[Definition B.3.2  Right groupaction| . . . . ... .. .. ... ... ....... 372
[Definition B.3.3  Grouporbit . . . . . . . ... .. ... .. 373
|Definition B.3.4  Quotient set and quotient map| . . . . . .. ... . ... .... 373
[Definition B.3.5 Orbitrepresentative| . . . . . . ... ... ... ... ...... 374
[Definition B.3.6 ~ Stabilizer subgroup| . . . . . . . ... ... .00 374
[Theorem B.3.7  Orbit-stabilizer theorem|. . . . . . . . . .. .. ... ... ... 374
Defimtion B.3.8 Transiive action| . . . . . . .. .. ... 374
[Definition B.3.9  Faithful action|. . . . . . .. .. ... ... ... .. ...... 375
[Definition B.3.10 Fixed-point free action| . . . . . . .. ... ... ... ..... 375

[Definition B.3.11 Homogeneous space| . . . ... ... ... ... ........ 375




366 Appendix A. List of theorems and definitions

|Corollary B.3.12  Homogeneous space as group quotient| . . . . . . . . ... ... 375

[Definition B.3.13 Principal homogeneous space (torsor), . . . . .. ... .. ... 376

Invariant and equivariant maps

[Definition B.4.1 Invartantmap| . . . . . . . ... ... ... ... ... ..., 376

[Definition B.4.2  Equivariantmap|. . . . . . .. ... ... ... ... ... 377

Group representations and intertwiner maps

|Definition B.5.1 ~ Linear group representation|. . . . . . . . .. .. ... .. ... 379
[Definition B.5.2  Restricted representation| . . . . . . ... .. ... ... 380
[Definition B.5.3  Direct sum representation|. . . . . . . . ... ... ....... 380
[Definition B.5.4  Tensor product representation|. . . . . . . ... ... ...... 381
|Definition B.5.5  Invariant subspace, subrepresentation|. . . . . . . .. ... ... 381
[Definition B.5.6  Irreducible representation (irrep)| . . . . . . . .. ... ... .. 381
Defimion B.5.7  Intertwinen . . . . . . . . . . ... oo 382
|Definition B.5.8  Equivalent (isomorphic) representations| . . . . . . . ... ... 383
[Definition B.5.9  Endomorphism| . . . . .. ... .. ... ... 0. 383
LemmaB.5.10  Schurslemmal . .. ... ... ... ... ... ....... 383
[Definition B.5.11 Unitary transformation| . . . . . . ... ... ... .. ..... 383
|[Definition B.5.12 Unitary group| . . . . . . . . . . .. oo 384
[Definition B.5.13 Unitary representation| . . . . . . . ... .. ... ....... 384
[Theorem B.5.14  Compact groups & unitary representations| . . . . . . . .. ... 384
|Definition B.5.15 Isomorphism of unitary representations| . . . . . .. ... ... 384
[Theorem B.5.16 Complete reducibility|. . . . . . . . ... .. ... ... .... 384
[Definition B.5.17 Clebsch-Gordan decomposition and coefficients| . . . . . . . . . 384
[Definition B.5.18 Regular representation| . . . . .. ... ... .......... 385
|Definition B.5.20 Quotient representation| . . . . . . . . . ... ... 385
[Theorem B.5.22  Peter-Weyl| . . . . . . ... ... ... ... .. ... .... 386

Additional theorems & proofs
[Theorem 1.0.1 Differentiation lemma [93]] . . . . . . . . . . . .. ... 437

[Theorem J.0.1 Regular feature fields as scalar functions on G-structuref . . . . . 440




APPENDIX B

Groups, representations and equivariant maps

This appendix gives a brief introduction to elementary group theory, the mathematics of
symmetries. Since all definitions and theorems are well known and easy to find in the liter-
ature, we omit proofs. For a more in-depth discussion we point the reader to the literature,
for instance 303, 1212} 101,33 267].

After reviewing basic definitions in the following Appendix we discuss subgroups and
products of groups in Appendix [B.2] group actions, orbits, quotients and homogeneous

spaces in Appendix and equivariant maps in Appendix Appendix gives a very
brief introduction to the theory of group representations.

B.1 Symmetry groups — basic definitions

The symmetries of an object are the set of transformations that leave it invariant; see Fig.[B.T]
Simple examples are geometric transformations like translations, rotations or reflections. It
is intuitively clear that symmetry operations can be composed with each other — for instance,
two rotations that leave an object invariant can be composed to give 1) another rotation
that 2) still leaves the object invariant. It is furthermore evident that the trivial (identity)
transformation is a symmetry of each object and that every symmetry has an inverse. In
the case of rotations, these would be the rotation by zero degrees and by the negative angle
around the same axis. The set of all symmetries of an object and their composition forms a
symmetry group, which is formalized as follows:

Definition B.1.1 (Group).
A group is a tuple (G, -), consisting of a set G and a binary operation

- GXxG =G, (g,h)—g-h (B.1)
satisfying the following three group axioms:
associativity: forall g,h,k € G onehas (g-h)-k=g-(h-k)
identity element: Je € G suchthat Vg € G onehas e-g=g=g-e

inverse element: ¥Yg € G 3971 € G suchthat g-g ' =e=g1.g
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(a) Trivial symmetry group {e} (b) Reflection symmetry group R (c) Dihedral symmetry group D¢

Figure B.1: An object is said to be symmetric when it comes with a non-trivial set of symmetry
transformations, leaving it invariant. Symmetries are mathematically modeled by groups, Def
Left: The asymmetric butterfly in Fig. [B-Ta] has no non-trivial symmetries. Its symmetry group is
therefore trivial, i.e. contains only the identity element. Middle: The butterfly in Fig. has a
bilateral symmetry and is therefore modeled by the reflection group (R with two elements (identity and
reflection). Right: Fig. shows a snowflake with dihedral symmetry Ds. It consists of rotations by
multiples of 27 /6 and reflections, making 12 group elements in total. The neural connectivity (synapse
weights) of group equivariant neural networks is necessarily invariant (symmetric) under the action of
the symmetry group. (Butterflies adapted under the Creative Commons Attribution 4.0 International [license|by courtesy of

T'witter, snowflake adapted under the Apache|license|2.0 by courtesy of Google.)

The identity element and the inverse of a group element can be shown to be unique. It is
customary to abbreviate the group by its set G and to omit the binary operation, i.e. to write
gh for g - h. We will use these abbreviations in the following whenever the meaning is clear
from the context.

Common examples of groups are the trivial group {e}, consisting of the identity element
only, the d-dimensional continuous translation group (Rd, +), the special orthogonal rota-
tion groups SO(d) := {A € R¥*4| AT = A~ det(A) = 1}, the general linear groups
GL(d) := {A € R?™9| det(A) # 0}, modeling transitions between arbitrary reference
frames of R? (change of basis), or the Euclidean groups E(d), which model the isometries
of R4 (combined translations, rotations and reflections).

Groups are often equipped with additional mathematical structure. For instance, topological
groups are equipped with a topology w.r.t. which the group composition and inversion are
required to be continuous, (locally) compact topological groups are in addition (locally)
compact spaces or Lie groups are smooth manifolds, with smooth composition and inversion
maps.

While the composition of group elements is associative, it is in general not commutative; see
Fig.[B2]
Definition B.1.2 (Abelian group).

A group is called abelian iff all of its elements commute, i.e. iff:

gh=hg Vg,heG (B.2)

Examples of abelian groups are translations or rotations in two dimensions. As one can easily
check with any object in reach, rotations in three dimensions do in general not commuteﬂ

'Rotate the object for instance by /2 around the z-axis and then by /2 around the z-axis.
Rotating instead first around the x and then around the z-axis yields a different final rotation.
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S Figure B.2: The composition of
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rot ] ﬂ_1p> Attribution 4.0 International |license| by cour-

tesy of Twitter)

Group homomorphisms are structure preserving maps between groups in the sense that the
composition of group elements in the domain is compatible with the composition of their
images in the codomain.

Definition B.1.3 (Group homomorphism). A group homomorphism between two groups
(G,+) and (G', %) isamap v : G — G’ such that

Y(g-h)=~(g)xv(h) Vg hed, (B.3)

visualized by the following commutative diagram:

GxG—— @G

v X ny{ lW (B.4)

G/XG/f}GI

This implies generally that v(g~') = ~(g)~' and that g(e,) = e,,. A simple ex-
ample for a homomorphism is the map proj; : (R* +) — (R,+), (z1,22) — 71
since proj; ((z1,22) + (y1,42)) = projy(@1+y1, 2 +y2) = 21 +y1 =
proj; (x1,x2) + proj;(y1,y2). As evident from this example, homomorphism may lose
some of the structure (here the translation of the second axis).

If all group structure is preserved by a homomorphism, which is exactly the case when it is
invertible, one speaks of an isomorphism:

Definition B.1.4 (Group isomorphism). A group homomorphism v : G — G’ is denoted
as group isomorphism if it is invertible, that is, if there exists an inverse v~ ! : G' — G
satisfying v~ ' oy = idg and vy oy~ = idg:. One writes G = G to state that G and
G’ are isomorphic.

Isomorphic groups are fully equivalent in their structure. An example of isomorphic groups
are all subgroups of SO(3) consisting of rotations around a fixed axis - all of these subgroups
are planar rotations in the plane orthogonal to the respective axis, and therefore in particular
isomorphic to SO(2). One can show that they are furthermore all isomorphic to the unitary

group U(1) := {e*®| ¢ € [0, 27)}, modeling rotations of the complex plane C.
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B.2 Subgroups and products of groups

One is often interested in a subset of symmetries that forms a group itself:

Definition B.2.1 (Subgroup). A subset H C G of a group G forms a subgroup if it is closed
under composition and taking inverses:

composition: forall g,h € H one has gh € H

inversion: forall g € H onehas g~* € H

As the name suggests, subgroups are themselves groups, that is, they satisfy the three
group axioms. One writes H < G to denote that H is not only a subset, but a subgroup

of G.

Note that every group has itself as subgroup. Any subgroup H < G different from the group
G itself is denoted as proper subgroup, which may be symbolized by using a < symbol
instead of <. Any group has the trivial group {e} as subgroup. Further examples are discrete
translations (Z%,+) < (R? +) or discrete two-dimensional rotations Cn < SO(2) by
multiples of 27 /N.

Definition B.2.2 (Cosets). Let G be a group and H < G a subgroup. The subsets of G
defined by left (right) translations of H by g € G are known as left (right) cosets of H
inG:

left coset: gH = {gh|h € H}
right coset: Hg:= {hg|h € H}

The (quotient) space of left cosets is denoted by G /H, while the (quotient) space of
right cosets is written H\G.

The spaces G/H and H\G do in general not carry a group structure. However, they can be
shown to do, in the special case where H is a normal subgroup of G.

Definition B.2.3 (Normal subgroup). A subgroup N < G of a group G is called normal
iff its left and right cosets coincide, that is, iff

gN =Ng Vged. (B.5)

One usually writes N < G if N is a normal subgroup of G.

Two groups may be combined in different ways to form a new group. The simplest way of
doing so is the (outer) direct product of groups, which combines its factors such that they
transform independently:

Definition B.2.4 (Direct product of groups). Ler (H,-) and (K,*) be arbitrary groups.
Their (outer) direct product (H, -) x (K, *) is defined on the Cartesian product H x K
of the underlying sets, equipped with the binary operation

HxK—HxK, ((hk), (hk))w (h-h, kxk) (B.6)

which composes the elements of the factors H and K independently from each other.
One commonly abbreviates the direct product by H x K.
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The direct product is generalized to an arbitrary number of factors by taking the Cartesian
product over all sets and defining the binary operation element wise. Given a direct product
H x K, one can recover subgroups H' := {(h,e,.)|h € H} and K’ := {(e,;.k) |k €
K } which are isomorphic to H and K, respectively. Note that these subgroups satisfy the
following algebraic properties:

= the intersection H' N K’ = (e, e,.) is trivial

= there is a unique decomposition of elements in H x K into one element of H’ and
one of K’

= elements in H' and K’ commute — they are both normal subgroups of H x K

If a group contains subgroups that satisfy these properties, it is called inner direct product
and is guaranteed to be isomorphic to the outer direct product of these subgroups.

An example of a direct product is the symmetry group (R,+) x SO(2) of an infinitely
extended cylinder, whose factors describe the independent translation along the cylinder and
rotations around its axis.

A generalization of the direct product is the semidirect product of groups, in which the
subgroups are not composed independently anymore but the second factor acts on the first
one:

Definition B.2.5 (Semidirect product of groups). Assume arbitrary groups (N,-) and
(H,*) to be given and lety : H — Aut(N) be a group homomorphism from H into the
automorphism group (symmetries) of N. The corresponding (outer) semidirect product
(N, +) % (H,*) is defined by:

* the underlying set is the Cartesian product N x H

* a binary operation givenby (NxH) X (NxH) - NxH,
((n, h), (n, h)) — (7 ~(h)n, hx h)

This definition includes the direct product for the trivial homomorphism y(h) = idy €
Aut(N) for any h € H, which leaves N invariant. A non-trivial example is the Euclidean
group E(d) = (R%,+) %, O(d), for which v(h) = h € O(d) < Aut(R?), such that
(ta, ha) - (t1,h1) = (tg + haty, hghl) for any translations ¢1, ¢, € (R?, +) and orthogonal
group elements hy, ho € O(d). It is worth building an intuition by drawing a few examples
of the composition of translations and rotations on a piece of paper — you will indeed find
that rotations of the plane act on previous translations, while translations do not affect the
overall rotation.

As for the direct product, the semidirect product N X, H contains subgroups N’ :=
{(n,e,)|n € N} and H' := {(ey,h)|h € H} that are isomorphic to N and H. In
general, only IV is a normal subgroup of the semidirect product. One can show that there

exists again a unique decomposition g = nh of an element ¢ € N x., H into elements
ne N andh e H'.

Without going into more detail, we want to mention that further products of groups, like
the Wreath product or the Zappa—Szép product, exist, and are applied in equivariant deep
learning [316].
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R? R2 SO(2)\R? = R
r
5
G
9 I
O T
Grx
~ Gl
G0
(a) SO(2)-action on R? (b) SO(2)-orbits on R? and quotient SO(2)\R? = Rx

Figure B.3: Action, orbits and quotient of the 2-dimensional rotation group G = SO(2) on the
plane R%. Left: A group element g € SO(2) (blue) acts on a point z € R? (orange) by rotating
it to another location g > = € R? (green). The set of points SO(2) >z := {g > z|g € SO(2)}
(purple) reached by acting with SO(2) on x is denoted as orbit of z. Right: The group action parti-
tions R? in disjoint orbits. While the orbits for points different from the origin are circles, the origin’s
orbit is a single point. The space of orbits is the quotient space SO(2)\R? of the action. It is in this
example isomorphic to the positive real line (radii) R>o. The quotient map g : R* — SO(2)\R?
collapses points in the space acted on to their orbits, i.e. to the quotient space. The wiggly arrow is a
(non-canonical) choice of orbit representatives.

B.3 Group actions, orbits and quotient spaces

In our application to equivariant networks we are mainly interested in the action of groups
on some object like a space or feature field.

Definition B.3.1 (Left group action).
Let G be a group and X be a set. A left group action is a map

>: GxX—>X, (g,2)—=g>=x (B.7)
that is compatible with the group composition and identity element:
associativity: (gh)>x =g (ht>x) forany g,h € G, v € X
identity: e>x =x forany x € X
G is then said to act on X from the left and X said to be a left G-set.

Fig visualizes the natural action of the matrix group SO(2) C R2*2 on R? by matrix
multiplication, thereby rotating points in the plane.
Besides left actions, there are right actions, which are similarly defined:

Definition B.3.2 (Right group action).
Let G be a group and X be a set. A map

4: XxG—>X, (z,9)—ax<g (B.8)
is denoted as right group action iff it satisfies:
associativity: x <1 (gh) = (x < g) <h forany g,h€ G, x € X

identity: x <e=ux forany x € X
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The difference between left and right group actions lies in their associativity law, specifically
in the order in which the composition gh of two group elements g, h € G acts. Left and right
actions can be converted into each other by means of inversion of the acting group elements
since this inversion (gh)™! = h=!'g~! swaps their order. To make this explicit, let > be a
left group action, then

Iy : X XG =G, (2,9) = < g = g iz (B.9)
is a right action since, for arbitrary g,h € G and x € X,

x < (gh) = (gh)_1 >x = (h_lg_l) > x (B.10)

= h_l > (g_l > 1‘) = (iU Ziny 9) Tiny h?

as required for right actions. An equivalent argument holds to convert right actions to left
actions. We will make heavy use of both left and right group actions on fiber bundles, with
left actions modeling their active transformations (diffeomorphism pushforwards) and right

actions modeling passive gauge transformations. Since all of the following definitions can
be made similarly for both types of actions, we will only give them for left group actions.

If G acts on X, one may ask where a point z € X may be moved by the G-action. The set
of such points is known as orbit of x; see Fig.[B.3]

Definition B.3.3 (Group orbit). Let > be an action of G on X and consider any element
x € X. The subset

Graz = {g>z|geCG} (B.11)
of X is then denoted as orbit of .
Note that one can define an equivalence relation, defined in footnote [TT] by identifying any
two elements of X iff they are lying in the same orbit:
reflexivity: x ~ x, thatis, x is contained in its own orbit G > x
symmetry: T~y Y < Y~ &, thatis, if z is contained in y’s orbit, then y is contained
in z’s orbit
transitivity: T~y Ay~ 2 = T~ 2, thatis, if x is contained in y’s orbit and if y
is contained in z’s orbit, then x is contained in z’s orbit
The G-action thus partitions X into disjoint equivalence classes (the orbits). The set of all
orbits is the corresponding quotient set:

Definition B.3.4 (Quotient set and quotient map). The quotient set induced by a G-action
> on X is the set of all orbits:

G\X = {Gpz|zxe X} (B.12)
The corresponding quotient map collapses elements of X to their orbit:
I : X = G\X, =G> 2 (B.13)
We distinguish quotient spaces arising from right group actions in our notation by writing
them as X /G instead of G\ X.

Since the quotient map is in general non-injective, it does not have an inverse. However, by
the axiom of choice, one may make a non-canonical choice of orbit representative r_ () €
G >z C X for each orbit G > z:
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Definition B.3.5 (Orbit representative). Orbit representatives are specified by a map

re : G\X =X  suchthat g or (G>z)=Gpzr VG>zc G\X,
(B.14)

i.e. such that the following diagram commutes:

ox —* s x T aox (B.15)

L J

idg\ x

Orbit representatives can in general not be chosen continuously.

The additional requirement on 7, in Eq. (B.I3)) ensures that the orbit representative is indeed
an element of its orbit as subset of X . Fig.|B.3|visualizes the orbits, quotient space and some
choice of representatives for the SO(2)-action on R

The orbit of a G-set element x is related to its stabilizer subgroups, which is that subgroup
of G that leaves x invariant:

Definition B.3.6 (Stabilizer subgroup). Let X be a G-set, acted on by t>. The stabilizer
subgroup of G corresponding to some element x € X is defined as:

Stab, = {g€Glgrzrz=2} < G (B.16)

With this definition, we formulate the orbit stabilizer theorem:

Theorem B.3.7 (Orbit-stabilizer theorem). Let I> be a continuous action of a topological
group G on a G-space X and let x € X. The orbit of x is then isomorphic (homeo-
morphic) to the quotient (coset space) of G w.r.t. the stabilizer subgroup:

Gz =, G/Stab, (B.17)

Note that the stabilizer subgroups of different elements of the same orbit are always isomor-
phic (even conjugate), that is, Stab, = Stab,, forany z,y € G > zand z € X.

B.3.1 Properties of group actions

Group actions may have further properties of interest, like being transitive, faithful or fixed-
point free. A transitive group action is distinguished by being able to move any element of
the set it acts on to any other element — there is only one single orbit:

Definition B.3.8 (Transitive action). A G-action > on X is called transitive iff it satisfies:

Ve,ye X = dgeG suchthat y=gp> . (B.18)

Spaces with a transitive group action are known as homogeneous spaces; see Appen-
dices [B.3.2 and [E] for more details. Examples of transitive actions are SO(3)-rotations of
the sphere S2. The plane R? is being acted on transitively by the standard actions of the
two-dimensional translation group (R?, +) or the Euclidean group E(2), but not by the ro-
tation group SO(2) or by one-dimensional translations (R, +) along some axis.

Faithful group actions are actions for which any non-trivial group element moves at least one
element of the space it acts on:
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Definition B.3.9 (Faithful action).
Let > be a G-action on X. This action is called faithful if it satisfies

VgeG\{e} = 3FJxze€X suchthat gz #zx. (B.19)

G\{e} := {g € G |g # e} refers hereby to all group elements except for the identity,
not to a quotient.

To construct a counterexample, consider the the two-dimensional translation group (R?, +),
acting on the plane R? as defined by (u,v) > (z,y) := (z + u,y). This is a well defined
group action since (0,0) > (x,y) = (z,y) and (u,v) > (r,8) > (z,y) = (z+u+71y) =
(u+rv+s)>(x,y) for any z,y,u,v,r,s € R. However, it is not faithful since
(0,v) > (z,y) = (x,y) for any v,z,y € R. One can show that a non-faithful G-action
corresponds always to a faithful action of some subgroup of G.

As the name suggests, a fixed-point free action leaves no single point of the space on which
it acts invariant:

Definition B.3.10 (Fixed-point free action). A G-action 1> is fixed-point free iff all stabi-
lizer subgroups are trivial, that is, iff Stab, = {e} Vz € X.

Fixed-point free actions are always faithful if the set acted on is non-empty. The standard
action of the translation group (R%, +) on R is fixed-point free, while the standard action
of the Euclidean group E(d) on R? is not — it has stabilizer subgroups Stab, = O(d),
consisting of rotations and reflections around any point z € R?. Another counterexample is
the standard action of O(d) on R%: while the stabilizers for all points = # 0 are trivial, the
origin is fixed by all group elements, i.e. Stabg = O(d).

B.3.2 Homogeneous spaces

Homogeneous spaces are of particular importance for the theory of equivariant networks
since they admit a natural definition of convolution integrals. Since homogeneous spaces
and their convolutions are reviewed in detail in Appendix [F] we will here just give a brief
overview.

Definition B.3.11 (Homogeneous space). A G-space is said to be homogeneous iff it is
equipped with a transitive group action, Def.[B.3.8]

The transitivity of the group action implies that the homogeneous space consists of a single
orbit. As a corollary of the orbit-stabilizer theorem [B.3.7] any homogeneous space arises as
a group quotient, i.e. as a space of cosets:

Corollary B.3.12 (Homogeneous space as group quotient). Let X be a homogeneous G-
space of a topological group G and x € X arbitrary, then

X =p G/ Stab, . (B.20)

Since the stabilizer subgroups at all points of the homogeneous space are isomorphic to the
same group H < G, the quotient map

G—G/H, g— gH (B.21)

makes G a principal H-bundle over the homogeneous space G/ H; see Section|11.1.5|for a
definition of principal bundles.
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An example of a homogeneous space is R? = E(d)/ O(d) since the action of the Euclidean
group E(d) on R? is transitive with stabilizer subgroups isomorphic to O(d) < E(d). It
arises further as a homogeneous space R? = (R? +)/{e} under the transitive action of
the translation group (Rd ,+) with trivial stabilizers {e}. Another example is the sphere
S$2 = S0(3)/S0(2) = O(3)/O(2) with transitive symmetries SO(3) and O(3), whose
stabilizer subgroups are isomorphic to SO(2) and O(2), respectively.

One further distinguishes principal homogeneous spaces. They have trivial stabilizers and
are thus isomorphic to the group as topological spaces, but don’t carry a group structure.

Definition B.3.13 (Principal homogeneous space (torsor)). A principal homogeneous G-
space has a transitive and fixed-point free group action.

Missing the group structure of G, a principal homogeneous G-space does not have a dis-
tinguished identity element. Principal G-bundles, defined in Section have principal
homogeneous G-spaces as fibers. In the case of G-structures, which are principal G-bundles
of reference frames, the lack of identity element reflects the lack of a canonical reference
frame.

A simple example of a principal homogeneous space is the circle S 2, SO(2), which is
acted on transitively and fixed-point free by SO(2).

B.4 Invariant and equivariant maps

We turn now to functions mapping between G-sets. Such functions are said to be G-invariant
if their result does not change when acting on their input. Since we are in our application
interested in invariant (or equivariant) neural network layers, we denote the maps in the
following by L.

Definition B.4.1 (Invariant map). Let X be a G-set, acted on by some group action >
A function L : X — 'Y is called G-invariant, iff it satisfies

L(g>yx) = L(x) VgeG, ze€X, (B.22)

visualized by the commutativity of the following diagram:

\L)
QDX[ Y (B.23)

As an example, consider the map | - | : RY — Rsq, x + ||, which maps any vector to
its Euclidean norm. This map is invariant under rotations and reflections of the vector, i.e.
under the standard action of the orthogonal group O(d) on R?. Another example are neural
networks for image classification, which should usually be invariant under translations of the
input image.
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Since G-invariant maps are constant on the group orbits, they imply a unique unconstrained
map L : G\X — Y on the quotient set such that L = L o g :

X % Y
%l o (B.24)
-7 L

G\X

While the result of an invariant map does not change when acting on their domain, the result
of an equivariant map changes according to some group action on the function’s codomain.

Definition B.4.2 (Equivariant map). Let X andY be G-sets, acted on by group action 1>,
and >y, respectively. If a function L : X — 'Y commutes with these group actions,

Lig>y x) = gy L(x) VgeG, e X, (B.25)
it is said to be G-equivariant. This condition corresponds to the commutative diagram
below:

x —L vy
g DXL Lg [ (B.26)
X — Y

Note that invariant functions are a special case of equivariant functions for which the output
group action g > = idy is trivialﬂ

X . x L vy
o ow = el e e
X L X ———Y

On the other hand, any equivariant map w.r.t. group actions &> and >y, on its domain and
codomain can itself be viewed as an invariant under the joint action on the function space,
since forany g € G E]

Lo (g [>X ()) = (g [>Y ()) oL
Dy () oLo(gry () = L (B.28)

This insight has immediate consequences for equivariant neural networks: their neural con-
nectivity (synapses) is necessarily invariant under the simultaneous group action on the neu-
rons’ input and output space, a property which is usually referred to as weight sharing. Our
central Theorem [13.2.4] confirms indeed that equivariant kernel field transforms (network
layers) on manifolds are specified by invariant kernel fields (neural connectivity).

= (¢

*The trivial (invariant) action > : G x Y — Y, (g,y) — g >y := y is indeed a well defined
group action since (gh) >y =y =g>y =g> (h>y)and e >y = y, as demanded in Def.
30ne checks that this is indeed a well defined group action on the function space.
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As an example for an equivariant map, consider the one-dimensional Euclidean convolution
map

Kx: IAR) - IX(R), frs K#f i= /Rdy Kz —1y) f(y), (B.29)

acting on square integrable functions on the real line (the kernel K is also an element of
L?(R)). Denote by t> the regular translation group action on real valued functions, which is
defined by (g > f)(z) = f(xz — g). The convolution is then easily shown to be equivariant
w.r.t. this action on its domain and codomain since for any g € (R, +), any = € R and any
K, f € L*(R) one has:

(K + (g5 )(z) = /RdyK(x—y) (95 F)y)
=/RdyK(x—y)f(y—g)

- / iz K((z - g) - 2) f(2)

= (K * f)(z—9)
= (9> (K= [))(=) (B.30)

That convolutions are not only sufficient, but necessary for a linear and regular translation
group action equivariant map is proven in Theorem[3.2.1]

B.5 Group representations and intertwiner maps

We now turn to the study of group representations, which are essentially linear group actions
on vector spaces. A group representation assigns matrices (or linear operators) to group
elements and models the group operation by matrix multiplications (composition of linear
maps). Representation theory is of great practical relevance in physics and deep learning
where the objects being acted on are typically elements of some vector space.

The definitions and results of representation theory depend heavily on the class of groups,
representations and vector spaces under consideration. In the following Appendix [B.5.1
we focus on finite dimensional representations of locally compact groups. Appendix [B.5.2
studies unitary representations of compact groups, for which some additional properties
can be proven. While one considers usually complex vector spaces, we allow for K-vector
spaces, where K is either the field of real or complex numbers, R or C, respectively.

As we keep our introduction short and intuitive, it can hardly live up to the rich literature on
representation theory. For a more rigorous introduction we point the reader to [[102} [303]].
The representation theory of G-steerable kernels for compact groups G is in depth developed
in [173]E] We will not discuss induced representations, which are described in [35 [55].

*Compact groups include in particular (all subgroups of) the unitary groups U(d) and the orthogo-
nal groups O(d), which model rotations and reflections of C* and R?, respectively. Further examples
of compact groups are listed on Wikipedial


https://en.wikipedia.org/wiki/Compact_group
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B.5.1 Finite dimensional representations of locally compact groups

This section introduces finite dimensional representations of locally compact groups. The
finite dimensionality refers hereby to the vector space being acted on. Locally compact
groups include in particular finite groups, compact groups and Lie groups.

Definition B.5.1 (Linear group representation). A linear group representation of a group
G on a vector space V is a tuple (p, V') where

p:G — GL(V) (B.31)

is a group homomorphism from G to the general linear group GL(V') (invertible linear
maps) of the vector space. V is called representation space.
One sometimes refers to only p or V' as representation if the other constituent is clear from

the context.

By the definition[B.1.3] of homomorphisms, group representations satisfy

composition:  p(gh) = p(g)p(h) Yg,he€G (B.32)
inverse: p(g~') =plg)”" Vgeaq (B.33)
identity:  p(e) =idy |, (B.34)

which makes the composition of the linear maps in the image Im(p) C GL(V) of p consis-
tent with the composition of G-elements in its domain.

If V' = K¢, the representation assigns invertible matrices p(g) € GL(K°) to group ele-
ments and acts via matrix multiplication. One can always choose such an explicit matrix
representation of finite-dimensional representations by choosing some basis of V.

Group representations are in one-to-one relation with linear group actions as defined in
Def. since any G-representation p defines an action

>, GXV =V, (g,v)— g>,v = p(g)v (B.35)
and any linear G-action > defines a representation
P - G— GL(V)7 g— pD(g) =gk ()7 (B.36)
satisfying their respective defining properties, as is easily checked.

If G is a topological (e.g. locally compact) group and V' is a topological vector space, linear
group representations (p, V') are required to be continuous in the sense that the associated
group action >, is a continuous map.

We list some of the representations commonly encountered in equivariant deep learning:

« the trivial representation of any group is given by p(g) = idy, where V = K!

= the standard representation (or defining representation) of any matrix group G <
GL(K¢) is given by the group element itself, i.e. by p(g) = ¢. It acts on K¢ by
matrix multiplication.

= the tensor representation of rank (r, s) of any matrix group G < GL(K¢®) is given

by tensor products of the group elements, i.e. by p(g) = ®°(g71)T ®" g. It acts
on ((K°)*)®s @ (K¢)®", where ((KK)¢)* is the dual of K¢.
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10) 0 g T 37”
1 0 0 O 0 0 0 1 0 0 1 O 01 0 O
c 01 0 O 1 0 0 0 0 0 0 1 0 01 0
Preg (@)
reg 0 0 1 0 01 0 0 1 0 0 O 0 0 0 1
0 0 0 1 0 01 0 01 0 O 1 0 0 O

Table B.1: Visualization of the regular representation matrices of the cyclic group Cy4, consisting of
rotations that are multiples of /2. It is a permutation representation that shifts the four axes of K* in
a cyclic manner.

« the regular representation of a finite group G acts on K!¢! by permuting its |G| ele-
ments according to the group composition lawE] Specifically, consider the standard

basis {e, | g € G} of KIE!, labeled by group elements. The regular representation
acts then as p(g)ey := egq. Table visualizes the regular representation for the
cyclic group C4. A more abstract definition, extending regular representations to
infinite-dimensional vector spaces, is given in Def. [B.5.18| below.

From the example of the trivial representation it is clear that group representations are, just
as group actions, not necessarily faithful (Def.[B.3.9).
A representation of a group implies representations of any of its subgroups via restriction:

Definition B.5.2 (Restricted representation). Ler (p, V) be a G-representation and let
H < G be a subgroup. The restricted representation is the H-representation on 'V
defined by restricting the domain of p from G to H:

Res% p: H — GL(V), hw~ p(h) (B.37)

The direct sum of vector spaces extends naturally to representations:

Definition B.5.3 (Direct sum representation). Assume iwo G-representations (p1, V1)
and (p2, Vo) to be given. Their direct sum (p1 @ p2, V1 ®V3) is a dim(Vy) + dim(V3)-
dimensional representation, acting on the direct sum of vector spaces as defined by:

(p1 @ p2)(g) (V1 B v2) = p1(g) v1 © pa(g) v2 (B.38)

When a basis of V; and V5 is chosen, the resulting matrix representation is the matrix direct
sum of the matrix representations p; and ps:

(01 @ p2)(g) = (” 189) p;zg)) (B.39)

The two subspaces V; and V5 of Vi @ V; are transforming independently under this repre-
sentation.

> More abstractly, the regular representation is identified with the group algebra K[G] of G over K.
As a K-vector space, it is the free vector space generated by G, consisting of formal linear combinations
Ag + wh of group elements where g, h € G and A, u € K. The algebra structure of K[G] is inherited
from the group multiplication, that is, it is defined by k(Ag+ ph) := A(kg) + pu(kh) forany g, h, k €
G and pu, A € K.
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It is furthermore possible to combine two representations by constructing their tensor prod-
uct:

Definition B.5.4 (Tensor product representation).
Let (p1, V1) and (p2, Va2) be two G-representations. Their tensor product representation
(p1 ® p2, V1 @ Vi) is dim(V1) - dim(Va)-dimensional and acts on the tensor product
of vector spaces as follows:

(p1 @ p2)(g) (11 @ v2) = p1(g) v1 ® p2(g) v2 (B.40)

Not every element of V1 ® Vo can be represented as simple tensor vi ® va, but this
definition extends to the general case by linearity.

In the case of matrix representations, the tensor product is simply given by the Kronecker
product,

p1(g)11-p2(g) - p1(g)v - p2(9)
(p1®p2)(9) = : : ) (B.41)
pi(g)v-p2(g9) - pi(g)y - p2(9)

where we abbreviated dim(V;) =: V. Direct sum and tensor product representations can be
extended to a finite number of factors, which are written @fil p; and ®f\;1 pi, respectively.

Having seen how we can build new, larger representations from existing ones, we ask now
whether we can split representations into separate constituent parts.

Definition B.5.5 (Invariant subspace, subrepresentation).
Let (p, V) be a G-representation and consider a vector subspace W C V. This sub-
space is called invariant if it is closed under the action of p, that is, if p(¢g)w € W for
any w € W, g € G. This implies a homomorphism p|lw : G — GL(W), denotes as
subrepresentation of p.

An obvious example are direct sum representations, which have their summands by con-
struction as subrepresentations.

Representations of special interest are those which are not further reducible in (nontrivial)
subspaces:

Definition B.5.6 (Irreducible representation (irrep)).
A representation (p, V') is called irreducible representation (irrep) if it has only the two
trivial subrepresentations W =V and W = 0.

Whether a representation is reducible or not may depend on the field K under consideration.
For instance, the real valued irreps of SO(2) are the trivial representation and the frequency-
k rotation matrices

SO (i e ) R L N

while the complex irreps of SO(2) are frequency-k complex exponentials p20(2)’c(¢) =

e’®? k€ Z (including the trivial irrep for & = 0). Over the complex field, the rep-
resentation matrices in Eq.(B.42) are reducible. They decompose into a direct sum of

two invariant subspaces, corresponding to complex valued irreps of opposite frequency, i.e.

SO(2),R ~, SO(2),C SO(2),C
Pk() Zcp_k() @pk.() . keN.
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The restriction Resg(p) of a G-irrep p to a subgroup H < G is in general not irreducible
anymore. An obvious example is the restriction to the trivial group H = {e}, for which
Res?e} p= @?;?(V) (1) decomposes into a (reducible) direct sum of dim (V") trivial irreps
of {e}. As another example, consider the defining representation p(g) = g of SO(3), which
is irreducible. If it is restricted to the subgroup SO(2), of rotations around the z-axis, we
end up with a direct sum of the defining representation of SO(2), modeling the rotation of

the zy-plane around the z-axis, and the trivial representation, ensuring that the z-axis is itself
fixed:

cos(¢p) —sin(¢) 0 .
S0(3) e _ [cos(¢) —sin(¢)
[Resso(z)zg] (¢) = <sm(§¢) C%S(¢) (1)> = (sin(d)) Cos(gb)) @ (1) (B.43)

The central building blocks of any equivariant neural network are linear equivariant maps,
which are known as intertwiners:

Definition B.5.7 (Intertwiner). Let (p1,V1) and (p2, V) be two G-representations. An
intertwiner between them is an equivariant linear map L : Vi — V5. It satisfies

Lopi(g) = palg)oL  VgeG, (B.44)
that is, it makes the following diagram commute:

i —L W

2 (Q)J Jpz (g) (B.45)

Vi—F—"

The vector space of intertwiners is usually denoted as Homg (Vy, Va).

Recall our example of convolutions as translation equivariant maps in Appendix[B.4} Since
the convolution and the considered group action are linear, convolutions are identified as
intertwiners ]

If V1 and V5 are finite dimensional and given some choice of bases for them, the intertwiner
is represented by a matrix L € Kdim(V2)xdim(V1) Rewriting the equivariance constraint in
Eq. (B-44), it needs to satisfy pa(g) L p1(g)~* = L for any group element g. Vectorizing
this linear constraint leads t

((p1(9)™") " @palg)) vee(L) = vee(L) VgeGq, (B.46)

which shows that intertwiners are the invariants under the simultaneous action of p; and ps.
This equation is particularly useful to solve numerically for intertwiners.

Working towards a better understanding of intertwiner spaces, specifically those between
irreps, we need to introduce both isomorphisms and endomorphisms of representations:

5The (linear) group action on the convolution’s domain and codomain is the translation of functions
with domain R, which is the (infinite dimensional) regular representation of (R, 4); see Def.

"The vectorization operator vec : K™*" — K™ acts on an m x n—matrix by stacking its
columns into an m-n-vector. It satisfies vec(AX B) = (B' ® A)vec(X) for any triple A, X, B
of dimensionally matching matrices [229].
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Definition B.5.8 (Equivalent (isomorphic) representations).
Two G-representations (p1, V1) and (p2, Va) are said to be equivalent or isomorphic if
there exists an invertible intertwiner, i.e. a vector space isomorphism L : Vi = V;
satisfying L o p1(g) = p2(g) o L ¥V g € G, between them.

In terms of matrix representations, this just means that there exists a change of basis (invert-
ible intertwiner) () such that the representations are similar as matrices:

p2g) = Qpi(9) Q™" VgeG. (B.47)
Definition B.5.9 (Endomorphism).
Consider a G-representation (p,V'). Intertwiners from (p, V) to itself, that is, linear
maps L : V — V such that L o p(g) = p(g) o L Vg € G, are called endomorphisms.
The endomorphism space is written Endg (V) = Homg(V, V).

With these preparations we can formulate Schur’s lemma, which sheds light on the space of
intertwiners between irreducible representations:

Lemma B.5.10 (Schur’s lemma).
Let (p1, V1) and (p2, Va) be G-irreps over K = R or K = C, then:

= if (p1, V1) and (p2, V) are not isomorphic, there exists no non—triviaﬁ intertwiner
between them.

= if (p1, V1) = (p2, V2) =: (p, V) are identical, any intertwiner is (by definition) an
endomorphism and:

- if K =C, it is given by scalar multiples \idy of the identity, where A € C.

- if K = R, the endomorphism space Endg (V) is either one-, two- or four-
dimensional, depending on whether the representation is of real, complex or
quaternionic type [ 173 125]].

The second statement of the theorem is usually only stated for complex representations (or
representations over any other algebraically closed field), however, the case of real represen-
tations is of particular importance for the theory of steerable kernels [173]].

B.5.2 Unitary representations of compact groups

In many applications the representation space is equipped with an inner product, making it an
inner product space. It is in this case possible to define (not necessarily finite-dimensional)
unitary representations, which assign unitary (norm-preserving) transformations to group el-
ements. Specifically for unitary representations of compact groups, strong results regarding
their decomposability into irreps can be proven. The Clebsch-Gordan decomposition and
the Peter-Weyl theorem describe this decomposition for the case of tensor products of irreps
and for quotient (or regular) representations, respectively.

Definition B.5.11 (Unitary transformation).
Let Vi and V5 be two inner product spaces. A unitary transformation from Vy to V5 is
an isometric (norm preserving) bijective linear map:

U: Vi =V, such that (Uv, Uw)v2 = (v, w}vl Yo,weVy (B.43)

Unitary transformations are the isomorphisms between inner product spaces.

8The zero-map 0 : V; — {0} C V4 is a trivial intertwiner between any pair of representations
(Pl, ‘/1) and (p27 ‘/2)
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As the composition of unitary maps is again unitary, the unitary maps from a vector space to
itself form a group:

Definition B.5.12 (Unitary group). Let V' be an inner product space. The unitary group
U(V) = {ge GL(V) ’ (g, gw),, = (v,w),, Yv,w € V} < GL(V) (B.49)

is the group formed by all unitary transformations from V to itself.

If V. = C¢ the unitary group is concretely realized as the group of unitary matrices
U(C®) = {g € GL(C°) |gg"' = g'g = idce}, where 1 is the Hermitian adjoint. In the
case of real inner product spaces V, it is common to talk about orthogonal groups O(V)
instead. Specifically for V' = R€, the orthogonal group is realized by orthogonal matrices,
ie. O(c) = {g € GL(c)|gg" = g"g = idre}. We will in the following for simplicity
refer to both as unitary groups.
Definition B.5.13 (Unitary representation).
A unitary representation of a locally compact topological group G on a (potentially
infinite-dimensional) inner product space V' is a tuple (p, V') where

p:G = UWV) (B.50)

is a continuous group homomorphism to the unitary group of V. The continuity re-
quirement refers hereby to the continuity of the associated group action G X V. — V|

(9,v) = p(g)v.

The significance of unitary representations for the representation theory of compact groups
becomes evident by the following theorem:

Theorem B.5.14 (Compact groups & unitary representations).
Every linear representation of a compact group on an inner product space is equivalent
to a unitary representation.

This statement is certainly true if the inner product (-, -) on the inner product space is already
G-invariant. If it is not, one can always define a group averaged inner product (z,y) :=
f ¢ d9 (gz, gy), with g being the Haar measure, which is by construction (left) G-invariant.

Definition B.5.15 (Isomorphism of unitary representations).
An isomorphism berween unitary representations (p1, V1) and (pa, Va) is an invertible
unitary intertwiner Vi = V.

A central result for finite unitary representations is their decomposability into irreps:

Theorem B.5.16 (Complete reducibility).
Let (p, V') be a finite dimensional unitary representation of any group G. It decomposes
then into an orthogonal direct sum p = @, p; of irreducible unitary subrepresentations

pi [297].

An explicit application is the Clebsch-Gordan decomposition of tensor products of irreps
into their irreducible subrepresentations.

Definition B.5.17 (Clebsch-Gordan decomposition and coefficients).
Let (p1, Vi) and (py, Vi) be unitary irreducible representations of a compact group G.
Their tensor product p; & py, is not necessarily irreducible, however, by Theorem|[B.5.16|
there exists an isomorphism

CGu: Vi®Vy — @jeé EB;” Vi, (B.51)
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known as Clebsch-Gordan decomposition, which decouples the tensor product into a

direct sum of irreps. G denotes hereby the set of isomorphism classes of unitary irreps
of G while mj;, € Ny is the multiplicity of irrep j in the tensor product of irreps
and k.

To make the Clebsch-Gordan decomposition concrete, consider a choice of basis
{efln = dlm(V)} of irrep j, implying basis tensors €]" ® e} of Vi @ Vi,
and basis elements e of @mj " V; (additionally labeled by s). The Clebsch-Gordan
coefficients are then the matrix elements of CGyy, in this basis:

(s, jM|lm; kn) := < T CGu | e @ ef) (B.52)

Harmonic analysis (Fourier transforms) on homogeneous spaces decompose a signal into a
basis of harmonic functions. It is formalized in the Peter-Weyl theorem, which describes the
decomposition of unitary regular or quotient representations into their irreducible subspaces,
corresponding to the individual harmonics.

Definition B.5.18 (Regular representation).
The (left) regular representation (p$,, L% (G)) of a group G acts on the space of square
integrable functions on the group by left translation:

[pee@) f1(9) = (G '9)  VYg.g€C, feLi(G) (B.53)
Remark B.5.19 (Regular representation for finite groups). Specifically for finite groups

G, functions f : G — K can take |G| independent values for the |G| group el-
ements, and are therefore in one-to-one correspondence to finite-dimensional vec-

tors 7 € KICI. To make this isomorphism explicit, one identifies the canonical basis of
KIGT with group elements, i.e. considers basis vectors e4 for any g € G, and defines
f=>,f )eq This implies the regular group action preg( 9r=>, f(G7 g)ey =
>g f(9)egq on f , first written as acting on the coefficients, then on the basis itself.

More abstractly, KIC! with the regular representation action forms the group algebra
K[G] of G over K; see footnote[5 above.

Note that regular representations are permutation representations, i.e. act by permuting
function (or vector) values. Table[B.T|gives an explicit example of the regular representation
of the cyclic group Cy, instantiated by 4 x 4 permutation matrices.

Definition B.5.20 (Quotient representation). Let G be a group with subgroup H < G.

The corresponding quotient representation (pgfl{)lH , LE(G/H)) of G acts on the space
of square integrable functions on the homogeneous space G /H by left translation:

H _ -
[ (3) F1(gH) = f(g7'gH) VgeG, gH€G/H, feL(G/H)
(B.54)
Remark B.5.21 (Quotient representation for finite groups). For finite groups G, one
may as in Remark 9 identify functions f : G/H — K with finite-dimensional

vectors, here f e KIGI/IHI The basis of KICI/111 is naturally labeled by cosets gH in
the quotient space G/ H, and the quotient representation action permutes basis vectors

. . G/H /~
via the group action on cosets, pqué[ (9)ega = €ggH-

The regular representation is a special case of quotient representations for H = {e}.
That these representations are well defined homomorphisms is easily checked by assert-

ing that [pgbr (k) pso (§) F1(9H) = [pShi' (@) fl(k—'gH) = f(G'k'gH) =
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f((kg)~'gH) = [pquot (kg) f](gH), which holds for arbitrary k, § € G, gH € G/H
and f € LZ(G/H).

Quotient (and thus regular) representations of compact groups are decomposed as followsﬂ

Theorem B.5.22 (Peter-Weyl). The quotient representation (pqu{,t , LZ(G/H)) of a com-
pact group GG decomposes into irreducible subrepresentations

Li(G/H) QB EG@ (B.55)

where G is the set of isomorphism classes of G-irreps, ( ) is a topological closure and
the integer m; < dim(V;) is the multiplicity of irrep V; in L (G /H).

For K = Cand H = {e}, i.e. complex regular representations, one has multiplicities
m; = dim(Vj).

Since quotient representations act on (square integrable) functions f : G/H — K, the
Peter-Weyl theorem ensures in practice that there exist linear subspaces of such functions
which transform according to irreducible representations, and that general functions may be
expanded in terms of functions from these subspaces. Specifically, denote by

{Yj?:G/H - K|m=1,...,dim(V;)} (B.56)
an (orthonormal) basis of the i-th occurrence of Vj in the the Peter-Weyl decomposition,
Eq. (B33)), satisfying by definition the G-steerability condition

dim Vj
> pi(@nm Yji(gH) = Y7 (5 'gH) (B.57)
n=1

and the orthonormality relation
L, TG Y ) digH) = by b (B.58)

Then there exist expansion coefficients A7} € K such that any f € LZ(G/H) is given by
f= 220 AJi Y7 The Y[ are called harmonic basis functions. Well-known examples
are circular harmonics for G = SO(2) and H = {e}, such that G / H= o St and spherical

harmonics for G = SO(3) and H = SO(2), such that G/H =, S*; see Figs. and
respectively.

Regular and quotient representations are defined for arbitrary (not necessarily compact) groups,
but the Peter-Weyl theorem applies only to compact groups.



APPENDIX C

Coordinate chart formalism of differential geometry

This appendix serves the purpose of drawing connections between the fiber bundle formal-
ism, underlying the theory of coordinate independent CNNs, and the coordinate chart for-
malism, which one likely encounters in a first study of differential geometry. The main
difference between both is that the bundle formalism refers to points p of the base space
M in a coordinate free way. If required, coordinates are directly assigned to the fibers (e.g.
tangent spaces) via local bundle trivializations. In contrast, the chart formalism relies on
coordinate charts (diffeomorphisms)

z:MDU—V CR?, (C.1)

which assign coordinates to local patches U of the manifold. Local bundle trivializations
and gauge transformations between them are induced as differentials of charts and chart
transition functions. In this appendix we work out the connection between both formalisms.
An overview of the results is given in Table[C.1]

We start in Appendix by briefly introducing tangent spaces T,M as spaces of direc-
tional derivative operators, from which the cotangent spaces 7,*M follow as dual spaces.
Appendix [C.2] defines general differentials and the more specific gradients and Jacobians.
Based on these preparations, we will in Appendix [C.3.1|define coordinate bases (holonomic

bases) [6%1 b B%d p] € F,M of the tangent spaces 1, M, which are spanned by di-

rectional derivative operators along the coordinate grid that is pulled by the chart from V'
to U. The dual bases [dac“|p, e dmu|p] of the cotangent spaces 1M are given by the

gradients of the chart components x,,. Transition maps between charts induce covariant and
contravariant gauge transformations between the corresponding bases, which are derived in
Appendix [C.3.2] Appendix [C.4]interprets the coordinate bases as local bundle trivializations
and makes the connection between the bundle formalism and the chart formalism precise.
The bases and trivializations induced from coordinate charts do not cover all possible trivial-
izations, such that one distinguishes between coordinate bases and non-coordinate bases (the
bundle formalism allows with general non-coordinate bases). In the physics literature, non-
coordinate bases are usually introduced via vielbein fields. Appendix [C.5]argues that these
vielbein fields are just GL(d)-valued gauge transformations from general frames in FM
into a given G-structure GM, within which one can subsequently apply G-valued gauge
transformations that preserve the G-structure.

Comprehensive introductions to the chart formalism are given in [221} 262} 32]. A more
rigorous exposition is found in [262]].
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We want to remind the reader that we are not making use of covariant and contravariant

indices. Indices will always appear as subscripts, with Greek letters i, v, ... signaling co-
ordinate chart related indices and Latin letters ¢, j, ... signaling indices of general gauges.
Superscripts A, B, ... are preserved for labeling different charts or gauges.

C.1 Tangent spaces, cotangent spaces and dual bases

C.1.1 Tangent spaces in terms of directional derivatives

common definition of the tangent spaces 7, M of a manifold M is as vector spaces of direc-
tional derivative operators at p € M, which we will briefly motivate here. Let f € C*°(M),
that is, f : M — R is a smooth map, and, for some interval I/ C R containing 0, let
v : I — M be a smooth curve which passes at time ¢ = 0 through p, i.e. satisfies v(0) = p.
One then defines the directional derivative operator at p along -y as the linear operator

vy i C®(M) =R, f (for)(0). (C.2)

As the derivative is taken along the direction of -, that is, tangential to it, v., is called tangent
vector. It can be thought of as the velocity of a particle with trajectory «y at time ¢ = 0. For
later reference we give the following simple commutative diagram, which shows the pullback
fovof ffrom M to R via ~, in terms of which the directional derivative is defined:

Ro7—2 y—7F . r (C.3)

[ J

fon

One can show that the space of all tangent vectors to curves at p forms a d-dimensional
vector space

T,M = {vﬂ, | 7 is a smooth curve through p} , (C4)

known as the tangent space at p. For more details on the definition of tangent vectors and
the vector space structure of the tangent spaces we refer to [262].

Having defined the tangent spaces as vector spaces, one might choose to treat tangent vec-
tors as abstract geometric vectors, thereby “forgetting” about their definition via directional
derivatives (or any alternative definition made). We do this at most places, but refer back to
the definition via directional derivatives in the following sections to derive differentials of
smooth maps and coordinate bases.

C.1.2 Cotangent spaces

As real vector spaces, the tangent spaces T), M have corresponding dual spaces 1M :=

(T,M)*, the cotangent spaces. By the definition of dual spaces, they consist of linear func-
tionals

w:T,M >R, (C.5)
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which are in differential geometry usually called covectors or I-forms. Together with the
(co)vector addition (w + @)(v) = w(v) + @W(v) and scalar multiplication (A - w)(v) =
A - (w(v)), the cotangent spaces are vector spaces themselves.

As finite-dimensional duals of each other, 7, M and JL*M are isomorphic and are thus in
particular of the same dimensionality d = dim(M) = dim(7,M) = dim(7,/M). The
isomorphism between both is, however, not canonical. A vector space isomorphism can be
specified via a (non-degenerate) bilinear form 7, : T, M x T, M — R on 1, M, for instance
a Riemannian metric, via

Mp: oM — TyM, v ny(v,-), (C.6)
which determines the linear functional 77, (v) : T,M — R, w — n,(v, w).
C.1.3 Dual bases

Any basis [@]d of T, M canonically induces a dual basis [eﬂjzl of TyM, defined to
satisfy the relatlons

ejej =0;; forany i,5€1,...,d. (C.7)
Let [ef] (::1 and [ef] j:1 = [ef'] j:1 <(gB4) " be two bases of 7, M, which are related by
the right action < of the (inverse) structure group element (gB A) e GL(d) in Eq. (7.10),

thatis,forj =1,...,d:
Zel Y, (C.8)

The dual basis [e?’*} ?:1 transforms accordingly under that left action which sends e?’* to
Bx = Zgﬁfe? . (C.9)
k

This is affirmed by pairing

B B _ BA A% A g8~
€ € = E gir er, el ( )lj
BA BA\~

E 9ik 5kl 9 )lj

Z gﬁA( BA
k
= 0. (C.10)
The inverse transformation behavior of bases and dual bases is usually referred to as covari-
ant and contravariant transformation. Note the similarity of the dual basis transformation to
the contravariant transformations ¥)% = ¢gB444 of gauges in Eq. and v8 = gB4pA

of vector components in (7.9). Indeed, gauges are just choices of a cotangent basis as further
discussed below.

C.2 Differentials, gradients and Jacobians

In vector calculus one considers functions ¢ : R™ — R™, which can at any point p € R™
be linearly approximated by their Jacobian matrix (or total derivative or differential) d¢, =

(gf? )Z] Here we introduce the generalization of this concept to differentials of smooth
J

functions between smooth manifolds.
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Differentials in general: Let ¢ : M — N be a smooth map between smooth manifolds
M and N. At any point p € M, such a map induces a differential (or pushforward)

ey : TyM — Ty N, v dy(v) (C.11)

which linearly maps tangent vectors at p to tangent vectors at ¢(p). For the definition of
tangent spaces in terms of directional derivatives in Eq. (C.2)), the pushforward of v € T, M
along ¢ is explicitly given by

dgp(v) : C®(N) = R, [ (dpp(v))(f) = v(fo9), (C.12)

that is, by the application of v on the pullback fo ¢ : M — Rof f : N — R via ¢. These
definitions are clarified by the following two commutative diagrams:

M—2 N coo(M) 2P ooy
J f ”J (C.13)
fod de(v)

R R

From this definition it follows immediately that the differential of the composition of smooth
maps equals the composition of their individual differentials, which is just the chain rule:

d(potp)p = doyp) o diy (C.14)

If ¢ is invertible (a diffeomorphism) it furthermore follows that its differential is a vector
space isomorphism whose inverse equals the differential of ¢!, that is,

(dép) " = d(67") - (C.15)

Together, the differentials d¢,, at individual points p € M imply a vector bundle morphism
(a fiber-wise linear bundle map, see Sections [I1.1)) between the tangent bundles of M and
N:

TMLTN

7@\1[ LTPTM (C.16)

M ———— N

¢

Note that we are in this appendix using a different notation, namely d¢, than in the main
paper, where we instead write ¢, ;. We decided for the former to connect to the usual
notation dz,, for the chart induced bases of cotangent spaces. The latter is used in the main
text to emphasize the similarity to the bundle maps ¢, ,,, ¢, ., and ¢, , , which are induced
on the associated bundles F'M, GM and A.

Gradients: In the case of smooth real-valued functions ¢ : M — R, i.e. ¢ € C°(M), the
differential d¢, : T, M — T, R pushes vectors v in T, M to vectors dp(v): C(R) — R,

[ = v(fo¢)in Ty, R. By leveraging the canonical isomorphism

g Ty R SR, v v(idg) (C.17)
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one defines the gradient operator
dy: C®(M) = T'M, ¢~ dp, =g 0de, = (dg,(-))(idz), (C.18)
which sends smooth functions ¢ to covector Ligzb, which in turn act on vectors as
dpy : T,M — R, v dey(v) = (dp(v))(idr) = v(idr 0 ¢) = v(¢).  (C.19)

By an abuse of notation one usually drops the “hat” on dand immediately defines dg,(v) :=
v(¢). While this notation is very common, we stick in the following with the “hat” to make
the requirement for the canonical isomorphism ¢y explicit.

In Appendix below we will see that the bases of 7, M which are dual to coordinate

bases of T),M are given by the gradient 1-forms dxu |p, where x,, are the components of the
coordinate chart.

Jacobians: Specifically for functions ¢ : R™ — R™ between (subsets of) Euclidean
spaces the differential dy, : Ty R™ — Ty(,,)R™ is easily seen to coincide with the Ja-

cobian 92 2, | R™ — R after canonically identifying T,R* = R* in both the domain and
codomain. The canonical isomorphism is here given by
tgr 2 v = (v(projy), ..., v(proj,)), (C.20)

which generalizes tg from Eq. (C.I7) to multiple dimensions. As the calculation is mostly
similar as in the case of gradients, we will not repeat it here but visualize the idea via a
commutative diagram:

R" LRN n d¢|:1:0 m LRm m
& p R o, Rm B R (€21
o9
ox
Zo

If ¢ is invertible, the identity in Eq. (C.15)) becomes

o6 _ a0
ox ox

, (C.22)
#(@o)
which is just the inverse function theorem. We will use this identity later on to invert gauge
transformations between different coordinate bases which are induced as Jacobians of chart
transition maps.

Zo

C.3 Chart induced coordinate bases

In this section we consider coordinate charts of the form

z: U=V, (C.23)

'The gradient field is often defined as a vector field Vf := (cif )nn which is computed from the

covector field CZf via the musical isomorphism 7 : T"M — T'M corresponding to the metric (“raising
indices”).



392 Appendix C. Coordinate chart formalism of differential geometry

which diffeomorphically assign coordinates x(p) € V C R? to each pointp € U C M.
Any such chart induces a natural choice of bases for the tangent spaces 1, M over U, known
as coordinate bases. The dual spaces 1M of the tangent spaces over U are accordingly
endowed with dual coordinate bases of cotangent vectors. Transition maps between the
coordinates of two charts induce gauge transformations which translate between the corre-
sponding coordinate bases. These gauge transformations are given by the Jacobians of the
transition maps.

C.3.1 Charts and induced coordinate bases

Coordinate bases for T, M: To motivate the definition of coordinate bases, observe that x
implies a “coordinate grid” on U by pulling the canonical coordinate grid on V' back to the
manifold. The coordinate basis at a specific point p € U can then be thought of as consisting
of those d many directional derivative operators which are going along the coordinate grid
lines of t on U.

To make this more precise, consider first the curves
wil =V, t—ax(p)+te, w=1,....d (C.24)

which pass at time ¢ = 0 with unit velocity in p-direction through z(p) € V. Mapping those
Vu via the chart to U defines the above mentioned curves

L= U, te a7, () = o (a(p) + te,) (C.25)

which pass at time ¢ = 0 along the coordinate grid of z on U through p. The d-dimensional
coordinate basis of 7,M induced by x is then given by the directional derivative operators in
Eq. (C.2) along the paths ~y,,. Denoting the z-th basis vector by the usual abuse of notation

as %] one therefore defines:
Ty lp
0 0
s f e [ o= O'Vu)
Oy, |, Oxy |,

(f

(fox™" O~u)l(0)

(foa(z(p) +tey)) (0)

[0,(f o 2™)] (2(p)) (C.26)

In the last step we identified the usual p-th partial derivative of the pullback f oz~ : V —
R, which motivates the notation 88 | These definitions are visualized in the following

commutative diagram which extends the diagram in Eq. (C.3):

n (C.27)

T
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Dual coordinate bases for T,y M: As stated in Appendix any basis of 7,M induces

a dual basis of 1,7 M. Specifically for coordinate bases, spanned by vectors % , the dual
R R wlp

basis elements are given by the gradients dx,,|, = d(x,), € T,yM of the chart components

x, = proj, ox : U — R. That these gradients do indeed make up the dual basis, is easily
seen by acting on the basis vectors as defined in Eq. (C.19):

5 0 0
dxu’p a—% . = a—xu pxﬂ
= [0 (zuoz™)|((p)
= [0 (proj,, )| (z(p))
= O (C.28)

Chart differentials as canonical local trivialization: Given that the chart maps from U C
M to V C RY, its differentials at p € U are maps of the form

dzy, : T,M — TyR?. (C.29)

Employing the canonical isomorphism tra from Tx(p)Rd to R¢ from Eq. (C:20) once again,
we obtain a map

dzx, : T,M — R?,

v o cimp(v) = tga 0 dz,(v)

= (@) wroiy). - (dry(0)) (proi)

= (v(pr0j1 ox o afl)(a:(p)) Y e, v(plroj1 ox o xil)(x(p)))T
= (o), - )|
= (dzslyl0) ... dealy()) (C30)

after identifying the individual chart component gradients in the last step. Note that the
action of this chart differential on the u-th coordinate basis yields

.0 ( ) ; ’
de, —| = |dzi|lp =—| , ..., dzglp =— >
P oz, |, P oz, |, Yoz, |,
= (Buar - Oua)
= e, (C31)

that is, the -th unit vector €,, of R?. This implies that da:p T,M — R? plays the role of a
gauge 1, at p. One could therefore equally well have started by defining a cotangent basis
and setting

0

oz,

= dz, " (€4) (C.32)
z(p)

which is the analog of Eq. in the chart formalism.
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C.3.2 Chart transition maps and induced gauge transformations

Different charts induce different coordinate bases. Chart transitions therefore induce gauge
transformations, i.e. transformations of bases and vector coefficients, which we derive in
this section.

In the following we consider two arbitrary, overlapping charts 4 : U4 — V4 and 28
UPB — VB, The different coordinates which they assign to the overlap U4 N UP # & are
then related via chart transition maps

mBO(:rA)_I: xA(UAﬂUB)%xB(UAﬁUB). (C.33)

Transformation of tangent coordinate bases: The coordinate bases of 7,/ which are
induced by the two charts are according to the last line of Eq. (C.26) by their action on
f € C°°(M) defined as

ai;;‘ I = 2u(f0 @) 7)] (@) (C.34)
and
85;? pf - [a“(fo (mB)il)} (=" (p)) (C.35)

which is visualized by the following commutative diagram:

— VA S A UANUP)

A fo (‘TA)i1
2% o (a?) ! UANUB f R (C.36)
T fo (ajB)—l

s VB > xB(UA N UB)
Via the chart transition maps, the different coordinate bases relate by
0 -1
7= ou(re @) )] " w) (37

oz7l,
= [0u(fo (@) oato (@) )| (2B ()

which, making use of the multivariate chain rule, further leads to:

8‘3‘ FEDY [0,(f o <xA>*)] (@4 @) - [0u(a 0 (@) ") (2" )
= Ei: 8% . (C.38)
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In the last step we introduced the usual abuse of notatior|

dr

= = O, (xo (xB)_l (z®(p)) (C.39)
02 |25 (p) ( )
for the components of the Jacobian
x4 5 5 _
5.5 = dz od(z5)™! (C.40)
T a8 (p)

of the transition maps. Dropping f from Eq. (C.37), we identify the transformation law

X

of tangent coordinate bases. We did hereby choose to write the Jacobian on the right of
the basis vector to emphasize that the change of basis is to be understood as a right action.

Doing so, we need to warn the reader that % fp is just an abuse of notation for the basis
vector but does not imply an action of a differential operator on the Jacobian on the right.

(C41)

ax

w 1zB(p)

Transformation of cotangent coordinate bases: The contravariant transformation law of
cotangent space coordinate bases follows from the inverse transformation of dual bases in
Eq. (C9) relative to (C.8). To apply this relation, we first adapt Eq. (C:41)) to our convention
that bases transform according to a right action with an inverse group element. This is
achieved by applying Eq. (C.22) to invert the Jacobian (remember the abuse of notation)

dzA orB |~
8;’33 _ %A (C.42)
T 2B (p) T lza(p)
which implies:
§d: o | oxA Ed: (3:& )
B 9..A B
P v=1 &E p 9% leB(p v=1 9z} P Oz zB(p)/ vp
d —1
a B
Z (“’A ) (C43)
v=1 ;) P Oz z4(p)/ vu

The cotangent basis elements therefore transform according to Egs. (C.8) and (C.9) like

d
dzf), = > s dz|, . (C.44)
S Tl Y N

Transformation of chart differentials: The expression of chart differentials dz*| p in

terms of chart component gradients dz?|, in Eq. (C30) allows to deduce their transfor-
mation law from that in Eq. (C.44). Afernatlvely, one obtains the transformation law by

*The “abuse” is that z** is interpreted as a function of 2” (p), and should therefore rather be written
2% o (2P) ™" as made precise on the right-hand side.
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right multiplying with the identity in the form id7, pr = da?|, o (dz| p)71 and identify a
left multiplication with the Jacobian of the chart transition maps:

dzB|, = dzP|, 0 (a?xA\p)_l o dz?,
OxB 5

= A, (C45)

Note that this result is simply the matrix expression of Eq. (C.44).

Transformation of vector coefficients: Vectors v € T,M are relative to a coordinate

. d .
basis [afB |p] =1 expressed by coefficients v4 € R%:
7

d
v=> v;j‘a% (C.46)
pn=1 nip
The individual coefficients are recovered by the action of the cotangent basis:
. . d o d
da:ﬁ p(v) = dxmp zjl vf@ ) = z:l V6, = v;? (C.47)

This implies that the coefficients transform contravariantly, just as the cotangent coordinate
basis:

v (C.48)

It is easily asserted that this transformation law does indeed lead to a coordinate independent
representation of coordinate free vectors v € T,M:

a | g o | dat oxf 4 ) A
Z B| %u = Z A B A Vp = Z x| Owpv
n amu p g WiV, p 81‘V p 81‘H =B (p) 81‘/) x4 (p) g v,p ax” p .
9 | 4
- ZV: e pvy (C.49)

C.4 Coordinate bases as local bundle trivializations

The chart transition map induced transformation laws in Appendix [C.3.7] coincide the

gauge transformations as formulated in Chapters [7] and [T1] when identifying the Jacobians
B

giﬁ z4(p)

correspondences. Appendix [C.4.2] extends these results by deriving expressions for chart

induced bundle trivializations on extended domains U C M as introduced in Chapter A

dictionary which summarizes the correspondences is given in Table [C.T}

with gf 4. In Appendix [C.4.1| we make these connections precise by listing all
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C.4.1 Correspondences to pointwise trivializations of T,, M

Gauges and chart differentials: The bundle formalism relies on the definition of gauges

(Eq. (7.1))
Uiyt ToM — RY, (C.50)

which are vector bundle isomorphisms, assigning coordinates to tangent spaces with p €
UA. In the chart formalism, gauges over U* are induced as chart differentials (Eq. (C30)):

5 A d
dr, : T,M — R (C.51)
Different gauges are related by gauge transformations (Eq. (7.7))

. —1
1/15\1.]) = ngA wﬁmp with ngA = 1/15\1‘]) 0 (wg\fp) € G . (C52)

The same definition holds for the chart induced gauges, where gauge transformations turn
out to coincide with the Jacobian of the chart transition maps (Eq. (C43)):

~ oz B o oxB
dzB = == dz? ith ——
xp axA ‘LA(p) xp W1 8$A

= dzPo (dz))”' € GL(d) (C.53)

x4 (p)

Vector components: As vector components v = Q/J]‘%Lp(’l)) or v4 = dz?|,(v) are given
by the action of gauges, they show the same covariant transformation behavior

B BA, A B dx" A
vT =g, v and v = vy v, (C.54)
T lwAp)
In terms of components, these relations are written as
d OxB
B _ BA A B _ n A
vy = Z (gp )ij vj and v, = Z Iy v, . (C.55)
j=1 v=1 "V lz4(p)

Induced reference frames: Reference frames are in the bundle formalism induced by
mapping the vectors ¢; of the standard frame e € G of R¢ through the gauge map back to

T,M (Eq. (T4)):

Apd A 1L d
[ei ] i=1 = |:<1/]TM,])) (Ei):| i1 (C56)
The corresponding relation in the chart formalism is according to Eq. (C:32) given by
0 :|d |: 5 Ay —1 d
< = [(dz?) (e#)} (C.57)
|:a$ﬁ pd p=1 p pn=1
Eq. (7.10) shows that the transformation laws of reference frames is given by the right action
d
B4 Apd BAy-l d A BA\-1
lei’]imy = [ef]isia(9,?) = {Zj_l e (9 )ji } -

d

d
= {ijl est (g;,“B)ji] i (C.58)
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In analogy, the transformation law of coordinate bases is from Eq. (C.43) seen to be given

by
o |1 o |14 02B|7! 9 028 -7
gl )= Lo ), o ae, |2 e, (G,

Ly lpd p=1 T lplp=1 L za(p) v=1 9T lp L7 ea(p)/ v u=1

d d
0 oz
- lz 9ad | 9af ] €59

v=1 "V Ip T laB(p) ],y

C.4.2 Chart induced local trivializations of 7,5, (U)

The correspondences laid out in the last section were relating pointwise trivializations ¥y,

of T, M to chart differentials cf:rp. In order to complete this picture, this section adds expres-
sions for local trivializations

Upy 7 HU) — U x R? (C.60)

™
which are induced by charts.
A good candidate to construct W, from is the chart differential

da:m W(U) = TV (C.61)

which is a vector bundle isomorphism that differs from the vector space isomorphisms dx,,
by not being restricted to a single point p € U. To proceed, we generalize the canonical
isomorphism ¢ga in Eq. (C:20) from a single point to all the tangent spaces T,V =2 R? over
V' C RY, resulting in the following canonical local trivialization of TV :

iy TV = VX RY v (14, (0), tga(v)) (C.62)
This allows to generalize cfmp from a single point to a map

dr == tyygaodr : 7 2 (U) =V xR, (C.63)

T™

which is, however, still not the local trivialization sought for. By mapping the first factor via
the inverse chart from V' to U, we obtain the chart induced local bundle trivialization:

Upy o= (27! xid) odz (C.64)

As usual, we visualize the definitions made in a commutative diagram:

(x" x id)
dx
VxR VBT oy dz T NU) — 2, xR
. Try Ty . (C.65)
proj, proj,
% U
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Considering two overlapping charts 24 : U4 — V4 and 2® : UP — VB and denoting
UAB = U4 NUP, one obtains transition maps

B
dz® o ((fo)_l = <$Bo(xA)_1 X 3x> : azA(UAB) x R — 24 (U4P) x R?

ozA
(C.66)
and
B A1 da® AB d AB d
U0 (Uy,) = (id x 04 ) U?® xR - U xR*. (C.67)

These definitions and their mutual relation is shown in the following commutative diagram:

(z")™' xid)

B(UAB) X Rd UAB X Rd
dz” (id X g
x5 C.68
(xPo(a) ! x 25) /TM _(axe (C.68)
A(UAB) d d
(U x R @ B xR

C.5 G-structures and vielbein fields

As discussed in Sections [11.3|and [11.4] any G-atlas {(¥;%,, U*)} of local tangent bun-
dle trivializations specifies a corresponding G-structure, that is, a subbundle GM of dis-
tinguished reference frames which respect (or define) some geometric structure on M. By
definition, the transition maps gZ4 of associated G-bundles take values in a reduced struc-
ture group G < GL(d). This raises the question whether one can similarly find “G-

atlases of charts” {(xX,UX)}, whose Jacobians ai take values in a reduced structure
group G < GL(d) and therefore encode a G—structure For some structure groups this
is certainly possible; for instance, an orientation of an orientable manifold can always be
fixed by specifying some GL™(d)-atlas of positively oriented charts, whose transition Ja-
cobians take values in GL+(d). In general, it is, however, impossible to find coordinate
charts which induce coordinate bases that lie in a given G-structure. One therefore resorts
to explicit gauge transformation from coordinate bases into the G-structure, known as viel-
bein fields (1342, 1357, 221}, [32]]. After initially transforming from coordinate bases to the
G-structure, the gauge freedom within the G-structure allows for further G-valued gauge
transformations.

An important example in physics are O(d)-structures (or O(1, d — 1)-structures for space-
times), which consist of orthonormal reference frames relative to the (pseudo) Riemannian
metric n of M E] Such orthonormal frames represent the possible laboratory frames of an

3The symbol 7 is in the physics literature commonly preserved for the Minkowski metric
diag(+1, —1, ..., —1) while the (pseudo) Riemannian metric of M is denoted by g. In contrast,
we are writing group elements in the structure group as g € G and thus use 7 for the (pseudo) Rie-
mannian metric of M.
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inertial observer. They are for instance used to formulate relativistic quantum field theories,
specifically the Dirac equation, in curved spacetimes. Recall that a given G-structure is to
be respected by local bundle trivializations, which means that the gauge maps ¢, need to
map the G-structure G,M at p € M to the canonical standard G-structure G of R?. For
the specific case of O(d)-structures this is equivalent to the requirement on bundle trivial-
izations to preserve the metric, i.e. 7,(v, w) = (Y1rp(v), Yrrp(w)) for any p € M and
v,w € T, M, which is accomplished without problems in the bundle formalism. Given a
coordinate chart z : U — V/, the induced gauges on p € U were in the previous sections
shown to be given by 1mu), = (ixp LM — R?. The requirement on them to preserve the
metric therefore becomes

77;0(11» w) = <szp(v) ’ szp(w)> ) (C.69)

which is exactly the defining property for z being an isometry. This result implies that
coordinate bases only define an O(d)-structures if U and V' are isometric — which is only
the case if M is locally flat on U. For any non-flat region of M it is therefore impossible
to describe an O(d)-structures via coordinate bases directly. This incompatibility expresses
itself for instance in the fact that the components 7,,,, of the Riemannian metric on M relative
to the chosen coordinate basis differ from d,,,, (or diag(+1, —1,..., —1) ).

As mentioned before, the orthonormal frames of an O(d)-structure OM are in the physics
literature typically defined via a gauge transformation relative to some chart induced frame

field [O%H] Zil' Denoting this gauge transformation, which is called vielbein field, by

AU = GL(d), (C.70)
the orthonormal frame field is defined by[Y]
d 8 d 1 8 1 d
A AV~ A\~
i lim1 T = , r M). (C71
el [(%Jizfl@ ) {Eﬂ axﬂ(e )ML:1 e D(U,0OM). (C71)

The orthonormality of the resulting frame field is usually expressed af]

65 = n(ef, e

0
= 1(Z g X))
m
B (9 8 Ay—1 Ay —1
- 217(61,“7 amy> (9 )p.i (2 )1/]

- Znﬂy ) (&), €72)

which explains why the vielbein field is sometimes called “square root of the metric”. As
usual, vector components are translated via the non-inverted gauge transformation, that isﬂ

= e v (C.73)
“w

n
@ 8:):11

“In the physics literature this relation is expressed as et = (eA) The inverse is here merely

signaled by the opposite position of the indices (¢*)"; := (e ) , in comparlson to (e*), == eff.
>In the physics literature this relation is usually written 7, ( ) (et = 0ij.
% Again, in the usual notation in physics this relation reads (v*)* = (e A) P
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A simple dimension counting argument illustrates the gauge freedom in the O(d)—structureﬂ
Being an element of the general linear group, a vielbein ¢ (p) € GL(d) has d? degrees
of freedom, while the metric 7, as a symmetric, bilinear form, has d(d + 1)/2 degrees of
freedom. The missing d(d — 1)/2 degrees of freedom correspond exactly to gauge trans-
formations by structure group elements g% € O(d). Alternatively, from the viewpoint of
G-structures, F,M = GL(d) has d? degrees of freedom while O, M =2 O(d) has d(d—1)/2
degrees of freedom, fixing d(d + 1)/2 degrees of freedom which correspond to the choice
of metric.

All constructions are obviously generalized to arbitrary G-structures with GL(d)-valued
vielbein fields mapping coordinate bases into GM and the freedom to apply G-valued gauge
transformation afterwards.

"In physics, one rather considers local Lorentz transformations A € O(1, 3), which describe rota-
tions and boosts of local reference frames.
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e B A 1 d ~, md BA 5..B 5. A1 dx®
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Table C.1: An overview of different types of coordinatizations on manifolds. The bundle formalism (3rd column), which is used in this work, directly assigns
coordinates to the tangent spaces, while referring to the points p of the base space M in a coordinate free fashion. In contrast, the chart formalism (4th
column) assigns coordinates to local subsets U~ C M of the manifold. Local trivializations of the tangent bundle and bundle transition maps between
them are induced as differentials of the charts and their transition maps, the latter usually referred to as Jacobians. The second last row gives expressions for
the reference frames which are induced as identity sections of local trivializations of T'M (3rd column) or as chart induced coordinate bases (4th column).
Similarly, the last row compares definitions of G-structures — for instance orthonormal frames — via an G-atlas for TM (3rd column) and via vielbein fields
as gauge transformations relative to coordinate bases (4th column). As usual, we abbreviate U N U® by U“® and assume p € U4%.
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APPENDIX D

Integration over tangent spaces

On a Riemannian manifold (M,n) the volume densityﬂ dp on M is uniquely specified by

demanding that orthonormal frames [elo, cee edo] with respect to the metric 7 are assigned
unit volume:
dp(elo, e eg) = 1 for any orthonormal frame [e?, ceey eg] of T,M (D.1)

Similarly, a volume density dv on the tangent spaces T,M of a Riemannian manifold is
uniquely defined by assigning unit volume to its orthonormal frames w.r.t. 7,:

dv(e?, e eg) = 1 for any orthonormal frame [elo, ceey edo] of T, T,M (D.2)

To avoid an unnecessarily complicated discussion of the double tangent bundle T T'M, we
define the integration over 7,M equivalently by pulling it via some isometric (and thus

volume preserving) gauge back to R%. Let LZ)%”) be such an isometric gauge from an O(d)-

atlas, which identifies orthonormal frames in 7,M with orthonormal frames in R<. The
integral of a function f : T,M — R is then defined via its pullback

f)dv = /Rd fo (1/)%1?)71(1)0) dv®

= / FO?) dv?, (D.3)
R4

T, M

. . -1
where we defined the coordinate expression f© := f o (wg,,_p) : R — R of f as usual.
The fact that 1/1%[47 is isometric ensures hereby that dv does indeed assign unit volume to

orthonormal frames if dv® does. Since the latter is just the standard Lebesgue measure on
R4, this is the case.

Let now wﬁj_p be any gauge at p, relative to which one might want to express the integration.
The transition map between both coordinatizations is simply given by the gauge transforma-
tion v@ = © o (YA)"(vA) = ggA (v4). By the standard rules for changes of variables
in multidimensional integrals, the differentials are required to transform according to the Ja-
cobian determinant of this transformation in order for the volume to be preserved. As the

'In contrast to a volume form w, volume densities |w]| assign a positive volume to any frame. They
exist both on oriented and non-oriented manifolds.
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transformation is liner, the Jacobian is given by gOA itself, such that we obtain
flo)dv = / FA A (det )) dv? . (D.4)
T,M

Through the gauge transformation, this expression still depends on the arbitrary choice of
isometric gauge ¢T0M.p- This dependency can be purged by expressing the integration mea-
sure directly in terms of the metric as

— A A A
[ @ = [t g, ®s5)
il = /[ det([np(et e],)] (D6)

measures the (absolute) volume of the reference frame [e/!]%_; relative to the metric 7. To

assert the equality of the right-hand sides of Eqs. (D.4) and (D.53)), we express the metric 7,
of T,M in terms of the standard inner product (-, -) of R?, which is once again done by
using the isometric gauge ¥, p from the O(d)-atlas:

77p( 5 ) <¢Tup( ) /(/}Tj\fp( )>
= <¢m11,p © (wTMp) (Ei)v wTOMp © (d’zf}\ﬁp)_l(ej»

= <gp €5 ngA >

= (65") 9%
= ((g;? )" g0 A)ij (D.7)
The absolute value of the determinant in Eq. (D.6) is therefore given by
[ det([mp(e ]| = [det (957" 55|

‘det( gp ) )det (gZ?A)‘

|det (994", (D.8)

from which the equality of the right-hand-sides of Egs. (D.4) and (D.3) follows by taking the
square root.

where the factor

Since the factors 4 /|77!| and /1| measure the volumes of their respective frames, one can

easily show that they are related by the inverse change of volume |det gf A !:

InB| = ‘det gBA‘ \/1m2 (= —1-density) (D.9)
Together with the usual change of variables formula
dvP = |det ng| dv? ( = —H-density) , (D.10)

this implies that the coordinatizations of the Riemannian volume element dv are by design
invariant under gauge transformations, that is,

\/@dv'B = /I dv? (= O-density). (D.11)

This relation assures that the integration in Eq. is well defined, i.e. coordinate inde-
pendent.
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Equivariant MLPs

Multilayer perceptrons (MLPs) are the most basic neural network architectures. Their feature
spaces are finite dimensional vector spaces K¢ over the field K = R or K = C. Basic MLPs
are constructed as a sequence of blocks of layers, where each block

block : K — K @iy v Ty 1= o(Waxin + b) (E.1)

consists of 1) a linear map (matrix multiplication) W & K%u*¢n 2} a bias summation layer
where b € K and 3) a nonlinearity ¢ : K% — K, Equivariant MLPs are consequently
constructed from equivariant linear layers (intertwiners), equivariant bias summation oper-
ations_and equivariant nonlinearities. As the the latter two were already discussed in Sec-
tions and [4.3.3] we focus here on equivariant matrix multiplicationsﬂ We assume
that the feature spaces are finite dimensional unitary group representations (Def. [B.5.13)),
which allows their complete reducibility into a direct sum of irreducible subspaces; see The-
orem[B.5.76

Consider a linear layer W : K — K%, mapping between unitary representation spaces
(p,,, K) and (p,,,, K®"). We are interested in the subspace Hom (K%, Ku) C K cin
of linear layers that are equivariant (intertwiners, Def. m, that is, those layers that satisfy
the constraint

To break this constraint down, let Q;, € GL(K") and Qoy € GL(K%) be the change of
basis matrices which decompose the feature spaces into an orthogonal direct sum of irre-
ducible subspaces, acted on by irreducible subrepresentations (irreps, Def. [B.5.6). In equa-
tions, these irrep decompositions are defined by the relations

Qura(9) Q' =P Prile) and  Qou pul9) Qout = P Prsle) (E3)

jec i=1 JeG 1=1

forany g € G, where G is the set of all isomorphism classes of irreps of G and m;, my € N
are the unique (mostly zero) multiplicities of the corresponding irreps p; and ps in p, and
Pout> TESPectively. Introducing the linear map

W= Qou W Q51 (E4)

"The results in these sections applied to feature fields. However, since the considered biases and
nonlinearities were applied pointwise, i.e. individually to each feature vector, the results are exactly
equivalent to the case of MLPs.
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between the decoupled feature spaces, the intertwiner constraint on W in Eq. (E.2) can be
rewritten as the equivalent constraint

W= (B Dosa)) ¥ (P %m(g)‘l) YgeG.  ES5)

Je@ I=1 je@ =1

on W. Due to the direct sum decomposition into G-independent subspaces, this constraint
is equivalent to (3- ;.5 my) - (20, cq m;) independent irrep constraints

VT/JJ,jz‘ = ps(9) W]I,ji p;i(g)~* Vged (E.6)

on blocks W, JIji € Kdim(ps)xdim(p;) of |/ which map between all pairs of invariant sub-
spaces. The space of such irrep intertwiners is in the following denoted as Home (p;, p.r).
To solve the irrep constraints in Eq. (E.6), recall Schur’s lemma [B.5.10] which states in
particular that the irrep intertwiners Wy j; are zero for non-isomorphic irreps J # j. The
only possibly non-zero components of W are therefore the endomorphisms

Wirji € Endg(p;) = Home(p;, p;) (E7)
which map between isomorphic irreducible subrepresentations j = J.

Assume that we are given bases {&; , |u =1, ..., dim(Endg(p;))} of the endomorphism
(vector) spaces Endg(pj). The blocks Wy j; may then be parameterized as

— 0 if J #j
Wirji = : . E.8
T {Zuan%w it J=j, S

where \;7; , € K are dim(End¢(p;)) learnable parameters (for fixed j, J, 4, I). For com-
plex numbers K = C, the endomorphisms spaces are one-dimensional and contain ele-
ments A;z; - idcdin;(pj) which are complex multiples of the identity. For K = R one has
dim(Endg(p;)) = 1, 2 or 4 when the real irrep is of real, complex or quaternionic type,
respectively [173].

With these results we have all ingredients that are necessary to construct the most general
linear equivariant network layer W € Home (p,,, pou)- All that is required is to

1) parameterize the individual matrix blocks W, 71,5i according to Eq. (E.8),
2) fill them into 1 and
3) undo the irrep decomposition in Eq. (E4), i.e. set W = Qout W Qin.

As many of the matrix blocks are filled with zeros and since the dimensionality of the endo-
morphism spaces is usually lower than the dimensionality of an unconstrained block, equiv-
ariant linear layers are more parameter efficient than their non-equivariant counterparts.

The representation theoretic viewpoint discussed here was already proposed in the early 90’s
by Wood and Shawe-Taylor [332]. Nowadays, its main advocates are probably Kondor et al.
[163][161, 162, 163, (164} (134} 13, 118, 1299]. Finzi et al. [92]] developed a general algorithm
to solve automatically for the intertwiners between finite representation spaces of arbitrary
matrix groups. Their approach is based on the observation that it is sufficient to solve the in-
tertwiner constraint for the generators of the group only, i.e. for Lie algebra elements and/or
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finite generators. Most other works describe linear equivariant layers from a group theoretic
instead of representation theoretic viewpoint. Their results are equivalent to ours, however,
they might be expressed quite differently. Specifically for finite groups with permutation
actions, the intertwining matrices are usually formulated in terms of weight sharing pat-
terns (241,200, 109], where weights are shared over invariant subspaces of the permutation
action W — p,..(9) W p, (9) " [2]l. The universality of equivariant MLPs was investigated
in [240].

Linear layers between non-finite representations can be significantly harder to characterize.
An example are the steerable convolutions between induced affine group representations
from Chapters 4] and [3]






APPENDIX F

Equivariant convolutions on homogeneous spaces

The works by Kondor and Trivedi [162], Cohen et al. [S5][56] and Bekkers [10] are in
spirit quite similar to ours in that they are defining group equivariant convolutions in a fairly
general setting. These papers have in common that they operate on feature maps on homo-
geneous spaces T/ H of a global symmetry group T, where H < ZI'| They differ in the types
of groups Z which they cover and in the definition of their feature spaces, specifically the
linear group actions on them. The main theorems of the papers assert that the most general
equivariant linear maps between such feature spaces are convolutions (or correlations) with
symmetry constrained kernels; cf. Theorems and The specific details on these
generalized convolutions depend on the particular feature spaces and group actions which
the models consider.

This appendix examines these theories and their relation to our coordinate independent con-
volutions from Parts [T and [Il The most important similarities and differences are summa-
rized in the following list:

= Not any homogeneous space is a Riemannian manifold and not any Riemannian man-
ifold is a homogeneous space of its isometry groupE] There is, however, a significant
overlap, for instance for Euclidean steerable CNNs on E; =2 Aff(G)/G from Chap-
ter[d] or spherical CNNs on S2 22 O(3)/ O(2) from Chapter |17}

= The authors consider compact [162]], locally compact, unimodular [55][56l, and Lie
groups [10], respectively. The global symmetry groups in our theory are isometries
of M or, specifically for Euclidean spaces, affine groups Aff(G). Note that affine
groups are not compact and only for G < O(d) unimodular — general affine groups are
therefore not covered in the respective theories.

= Coordinate independent CNNss shift the focus from global to local symmetries. On ho-
mogeneous spaces Z/ H these local symmetries correspond to the stabilizer subgroups
Stab, = H of Z. Our Chapter works out the relations between global and local
symmetries in detail — the models’ local equivariance induces their global equivariance.

= The models assume different rypes of feature fields and group actions on them: Kon-
dor and Trivedi [162] and Bekkers [10]] assume scalar fields on homogeneous spaces,

11621 56| [10] use G instead of Z to refer to global symmetries. We use Z since we reserve G for
the structure group. Note furthermore that we use Z here to denote arbitrary global symmetries, not
necessarily isometries as in Parts [[I|and

?For instance, T/ H = O(2)/SO(2) £ R is a finite group (or set) but not a Riemannian manifold.
Another example are (Z?, +) group convolutions on the discrete pixel grid Z¢.
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Appendix F. Equivariant convolutions on homogeneous spaces

i.e. real-valued functions f : Z/H — R which transform according to ¢.f((.H) =
f (¢_1C H ) Cohen et al. [55][56] consider feature fields of more general types p
which are defined as sections of H-associated feature vector bundles. Their trans-
formation laws are given by induced representations Indﬁ p. This setting covers the
real-valued functions from [162, [10] as a special case when choosing trivial field rep-
resentations (or, as made precise below, more general quotient representations pgf,(/)tH
(Def. where H < G < 7). Our theory models feature fields as sec-
tions of associated bundles as well. Their transformation is given by pushforwards
o> fi=¢, ,0fo0 ¢~ which generalize induced representations.

The works by Kondor and Trivedi [162], Cohen et al. [S5][56] and Bekkers [[10] derive
convolutional weight sharing from the requirement on the models to be globally equiv-
ariant; just as we did in Part[} Our GM -convolutions, on the other hand, share weights
by definition over the G-structure. We adopted the idea of deriving weight sharing
over Riemannian manifolds from global symmetries (isometries) in Section [I3.3] The
requirement for isometry equivariance implies weight sharing over the isometry or-
bits and a stabilizer constraint on the kernels; see e.g. Fig. Theorem [13.3.3]
asserts that isometry equivariant kernel field transforms on homogeneous spaces are
GM -convolutions — this result mirrors those of Kondor and Trivedi [162], Cohen et al.
[S5][56] and Bekkers [10] closely.

All of the theories derive some linear symmetry constraint on the kernel spaces. In the
case of Kondor and Trivedi [162] and Bekkers [[10], the kernels are essentially scalar
functions on double quotient spaces Hoy\Z/Hi, (assuming correlations, for convolu-
tions Hj, and H,, are swapped; see below). The kernels of Cohen et al. [55][56] and
in our theory are satisfying a steerability constraint which depends on the particular
choice of field types p, and p,,. Note that the determinant factor is missing in the G-
steerability constraint of Cohen et al. [S5][56] since the authors restrict to unimodular
groups. The factor does appear in the kernel constraint by Bekkers [10]].

= While Kondor and Trivedi [[162] and Cohen et al. [S5][56] describe kernels immedi-

ately on the group or homogeneous space, Bekkers [10] and our GM -convolutions
define kernels on the tangent spaces and project them subsequently via the exponential
map. These approaches are in general inequivalent, for instance since the exponen-
tial map is on a non-connected manifold non-injective. On Euclidean spaces both
approaches are obviously equivalent since the exponential map becomes trivial; see
Section Our Theorem in Section bridges this gap furthermore for
spherical kernels by providing an isomorphism between kernels of the two approaches.
In practice, the general incompatibility is irrelevant since kernels of convolutional net-
works are usually compactly supported within the injectivity radius of the exponential
map.

We will in the following elaborate on the theories of Kondor and Trivedi [162], Bekkers
[10] and Cohen et al. [55][S6] in more detail. As a preparation, we will first discuss homo-
geneous spaces, group convolutions and group correlations. For alternative reviews of the
topic we refer the reader to Esteves [82] and Gerken et al. [105]. After the original version
of this appendix was published in [325]], Aronsson [5] published another review of the topic,
including in particular a formulation in terms of reproducing kernel Hilbert spaces and Xu
et al. [337] presented the Fourier space analogue to Cohen et al. [55]][56]]. We furthermore
want to point to the work by Chakraborty et al. [41], which also defines convolutions on
homogeneous spaces but is not covered in more detail in this appendix since their models

3Multi-channel feature maps are constructed by stacking multiple such functions.
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assume H,y = {e}, that is, their convolution kernels are unconstrained and always lift the
input signal to a scalar field on Z.

F.1 Homogeneous spaces, group convolutions and group correlations

Homogeneous spaces: Let Z be some group which acts on some space X. The space is
said to be homogeneous if the group action is transitive (Def.[B.3.8), i.e. if any two points
p,q € X are related by the Z-action. In equations, X is homogeneous if and only if for any
p,q € X there exists an element ¢p € Z such that ¢ = ¢(p). Note that the action on X is
not required to be fixed point free (Def.[B.3.10), that is, each point p € X has a potentially
non-trivial stabilizer subgroup Stab, = {£ € Z|&(p) = p} < Z (Def.[B.3.6). It can be
shown that the homogeneous space can be identified with the quotient space Z/H where
H = Stab, for some p € XE]

Since any homogeneous space arises as a quotient, we consider in the following always some
subgroup H of Z. This subgroup has left cosets (Def.|B.2.2)), i.e. subsets of the form

¢.H = {¢h|h e H} (E.1)
which are elements of the (homogeneous) quotient space
I/H = {¢.H|¢p€T}. (E2)
A natural left action of Z on Z/H is given by
IxZI/H—TI/H, (¢, ¢.H)— ¢p.H. (F.3)

This action is easily seen to be transitive, making Z/H a homogeneous space of Z. The
canonical quotient map

9w T—=T/H, ¢ ¢.H (F4)

turns Z into a principal H-bundle over Z/H. Analogous definitions can be made for right
cosets

H.¢ € H\T. (ES)
and double cosets
H¢H € H\I/H (F.6)
and their respective quotient spaces.

An universal property of the quotient maps q% JH> which will become important in our dis-

cussion below, is the following. Let f T .7 — R be a continuous, right H -invariant function,
i.e. a function which satisfies fT(¢h) = f1(¢) forany ¢ € T and h € H. Then there exists
a unique continuous function f : Z/H — R such that fT = fo q% JH- Conversely, one may

lift any continuous map f : Z/H — R uniquely to a right H-invariant map f* : Z — R,
which is used by Kondor and Trivedi [[162] to generalize group convolutions to homogeneous

“Other choices of points yield other realizations of the non-canonical isomorphism Z/H = X.
Any choice is equally valid since Stab, = Stab, for homogeneous spaces.
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spaces. The relation between both functions is visualized in the following commutative dia-
gram:

7z

(F7)

b
920

I/JH—— 3R

f

An analogous construction can obviously be made for right quotient spaces H\Z and left
H-invariant maps. The following commutative diagram visualizes the case of double quo-
tient spaces H\Z/H and maps fT which are simultaneously left H-invariant and right H -

invariant, i.e. which satisfy f7 (7L¢h> = fT(¢)foranyp € T, h€ H,and h € H:

H\1/H (F.8)

H\Z/H —R

Group convolutions and group correlations: Convolutions are naturally generalized
from Euclidean spaces (or translation groups) to arbitrary locally compact groups. Let 7
be a locally compact group and let d¢ be a left Haar measure on Z. The group convolution
(f *; k) : T — R of two integrable functions f : Z — R and x : T — R is then defined by
the following equivalent expressions, taken from [[102]:

(f #; 6)(9) - (©)r(¢T1e) d¢

Il Il
—
- =
—~

-

o

=N

—~

I~

L

S—

QU

N

FICTH) R(Co) A(CTH) d¢

A
/I F(@¢ ) r(Q) AT d¢, (F.9)

The group homomorphism A : Z — (R, *), appearing in the last two expressions, is the
modular function of Z. Kondor and Trivedi [162] define group convolutions as in the last
line, however, without the modular function. This is valid since the authors assume compact
groups, which are unimodular, i.e. satisfy A(¢) = 1 for any ¢ € .

Closely related to group convolutions are group correlations

(fHr 6) (@) = [y ¢-8) 11 (z) = /I F(Q) w(¢71¢) dC, (F.10)

which are defined as the inner product of a function f with a shifted kernel ¢.x. A compar-
ison with Eq. (F.9) reveals that group convolutions and group correlations are equivalent up
to an inversion of the kernel argument, that is,

(fx, ) = (fx, [0 ()7']). (F.11)



F.2. Scalar field convolutions on homogeneous spaces 413

While Kondor and Trivedi [162] consider (generalized) group convolutions, Bekkers [10]
and Cohen et al. [S6]] assume correlations — to reconcile the theories one has to invert the
kernel arguments.

Group convolutions and group correlations are by definition equivariant w.r.t. left actions
a.f(¢) = f (a_1¢) of group elements o € Z on the first factor. For the case of convolu-
tions, this is shown by

(o] %7 5) () = /I [0 £1(C) 5(C10) de
- /If(oflc)ff(é’%) dc

= [ SR 070) dfod)

= (f *7 “)(ail(ﬁ)
= [a.(f* #)](9), (F.12)

where we substituted Z“ = a~!( in the third step and made use of the fact that dz is a
left Haar measure, i.e. satisfies d (ag ) = d(. The case of correlations follows trivially by

Eq. (ETI).

The majority of equivariant CNNs rely on group convolutions or group correlations. In
particular, the models in rows (1-3), (5), (7), (13), (17), (22), (25), (28), (29) and (36) of
Table[T4.1] all of which operate on homogeneous spaces and are (or could equivalently be)
labeled by regular representations, are group convolutional CNNss. Prior to their use in equiv-
ariant CNNs, group convolutions have been widely applied in robotics [49] or for image anal-
ysis 1921275, 12761 27,1277, 1223]]. Cohen and Welling [52] showed that group convolutions
(or rather correlations) naturally generalize conventional CNNs. Since the feature maps of
convolutional networks comprise multiple channels, they are not given by real-valued func-
tions on Z but by vector-valued functions f : Z — R€. Kernels are accordingly defined to
be (unconstrained) matrix-valued functions on the group, i.e. k : Z — Ru*% _ The works
of Kondor and Trivedi [162]], Bekkers [10] and Cohen et al. [55][56], which we review in the
following, generalize such group convolutional networks to arbitrary homogeneous spaces.

F.2 Scalar field convolutions on homogeneous spaces

We start with the Z-equivariant convolutional (or correlational) networks on homogeneous
spaces by Kondor and Trivedi [162] and Bekkers [10]. Both theories define feature maps as
scalar fields on homogeneous spaces, that is, each channel is given by a real-valued function

f:T/H—>R. (F.13)

Individual channels transform independently under the action of the global symmetry group
7 as specified by

[0.f](6.H) := f(¢'¢.H) e H, ¢.HeI/H. (F.14)

Each layer [ = 1,..., L may be assigned a different subgroup H; < 7 and thus homoge-
neous space Z/H; on which its feature maps live. This allows for instance to model lifting
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convolutions from the sphere S? = SO(3)/SO(2) to the group SO(3) = SO(3)/{e} when
choosing subgroups SO(2) and {e}, respectively. The choices of subgroups correspond in
some sense to the choices of group representations in our theory, which we will explain
further below.

The results of the two papers are to large parts equivalent, however, Kondor and Trivedi
[162] consider compact groups Z and convolutions while Bekkers [10] assume Z to be a Lie
group and use correlations.

Kondor and Trivedi [162] : In a nutshell, Kondor and Trivedi [162] investigate the most
general Z-equivariant linear maps between scalar field features on homogeneous spaces
Z/Hi, and Z/Hgyy, assuming the transformation law in Eq. (FE14). They prove that this
operation is given by a generalized group convolution with a kernel

Kt Ho\T/Hoy — R (F.15)

on the double quotient space specified by H;, and H,y. Formulated for finite groups, as
done by the authors, this generalized convolution operation is shown to be given by

(f *7m, £)(&-How) = |Hunl > f(¢¢T Hin) k(Hin-C. How) - (F.16)

Hin~< € Hin\I

A comparison with the last line of Eq. (EJ) suggests that this operation is indeed closely
related to group convolutions — the modular function A drops out since Z is compact and
therefore unimodular. The generalized convolution is in fact equivalent to a group convolu-
tion

(f 7, #)(0-How) = (T %, 87)(0) (E17)

with features and kernels that are lifted according to the diagrams in Egs. and (EB).
Note that the convolution kernel on H;,\Z/H,y corresponds to a correlation kernel on
H,,\Z/H;, since convolutions and correlations are according to Eq. (EI11) related by an
inversion of the kernel argument. One could therefore view the kernels by Kondor and
Trivedi [162] as left H,y-invariant correlation kernels on the input space Z/ Hj,.

To give an intuition on these results, we come back to our spherical CNN example from
above. Let therefore Z = SO(3), H;, = SO(2) and, for now, H,y, = {e}. This setting de-
scribes lifting convolutions from the 2-sphere Z/H;, = SO(3)/SO(2) 2 S? to the rotation
group manifold Z/Hyy = SO(3)/{e} = SO(3). Considering correlations instead of convo-
lutions, the kernels are real-valued functions on Hoy\Z/H;, = {e}\ SO(3)/SO(2) = S2.
If we let instead Hoy, = SO(2), the convolution maps from scalar fields on the 2-sphere to
scalar fields on the 2-sphere Z/H,y, = SO(3)/ SO(2). In this case the correlation kernels
are given by real-valued functions on SO(2)\ SO(3)/SO(2). Equivalently, the correlation
kernels are given by left SO(2)-invariant functions on S?, i.e. zonal kernels as visualized
in Fig.[16.5] When assuming H;, = Hoy = {e}, one has Z/Hy, = Z/Hoy = SO(3)
and unconstrained kernels on Hq\Z/H;, = SO(3), corresponding to conventional group
convolutions (or correlations). These results are in line with our discussion in Section|17.

For completeness, we mention that Kondor and Trivedi [162]] explain their results addition-
ally from a representation theoretic perspective, i.e. with features and kernels in Fourier
space. The fact that features and kernels live on quotient spaces is in this formulation re-
flected in sparsity patterns of the Fourier coefficients.
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Bekkers [10] : Instead of considering compact groups, Bekkers [10]] assumes Z to be a
general Lie group. The feature maps of layer [ are defined as real-valued square integrable
functions in L?(Z/H,;) which transform according to Eq. (F.14) when being acted on by Z.

Bekkers [[10] models the layers of his convolutional (or rather correlational) networks as
linear bounded operators

R: L*(T/Hy) — L*(Z/How) (F.18)

between feature maps on homogeneous spaces Z/H;, and Z/Hy,. Such operators are in
general given by integral operators of the form

(8]0 ) = |

(¢ Hou, ¢-Hin) f(C-Hin) dpy )y (F.19)
Z/Hin

where d,uZ I is some Radon measure on Z/ H;, and

R: Z/Hou XxZ/Hypy — R (F.20)
is an integrable 2-argument kernel.

The requirement on the operator to be equivariant, that is,

R(o.f) = 0. R(f) Vo€, fel*(T/Hn), (F21)

is shown to imply that the 2-argument kernel reduces to a single argument kernel

d'U'I/Hm (¢_1C-Hin)
d'U’Z/Hi“(g'Hin)

The group element ¢ € ¢.H,y C Z is hereby an arbitrary representative of the coset in
which it is contained. This 1-argument kernel is — up to a measure dependent scale factor —
constrained to be left H,-invariant:

d,UJI/Hm(g_1<~Hin)
d:uz/Hm(C'Hin)

Note that this result is very similar to that of Kondor and Trivedi [162] since a left Hy-
invariant kernel on Z/ H;, is equivalent to an element of H,u\Z/Hj, (again assuming cor-
relation kernels instead of convolution kernels). The main difference is the additional scale
factor, which appears since the Radon measure dy.., JH, is not necessarily left Z-invariant.

R (¢ Houw, ¢ Hin) = k(¢ Hy) - (F22)

K(C.Hin) = K(ET'C.Hn) YV (Hiw €I/Hn, £€ Hou (F23)

One of the practically relevant cases is that of group correlations, for which Hy, = {e}
and Z/{e} = Z. In this case dj. is a left (invariant) Haar measure on Z, such that the
scale factor drops out. A second relevant case is that of affine equivariant convolutions on
Euclidean spaces, i.e. the choices Z = Aff(G) and Hy, = G, for which Z/H;, = R%
Assuming dj, 1, © be the Lebesgue measure on R? and denoting ¢ = tg € Z, Bekkers
[LO] prove that the scale factor is in this case given by:

dpy, ((t9) ') 1
dpiy () |det g

VzeR? (F.24)

This is exactly the determinant factor which appears in our GG-steerability kernel constraint,

Eq. (0.37), as well.
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Since SO(3) is a Lie group, the spherical CNN examples that we gave after discussing
the theory by Kondor and Trivedi [162] apply without changes (assuming the standard left-
invariant measure on S2).

Bekkers [10] defines kernels in close analogy to our GM -convolutions on the tangent spaces
and projects them via exponential maps to the homogeneous spaces. The kernels on the
tangent spaces are hereby modeled via B-splines. A difference is that Bekkers [[10] does
not need to consider parallel transporters since he is assuming scalar feature maps on the
homogeneous spaces.

Relation to GM-convolutions: Due to the quite different formulation it is not immediately
obvious how the results of Kondor and Trivedi [[162] and Bekkers [[10] relate to our theory.
Instead of considering different quotient spaces Z/H; in each layer I, we consider a fixed
manifold M. To see how both approaches connect, assume another subgroup G to be given
such that H; < G < T for all layers [ = 1,..., L and satisfying that M := Z/G is a
manifold. The scalar features on Z/H; can in this case be viewed as G-associated feature

fields on M which transform accordlng to quotient representations pqu{, '. To see this, note

that the group action in Eq. (F.14) is nothing but the induced representation Ind% H, pgé =

pqu/(,l ' from the trivial representation of Hj, which describes the transformation law of scalar

fields on Z/H;. This representation can via induction in stages (see [33]) be decomposed
into
Ind%, pllt = md% d§, pl = mak pSi" (F.25)

that is, into the induction of the quotient representation pgl(/,t ' from G to Z. The real-valued

functions on Z/ H; are therefore equivalent to p u/ '-fields on M = Z/G. This result was
for Euclidean spaces already shown in Section@

Interesting special cases are G = H; and G = {e}. For the former one has pqu/ Hi pﬁv,
describing scalar fields on M = Z/G = Z/Hj,. For the latter, pquot - preg is the regular
representation, corresponding to conventional group convolutions.

These insights imply that the theory of Kondor and Trivedi [L62]] explains all models in Ta-
ble which operate on homogeneous spaces of compact groups Z and are labeled by ei-
ther trivial, regular or more general quotient representations — these are essentially the spher-
ical CNNs in rows (36) and (37). A minor generalization of the theory to locally compact,
unimodular groups would additionally describe some of the isometry equivariant Euclidean
CNNs. As Bekkers [10] is assuming arbitrary Lie groups, his models additionally describe
those Aff(G)-equivariant CNNs in Table which are labeled by trivial, regular or more
general quotient representations. They cover in particular scale equivariant Euclidean CNNs
(G = &) for which the determinant factor |det g| is non-trivial.

Other types of feature fields and non-homogeneous spaces like punctured Euclidean spaces
E;\{0} and spheres S%\{n, s}, the icosahedron, general surfaces and the Mébius strip are
not covered.

F.3 Steerable CNNs on homogeneous spaces

Motivated by Kondor and Trivedi’s [[162] generalization of group convolutions to homo-
geneous spaces, Cohen et al. [55][56] generalized steerable CNNs to homogeneous spaces
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of locally compact unimodular groupsE] Instead of restricting to scalar fields, Cohen et al.
[55][56] assume more general Hj-associated feature fields on I/H; which transform ac-
cording to induced representations Indél pr of Z. The network layers implement linear
equivariant maps between such fields, i.e. they are intertwiners between induced representa-
tions. As expected, these layers are parameterized by — and are thus isomorphic to — spaces
of steerable kernels. Cohen et al. [[55][56] show that these kernels can be described on 7, on
Z/H;i, or on Hoyw\Z/Hiy, in each case still satisfying a linear steerability constraintﬂ The
following three paragraphs will 1) introduce feature fields and their transformation laws on a
global and local level, 2) review the spaces of intertwiners and steerable kernels which map
between such fields, and 3) discuss how these results relate to ours.

Our formulation and notation in this section is adapted to be more similar to that which was
chosen to develop our theory. It differs therefore slightly from that of Cohen et al. [55]][56]].
Most notably, we do not assume a single local trivialization (section) which is defined almost
everywhere on Z/H; but consider an atlas of local trivializations which cover the homoge-
neous space[] The notation of local, coordinatized quantities is therefore augmented with
gauge labels A, B, ... .

Feature fields and induced representations: Let 7 be a locally compact unimodular
group and let H; < 7 be any subgroup of it. As stated above, the quotient map

97 L T/ 6 6. H) (F.26)

implies a principal H;-bundle; see Section The right H;-action on the total space 7
is given by the usual right multiplication

IxI/H —TI/H), (¢,h)— dh (F.27)

of group elements. It preserves the fibers Zy 7, = )71 (¢.H;) C T since it satisfies

(92,
97,5, (Oh) = oh.Hy = 6.H = g7, (9) (F.28)

for any ¢ € Z and h € H; and is easily seen to be both transitive and free. Abbreviatin
U = UANUB, local trivializations W7, WP of this bundle and the transition maps h?
between them are defined via the following commutative diagram:

U x Hl
\I/B
g (id x hP4.)
7 -1 123
T2 () U) —F— UxH (F.29)

z

qI/Hl proj,

I/H, 2 U

Note that there are a preprint version [55] and a conference version [56] of this paper.

5As we will argue below, the constructions on Z/ Hiy and How\Z/ Hin depend on local sections and
are therefore only possible for trivial bundles. We adapt the former to nontrivial bundles by defining
kernels on an open cover of Z/ Hiy.

"This is only necessary if the homogeneous space is a (non-trivial) manifold. If it is discrete, one
may always choose a global section Z/H — Z which selects coset representatives. One would in this
case usually not talk about “atlases” and “local trivializations”, however, we will do so for simplicity.
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As usual, the principal bundle trivializations imply local identity sections

ot UA - (qi/Hl)*l(UA), ¢.H, — o (¢.H) = () ' (¢.Hy, e), (F30)

which were introduced in Section The identity sections labeled by Aat (.Hjand A at
¢ C.H; are related by

¢ o CH)) = oG CHY) WA (CH), (E31)

which defines the Z-induced gauge transformations hﬁg (C.H;) € Hy; see Eq. 13.32

The feature fields of steerable CNNs on homogeneous spaces are defined as sections f &€
I'(A;) of associated H;-bundles

Ay = (T xR/ ~,,, (F.32)
which were introduced in Section[T1.3] The equivalence relation
(&, 1) ~p (07, pu(h)f) (E.33)
is determined by a choice of field representation
pr: Hp — R (F.34)

of the layer’s subgroup; compare this to our analogous definition in Eq. (11.42)). Being an
associated H;-bundle, the local feature vector bundle trivializations transform covariantly
with those of the corresponding principal bundle:

U x R“
B
%l . BA
(i x oo (h4) )

\I]A
m {(U) —— U x R" (F.35)
e .

proj,
U

The precise construction of associated bundle trivializations from principal bundle trivializa-
tions was given in Eq. (T1.63).

Cohen et al. [S5][156] use two different approaches to describe feature fields. Globally, fea-
ture fields are represented as functions

F:T—R% suchthat F(¢h™') = p(h)F(¢) VeI, heH, (F.36)

whose definition is consistent with the equivalence relation from Eq. (F.32). On trivializing
neighborhoods U4 C T /H;, the fields are furthermore given by feature vector coefficient
fields

fA.UA SR (E37)

8To avoid confusion, note that Cohen et al. [55]][56] denote hgg(C.Hl) by h(¢.H;, ¢), omitting
the gauge labels.



F.3. Steerable CNNs on homogeneous spaces 419

relative to some gauge ‘If4A- While the former is more convenient for algebraic manipulations,
1

the latter is non-redundant, and therefore more suitable for numerical implementations. The
local field representation may at any time be computed from the global one by setting

fA(¢.H) = F(o*(¢.H,))  for ¢.H € U*. (F.38)

Here 04 : U4 — T is that local section of the principal H; bundle which corresponds to the
chosen trivialization W' (“identity section”) and is analogously defined to Eq. (TT.61). Note
that the global field representation can in general not be recovered from a (single) local one.
It is, however, locally over U given by

F(9) = p(¥),,(0) " fAeH) for g€ (qu/Hl)‘l(UA) CZ, (F39)

which is closely related to Eq. (T1.66).

The global, active transformations of feature fields are formalized by induced representations

Indfll p1 of Z, which are conceptually similar to our isometry pushforwards from Def.|13.1.2
For the global field representations, this action is simply defined as a shift on Z:

[IndF;, o] () F(¢) = F(¢'9) (F.40)

Since the Z-action is global, it is more difficult to describe for local field representations. Let

U be a trivializing neighborhood around ¢.H; and U 4 around (~1¢.H,. The action of the
induced representation is relative to gauges on these neighborhoods given by

[[nd, 1) () £] (6. H) = pu(hE) fA(C 6.1, (F41)

where h44 is the (-induced gauge transformation, which is analogously defined to that in
Eq. . Note the similarity of this definition to our isometry pushforward of feature
fields in coordinates from Eq. (8:19). We furthermore identify the transformation law of
scalar fields on homogeneous spaces from Eq. as a special case for trivial representa-
tions p;. Steerable CNNs on homogeneous spaces cover therefore the homogeneous scalar
field convolutions of Kondor and Trivedi [[162] and Bekkers [10] as a special case (ignoring
the different assumptions made on the type of group Z).

Intertwiners between induced representations and steerable kernels: The main en-
deavor of Cohen et al. [55][56] is to characterize the space
Homz (I'(Ain), T'(Aow)) = (F42)
{&:T(Ain) = I'(Aoy) linear | Ro Ind%lm(gb) = Ind%{om(gb) oR VoeTI}

of intertwiners between induced representations, i.e. the space of linear equivariant maps
between feature fields. Diagrammatically, this space consists of those linear maps £ which
let the following diagram commute for any ¢ € Z:

F(.Ain) L F(Aout)

Ind%{in pl ((b) Ind%lom p()lll(¢) (F'43)

I'(Ain) — Y I'(Aou)
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These maps are the analog to our isometry equivariant kernel field transforms, which were
defined in Def.[TI3.2.1} Cohen et al. [55][56] prove that these maps are given by correlations
with steerable kernels. We will in the following briefly review these results for both global
and local field representations.

When working with the global field representation from Eq. (36, Cohen et al. [53][56]
start with a general bounded linear operator K of the form

[RF](¢) = /I R(¢,Q) F(¢) d¢ (F.44)

where d( is a left Haar measure on Z and
R:Z X T — RO (F45)

is a matrix-valued 2-argument kernel. The equivariance constraint is shown to require
the kernels to satisfy the relation K(¢¢p, $¢) = K(¢, () for any choice of group elements
¢, ¢, ¢ € Z. This result is resembling our Theorem |13.2.4) which states that isometry
equivariant kernel field transforms imply kernel fields which are invariant under the action
of isometries, Def.[13.2.3] Given this constraint, the 2-argument kernel can be replaced by a
1-argument kernel which is defined as

KL — RO ¢ k() := ke, ¢). (F.46)

We therefore have &(¢, () = k(¢ ¢, () = r(¢'(¢), implying that the linear operator
is given by a group correlation (Eq. (F.10)), that is:

[RF](¢) = /I (6 ) F(Q) d¢ = (Fx, 5)(0) (E47)

The correlation kernel is furthermore required to satisfy the linear H,,- H;,-steerability con-
straint

/‘J(hout ¢)hin) = pom<hout) H(Qb) Pin(hin) V ¢ €L, hin € Hiny, hou € Hout - (F.48)

This constraint is reminiscent of that found by Kondor and Trivedi [162] and Bekkers [[10].
Instead of enforcing kernels to be left H,,- and right Hi,-invariant, which would correspond
to trivial representations p,, = pg‘j“‘ and p, = p{;{;", the constraint of Cohen et al. [35][56]
allows for more general steerable kernels. The vector space K gm, Pout of such steerable corre-

lation kernels is argued to be isomorphic to the intertwiner space Homz (F(Ain)u F(Aout)).

Since the global field representations F' on Z are redundant they are not the best choice for
numerical implementations. Cohen et al. [55][56] are therefore additionally investigating
intertwiners which operate on local field representations. The authors approach this problem
by assuming one single local trivialization to be given, which is defined almost everywhere
on the homogeneous space Z/ Hj,. They are therefore effectively operating on a trivial bun-
dle. Our following review adapts their results slightly to the more general case of a set of
field representations relative to an atlas of local trivializations. The formulation of Cohen
et al. [55)][56]] is retrieved by restricting the integration to one single trivialization. We ex-
plicitly write out all gauge labels to make the coordinate dependencies transparent. To give
an overview of the local trivializations that will play a role in the following, we mention that

we will need to consider trivializing neighborhoods U4, U A ,UH C T/H,, such that

CHn€UA,  ¢C.Hn€UA and h(.HyecUH (F49)



F.3. Steerable CNNs on homogeneous spaces 421

and trivializing neighborhoods U P , Uﬁ U Ecr / Hoy such that

O How €UT,  G6.Hoyw € UP and e.Hyy € UE. (E.50)

We will furthermore assume any partition of unity {#;;x } x cx subordinate to the open cover
underlying the atlas A, = {(UX, ¥X)} x¢cx of local trivializations on Z/H;,. This means
that we are given maps Py x : Z/Hi, — [0, 1] with the properties

supp (2,x) CUY and > P (¢.Hn)=1 V¢.Hy€I/Hy. (F5D)
UX A,

Eq. (F.44) stated the general form of a bounded linear operator between global field repre-
sentations F. Its local analog, which makes use of the partition of unity, is given by

[ﬁf] P(d)-Houl - Z / g) C Hm) <_PA(¢) Houlv g Hm) fA(C Hm) (C Hm) )
e (F.52)

where P and A label local trivializations as stated above and d((. Hi, ) is a measure on Z/ H,.
We furthermore have 2-argument kernels

REAL U< UA — R ($.How, C.Hin) = R(0F (¢.How), 0™ (C.Hin))
(E.53)
which are inherently locally defined on UP x U4 C T /How % Z/H;,. The global 2-

argument kernel can be recovered from a set of local kernels on the open covers. Cohen
et al. [53)][S6] prove that these local kernels are required to satisfy

%\PA(QZlHouta Q-Hin) = pout(h§P(¢-Hout))_l %ﬁg<$¢-Houh QZC-Hin) pin(th(g'Hin))
(F.54)

for any 5 € Z. Note that hgp (¢.Hoy) is hereby an induced gauge transformation on

T/ Hyy while th(C H;,) is an induced gauge transformation on Z/H;,. In order to re-
duce these local 2-argument kernels to local 1-argument kernels Cohen et al. [55][56]
consider the unlque group element qb € 7 which satisfies 1) qzbgb Hy: = e.Hy, and 2)
¢U (¢.How) = 0¥ (e.Hyy) = e, where the last equality fixes a specific gauge at the “ori-
gin” e.H,y, which is always possible. The first point allows us to identify the gauges P
and E without loss of generality. The relations imply furthermore ¢~5 = o (e.Hyy) ! and,

by Eq. (F31), h(’fp(qﬁ.Hou[) = e. Plugging these choices into Eq. (F:34) yields
<—PA<¢ Houla C-Hin) (FSS)
= idPE & TEA (e-Hows 07(¢-How) " *¢.Hin) p (hap (6. Ho) -1 (C-Hin))

=: %E‘Z (O’P(Qb-Hout)ilC'Hm)

where the identity map is kept explicit to explain the gauge labels. We furthermore intro-
duced the local 1-argument kernels

GEA A Reaxen (F56)
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whose responses are always given in the specific gauge E at e. Hy,. These kernels are still
required to satisfy the H,-steerability constraints
1
%EH(houtC'HiO = poulh out) (. Hm)EA (hHA(C Hm)) (E.57)

Pout

for any C.H;, € T/H;, and hgy € Hoy. Putting everything together, the equivariant corre-
lation becomes

[8f]" (¢ How) = 1dBE, > A (CHin) % <0’P(¢.H0ut)_1C.Hin) (F.58)

UAE A
(h Pl try-1 (C-Hin)) FA(C.Hin) d(C.Hin).

Adding the assumption that a single gauge A = A covers T / Hi, almost everywhere, we can
drop the partition of unity and retrieve the formulation of Cohen et al. [S5][56]:

[8f]" (¢-How) = 1dBE, /U : AP (¢- How) ™' ¢ Hin) (F.59)

P (W2 111 (C-Hin) ) FACHi) d(C-Hi)
We comment on the relation of this operation to our GM -convolutions further below.

Instead of defining the local 1-argument kernels in coordinates from Eq. (E56) on local

subsets U ﬁ, Cohen et al. [55][56] define them globally on Z/Hj,. Since their construction
relies on a continuous section, this is only possible if the bundles are trivial. Our adaptation
to local kernel representations on an open covering is bridging this gap.

Cohen et al. [55][S6] claim an isomorphism between the global kernels on Z, satisfying
the steerability constraint in Eq. (F48), and their kernels on Z/ H;,, satisfying the steerabil-
ity constraint in Eq. (E57). Note that this isomorphism can only hold if either the bundle
is trivial or the continuity assumption on the sections (and therefore network inference) is
dropped. It should, however, be possible to prove an isomorphism between the global kernel
and a collection of local kernels on a covering of Z/ Hy,, satisfying the relations in Eq. (E57).

The authors furthermore claim that the steerable kernels can be described on the double
quotient space Hoy \Z/ Hi,, still satisfying a steerability constraint.

Relation to GM-convolutions: The steerable CNNs on homogeneous spaces by Cohen
et al. [55][56] are conceptually quite similar to our GM -convolutions on Riemannian man-
ifolds, however, there are some important differences which we discuss in the following.
Most importantly, the theories differ in 1) being based on different spaces Z/H; in each
layer [ vs. assuming a fixed manifold M, 2) modeling kernels on the space Z/H;, itself
or on tangent spaces 1, M of it, 3) the way of how weights are shared, and 4) the types of
global symmetry group Z and spaces Z/H; or M, which they cover. Despite these differ-
ences, many of the results of Cohen et al. [55][56] have analogs in our theory.

Both theories share the idea to define feature fields as sections of associated vector bundles.
While Cohen et al. [S5]][56] consider a global symmetry group Z as a set of multiple principal
H;-bundles over homogeneous spaces Z/H;, we work with some G-structure GM over a
fixed Riemannian manifold M. All of our feature vector bundles are defined as G-bundles
and are associated to each other, while the feature bundles of Cohen et al. [S5][56]] may not be
associated to each other if their structure groups H; do not agree. As already claimed at the
end of the last Appendix[F.2] these differences can be mitigated if a structure group G can be
chosen such that H; < G < 7 for every layer [ and M := Z /G is a Riemannian manifold.
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One can then replace all homogeneous spaces Z/H; with M and all H,-representations p;
with induced G-representations

p¢ = Ind§ pr. (F.60)
The global field transformation laws are preserved by this reinterpretation since
Indél ;= Indg Indgl pi = Indg pf (F61)
holds by induction in stages [33].

Another main difference lies in the definition of convolution kernels and weight sharing. On
the global, coordinate free level and prior to the isometry assumption, Cohen et al. [55][56]
start in Eq. (F.44)) with a bounded linear operator which is parameterized by an unconstrained
kernel

R:T x T — RéwXen (F.62)

This operator corresponds in our theory to a general kernel field transform, Def. [12.2.5]
which is parameterized by an unconstrained kernel field

K : TM — Hom (A, Aou) , (F.63)

see Def. (12.2.1). The 2-argument kernels & can be thought of as representing a kernel field
as well. Their two arguments are thereby thought of as addressing 1) a specific (1-argument)
kernel, yielding a response at the corresponding point in the output bundle Z — Z/ H,, and
2) the spatial dependency of this 1-argument kernel on the input bundle Z — Z/H;,. The
analog in our kernel fields /C is that elements v € T'M encode 1) the location p = 7,,,(v)
of the kernel and 2) its spatial dependency via v € T,,M.

When requiring the bounded linear operator to be Z-equivariant, the 2-argument kernel K
becomes constrained to satisfy

(90, C) =R($,¢) VeI (F.64)
Isometry equivariant kernel field transforms were in Theorem [I3.2.4] shown to require the
isometry invariance of the kernel field, i.e.

b K=K VoeI; (F.65)
see Def.[13.2.3]and Fig.[13.6]

The invariance constraint on 2-argument kernels x allows to replace them with 1-argument
kernels

Ko T — Rewxen (F.66)

defined in Eq. (F40). They are still required to satisfy the steerability constraint in Eq. (E.48).
Our isometry invariant kernel fields were in Theorem|13.3.2{shown to be equivalent to a field
of kernels

Q: nt(r,(T\M)) = n* (r,,(Z\M)) (F67)

™ Hom

whose support is restricted to the tangent spaces over representatives ,,(Z\M) C M of
the quotient Z\M E] These kernels are required to satisfy a stabilizer subgroup steerability

Theorem 13.3.1] proves another isomorphism to a space of kernels Q : 7, (Z\TM) —
Thom (Z\Hom) whose support is even further restricted to representatives of the tangent bundle quo-
tient Z\T'M..
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constraint as well. For the specific case that M is a homogeneous space of its isometry
group, the quotient Z\M reduces to a single element. Theorem 13.3.2]implies in this case a
single (1-argument) kernel

Q: T,M — Hom(Ainp, Aourp) (F.68)

at p = 7,,(Z\M), which is the direct analog to the 1-argument kernel of Cohen et al.
[S5]156].

Note that the full kernel fields can via the action of Z be reconstructed from the single 1-
argument kernels. The theories derive therefore both a form of convolutional weight sharing
from the requirement of global symmetry equivariance. While kernels can for transitive sym-
metries be shared over the whole homogeneous space, they can in general only be shared over
the orbits of the symmetry group. If the manifold is asymmetric in such a way that the orbits
are single points no weights can be shared with this definition. As this is the default case
for Riemannian manifolds, GM -convolutions resort to the sharing of GG-steerable kernels by
placing them relative to frames of the G-structure. This definition does not have a coun-
terpart in steerable CNNs on homogeneous spaces. Our Theorem [13.3.3] shows, however,
that the global symmetry induced weight sharing is for the specific case of homogeneous
spaces equivalent to our process of sharing GG-steerable kernels. In other words, isometry
equivariant kernel field transforms on homogeneous spaces are necessarily convolutions —
this mirrors the central results of Kondor and Trivedi [[162], Bekkers [10]] and Cohen et al.
5511561

After investigating the analogies for the global, coordinate free kernels of both theories, we
compare the definition of their coordinate representations relative to local trivializations.
Given some choice of trivializing neighborhoods P cz1 /Hoy and U AcCT /Hin, the
unconstrained global 2-argument kernels of Cohen et al. [55]][56]] are locally represented by
unconstrained functions

% UP x UA s RewXen (F.69)

In our theory, we instead have a single trivializing neighborhood U¥ = U4 C M relative
to which a kernel field is given by an unconstrained map

KA UA x RY — ROwXen (F.70)

Investigating the global Z-equivariance of the operator K based on local kernels is on non-
trivial bundles necessarily difficult as it involves multiple trivializations. The equivariance
requirement implies for steerable CNNs on homogeneous spaces the constraints between
different local kernels in Eq. (F54). They leads to the 1-argument kernels

%EA . UA —3 TR CoutXCin , (FE71)

from Eq. (E36), which are still subject to the steerability constraint in Eq. (E37). Single

kernels ICp, : T, M — Hom(Aj, p, Ao p) (like e.g. O from Eq. (F68)) are according to
Eq. (12.24) in coordinates given by functions

Kb R — Rewxen (E.72)

whose domains are tangent space coordinates R? instead of of a open subset U4 of the
manifold. A particular important example are GG-steerable kernels, which correspond to the
GM -convolutional kernel fields from Def.

While our kernels are globally defined in a single gauge wﬁj.p of T,,M, the local 1-argument
kernels of Cohen et al. [53][56] need to be defined on an open cover of Z/H;,. As this is
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significantly more complicated, they propose therefore to represent the kernels on a single
gauge which is defined almost everywherem Note that this still requires that this single
trivializing neighborhood is closed under the left action of H,, in order for the constraint
in Eq. to make sense. We investigated this approach in Section for the specific
example of spherical CNNs, defining kernels on the trivializing neighborhood U4 = 52\ —
n. Theorem[17.2.1| proved that Cohen et al.’s [55][56] steerable kernels on S\ —n C S?
are in this case isomorphic to our G-steerable kernels on Bgz (0, 7) C R?. The equivalence
of the corresponding convolutions was established in Theorem[17.2.2]

Finally, we discuss which class of models steerable CNNs on homogeneous spaces cover.
Obviously, the theory does not describe convolutions on non-homogeneous spaces like punc-
tured Buclidean spaces E,;\ {0}, the sphere without poles S?\{n, s}, whose isometries O(2)
are non-transitive, the icosahedron, general surfaces or the Mobius strip. However, in con-
trast to GM -convolutions, the base spaces Z/H; are not required to be Riemannian man-
ifolds. While Kondor and Trivedi [162] and Bekkers [[10] cover only those convolutions
whose feature fields transform according to scalar fields on Z/H;, the associated bundle
formulation of Cohen et al. [S5][56] allows for general field representations p;. Restricting
to unimodular groups, steerable CNNs on homogeneous spaces do, however, only include
those Aff(G)-equivariant Euclidean convolutions for which the structure groups are sub-
groups of O(d). This reflects in the fact that the steerability constraints of Cohen et al.
[55][56]] do not include the determinant factor in the constraint of Bekkers [[10] and of our
G-steerable kernels.

%In practice, one might anyways work with compactly supported kernels on a single trivializing
neighborhood, which would render this choice unproblematic.
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Figure F.1: A given coordinate free kernel /C,, on the tangent space 7,/ may be
represented in arbitrary gauges w;:‘ or wf . Its coordinate expressions IC;} and ICE
on R¢ differ in general from each other. G-steerable kernels have the property to
take exactly the same form in all gauges, that is, they satisfy IC;;‘ = ICE = K (not
visualized).

Figure F2: A coordinate free kernel may be defined by sharing a given kernel K
on R? relative to some reference frame. Different choices of frames result in a
different coordinate free kernel. G-steerable kernels have the property to produce
exactly the same coordinate free kernel, independent from the chosen reference
frame along which they are shared (not visualized). This allows for a coordinate
independent weight sharing.

Figure F.3: Visualizations of the concepts of 1) the coordinatization of a given coordinate free kernel
on 7,M in Fig. and 2) the sharing of a kernel on R? along different frames of 7, M in Fig.
Depending on the direction (coordinatization or sharing), the resulting kernels differ either on R” or
on T, M. G-steerable kernels are exactly those kernels that can be shared in a coordinate independent
manner, i.e. for which the resulting kernels are equivalent in arbitrary gauges.
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Coordinate independent weight sharing

A fundamental assumption in the design of GM -convolutions is that kernels & on R? are
shared relative to some choice of reference frame as visualized in Fig. [F.2] For general ker-
nels different choices of frames will lead to different alignments of the resulting coordinate
free kernel on the tangent space 1, M — the weight sharing process is therefore not coordinate
independent. Fig. shows a different situation: here we assume a coordinate free kernel
KCp, that is already given on 7,,M and express it in different gauges on R?. The coordinate
representations C2 and ICE do in general not agree with each other but the construction is
coordinate independent.

G-steerable kernels are constrained exactly such that they guarantee the coordinate indepen-
dence of the weight sharing process. Sharing them relative to different frames results in the
same coordinate independent kernel on the tangent space, that is, there will be no difference
between the two kernels in the middle of }f [F2] Equivalently, the resulting coordinate free
kernel on 7;, M will take the same form K.} = ICE = K when being expressed in different

gauges, that is, the left and the right kernel in Fig. [F.I) would agree.

Note that this does not necessarily require the kernel to be invariant in the sense that
K(go) = K (o) forany g € G and any ¢ € R%, as the visual intuition might suggest. This is
indeed a special case for kernels that map between scalar fields, i.e. for which both p, and
Pou are trivial representations (see e.g. Fig. (left) for G = SO(2) or O(2) or Fig.
(left) for G = R). For more general field types the kernels need to be gauge equivariant,
i.e. need to satisfy the G-steerability constraint K (go) = |det g| ™! p,..(9) K(9) p, ()"
which allows for a steering of the c,, X ¢, kernel channels (not visualized). Of course,
G-steerable kernels can be interpreted as being gauge invariant in the sense that K (o) =
|det g|po(9) ™ K(gv) p,(g) forany g € G and any v € R%. This notion of gauge invari-
ance allows the coordinate independent sharing of G-steerable kernels.

A more detailed discussion of coordinate free kernels and their coordinate expressions is
found in Section The G-steerability constraint is in different settings derived in Sec-
tions and Chapter [5] gives more details on steerable kernels in general.






APPENDIX H

An intuition for the Wigner-Eckart theorem for steerable
kernels

The Wigner-Eckart theorem [5.3.T]describes the construction of complete G-steerable kernel
bases from 1) harmonics on G-orbits, 2) irrep endomorphisms and 3) Clebsch-Gordan coef-
ficients. As the formal proofs in the original publications by Lang and Weiler [173]] and Cesa
et al. [40] are rather technical, we aim in this appendix to motivate these three ingredients
step be step:

harmonics: We start in Appendix by considering the specific case of convolu-
tions mapping from scalar inputs to general irrep output fields, observ-
ing that their kernel constraints are generally solved by harmonic basis
functions.

endomorphisms: Appendix [H.2]shows that these solutions may additionally be composed
with irrep endomorphisms without violating the steerability constraint.

CG-coefficients: Appendix turns to the general constraint with arbitrary irreducible
input and output field types V; and V;, and shows how it may be rewrit-
ten in terms of a tensor product V; ® V;. A Clebsch-Gordan decom-
position allows to reduce this constraint into individual constraints on
irrep subspaces. Each of those constraints corresponds to the ones con-
sidered in the previous two sections, which implies that their solutions
in terms of harmonics and irrep endomorphisms can be combined via
Clebsch-Gordan coefficients to give the general solution — this recovers
the statement of the Wigner-Eckart theorem.

Note that this approach is constructivistic — it only shows the sufficiency of and intuition
behind the constructions, but not their necessity, which is proven in [173]] and [40]. To
clarify the abstract constructions, we will give examples for different use cases throughout
the appendix.

As in Section[5.3.3] we assume G throughout this appendix to be compact, which allows for
the complete reducibility of finite dimensional G-representation into irreps and guarantees
the existence of harmonic basis functions. X denotes again some G-orbit as described in
Section[5.3.1} (p;, V;) denotes the real, unitary G-irrep of order j and dim; := dim V its
dimensionality.
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H.1 Harmonic kernels

Before turning to general GG-steerable kernels that map between arbitrary irreducible input
and output feature fields, i.e. satisfy Eq. (5.27), we consider the simpler case where only
the output type (V, py) is an arbitrary irrep, while the input type (po, Vo) is assumed to be
trivial for now. Appendix [H.3|below will discuss the general case with arbitrary irrep input
fields, reducing it to the current case via a Clebsch-Gordan decomposition.

Given a scalar input field, i.e. p, = po, the kernel is a map K70 : X — RI™7 satisfy-
ing the constraint K/%(gz) = p;(g) K”/°(z). Using the assumed unitarity (orthogonality)
ps(9)~t = ps(g) ", this constraint is equivalent to K7%(g~'z) = p;(g9)" K7°(x), or, in
components

K (g~ E:m wmK%(z) VzeX, geG, m=1,...,dim;, (H.I)

where K;/0 : X — R are scalar functions on the orbit (homogeneous space) X.

We know from the Peter-Weyl theorem that square integrable functions on homo-
geneous spaces of compact groups GG decompose into a direct sum of irreducible subspace

components
L*(X,R) EB B vi (H.2)

where m s is the multiplicity of the irreducible subspaces V;; =2 R4™ that are acted on by
irrep p.s. Each subspace Vy; has a basis of harmonic functions {Y 7 |m = 1,...,dim; },
transforming according to irrep p as Y77 (g7 2) = 3, ps(9)nm Y[ (x). Noting that this
defining equation of the harmonic basis agrees exactly with the kernel constraint in Eq. (H.I)),
we see that the vector valued functions

Vi = (Y, ..., Yiim) T x oy gdimy (H.3)

constitute m y solutions. These solutions do, however, not span the full G-steerable kernel
space yet, but may additionally be modulated via irrep endomorphisms, as discussed in the

next Appendix

Examples: Fig. visualizes a mapping from a scalar field (! = 0) to a frequency J =
3 irrep field, as discussed in this paragraph, for G = SO(2). It requires a G-steerable kernel
whose angular part is given by frequency 7 = 3 circular harmonics, for instance

V0@ (g) = (cos(3¢), sin(?)qi)))T : (H.4)
Another example are steerable convolutions between input and output scalar fields, requiring
G-invariant (constant) kernels, i.e. K% (gz) = K%(xz). This result is expected, since scalar
fields cannot encode any information about the GG-pose of patterns of features, and invariant
kernels cannot detect such poses. Both examples have m; = 1, i.e. there is only a single
harmonic subspace associated to irrep p ;.

H.2 Irrep endomorphisms

While the harmonic basis functions in Eq. (H.3) are solutions of the kernel constraint, they
are not necessarily spanning the complete solution space yet. As proven by Lang and Weiler
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(173], the complete solution space allows for a postcomposition with irrep endomorphisms
Def.|B.5.9), that is, linear maps ¢; € R4im7 X dims that commute with the irrep action:
P P

cy-pi(g) = pi(g)-cs  Vgea (H.5)
To make this result plausible, observe that
cy-K7%gx) = cy-ps(g) K”(x) = pslg)-cs- K'O(x) (H.6)

holds for arbitrary points € X, group elements g € G, endomorphism ¢; € End(Vy)
and G-steerable kernels K “/°, implying that ¢ ;- K70 is G-steerable if K“/° is. The Wigner-
Eckart theorem[5.3.T] proves that such endomorphism modulated harmonics are indeed mak-
ing up the complete space of steerable kernels K ' 0E| More specifically, let

{esr|r=1,...,dimEnd(V;)} (H.7)

be a basis of the irrep endomorphism space End(V), then a steerable basis is given by

G.X ._ Jo . dim
KEX = {K°: X >R

K”%gx) = ps(9)- K°(z) Y2z e X, geG}
= span{ch-}_’fjihzl,...,mb r:l,...,dimEnd(VJ)}, (H.8)

i.e. all m; harmonics of order .J, modulated by the dim End (V) basis endomorphisms.

The dimensionality of End (V) is for real irreps V7 either 1, 2 or 4, depending on whether
the irrep is of real, complex or quaternionic type; see [25]].

Example: To give an example, consider G = SO(2), whose real irreps are the one-
dimensional trivial representation po(¢) = (1) and the two-dimensional frequency J ro-

tation matrices
pi(0) = (Sutre) emd) e, 19

The latter are irreps of complex type and have a two-dimensional endomorphism space

spanned by
End(V;) = span«(l) O), (2 é)) JEN, (H.10)

as is easily checked. SE(2)-equivariant linear maps from scalar fields to order J > 1 irrep
fields are therefore convolutions with SO(2)-steerable kernels, whose angular parts are given
by a linear combination of

() = (0 D) (@) -2 (639 @)T
and
() = 6 ) () o= (B )

"Here we are still assuming scalar input fields and general irrep output fields, i.e. P, = po and
poul = pJ'
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These are a pair of circular harmonics, and another pair that is phase-shifted by 7/2 (or a
spatial angle of 7/(2.J)) relative to the first one. A linear combination of these basis elements
allows to express any phase shifted pair of circular harmonics.

If we would have considered G = O(2) instead of SO(2), the endomorphism space would
have been one-dimensional, thus resulting in a one-dimensional steerable kernel basis. These
solutions for SO(2) and O(2) are shown in the bottom left entries of Tables [5.2| and
respectively.

H.3 General irrep steerable kernels and Clebsch Gordan coefficients

The case of general steerable kernels between irreducible input and output feature fields is
via a Clebsch Gordan decomposition (Def. reduced to the previous case. To see this,
we vectorize the irrep kernel constraint, Eq. (5.27), which yieldﬂ

vec K7l (gx) = (pr®pJ)(g)vecKJl(:E) Ve e X, geqG, (H.11)

Since p; is unitary, we have pl_1 = plT, resulting in a constraint involving the irrep ten-
sor product p; @ pj. Such tensor products of irreducible representations are in general not
irreducible. Their reduction to irreducible subspaces is known as Clebsch-Gordan decom-
position, which is an isomorphism

mg,1J

CG:ViaVy - P PV, (H.12)
je@ =1
where the first summand is over all (isomorphism classes of) irreps, while the second sum
determines the (potentially zero) multiplicity m; ;7 € Ng with which irrep p; occurs in the
tensor product p; ® ps. Using it to decompose CG; 5 (pl®pJ) CGZ_J1 = @je@ @?271” Pj,
the general irrep kernel constraint in Eq. (H.1T)) implies

CGyyvec K7 (gz) = CGus (o " ® p1)(9)[ CGy)t CGry ] vec K7 ()

= K (ge) = P, D rile) K" (@) (H.13)

forany z € X and g € G, where K= CG;yvec K7t The steerable kernel consists
therefore of m;;; subspaces that transform according to p;. As discussed in the previous
two sections, each of these subspaces has a basis described by harmonics of order j and
their irrep endomorphisms ¢, 7 = 1,...,dimEnd(V;). The complete basis of steerable
kernels is therefore spanned by

KJ l

STyt

:= unvec CGZ}]-S Cjr 3_/3-1- jE CAv', s<mjis, 1 <mj, r<dimEnd(Vj)
(H.14)

where CGyy s = proj, 0 CGyy is the Clebsch-Gordan decomposition in Eq. (H.12)),
followed by a projection on the s-th irreducible subspace V;, such that the pseudoinverse

2The vectorization operator vec : R™*™ — R™™ acts on an m X n—matrix by stacking its
columns into an m-n-vector. It satisfies vec(AX B) = (B' ® A)vec(X) for any triple A, X, B
of dimensionally matching matrices [229].
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CG;fL ;s 1s the embedding of this subspace Vj into V; ® V. This is exactly the statement of
the Wigner-Eckart theorem for G-steerable kernels.

Given the harmonics, irrep endomorphisms and Clebsch-Gordan coefficients of the structure
group G, this result allows us to construct the most general G-steerable kernels for mappings
between irrep fields. An additional change of basis by Q;, and Qo (Section turns this
into steerable kernel bases for arbitrary field types p, and p,,,.

Example: As a simple example, let us consider the case of irrep fields for G = SO(3).
The irreps of SO(3) are Wigner D-matrices D; : SO(3) — GL(V}), acting on V; =
R2%*1 where j € Ny. They are of real type, implying that the endomorphism spaces
are one—dimensional, and can therefore be ignored. The (non-trivial) orbits are 2-spheres,
such that Y; : S — R*™! is a vector of 2j + 1 spherical harmonics as shown in the
rows of Fig. Each harmonic subspace in the Peter-Weyl decomposition of L?(S?, R)
appears with multiplicity m; = 1, such that we may ignore the index ¢. The Clebsch-
Gordan decomposition of V; ® V; contains all of the 2min(l, J) + 1 irreps V; with indices
|l —J| < j < I+ J with multiplicity m;;; = 1 and all other irreps with multiplicity
zero — we can therefore restrict to this range of indices and drop the index s as well. What
remains is the basis

K0P = span {K; := unvec CG ; Y| ll-J|<j<i+J}, (H.15)
of (angular parts of) SO(3)-irrep steerable kernels; as originally derived by Weiler et al.
[323]. A general SO(3)-irrep steerable kernel is expanded in this basis, with one learn-
able parameter per harmonic component j and radial shell (or alternative parametrization
of the radial part). Fig. visualizes different input and output irrep orders [ and J and
the valid harmonic components j mapping between them. The similarity to the selection
rules for quantum state transitions in the hydrogen atom are no coincidence, since the hy-
drogen atom’s potential is SO(3)-invariant, implying that its quantum states are irreducible
representations of SO(3).
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Existence and smoothness of kernel field transforms

In Def. [12.2.5|we proposed kernel field transforms J,. as smooth integral transforms
T : T(Ain) = T'(Aow) (8))
which are parameterized by some kernel field /C (Def.[12.2.1)) and are pointwise given by

7.(N] () = / K(v) Exp’ f(v) dv = / K@) Py F(xDp0) do. (12)
M

T,M

Kernel field transforms include GM -convolutions from Def. [12.2.7] as a special cases for
GM -convolutional kernel fields.

Here we briefly discuss the well-definedness of kernel field transforms. It is clear that the
integrand of Eq. (L2) lies for any p € M and v € T,M in Agy,p. What remains to be
shown is the existence of the integral and the smoothness of the resulting feature field. In
the following we will first give some general remarks on how to approach these questions.
We will then prove Theorem [12.2.6] i.e. the well-definedness of kernel field transforms for
the specific case of fields of kernels which are compactly supported on a ball of fixed radius
around the origin.

Existence: The existence and smoothness of kernel field transforms requires a suitable
choice of kernel field K. Similar to the case of conventional convolutions on M = R, the
requirements on K in order for the kernel field transform to exist depend on the specific
properties of the input feature field f € I'(Ajy)J'| In general, IC needs to decay sufficiently
rapidly in order to make the integrand in Eq. integrable.

A special case of great practical importance is that of kernels K, : T,M —
Hom(Ajy p, Aout,p) Which are at any p € M compactly supported. In this case the inte-
gral is always guaranteed to exist. To see this, note that (input) feature fields and kernel
fields are defined to be smooth. The smoothness of the metric further implies that the Rie-
mannian volume density, the exponential map and the parallel transport are smooth [[100].
In combination, the whole integrand in Eq. is seen to be a smooth and thus continuous
function from 7'M to Aoy If IC,, is in addition compactly supported, the integrand becomes
continuous and compactly supported on 7, M, which, by a generalization of the extreme

'See the discussion at https://en.wikipedia.org/wiki/Convolution#Domain_of _
definition,
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value theorem, implies that its image is compact (and in a local trivialization R® of Aqyp
bounded) [252]. This guarantees the existence of the integral [93| [282].

Depending on the application, the requirement on the support of C might be relaxed. For
instance, images on M = R? are usually compactly supported themselves, such that no
additional properties of I except for its smoothness are required.

Smoothness: We turn to discuss the smoothness of kernel field transforms, that is, their
property to map smooth input fields fi, € I'(Ai,) to smooth output fields fou := T (fin) €
I'(Aou). By definition, a map fou : M — Aoy between manifolds M and Agy is said
to be smooth if its coordinate representations are smooth. In equations fout is smooth if
for any p € M there exist smooth charts (U, ¢) about p in M and (U, $) about fou(p)
in Aoy with fo (U) C U such that gb o fowo ¢t i p(U) — (b( ) is smooth as a map
between (subsets of) Euclidean spaces. Given (U, ¢), a convenient choice for (U, ¢) would

be ¢ 1= (¢ xid) o o, 7rA71(U) = ¢(U) x R C RY x R®, however, the following

discussion is independent from this choiceE] A map between (subsets of) Euclidean spaces is
smooth if it is smooth in each component of its image, here in each of the d + ¢ dimensions
of ¢(U) x R°. We are therefore interested in the smoothness of the maps

Fi:gU) >R, @ [0 fuoo™| 1.3)

forany ¢ = 1,...,d + c. By writing out f,, and expressing the integral over 7,,M by an
integral over R as discussed in Appendix the F; are seen to be of the form

Fi(z) = / Ii(o,z) dv. 14)

R4
The coordinate expressions of the integrands I; are hereby forany i = 1,...,d + ¢ given by
I:RIxp(U) = R, (0,2) (L5)

|:¢ © ]C( ™, ¢\ (z )(V)) © 734in, ¢ (x) «exp owTM@J(z)(v) o finoexpo 7/’5&,@’1(90)(0) )

i
where we assumed, for convenience and without loss of generality, that ¢, 41, is an

isometric gauge of Ty-1(,, M, such that the volume scaling factor /|det n,[ = 1 drops out.
Note that the integrands I; are composed of smooth maps and are therefore smooth as well.

From the previous discussion it is clear that the smoothness of f;, holds if all F; are smooth,
i.e. infinitely often partially differentiable. To prove the smoothness of the F}, it is suf-
ficient to show that the partial differentiations and the integration in Eq. ([4) commute —
which is not always the case. If they do commute, partial derivatives of arbitrary orders
(n1,...,nq) € N are given by

o on B (@) = /R om oz 1] (o,) o 16)

*Note that 7, ~1(U) is guaranteed to be trivializable given that (¢, U) is a chart of M. This is clear

since the coordmate bases [ 52— o } ¢ , of (¢, U) yields a trivialization of w( ) (see Appendix and
since the local trivializations of £° M and A were in Section[IT.4]induced from those of T'M.
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where 1) the partial derivatives [6;11 c Ol Z—] of the integrand exist (due to the smoothness

of I; their existence is guaranteed) and 2) their integral exists. Whether or not the differenti-
ations commute with the integral can be investigated by making use of the following lemma
from [93]E] which is a consequence of the dominated convergence theorem.

Theorem 1.0.1 (Differentiation lemma [93]). Let V be a measure space, let T C R be a
non-degenerate interval and let I : ¥V xT' — R be a map with the following properties:

(i) Forany fixedt € T the map o — I(0,t) is Lebesgue integrable on {
(ii) For any fixed v € V the map t — I(v,t) is differentiable in T
(iii) There exists a Lebesgue integrable function B : ¥ — R such that

| 2 1(0,t)| < B(o) for any (v,t) €V x T

Then the function F : T — R, t — fv I(v,t) do is differentiable with derivative
0 0
—F(t) = —I(0,t) dv.
at ( ) /(} at (07 ) v

The applicability of this lemma (repeatedly for every single partial differentiation) depends
on the properties of the integrand, which in turn depends on the specific properties of the
kernel field /C and the input feature field fi,. For the case of a kernel field which is compactly
supported on balls of fixed radius around the origin of each tangent space, the lemma applies.
Based on this, we give a proof of Theorem[12.2.6]in the remainder of this appendix.

Proof of Theorem [12.2.6/— Kernel field transform existence for compactly
supported kernels

Denote by B3 (0, R) := {v € T,M | ||v]| < R} the closed ball of radius R > 0 around
the origin of 7, M and by Bg9**!(0, R) := {v € R?||jv|| < R} the corresponding ball
around the origin of R%. Note that any isometric gauge satisfies Vrnep (B;!;;;d(o, R)) =

Bﬂ%‘f“d(o, R). Let KC be a kernel field whose support falls within balls of the same radius R
in each tangent space, i.e. which satisfies

supp(K,) € B§R(0,R) Vpe M a17)
and thus, for any isometric gauge 17y :
© -1 close
supp(Kp o (Ymrp) ) € BE(0,R) Vpe M (1.8)

According to Theorem this property is sufficient to guarantee that the corresponding
kernel field transform I, is well defined. A proof of this statement is given in the following.

3Similar versions of this lemma in English language can be found in [I36] or at https://en.
wikipedia.org/wiki/Leibniz_integral_rule#Measure_theory_statement! In contrast
to those versions, the version from [93|] allows for 7T' being any non-degenerate interval, including
closed intervals, which saves us some additional steps below.
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Proof: As already stated in the beginning of this appendix, the existence of the integral is
guaranteed given that the kernel supports are compact: The compactness of the kernels
carries over to the integrands of the kernel field transform. Their smoothness further im-
plies their continuity and integrals of compactly supported continuous functions always
exists.

To prove the smoothness of the resulting output feature field f;,, we proceed with the
discussion earlier in this section. We aim to apply the differentiation lemma to

swap partial derivatives % forany p = 1,...,d in Eq. at any xo € ¢(U) with
I
the integration over R%. For this purpose, we introduce the auxiliary functions

I gop R? x [—e,e] = R, (0,t) = I(0,z0 + te,) 1.9

and

Figop:|—€,6] = R, t— F(zo+te,) :/ Iz u(0,1) do, (1.10)
Rd

where €, € R? is the unit vector in p-direction and ¢ > 0 is chosen such that
{zo + te, |t € [—e,e]} C @(U), which is always possible since ¢(U) is open.
Then I; ;. is with the identifications ¥ = R? and T = [—e,¢] of the form re-
quired by lemma It satisfies property (i) by the assumption that the kernel field
transform exists as discussed earlier. Property (i¢) holds due to the smoothness of
the full integrand in Eq. ([.3). For property (iii), observe that both I; ,, , and its
derivative are smooth such that the absolute value |%Im07 u| is continuous. Since it
is in addition compactly supported on Bﬂggsed(o, R) X [—¢,¢], it is by (a generaliza-
tion of) the extreme value theorem bounded by some number b > 0. We therefore set
Bv) =b-1 BEs=i(0,R) x[~e,e] where I is the indicator function. This choice satisfies

’%I(v, t)| < B(v) forany (v,t) € ¥ x T and is integrable such that property (i) is
fulfilled as well. We can therefore swap the order of differentiation and integration for
arbitrary choices of x( and p, which we use to pull arbitrary partial derivatives into the

integral:
0 0 0
{6%1@} (20) = L%Fi,w} = Slion(0)| _doa1n
0
= o 871‘#[1'(0,1') - do

Due to the smoothness and compact support of the integrand I;, its partial derivatives
%I are smooth and compactly supported as well. They do therefore satisfy properties
(1), (#i) and (4i3) as well (with a potentially adapted bound b). It is thus possible
to repeat the partial differentiation of F; infinitely often, which proves its smoothness.
Since the derivations were independent from the particular choices for the point p € M,

charts (U, ¢) and (U, ¢), points zo € ¢(U) and indices i and j, this result proves the
smoothness of the whole output feature field fou = T;-(fin)-

O
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Regular feature fields as scalar functions on G-structure

Real-valued functions f : GM — R on the G-structure are equivalent to regular feature
fields f : M — Areg on the manifold, that is, that there is an isomorphism

C™°(GM) = T(Arg) - a.1)

This appendix presents a proof of this claim for the case of finite structure groups G. We start
with the usual definition of (real) regular representations of finite structure groups, which act

on the (free) vector spaces RI¢!. One defines a basis {eg € RICI | g € G} of RI¢!, which
is labeled by the group elements g € G. The (left) regular representation’s action on RI!! is
then defined in terms of its action on these basis vectors, which is given by left translation.
Specifically, for any h, g € G, the regular representation acts as follows:

Preg(h) €g = €ng . J.2)

Note that the action on coefficients of a vector is inverse

pree(h) D fa€g = Y Joeng = Y fn-15 €5, (1.3)

geaG geG geag

which is useful to know, however, we won’t need this property in the following. As the
regular representation permutes the basis vectors of RIG!, it is a permutation representation.
Some visualizations for the cyclic group G = Cy are found in Appendix B of [322]. Regular
feature fields are defined as smooth sections of the associated G-bundle

Awg = (GM xRI€N/~, (J.4)

as defined in Section[T1.3.3]

The isomorphism C°° (GM ) = T'( Ay, ) substantiates our claim in Chapter[I8]that the Paral-
lel Frame CNNs by Yang et al. [339] are specific GM -convolutions between regular feature
fields. It furthermore establishes the link between group convolutions (see Appendix
and regular GM -convolutions that was claimed in Section and [322]. A related result,
stating that regular steerable convolutions on Euclidean spaces are group convolutions, was
discussed in Section
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With these preparations and remarks we are ready to formulate and prove the theorem:

Theorem J.0.1 (Regular feature fields as scalar functions on G-structure).
Let G < GL(d) be a finite structure group, let GM be a G-structure over M and let
Ayeg be the bundle that is associated by the action of the regular representation preg
of G. Regular feature fields are then identical to smooth, real-valued functions on the
G-structure, that is, there is an isomorphism

A:C®(GM) =5 T(Areg) - d.5)
This isomorphism is defined by
AF)p) = [ledie. Y2, Fllediy <g) e, (1.6)
where [ei]le € G,M is an arbitrarily chosen representative frame at p. Its inverse is
given by
14
A ] (led]ey) = <ee ,plali= g (p)> , (.7)
[51];‘1:1

where we abbreviated p = 7, (E) and denote by v, that (unique) gauge that
1d
corresponds to the frame [e;|%_,, i.e. which satisfies wfg]iﬂ ([es]y) =e.

Proof: To prove this statement, we need to show that /) the isomorphism preserves the
smoothness of the maps, 2) that the choice of representative frame [e;]¢_; € G,M in
the definition of A is indeed arbitrary and 3) that A~! is indeed a left and right inverse
of A.

1) smoothness :

That the isomorphism preserves the smoothness of the equivalent field representa-
tions is clear since all involved morphisms (right action, gauge map, inner product)
are smooth.

2) independence of the definition of A, Eq. (J.6), from the choice of representative frame
[ei];-lzl S GpMi

Suppose that we used any other frame [e;]¢_; <1 h for an arbitrary h € G. This
arbitrary gauge transformation drops then out by making use of the equivalence
relation ~,  that is underlying the associated bundle construction, Eq. (J.5):

e

[AF](p) 1.8)
= [[ei]le <h, Zg F([es)t=y < hg) eg} (Def. of A, Eq. (T:6))
= [ledis s peem) Y F (e Shg)ey|  (equiv. elation ~,. Bo. ((T2D)
= [[ei]le , Zg F(ledld; < hg) ehg} (preg action on basis €, Eq. (7))
- [[ei]le : Zﬁ F(ledd, <) 65] (substitution § = hg)
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3) A1 in Eq. is a well defined inverse of A in Eq. :
3a) AtoA =ideos (G, thatis, A1 is a left inverse of A :
For any f € C°°(GM) and any [e;]¢_, this is shown as follows:
(A oA F ] ([ediy)

= (ee vy (AF 1) (Def.of A~ Eq. ()
= (e i el Y2 P (el @g) )]y (Defof A Bg. @)
= (e, Zg F (el <g)ey) (Def. of 11, Eq. (TT:68))
= q (les]ey < g) (ec€q) (pull inner product into sum)
= f([ez] ) (Kronecker delta 5., = (e, €4))
J.9)

3b) AoA™ 1 = idp(a,,). that is, A~1is aright inverse of A :
Let f € I'(Ay,) and p € M, then:

[AoA™ f](p)

{ez P Zg A7 f]([es]y < 9) eg} (Def. of A, Eq. (8))
= |leili= 1,Zg <ee, Yl =99 p )>eg} (Def. of A", Eq. (I77))
= |[ei] 1,29 <6 Pree (g 1111[8“ “fp )>eg] (gauge trafo, Eq. (TT:69))
et o, {poree, 1)) ] (ancarityof )
= [ledis s 32 (e ™ £ 0)) €] (s action on basis ., Eq. @)
= :[ei}le , f[f;]?:lf (p)} (remove expansion in basis €, )
= f(p) (Def. of 4, Eq. (TT:66))

(1.10)

This concludes our prove of the equivalence of C°°(GM ) and I'(Areg). O






APPENDIX K

Quotient representative kernel fields — proofs

In this appendix we give proofs for Theorems|13.3.1]and|13.3.3

K.1 Proof of Theorem (13.3.1/— Isomorphism between isometry invariant
and quotient representative kernel fields

Theorem|13.3.1|claims that the spaces KL of isometry invariant kernel fields in Eq. (13.53)
and 5{£0t of quotient representative kernel fields in Eq. (13.93) are isomorphic to each other

and that the isomorphism is given by the lift A whose inverse A~! is the restriction to
7y (Z\T'M ). Here we present a proof for this statement which consists of showing that

1) A~ is indeed an inverse of A, 2) the defining properties of KZ _ and f]{qzuot are satisfied

mvar
after lifting and restricting and 3) the constructions do not depend on arbitrary choices.

1) A=t in Eq. (T3:93) is a well defined inverse of A in Eq. (I3:94) :
la) Ao A~ = idgz , thatis, A lisa right inverse of A :
This claim follows for any K € KZ and any v € TM from

nvar

[Ao A™HK)](v) = [AK],, 1)) () (K.1)
= (I)rﬂ\,(v)*,ﬂ(>ln IC|TTM(I\TM ) Ty Qo (V)
= (I)T'“ [(/U)*‘Hom K Qny (v)
=K@, (V) g Ty @y (V)
=K(v),
where the invariance (equivariance) of the kernel field in Eq. (I3.54) allowed to
swap the order of the isometry action and the evaluation of the kernel field in the
penultimate step.
1b) A=to A= idg{qlum, that is, A—! is a left inverse of A :

Let Q € f]{unm andw € r,, (Z\T'M). Note that 7,,Q,,,(w) = w since w is an orbit

representative. Furthermore, since w = (Drm(w)*,m Ty Qo (W) = CDTTJU(w)*'TM(w)
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it follows that ®, (w) € Stab, such that, by the constraint in Eq. (13.93),
D, (W), 4o Q(w) = Q(w). Together, this proves the claim:

[A™' o A(Q)](w) =A(Q (K.2)

g (I\TM) (w)

*,Hom Q rTM’ QTJW (’LU)
*,Hom Q (w )

~ ~—

T

= Q(w)

2) The defining properties of KX and KZ quot are satisfied after lifting and restricting :

mvar

2a) my,oN(Q) = myy, forany Q € KL, thatis, the lift A(Q) is a bundle M-morphism:
For any Q € 7{ quot and for any v € T'M this claim follows from

I:TrHomA(Q)] (v) = TrHom(prjiu(v)*,HomQ Ty @y (V) (K.3)
= CI)TT”(U Thiom D Ty @ (V)

V)T

T ™ T]\[QT]\[( )

™

)

(v)
Tm(”) M\ Qpy (v)

(v)r

(v)

™

P
D, (V)7 QT ()
s

T\IU7

where the last step made use of Eq. (13:87).

2b) Tyom
morphism :
This property follows immediately from the corresponding property of K after re-
stricting to 7, (Z\T'M) C ﬂ;é( 7, (Z\M)). For any w € 7, (Z\T'M):

oA~Y(K) = m,,, forany K € KZL,. thatis, A=1(K) is a bundle r,,(Z\M)-

var?

Thom [N ()] (W) = 7y Kl 2vrn) (w) (K.4)
= TanmIC(w)
= Ty (w)
(K.5)

2¢) Gypom AMQ) ¢;T1U = A(Q) V¢ € T, thatis, A(Q) satisfies the full isometry invari-
ance constraint :
Letv € TM and ¢ € Z. Due to the invariance of the quotient map (),,, under

isometries we have QTM(¢* V) = @y, (v). Note further that

[0, ()7 6 @, (671 0)], T Qs (V) (K.6)
= @, ()7 ¢ @y (672 V)] P00 @i (671,0)
= (@, (0)7 6], O,
—<I>TT”( V)" Ly

*,TM

= 71 Qpy (V)
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implies

(@, (v)" ¢ @, (¢! v)] € Stab, (K.7)

¢ TM v @y (V)
which, via the stabilizer constraint in Eq. (13.93), leads to
[q)rm(v)_l ¢ Q)TT\I(QS;;;\[U)} *,IIomQ T @p (V) = Qrpy, Qpy (V). (K.8)
Putting these observations together proves the claim:

Prion MQ) 0, (v) (K.9)
= ¢*~H°m ¢rﬁ1[(¢;1i|}\1v)*,H<)][1 Q TTMQTM (d)_l U)

= Bron @ (B Vi @ Ty Qi (0)
= [@,(0) P, (0) 7], L Brson B (D0 iton D Ty Qi (V)
=P (V)i [P, (0) D @y (07 0], L Q7 Ry (v)
= @7’77\[<U)*‘Hom Q 15, Qpy, (V)
=A(Q)
2d) & pon [AHE)](w) = [ATHK)](w) V w € 7, (I\TM), & € Stab,, that is,

A~1(K) satisfies the stabilizer constraint :
This statement is easily proven since the invariance (equivariance) properties of K

carry over to its restriction A~*(K). We obtain for arbitrary w € r,,,(Z\T'M) and
& € Stab,, that:
g*.Hom [A_l (IC)} (w) = g*.Hom ,C|TTM(I\TM) (w) (K'IO)
= 5*7Hom IC(U))
=K (€*Tuw)
= K(w)

= Kl ,x\ran (w)
= [AH(K)] (w)
3) All constructions and proofs are independent from the particular choice of @, :
The definition
®, :TM — T such that @Tﬂw[(v)*’mrm@m(v) =0 (K.11)

7]

from Eq. (13.86)) is unique up to right multiplication of ®, with any

& TM — T suchthat §. (v) € Stab’”TMQTM(“) (K.12)

since, ObViou51y9 (I)m,(v)*,mz §7"1A\,(v)§s,n1 rTMQTj\v (U) : ¢7'm[<v>*.TM T QTM (U)
v for any v € T'M. As argued in footnote this covers all degrees of free-
dom in the definition of reconstruction isometries. From the stabilizer constraint in

Eq. (T3.93) it follows that &, (v), 1, Q75 Qpy(v) = Qi Qpy,(v) such that the
lift A is seen to be invariant w.r.t. the ambiguity of P, -

A(Q) = (p'f‘n\[(v)*.llomg TT]\IQ’E‘\I (U) (K'13)
= (I)rn ,(v )*,Hmn érn I(U)*.Hom Qr,Qpy (v)

Except from the definition of the lifting isomorphism, @, is only used (in a slightly
different context) in step 2 c), where the ambiguity is seen to drop out by similar
arguments.

Together, these steps prove that A : KZ — KZI isan isomorphism. O

quot invar
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K.2 Proof of Theorem (13.3.3— Equivalence of equivariant kernel field
transforms and convolutions on homogeneous spaces

To keep a better overview, we split the proof in two parts, proving the claims made in the
first and second statement of Theorem[13.3.3] respectively.

Part 1) — Constructing H, HM and Isompyy:  Letr € M be any representative point and,
without loss of generality, let 1/15‘111‘7, be any isometric gauge at . We set

= g, Stab, (vd,) 7, (K.14)

which is just a particular representation of Stab, relative to the chosen coordinatization.
Since the gauge maps are isomorphisms, we get an isomorphism between the two groups:

a:Stab, = H, &= A, &an (04,) 7 = b4 (r) (K.15)

Since Stab, < Z < Isomgas, Theorem|13.1.3|assures that h?g(r) is for any £ € Stab, an
element of G and thus that H < G. We furthermore have that H < O(d), which is seen by
the following calculation, which holds for any o, w € R%:

(haA(r) o, hEAr) - ) (K.16)
2 <<7/’(JMr §von (1/’( M 7") ) ", (1ﬁ§1\” Eon (¢(I§\I,r)_l> : W>

(: <¢T\1r f* ™ (wTM r) - v Y wgl,r f*,m[ (1&1%\1,7")71 W>
(i) 777“ (6*"1‘1&/ (w?\[r) - 0, é*(l‘:\l (wglr) o W)
(i) o, () )

©) (

= (0, w)

Stgp (1) made use of Eq. li In step (2) we identified the expression of h?g (r) via
Q/Jéﬂ,j,,_ with its expression via ij?w,,_, which is justified by the commutativity of the diagrams

in Egs. (13.38) and (13.24). As we assumed ’l/)q%\,[‘r w.l.0.g. to be isometric, we can identify

the inner product {-,-) on R? in step (3) with the Riemannian metric 7,.. Step (4) uses
that £ € Stab,. < Z is an 1sometry, which preserves the metric by definition; see Eq. (I3.1).
Lastly, we pull the metric in step (5) via the isometric gauge back to the inner product on R

The equality of the initial and final expression shows that hAA( ) preserves the inner product

on R? — this is exactly the requirement that defines the orthogonal group. We therefore have
that H < O(d), and, together with H < G, that

H < GNnO(d). (K.17)

This proves the first statement of part 1) of Theorem [[3.3.3] We move on to the second
statement of part 1), the construction of HM and Isomp,.

Given that Stab,. is a subgroup of Z, we have the canonical quotient map

q:Z — T/Stab,., ¢ — ¢.Stab, (K.18)
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which sends group elements ¢ € 7 to the left coset ¢. Stab,. := {# & | £ € Stab,.} of Stab,..
It is well known that this quotient map makes Z to a principal Stab,-bundle over the base
space Z/ Stab,., with the right action given by the right multiplication «: Z X Stab, —
Z, (¢,&) — ¢ & with stabilizer elements [101l 222]]. Furthermore, Z/ Stab,. is isomorphic
to the homogeneous space M. The isomorphism is given by

B:I/Stab, — M, ¢.Stab, — ¢(r), (K.19)

which is obviously independent of the choice of coset representative since different repre-
sentatives differ by group elements that stabilize r. Note that we could equally well view
q : T — TI/Stab, as a principal H-bundle since the typical fiber is only defined up to
isomorphism.

With these preparations we define the H-structure HM as an embedding of the principal
H-bundle Z into GM (and therefore into F'M). We define the embedding map as

&:T—GM, ¢ ¢, 0 (r), (K.20)

which depends once again on our choice of gauge since oA (r) = (wf;,_r)_l(e). It can
be thought of as tracing out an embedded copy of Z in GM by pushing around the frame

o4(r) € G,.M. That this gives indeed a valid embedding is guaranteed since the action of 7
on frames is fixed point free. The embedding & is a bundle map over 3, thatis, foq = 7, ©
&. To show this, it is sufficient to apply both sides on an arbitrary element ¢ € Z, which gives

the same result: Boq(¢) = B(¢.Stab, ) = ¢(r) and 7, 0 E(¢) = Ty, &y oy T2 (r) =

¢ T, 0(r) = ¢(r). The embedding map is furthermore right equivariant: For any & €
Stab,. and any ¢ € Z one has

8(66) = G, Evenio (1) (K.21)
= Gun Eun (Vhe,) " (€)
= G (Vhiy)” ihir & (V1)
= D (wéu.r)il (hsﬂ(r))
= D (wéu.r)il(e) < hé“(?‘)
= &(¢) ahdA(r),

—1

()

where we used the right G (and thus H) equivariance of wgm (and thus (wéu,,) 71) in the
penultimate step. Together, these properties show that & is a principal bundle map that makes
the following diagram commutative:

T x Stab, %GMXH
<« <
7 € GM (K.22)
q Tear
T/ Stab, M
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The claimed H -structure is then defined as the image
HM = 8(I) = {$, 0 0(r) |0 €T} (K.23)

of & together with the restricted right action and projection map of GM . Since embeddings
are necessarily injective, we have in particular that Z and HM are isomorphic as principal
bundles.

As a last point we argue that Z and Isompy, = {0 € Isom(M) |6, , HM = HM}

coincide. The equality 6, .,,, HM = HM holds for a given § € Isom(M) if 6, ., HM is at
the same time a subset and a superset of HM . The first case, 6, .., HM C HM, requires that

> Yk, GM

A . ! A
for any element 0, ., &, ,, 0 (1) € 0, ¢, M, there exists some ¢ | o (r) € HM such
that 0, .\, &, ;0 (r) = ¢/ GUO'A(T>. Since the action of isometries on the frame bundle is

. . Y —1 . . . . -1 .
free, this requires 0, ,,, = qS*‘GM d)*_GM, which in turn implies € = ¢'¢~". As one can easily

check, the second case results in the same requirement. Both ¢’ and ¢ are elements of Z
such that 6 is required to be an element of Z. This proves the claim

Isomppy =7 (K.24)

Part 2) — Equivalence of Z-equivariant kernel field transforms and HM-convolutions:
To prove the second statement of the theorem, we construct an Z-equivariant kernel field
transform on M and show that it is equivalent to a HM-convolution. Theorem
proved that Z-equivariant kernel field transforms require Z-invariant kernel fields, which
can, according to Theorem [13.3.2] be equivalently encoded in terms of a field of represen-

tative kernels Q : 7 Yr,(Z\M)) — 7! (r,,(Z\M)). For the case of a homogeneous
™ ™ 1 Hom

space M, the quotient space Z\M consists of a single element, which we represent by

r = r,(Z\M) € M. The full invariant kernel field is therefore described by a single

kernel @|r -0 T,M — Hom(Aiy r, Aou,r)- This kernel is required to satisfy the sta-
bilizer constraint £, Q ¢! = Q V& € Stab, and is shared over M via the lifting

*, TM
lsomorphlsm A(Q) (U) = (pTT\[(U>*,Hom Q r]l\erll"\f[ (,U) = @7-73\[(7))*‘“0“] Q (PTT\[(U)#:I;[ (’U)’ As
shown below, the single Stab,.-constrained representative kernel corresponds exactly to an

H-steerable template kernel, while the weight sharing via the lifting isomorphism A from
Theorem|13.3.2] corresponds exactly to the convolutional weight sharing in Def. [12.2.3]

To make the equivalence of the kernel constraints explicit, we express the kernel @ via
Eq. (T2:31) relative to the same gauge A as considered before as K := tjy . O (¢73,,) -

The frame volume factor 4/ \775 | drops hereby out since we assumed the gauge w.l.o.g. to be
isometric. The stabilizer constraint relative to this gauge then leads to

K = v O (A (K.25)
- Db Eonm Q €, (0h,) 7
Uit Eoon (Vi)™ K U €1 ()
= Puon (REA () K (R ()™
1

= Jaeengi] e (180 K (4 0)”
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for any £ in Stab,.. Note that we can include the determinant factor in the last step since

hg‘A (r) € O(d), as shown above. The isomorphism between Stab, and H in Eq. (K.I9)
thus allows us to rewrite the stabilizer constraint as the H -steerability constraint

- @ pun(h)o Koh™  VheH. (K.26)

on template kernels K of a HM-convolution]T]

What remains to be shown is the equivalence of the two ways of sharing weights. The weight
sharing via A, expressed via gauge A in terms of K, reads

AQ)(v) = By, (V)i Q Ty Qi (v) (K.27)
= TT\,( )* Hom @ (I)TT\,( )* TU(U)

= @rm(v)*,ﬂom (Tﬁ}lﬁam.r)i ¢Iﬁ)m,r @ (¢TM,r) 1/’T1\1r “,< )*_TIM(U)
B (wH""” m( )*_Hlom) - K ( e P T‘[( )* TU) (v).

The last line already looks quite similar to the definition of HM -convolutional kernel fields
in Def. [12.2.3] To prove their equivalence, we need to show 1) that the isometry induced

gauges Vi, TT«I(U);TIM and wém’,,. ‘I)Tm(v);{lom at m,,,(v) are H-compatible with the orig-
inal gauges MJTMJ, and wém,r and 2) that the induced gauges correspond to reference frames
of unit volume (to explain the missing frame volume factor in Eq. (K:27)). For the first
point, note that the codomain of the reconstruction isometry ®,. : TM — 7 coincides
by Eq. (K:24) with Isomgps. Theorem [13.1.3] therefore asserts that these induced gauges

are compatlble with any H-atlas of HM. The second point follows immediately since
H < O(d) (or since @, (v) is an isometry and A is isometric). The weight sharing of
Q via the lifting isomorphism in Eq. (K:27) is therefore seen to coincide with the HM-
convolutional weight sharing of the H-steerable kernel K in Def. Together with the
result that the stabilizer kernel constraint results in the H -steerability constraint, this implies
that the lifted kernel field is equivalent to a HM -convolutional kernel field, which proves
part 2) of the theorem.

A different choice of gauge A might for G < O(d) result in a conjugate subgroup H
to H and an embedding HM of 7 that differs from HM. As one can easily check, the

H-steerability constraint allows to describe the same kernel relative to HM like the H-
steerability constraint in relation to HM , since the transformation falls out.

'Since h € H < G N O(d), the determinant factor always drops out and could therefore be
omitted.






APPENDIX L

Spherical convolutions as GM-convolutions — proofs

This appendix presents the proofs of Theorems [17.2.1] and [17.2.2] from Section To-
gether, these theorems assert that the Stab,,-steerable spherical convolution kernels by Co-
hen et al. [56] are equivalent to certain Stab,, = G-steerable kernels, and that the Z-
equivariant spherical convolutions with these kernels are equivalent to our corresponding
GM -convolutions.

L.1 Proof of Theorem [17.2.1|— Kernel space isomorphism

Theorem establishes an isomorphism

.y G Br2(0,m) ~ Stab,,
Q: G(pm,pom — g{ﬂm»%m (L.1)

G,By2 (0,
between the space K, z2(0,7)

2 Pout of G-steerable kernels on the open ball Bgz(0,7) C R?
and the space J{St?;"t of G = Stab,,-steerable kernels on S2 \-n, which are defined in
Egs. (I7.29) and (17.28). Given arbitrary gauges IV at the north pole n, around which the
kernel is centered, and gauges P at any other point p, this isomorphism is given by

QK) : S*\-n — Réwxcn (L.2)

p = [QE))(p) = K108, p) pu(98E,) ™|
Abbreviating p := exp,, (wﬁj‘n)_lv, its inverse is given by

Q (k) : Bge(0,7) — R, (L.3)

0 = [0 00]0) = wlexp (6)19) paloE,)

Proof: That Q7! is a well defined inverse of (2 is easily shown by inserting their expres-
sions and verifying that
Qo7 =idysun,  and  Q7'oQ=id cra0m (L.4)

p. 1P,
in’“out pm’poul
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hold. To see this, note that gauges w%ﬂ, the transporters p,_ (g,]xfp) and the (non-zero)

volume factor 4/ ]17,?/ 8v| are always invertible and the latter two commute since the volume
scaling factor is a scalar. The exponential map exp,, : Bgz(0,7) — S2\~n on Bg2(0, 7) is
inverted by log,, : S*\-n — Bgz(0, ).

The kernel constraints of the two kernel spaces furthermore imply each other. Given any
G-steerable kemel K € Ky 022 ™ the kemel Q(K) € RK5¥bn satisfies the Staby-

steerability constraint from Eq. (T7.28). This is for any p € S?\-n, any £ € Stab,, and any
gauge X at £(p) shown by:

QUK)](&(p)) (L.5)

1
( )K 1/)T\[n 1Ogn )) ’ pin (g’fll\[gg(?)> |77?(/2)0’

(
(2) NX 9/d
(wTM & 108, ) " Pin (gm—f(z?)) ’nﬁ(p) |
K( M) 108, P) " P (97]1\[35(17)) ’n?(/l?)v‘
4 — 0
( ) (g N ) (wTM’rL logn ) : m(géVN<n)) pm(g"]’bvgg(p)) |n?(/§ |
pout(g N ) (djll\[n logn ) pm(géVN<n) pm(gnkﬁ(p)) ‘ 6/80|
gV (1) - K (85108, 8) - 0, (9, 20T )~ 1]
7
D (g N () - (2] () - (987 ()

The first step just expanded Q(K), while the second step used log,, {(p) = &, ,, loge-1(,) P,

which follows from Eq. (13:42), together with £ ~*(n) = n since £ € Stab,,. In the third
step, we used the definition of isometry induced gauge transformations in Eq. (13:23). Step
four used the G-steerability constraint from Eq. (I7.29). The firth step replaced the volume

element |77?(/§; with that at \/W )

geometry of the sphere, including the metric and exponential map and therefore the volume
factors of the geodesic normal coordinates, is invariant under the action of Stab,,. Before
identifying Q(K) in the last step, step six used the identity

possible since the whole Riemannian

Pu(9N (1)) 2 (95 ) (L.6)
N  ¢— - N X -1
= [ G ) T P e (U )
N _ -1
wm g*A a,neg (A"”g p))
1

= wA]::m P 5;4.“ ( A)if(p )
1 — -1
- [ A]i\:,n a,n,nep (wAiyp) } [wAI;,p f*j (1/));5(17)) ]

= 0o (G22) P& ()

which relies crucially on the commutativity of transporters and isometry pushforwards from

Eq. (13:49).
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For the opposite direction, assume a Stab,,-steerable kernel x € g{gtaﬁ"l to be given. The
in’Fou

corresponding kernel 27! (k) satisfies then the G-steerability constraint from Eq. (17.29).
To show this, let 0 € Bg2(0,7), let ¢ € G and let £ € Stab,, be the unique stabilizer

element such that gév N(n) = Q/J%m S (wﬁm) ~l= g. For brevity, we abbreviate p :=

exp,, (1#%1‘,&)719 and thus £(p) = exp,, (wé\,{m)i1 g9, which is as justified by steps 1-3
below. We then find:

[Q‘l( )] (g9) (L.7)
2 bo(expy (9300) " (99)) (02 ) !?{;?‘“I
s exppe (3) ) gm o]
D k(€ expn (B2) 70) - 2 (02 ) T VI
@ o 98N () - 5 (exp, (853,,) 0) - 2 (6 <p>> P90 )V Ingly |
D (N () - 5 ex (8151) 719) - (827 ) " g%g(p W
@pwmggw () - <expn< M) ) (0N E) 7 palad™ g
ﬂom(gév Nn)) - [27HR)](0) - p (93N ()

Pou(9) -

(v)
(27 (5)](0) - py,(9) 7

The first three steps expanded 2! (x), used the definition of ¢ in terms of g and the com-
mutativity of exponential maps with isometry pushforwards, Eq. (I3.42). In the fourth step,
the Stab,,-steerability constraint of x from Eq. (I7.28) is used. Step five replaced again the
Riemannian volume element at £(p) with that at p since they are equal. The sixth step used
the relation

9

GEP @) ol X)) (L.8)
(gn<—£(p)g§ ())_1
iy -1
Ain,n. A ;n—E&(p) (1/1;: ) Hqﬁxé € (QZ}A];@) 1])

Ain,

iy -1
w A,,,n(—p (wl:p) 1)
i\ -1
lZ)N f*A wTMn) w%,nam,%p(/\i’p) 1)
(X)) P (g (),

P,
P,

(b

( Ainsm A n¢(p) S ( A}:,p)il)_
(2

(

P

which relies again on the commutativity of transporters and isometry pushforwards from
Eq. (13:44)). The last two steps identify Q=1 (x) and, by definition of &, that géVN (n) =g.

Together, these arguments that € is indeed an isomorphism between the kernel spaces. [
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L.2 Proof of Theorem (17.2.2|- Equivalence of steerable spherical and
GM-convolutions

Theorem (17.2.2| claims that GM -convolutions with a G-steerable kernel K € K g n’ﬁiﬁ (0.m)

are equivalent to the spherical convolution with the Stab,,-steerable kernel Q(K) €

Stab. The spherical convolution with a Stab,,-steerable kernel k € K5t3Pn from Cohen

PinPout PP

et al. [33][56] was hereby in Eq. (I7.34) pointwise defined as

[kxs2 f](p) = / w0y ) pu(933(2)) F(0) da, (L.9)
S2\~p

where P, @ and X denote arbitrary gauges at p, g and ¢, 1(q), respectively. The isometry

¢, € T is uniquely specified by demanding that (¢,), 0™ (n) = o (p). Note that this

implies in particular that

*,GM

¢p(n) = p (L.10)

and, using the definition of sections of GM (frame fields) in terms of inverse gauges from

Eq. (TT.61), that
v © ($0) sy = Vaip (L.11)

both of which we will use below. With these preparations, we turn to the proof of Theo-
rem[I7.2.2] i.e. the equivalence

QUK)*s2 f = Kxau f (L.12)

of the convolutions.

Proof:  Since () is defined on 5*\-n, the transformed kernel €2(x) o ¢! is defined on

S2\—p. Inserting (k) in the pointwise definition of the spherical convolution in Eq.
leads therefore to

[QK) #s2 £]” (p) (L.13)
= [ 1209](6,") 0, (5X%10)) F2(@) da
S2\~p
—1
= / K(wé\z{m log,, ¢;1Q> Pin (ggf¢;1(q)) Pin (gj,(ﬁ (4)) @ Mi?l\’(q)‘ dg,
S2\—p

where the second step follows by expanding (K) as defined in Eq. (I7.32). To simplify
this expression, note that

wg{,n logn (b;l(q) = w%ﬂn (QSP);Tl\[ lquﬁp(n) (q) = wi{fw,p Ing(q) ’ (L14)
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which follows from Eq. (13:42) in the first step and Egs. (C.10) and (C:11) in the second
step. Note furthermore, that

P97 ) Pl9,2(0))

[ on Pa oy (q) (1/{445 ) ] Ww (¢p)*A ()" ] (Egs. (IT:83) and (13:39))
= %,n P Aoz (a) (%)M (wA,q) (canceled inverse gauges)
= (@)} Pasumea (U5) (Eq. (1340))
=0, Papeq (0F) (Bq. [CTT))
= n(952) - (Eq. (IT83))

Inserting these two identities, we obtain

-1
[Q(K) xs2 /] () = / K (U1, 108, 9) 0o (95:2) £9(@) (/IS5 )| da, (L1s)

S2\—p
To proceed, we express the integral in geodesic normal coordinates ¢ : S*\-p —
Bg2(0,m), q = 0(q) := tfy;,log, q of S*\ — p, which are centered at point p. This

8/8«

cancels the Riemannian volume factor ‘77 | (and thus justifies its appearance in the

definition of €2), such that the spherical convolutlon becomes

[Q<K) *52 / K 1" p(—expp(wTMp) 1v> fQ(epr(wﬁ\J,p)_lv) d(),
By2(0,m)
/ K(o Exppf} (v) do,
By2(0,7)
= [K %o f]" (1) (L.16)

Since all arguments are independent form the chosen point p and the chosen gauges, this
implies

QK) x5z f = K*au f (L.17)
in a coordinate free setting, which proves the theorem.
O






APPENDIX M

Research questions & conclusions

This work is based on the main author’s doctoral dissertation at the University of Amsterdam
(UvA). The Doctorate Regulations of UVA require a separate listing of the research questions
addressed and answers found in the doctoral thesis, and an overview of the articles published
during the doctoral studies. This appendix addresses these requirements, draws conclusions,
and discusses limitations and directions of future research.

M.1 Research questions & contributions

The overarching goal of this work is to develop a unified theory of equivariant convolu-
tional neural networks. Having access to such a theory is of great relevance to the research
community since:

1. It brings order into the model zoo of equivariant CNNs, and clarifies how different
approaches relate to each other.

2. It does not only map out the space of existing models, but also facilitates the design of
novel CNN architectures.

3. It implies a unified implementation, which allows to construct arbitrary equivariant
CNNs, and to benchmark these against each other.

4. It is a prime example of how prior knowledge and mathematical structure can be mod-
eled directly into the networks’ architecture. This is not only relevant for equivariant
CNN:gs, but also, for instance, for graph neural networks or networks for simulating
PDEs or quantum systems.

5. It is necessarily more abstract and reduced to the essential mathematical structure,
which helps to reveal connections to other sciences beyond deep learning.

The following research questions are targeted towards finding such a general theory of con-
volutional networks.
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As a first step, we need to understand and formalize conventional CNNs and their equivari-
ance properties.

Research question 1: > Chapter 4]

What is a convolutional network, how can it be formalized mathematically, and which role
does equivariance play?

Convolutional networks are often described as variants of fully connected networks that
operate on spatial signals and share neural weights between different spatial locationsm
As a consequence, any shift of a layer’s input feature map leads to a corresponding shift
of its output feature map, that is, the layers are translation equivariant.

To formalize such conventional CNNs, we define their feature spaces as regular trans-
lation group representations (Def. 3.1.1)), i.e. vector spaces of feature maps that are
equipped with a translation group action which acts by moving signals spatially. Starting
from generic fully connected network operations, we prove that spatial weight sharing
is strictly necessary when demanding the layers’ equivariance. Specifically for linear
maps, Theorem [3.2.1] shows that equivariance implies convolutions. Theorems [3.2.2}
[3.2.8]prove similar results for bias summations, nonlinearities, and various pooling oper-
ations.

The crucial insight is that we do not only have the usual implication

weight sharing = equivariance (sufficiency) ,
but also weight sharing < equivariance (necessity) .

As a consequence, CNNs are simply translation equivariant neural networks that operate
on feature maps.

Viewing CNNs from this angle suggests that they can be generalized by
1. extending the symmetry groups w.r.t. which they are equivariant, and
2. defining feature maps on more general spaces, for instance, manifolds.

We tackle our overarching research goal by first developing a general theory of equivariant
CNNs on Euclidean spaces; described in Part[I]and our publications [323] 322} |1}, 140l [324}
1377]]. This formalism is subsequently generalized to a gauge theoretic description of CNNs
on homogeneous spaces and Riemannian manifolds; found in Parts [T} and [ITT] and in [325]
57.167.155. 561 46]. Finally, we investigate the generality of our theory in Part[[V]and [325]].
The following research questions are structured accordingly.

M.1.1 Equivariant CNNs on Euclidean spaces

The context of our initial research question on equivariant Euclidean CNNs was set by sev-
eral articles that have been published prior to the beginning of our studies. Most of these
works were based on variants of group convolutions [223),152},1324]]. Cohen and Welling [53]
proposed an alternative representation theoretic formulation of so-called (discrete) steerable
CNNs, which allowed for more general group actions on the feature spaces. However, their
formulation was limited to discrete pixel grids and finite symmetry groups. It was there-
fore unable to describe models like continuous group convolutions [324], vector field net-

'In addition, neurons are often required to have a local receptive field, however, this is not strictly
necessary for the network to be convolutional.
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works [[196], or harmonic networks [335]. Our mission was hence to formulate a general
framework, which comprises all of the above mentioned models as special cases.

Research question 2: > Chapter@] and Weiler et al. [323]]

How should equivariant CNNs on Euclidean spaces be defined? Is there a general formula-
tion, which covers all of the abovementioned models?

A first sub-question to be addressed is which symmetry groups we should consider. The
mutual implication of weight sharing and translation equivariance found above suggests
that, given that we are interested in convolutional networks, translations should be con-
tained as subgroup. We are furthermore interested in transformations like rotations, re-
flections, scaling, or shearing, which are modeled by matrix groups G < GL(d). To
cover all of these settings, we consider a family of affine groups Aff(G) = (R%, +) x G.

The next sub-question is which feature spaces and which Aff(G)-actions on them should
be considered. In order for everything to reduce to conventional Euclidean CNNs when
restricting to translations, it is necessary to define the feature spaces as induced affine

group representations Indgﬁ(c) p; see Def. 4.2.lll The feature fields are thereby char-
acterized by their field type p, which is a G-representation. For any p of finite groups
G, this reduces to the assumptions of Cohen and Welling [53]], for SO(2)-irreps to the
harmonics networks of Worrall et al. [333], for the defining representation of SO(2) to
the vector fields of Marcos et al. [196], and for regular representations of G < GL(d) to
group convolutions [223] 52| 324] (Theorem [4.5.1)). Many other examples are found in

Table on page[273]

As done for conventional CNNs, we define generalized CNN layers as equivariant maps
between the feature spaces. Similar to before, we find a mutual implication

Aff(G)-equivariant layer <=  Aff(G)-invariant neural connectivity ,

where the right-hand side is a generalized form of weight sharing over affine transfor-
mations. This generalized weight sharing is shown to split in 1) spatial weight sharing,
and 2) novel G-steerability (equivariance) constraints on the shared neural connectivity;
see Theorems For instance, Aff(G)-equivariant linear maps are necessarily
convolutions with G-steerable kernels.

The definition of equivariant CNNs in terms of induced representations was not novel to
our work, but has previously been proposed by Cohen and Welling [53] — we denote our
networks therefore, as in the original publication, as steerable CNNs. Our main contribu-
tion is rather that we extended the framework from finite groups and discrete pixel grids to
non-finite groups and continuous space. This extension is non-trivial since it prevents the nu-
merical solution of equivariance constraints proposed by Cohen and Welling [53]]. Instead,
we had to solve the constraints analytically, the first step of which leads to the statements of
our Theorems [4.3.1}4.3.9] which require G-steerability constraints. The main difficulty in
constructing steerable CNNss is to solve these G-steerability constraints, which is the goal of
our next research question.

AF(G)
. ®4) . . . .
ular translation group representation that is underlying conventional Euclidean CNNss.

*The restriction Res Indgﬂ(g) p of induced representations to translations results in the reg-
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Research question 3: > Chapter [5] Weiler et al. [323], Weiler and Cesa [322],
Lang and Weiler [173]], and Cesa et al. [40]

How can the G-steerability constraints on convolution kernels be solved, and how can steer-
able kernels be parameterized for learning ?

To give some context, we note that we formalize convolution kernels as matrix-valued
(non-linear) maps K : R? — Reu>cn = Ru @ (R%)*, Given some G < GL(d), we
have the standard G-action on R, and assume some G-representations on the feature
vector spaces R and R to be given. The G-steerability constraint is then a linear
symmetry constraint under these actions, which has to hold for any g € G.

In general, we observed that the space of kernels is a vector space, and the constraint
is linear, implying that we only need to solve for a basis of steerable kernels, in terms
of which any steerable kernel can be expanded. The expansion coefficients constitute
thereby the learnable parameters. Furthermore, the constraint decomposes into indepen-
dent constraints on individual G-orbits. Beyond these statements, we have to consider
specific families of groups and representations:

« If R? is sampled on a grid (e.g. Z%), and G is a finite symmetry group of this grid, this
constraint can be solved numerically [53]]. Otherwise it has to be solved analytically.

= Weiler et al. [323] considered d = 3 dimensions, rotations G = SO(3), and SO(3)-
irreps acting on the feature vectors. We proved that the steerable basis is given by
spherical harmonics, whose orders are determined by the Clebsch-Gordan decompo-
sition of the irrep’s tensor product.

= Weiler and Cesa [322] assumed d = 2, but arbitrary finite G-representations for any
G < O(2). The key observation here is that the constraint for general representa-
tions can be decomposed into irrep constraints. Furthermore, we proposed a Fourier
expansion of the kernels.

» Lang and Weiler [173] proved a generalized Wigner-Eckart Theorem [5.3.1] which
extends these results to arbitrary compact groups G (and hence any dimensionality d).
The theorem describes how steerable kernel bases can be constructed from Clebsch-
Gordan coefficients, harmonics on G-orbits, and irrep endomorphisms.

Cesa et al. [40] reformulated this solution such that it becomes easier implementable
and generalized it such that the smoothness of the kernels can be controlled.

Implementations of steerable kernel spaces for arbitrary field types, and many other
equivariant network operations, are available in our escnn library [38]|39].

A crucial difference between our approach and related work is that our theorems guarantee
the completeness of the kernel spaces and hence equivariant maps. We found for instance
that the original kernel spaces of harmonic networks [335] are incomplete, i.e. that there
exist further steerable basis kernels beyond those found by the authors; see Appendix F.5
in [322]. Our experiments in Table[6.6]show that the complete kernel basis leads to improved
results. Another example are the tensor field networks by Thomas et al. [301] (published
simultaneously with our publication [323]]), which proposed the same spherical harmonics
basis. However, the authors only showed that convolutions with spherical harmonics imply
equivariance, but not that they form a complete basis.
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In our original derivation of steerable convolutions as equivariant linear maps, we assumed
the integral transform ansatz in Eq. (3.8) for the linear maps [323]. This results in con-
volutions with spatially extended kernels, which is the standard practice in deep learning.
However, such convolutions are not the only linear Aff(G)-equivariant maps, since they
miss, for instance, partial differential operators (PDOs). This shortcoming is addressed by
the following question.

Research question 4: > Jenner and Weiler [[137]]

How can partial differential operators be included into the framework of steerable CNNs?
What are the most general linear equivariant maps between induced representations?

To address the first sub-question, we assumed the most general coy X ¢jp-matrix of linear
partial differential operators, mapping c;,-dimensional feature fields to ¢y, -dimensional
feature fields. Demanding Aff(G)-equivariance requires 1) that the coefficients of this
PDO matrix are spatially constant (weight sharing), and 2) that it satisfies a G-steerability
constraint. These steerability constraints for PDOs could, via the usual isomorphism be-
tween PDOs and polynomials and assuming compact G, be linked to our original steer-
ability constraints for spatially extended kernels. This allowed us to express complete
steerable PDO bases in terms of the steerable kernel bases found in the previous research
question. Steerable PDOs are implemented as part of escnn [38 39].

For the second sub-question, we assumed general continuous linear functionals. Once
again, we find that Aff(G)-equivariant maps correspond to steerable convolutions,
however, now in the distributional sense, and requiring a G-steerability constraint on
Schwartz distributions. This setting includes both PDOs and convolutions with classi-
cal kernels, and describes, in fact, the most general (continuous) linear equivariant maps
between (Euclidean) induced representations.

The previous research questions resulted in a quite general formulation of equivariant Eu-
clidean CNNs, complete solutions of their equivariant maps, and an implementation in form
of the PyTorch extension escnn [39] (and its predecessor e2cnn [38]). Having access to this
unified implementation enabled for the first time to conduct a large-scale comparative study
of different equivariant models.

Research question 5: > Chapter@ Weiler and Cesa [322]], and Cesa et al. [40]

How do different equivariant Euclidean CNNs compare relative to each other and to con-
ventional CNNs in an empirical benchmark study?

The design space of equivariant Euclidean CNNs is determined by many novel hyperpa-
rameters. First and foremost, the models differ in their choices of symmetry groups G
and the feature field types p, which determine the spaces of steerable kernels and biases.
In addition, there is a multitude of equivariant nonlinearities, pooling operations, and, for
classification tasks, final mappings to invariant predictions.

Table [6.6] shows the result of our benchmarking of 57 different equivariant CNNs in
d = 2 spatial dimensions, where each model is evaluated on datasets with three different
inherent symmetries [322]]. We presented similar results in d = 3 dimensions in [40].
The main insight is that larger symmetry groups are preferable, and that regular and
quotient representations usually perform best. For more details we refer to Section [6.5]
and the original publications.
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Furthermore, we examine in how far the models’ equivariance properties hold in practice,
and investigate their effect on the models’ performance.

Research question 6: > Chapter@ Weiler and Cesa [322]], Weiler et al. [323],
Weiler et al. [324], Jenner and Weiler [[137]] and Cesa et al.
(40]
In how far do the theoretical properties of equivariant Euclidean CNNs hold in practice?
What are their implications for the learning dynamics and model performance?

While our theory of Euclidean CNNs was developed in continuous space, implemen-
tations are usually discretized. If the symmetry is respected by the discretization, e.g.
reflections or rotations by right angles on pixel grids Z¢, equivariance is found to hold
perfectly. Otherwise, e.g. for continuous rotations, there are discretization artifacts.
Equivariance is then still found to hold quite well, and can furthermore be stabilized via
data augmentation. With and without augmentation, such approximately equivariant im-
plementations outperform non-equivariant CNNs significantly. They require furthermore
less training data and converge faster. A more detailed overview and additional results
are summarized at the beginning of Chapter|[6]

Equivariant convolutions apply some G-steerable (i.e. G-equivariant) kernels at each point
of space. It is hence intuitively obvious that steerable CNNs are not only equivariant under
global Aff(G)-actions, but also under independent local G-transformations of each kernel’s
field of view, as visualized in Fig. This intuition brings us to our next bundle of research
questions:

Research question 7: > Sections[d.4]and[6.3] and Weiler and Cesa [322]

How can the “local gauge equivariance” of steerable CNNs be formalized? How can local
G-symmetries in signals be exploited when the learning task should not be G-equivariant on
the global scale? Is this design useful in practice?

We start with the second question, assuming that local G-equivariance holds. A glob-
ally Aff(H)-equivariant network for H < G can then be constructed by using an
Aff(G)-equivariant network, whose features are at some layer restricted from Aff(G)-
representations to Aff (H )-representations. This is mathematically described by the re-
striction functor Resg on field types (Eq. (#.59)), which does in practice not change the
actual data, but implies a decomposition of the feature fields in subrepresentations, which
are by the next layer treated independently. Intuitively, the network is after restriction al-
lowed to break Aff(G)-equivariance, and maintain Aff (H )-equivariance only.

Our experiments show that local rotation and reflection equivariance (G = O(d)) is
usually always improving results by quite a margin. This holds specifically for natural
image datasets (“upright” photos), which exhibit a preferred direction on their global
scale (H = {e} or reflections).

The local gauge equivariance of steerable CNN's can not be proven in the standard frame-
work, however, it is shown to hold in their differential geometric generalization to Rie-
mannian manifolds. Theorem [I5.2.1] proves that this generalization includes Euclidean
steerable CNNss as a special case, hence proving their conjectured gauge equivariance.

This concludes our main research questions and findings for Euclidean equivariant CNNss.
In a parallel line of research, we investigated their generalization to non-Euclidean spaces.
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M.1.2 Equivariant CNNs on homogeneous spaces and Riemannian manifolds

On Euclidean spaces, we defined CNNs as networks that are equivariant w.r.t. translations or
more general affine group actions, from which the requirement for weight sharing followed.
The reason for the neural connectivity to be shared across the whole space is that the con-
sidered group actions are transitive, that is, are able to move any point to any other location.
From this viewpoint, it is obvious that our definition of CNNs as equivariant networks gen-
eralizes to any other homogeneous space, i.e. space that is equipped with some transitive ac-
tion. For instance, spherical CNNs can be defined as SO(3) or O(3)-equivariant networks on
the sphere S 2 541 183]]. Kondor and Trivedi [162]] used this insight to generalize group convo-
lution based CNNss to arbitrary compact groups and homogeneous spaces thereof. Motivated
by their work, and the insights from our initial paper on Euclidean steerable CNNs [323],
we investigated how steerable CNNs can be generalized to homogeneous spaces.

Research question 8: > Appendix|[F] and Cohen et al. [56]
How can our Euclidean steerable CNNs from [323|] be generalized to homogeneous spaces?

Euclidean steerable convolutions are intertwiners (equivariant linear maps) between in-
duced Aff(G)-representations IndgH(G)p. The feature spaces contain feature fields of
type p on the Euclidean homogeneous space Aff(G)/G = R¢,

Any homogeneous space under some H-action arises as a quotient space H/G. Induced

representations Indg p can be defined for any choice of H and G < H and describe
feature fields of G-type p on H/G. We define steerable convolutions on homogeneous
spaces — just as in the Euclidean setting — as intertwiners between induced represen-
tations. The space of intertwiners is shown to be given by convolution integrals with
G-steerable kernels, which are now defined on H/G.

The group and homogeneous space convolutions of Kondor and Trivedi [[162] are a spe-
cial case of our steerable CNNss for field types p that are regular, or more general quotient
representations, respectively. This claim is proven in Theorem [.5.1] (there we are con-
sidering Euclidean spaces, however, the proof is purely algebraic, and applies to general
homogeneous spaces as well). Our homogeneous steerable CNNs are more general since
they allow to describe more general feature fields, for instance vector or other tensor
fields.

Note that Cohen et al. [56] only derived the G-steerability constraint on kernels on homoge-
neous spaces, but did not provide a solution for their bases. This shortcoming is addressed
in the following research question.

Research question 9: > Lang and Weiler [[173]]
How can the steerability constraint for kernels on homogeneous spaces be solved?

The constraints on Euclidean steerable kernels decompose generally into independent
constraints on G-orbits, which are by definition homogeneous spaces. Our Wigner-
Eckart theorem does therefore actually describe steerable kernels on homogeneous
spaces, from which the complete Euclidean kernels are assembled. However, the Wigner-
Eckart theorem does not directly apply to Cohen et al.’s [56]] definition of steerable ker-
nels on homogeneous spaces, since their steerability constraint differs in general from
that on Euclidean spaces. We could show that the solutions can nonetheless be mapped
to each other, such that our Wigner-Eckart theorem describes complete bases for Cohen
et al.’s [56] notion of steerable kernels as well.
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Besides Euclidean and homogeneous spaces, there is a great interest in defining CNNs on
Riemannian manifolds. Our previous approach — defining convolutions by demanding the
networks’ equivariance under transitive global symmetries of space — does unfortunately not
apply to Riemannian manifolds, since their isometry groups act in general non-transitively.
We hence need to find another way to define convolutions on manifolds, which brings us to
a gauge theoretic formulation of CNNss.

Research question 10: > Parts[[]and [T} Weiler et al. [325] and Cohen et al. [57]

How can feature fields and convolutional networks be defined on Riemannian manifolds?

Since Riemannian manifolds are in general asymmetric (non-homogeneous), we revert
to the alternative definition of CNNs as networks which share weights (kernels) between
spatial locations, without deriving this property. The crucial difference to Euclidean
spaces R is that the kernel alignment on manifolds is inherently ambiguous — for in-
stance, there may not be any preferred rotation or reflection of the kernel. From the
viewpoint of steerable CNNs, this issue is naturally addressed by using steerable kernels,
whose responses in different alignments (gauges) are due to their equivariance related by
a predictable transformations, and encode therefore equivalent information.

How can this intuition be formalized? We identify kernel alignments with choices of
reference frames (gauges), such that responses for different alignments can be viewed
as merely being different coordinate representations of the same abstract feature vector.
Mathematically, G-ambiguities in kernel alignments are identified with a G-structure,
and feature fields are sections of GG-associated vector bundles. The feature vectors, and
any other G-associated quantities, are equipped with parallel transporters and, for G-
structure compatible isometries, with pushforward actions. While our formulation in
Cohen et al. [57] was still restricted to G = O(d) (or subgroups, if they are compatible
with the Levi Civita connection’s holonomy), Weiler et al. [325] lifted this requirement
and allowed for general G < GL(d).

Generic network layers are defined as any operations that map between associated bundle
sections. Convolutional network layers are additionally required to share weights over
the manifold. While generic operations are entirely unconstrained, we show that, in order
for the weight sharing process to be coordinate independent, the shared connectivity is,
once again, required to be G-steerable:

coordinate independence . o
) . G-steerability (gauge equivariance)
weight sharing

This holds not only for convolution kernels, but for any other shared local operation, like
bias summation, nonlinearities, 1x1-convolutions (M -morphisms), and so on, as well.

Convolution kernels are defined on R? and shared over the tangent spaces ,M = R
They are via the exponential map matched with feature vectors, which are additionally
parallel transported along the exponential maps’ geodesics. Theorem [12.2.6] proves the
existence (well-definedness) of such defined convolutions provided that the kernels are
compactly supported, and shows that smooth kernels map smooth input fields to smooth
output fields. Besides providing local coordinate expressions of the network operations,
we formulate them globally in a coordinate free language, which comes in handy when
investigating the networks’ global isometry equivariance.
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Coordinate independent CNNs emphasize local G-valued gauge transformations instead of
global group actions. However, for manifolds with non-trivial isometries, we can ask for the
models’ isometry equivariance.

Research question 11: > Chapter@] and Weiler et al. [325]]

Are coordinate independent CNNs isometry equivariant? Which requirement does isometry
equivariance impose on the network structure?

As a preliminary point, we note that we need to consider subgroups Isomgy of the man-
ifold’s full isometry group which respect its additional G-structure GM; see Def.
This allows us to control the exact level of symmetries we are interested in, but is with-
out loss of generality since we can always choose G = O(d), for which we get general
isometries.

We start with the second question about the constraints on the network connectivity that
are imposed by isometry equivariance. To this end, we need to consider the uncon-
strained counterpart of convolutions, without the requirement for weight sharing. We
call these operations (general) kernel field transforms (Def. [12.2.5)), since they are pa-
rameterized by a field of (generally independent and non-steerable) kernels (Def.[12.2.1).
Theorem [I3.2.4] proves that a kernel field transform is exactly then isometry equivariant
(Def. [I3.2.1) when the kernel field is invariant under isometry actions (Def. [I3.2.3):

isometry equivariant isometry invariant
kernel field transform kernel field

This result enforces weight sharing over isometry orbits and requires, in addition, the
shared kernels’ steerability w.r.t. their respective orbit’s stabilizer subgroup. Note the
analogy to Euclidean and homogeneous spaces, where we got global weight sharing and
a single steerability constraint.

Convolutions are specific instances of kernel field transforms with convolutional kernel
fields (Def.[12.2.3), which are defined as sharing a single G-steerable kernel according to
some G-structure GM over the whole manifold; see Def. Theorem [13.2.5] proves
that these kernel fields are by construction Isomgps-invariant, which is visualized in
Fig. This implies, by the result above, the Isom s -equivariance of the convolution
operation. Specifically for G = O(d), the convolutions are guaranteed to be equivariant
w.r.t. their manifold’s full isometry group.

For Euclidean spaces, Theorem|[I5.2.2]proves the stronger result that coordinate indepen-
dent CNNs are not only isometry equivariant, but equivariant under the action of more
general affine groups Aff(G); see research question 13 below.

Finally, Theorems [13.3.2] and [13.3.1] show that the space of isometry invariant kernel
fields is isomorphic to reduced kernel fields on quotient spaces. Theorem [I3.3.3] asserts
that any equivariant kernel field transform on a homogeneous Riemannian manifold is
necessarily a convolution.

We want to emphasize the result that both the convolutions’ local gauge equivariance and
global isometry equivariance properties are fully determined by the symmetries of the G-
structure; more specifically, by their local G-symmetries, and global isometric symmetries
Isomgyy, respectively. This is an entirely new way of thinking about equivariant CNNs,
which greatly simplifies their analysis and design, as we will see in research questions 13-16
below.
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With these results, we developed a fiber bundle formulation of CNNs on Riemannian man-
ifolds with G-structure. The G-steerability constraints are already solved by our previous
investigations in research question 3. We turn therefore to numerical implementations of
coordinate independent CNNSs.

Research question 12: > Chapters[10] [T4] [T5] [T6] [T7]and [T8] Weiler et al. [325]],
de Haan et al. [67]] and Cohen et al. [57]]

How can coordinate independent CNNs on Riemannian manifolds be implemented? Do their
theoretical properties hold in practice?

Chapter[14] gives a general overview of the design choices provided and implementation
questions coming along with coordinate independent CNNs. The details of an imple-
mentation depend heavily on the manifold under consideration:

= For Euclidean spaces, the models reduce to our Euclidean steerable CNNs from
above; see research question 13. Our library escnn implements them on pixel grids
or sampled on a point cloud.

= If the manifold is locally flat, the convolution can be stitched together from local
Euclidean convolutions on isometric chart codomains. The stitching of charts is for-
mally described by transition maps, and is in practice implemented in form of parallel
transporters along geodesics that transition between charts. We used this strategy to
implement coordinate independent convolutions on the icosahedron in [57] and Sec-
tion[I7.4] and on the Mobius strip in [325] and Chapter [I0]

= On curved manifolds, we need to implement custom convolution operations, whose
details depend on the specific geometry. A practically relevant geometry is the 2-
sphere S2. Chapterderives analytical expressions for all necessary quantities, like
exponential and logarithmic maps, transporters, or isometries. Kicanaoglu et al. [148]
and implemented this model for regular feature fields. Theorem suggests fur-
thermore that spectral implementations of convolutions are suitable to realize our for-
mulation of spherical CNNs.

* General manifolds are often modeled by meshes. In the computer graphics com-
munity, there is a specific interest in convolutions on embedded surfaces. Chap-
ter [I8] gives details on the classical differential geometry of embedded surfaces, on
their discrete differential geometry counterparts, and discusses algorithms to compute
geodesics and parallel transporters on meshes. We implemented gauge equivariant
mesh CNNs on 2-dimensional meshes in [67]. Geodesics were computed using Danil
Kirsanov’s implementation [154] of the exact algorithm by Mitchell et al. [213]. We
extended this code to support frame fields (gauges), and to compute (coordinate ex-
pressions of) parallel transporters.

All of our implementations — on Euclidean spaces, the icosahedron and Mobius strip,
and on general meshes — are tested for their isometry equivariance. As already found in
research question 6, equivariance holds perfectly whenever the discretization (e.g. pixel
grid) is respected by the isometries. Otherwise, it holds approximately, and can be sta-
bilized by using data augmentation. Our models outperform naive coordinate dependent
(non-equivariant) baseline models on all benchmarks.
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M.1.3 Generality of coordinate independent CNNs & literature review:

Since our overarching research goal was to develop a unified theory of convolutional net-
works, we need to assess in how far our coordinate independent CNNs are able to describe
other models and theories that were proposed in the literature. Table[T4.1] gives an overview
of more than 100 models which we investigated and showed to be explained exactly as coor-
dinate independent CNNs when assuming the correct manifolds, G-structures, connections,
and field types.

The first class of models that should be covered by our framework are the steerable Euclidean
CNNss devised in our first research questions.

Research question 13: > Chapter[I5] and Weiler et al. [325]]
In how far do coordinate independent CNNs describe affine equivariant Euclidean CNNs?

In short, coordinate independent CNNs on Euclidean spaces recover our Euclidean
steerable CNNs from above when considering suitable G-structures. Specifically, if
we are interested in an Aff(G)-equivariant steerable CNN, we need to consider an
Aff(G)-invariant G-structure, as shown in the left column of Fig. We define these
G-structures as being induced by Aff(G)-atlases of global charts; see Defs.
and Theorem shows that the corresponding coordinate independent con-
volutions reduce to Euclidean steerable convolutions when being expressed relative to
such charts. Their affine group equivariance is proven in Theorem[15.2.2] Conventional
Euclidean CNNs are covered for the trivial structure group G = {e}.

Another interesting class of models are CNNs on Euclidean vector spaces R? which are ro-
tation equivariant around the origin, but are not translation equivariant. They can be viewed
as convolving on (hyper)spherical shells of different radii around the origin.

Research question 14: > Chapter@] and Weiler et al. [325]]
In how far do coordinate independent CNNs describe such hyperspherical Euclidean CNNs?

The models’ rotational equivariance corresponds in our framework to the rotationally
invariant G-structures that are visualized in Chapter Note that the canonical Levi-
Civita connection of R? is not compatible with these G-structures, and the networks
are indeed implicitly transporting features according to what we identify as alternative
G-compatible connections.

The log-polar coordinate system induced G-structure in Fig. is furthermore imply-
ing an alternative metric, whose distances in radial direction are shrunk logarithmically.
Besides rotations, the isometries relative to this metric comprise “translations’ along the
radial direction. Relative to the canonical metric of R2, these radial transformations cor-
respond to a rescaling of the signal, such that the model is overall rotation and scale
equivariant.

The model in Fig. [16.4] is identified as corresponding to an SO(2) or O(2)-structure,
whose individual fibers are aligned in radial direction. The authors’ assumptions corre-
spond again to an alternative metric, whose radial dependence is this time unaltered, but
whose distances in angular direction are radially independent.

The insight from studying these models is that our framework is quite flexible — we just
need to assume the correct G-structures, metrics, connections, and field types to explain
non-standard network architectures.
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Another active area of research investigates spherical CNNs, which are used to process sig-
nals like omnidirectional images, weather data on the globe, or the cosmic microwave back-
ground.

Research question 15: > Chapter[I7] and Weiler et al. [325]]
In how far do coordinate independent CNNs describe spherical CNNs?

The spherical CNNs in the literature can be categorized in fully SO(3) or O(3)-
equivariant models, in SO(2) or O(2)-equivariant models around some distinguished
rotation axis, and icosahedral approximations of spherical convolutions.

on S? shown in Fig.[17.2al The models in the literature are in our framework interpreted
as processing scalar fields, regular feature fields, or irrep fields, and as transporting fea-
tures according to the sphere’s Levi-Civita connection. A seeming difference is that most
of these models define (steerable) kernels directly on the manifold S? instead of on its
tangent spaces, as we do. However, our Theorems [17.2.1} and |17.2.2) prove an isomor-
phism between the kernel spaces and the equivalence of the resulting convolutions. These
models are therefore exactly described by coordinate independent CNNss.

The first category corresponds to the SO(3) or O(3)-invariant SO(2) or O(2)-structures
i

The second category of models corresponds to the SO(2)-invariant {e}-structure (frame
field) in Fig. or the O(2)-invariant reflection group structure which results when
adding reflected frames. These G-structures have singularities at the sphere’s poles, and
the convolutions are effectively operating on a cylindrical topology. Some of the mod-
els match the kernel on the tangent spaces via a gnomonic projection, instead of our
projection via the exponential map, which again makes the models seemingly different.
Theorem proves that this is not the case since our projection can model theirs
after a radial warp of the kernel (which does not interfere with isometric steerability
constraints).

The locally flat icosahedral approximations are implemented in charts, as discussed in
research question 12 above. Fig. shows the G-structures that allow to explain the
authors’ models in our theory.

Next, we have convolutions on general surface meshes.

Research question 16: > Chapter@] and Weiler et al. [325]]

In how far do coordinate independent CNNs describe CNNs on general surfaces?

CNNs on general surfaces, which are reviewed in Chapter[I8] can be categorized in two
broad classes.

The first group of models, described in Section [I8.2] addresses the rotational ambiguity
of kernel alignments on oriented surface meshes explicitly by applying some kind of
SO(2)-steerable kernels. Some of these models apply only rotation invariant (isotropic)
kernels, which we interpret as steerable kernels that map between scalar fields. The other
models apply non-trivially rotation steerable kernels, which map between non-trivial field
types. We find that some of these models did not use the complete kernel basis for the
field types considered. All of these models transport feature vectors according to the
Levi-Civita connection.

The second group of models, explained in Section uses non-steerable kernels, and
assumes hence a trivial structure group G = {e}. Since no canonical kernel alignment is
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given on general surfaces, the authors propose different heuristics to fix the alignments —
in our framework, these are interpreted as heuristics to fix frame fields ({e}-structures).
Note that this leads on topologically non-trivial surfaces necessarily to singularities, and
hence non-continuous convolution operations. The feature vectors are not transported
according to the surfaces’ Levi-Civita connections, but rather to the unique trivial con-
nection corresponding to the heuristically fixed frame field.

At the end of Chapter @]’s introduction, we furthermore describe some models that
make assumptions which are incompatible with our framework of coordinate indepen-
dent CNNs. Reasons for these incompatibilities are, for instance, that they use alter-
native projections of the kernels from the tangent spaces to the manifold, disregard the
metric structure of the manifold, or are operating entirely differently, e.g. by applying
Euclidean CNNss to renderings of the surface or by interpreting the mesh as a graph and
applying a graph neural network. Coordinate independent CNNs are therefore not ex-
plaining all of the model applied to surfaces, but rather those which map between feature
fields (associated bundle sections), and which project kernels via the exponential map.

Finally, we investigate how our coordinate independent CNNs on Riemannian manifolds
from research questions 10-16 relate to our steerable CNNs on homogeneous spaces from
questions 8 and 9.

Research question 17: > Chapter T3] Appendix[F] and Weiler et al. [325]]

In how far do coordinate independent CNNs describe CNNs on homogeneous spaces?

We begin with the similarities of the theories. Both encode the models’ symmetries via
principal G-bundles, which are for coordinate independent CNNs given by G-structures

GM = M = GM/G, and for homogeneous steerable CNNs by the global symmetry

groups H with projection maps H > H/G. The feature spaces are in both cases sec-
tions of G-associated feature vector bundles. The main operations to map between these
feature spaces are in both cases convolutions with G-steerable kernels.

On closer inspection, it becomes clear that neither of the theories could possibly be a
strict generalization of the other: there exist homogeneous spaces which are not mani-
foldsﬁ and there exist manifolds which are not homogeneous spaces. Furthermore, ho-
mogeneous steerable CNNs define the kernels directly on the underlying space, while
coordinate independent CNNss define them on the tangent spaces.

The practically most relevant spaces are Euclidean spaces and the 2-sphere, both of which
are homogeneous spaces of their isometry groups. As already mentioned above, our
Theorems(13.3.3}[17.2.1]and[17.2.2]assert that there exist G-structures on these spaces for
which coordinate independent CNNs are equivalent to the homogeneous steerable CNNs.
However, the G-structures of coordinate independent CNNs are less restrictive than the
principal G-bundles assumed by steerable CNNs, allowing the former to describe more
general Euclidean and spherical convolutions, not covered by the latter.

More details on the similarities of and differences between the two theories are discussed
in Appendix [F}

3A simple example are discrete pixel grids Z¢, which are homogeneous spaces for e.g. discrete
translations or more general grid-symmetries.
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M.2 Conclusions & future research

This work proposed a unified theory of equivariant convolutional neural networks — first on
Euclidean spaces, and then generalized to arbitrary homogeneous spaces and Riemannian
manifolds. The fact that our theory is able to describe hundreds of seemingly indepen-
dent models asserts that we indeed managed to identify and formalize the relevant geomet-
ric structure that is underlying convolutional neural networks. Interestingly, this geometric
structure, given by a G-structure (principal G-bundle) and its associated bundles on the man-
ifold, is exactly the same as that underlying fundamental theories in physics.

A central result of our theory is that convolutions on manifolds with a G-structure necessarily
have to apply G-steerable (gauge equivariant) kernels. The majority of CNNs in the litera-
ture that are designed to be equivariant w.r.t. global symmetries of the underlying manifold
are implicitly using some kind of steerable kernels. Our framework proves the previously
unsolved conjecture that these models are, in fact, not only globally equivariant, but more
generally equivariant under local gauge transformations. This insight explains the remark-
able performance of such models on signals where G-symmetries are only present on a local,
but not on a global scale.

Not only did we identify the requirement for steerable convolution kernels, but we also de-
veloped a full representation theoretic characterization of their (complete) solution spaces,
without which the theory of equivariant CNNs would have been incomplete. As the imple-
mentation of general steerable kernels is quite technical, we provide a general and easy-to-
use software library escnn [38) 39], which has been well adopted by the research commu-
nity. It has in the meantime been used for a long list of projects, including applications of
high societal impact, like medical imaging, or applications in the environmental, chemical,
engineering, or material sciences. Plenty of other research projects relying on our imple-
mentation were listed at the end of page[12]

While we set out to develop a theory for equivariant CNNs, the formulation that we found
is so general that it even encompasses the entirely non-equivariant CNNs in Section [I8.3]
which correspond to {e}-structures and trivial connections. That this is possible is remark-
able, since these models were designed without any equivariance in mind, or with the authors
arguing that equivariance would not be desirable.

At the beginning of this appendix, we claimed five ways, in which a unified theory of equiv-
ariant CNNs would propel the field of deep learning. Having developed such a theory, we
revisit these points, and see in how far they are addressed:

1. The research community proposed many different equivariant CNN models, each with
their own very specific assumptions of spaces, symmetries, or group actions, and each
using their own formulation and notation. Part [[V|showed that many of these models
fit in our framework, and correspond merely to different choices of G-structures and
field types. We hence developed a taxonomy of equivariant CNNs, which explains how
different models relate to each other. In addition, we could show multiple times that
the models do not make use the complete kernel space corresponding to the implicitly
assumed field types, or have a larger equivariance group than claimed by the authors.

2. Our findings allowed us furthermore to develop many novel equivariant network layers
and architectures; including, for instance, all those models that are listed in rows of
Table [6.6] without a citation. Some of the models found this way achieved new state-
of-the-art results in various applications; see Chapter [f] Further examples from the
community that build on our insights are conditional steerable neural processes [122],
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gauge equivariant spherical CNNs [148]], or PDO-based steerable 3d CNNs [271], to
name but a few.

3. Having access to our PyTorch extension escnn [38, 39] enabled us — for the first time
— to compare and classify different equivariant models on common ground; see our
benchmark study in Section[6.5] This point is of particular importance to the commu-
nity, since the results from different publications are usually not directly comparable.

4. We claimed furthermore that insights from our work could be helpful for other focus
areas in deep learning. One line of work that was directly motivated by our publications
on “locally gauge equivariant” networks are graph neural networks which focus on
local sub-graph automorphisms instead of global graph automorphisms [66, [298]. We
believe that the insights and techniques of our work can furthermore be useful for
structure preserving deep learning at large [36].

5. Our abstract representation theoretic and differential geometric formulation did indeed
highlight intriguing connections to other sciences beyond deep learning. Most notably,
the formulation is in many ways similar to constructions found in physics, as discussed
in more detail at the end of the previous Chapter [ Another interesting connection
exists to biological neural networks in neuroscience, since the cortical surface is itself
a curved manifold. Specifically the visual cortex, which is the biological analog of
CNN:s, is found to be described by a fiber bundle with “contact structure” [[121} 257]).

Limitations & future research

Our theory is tailored to explain the current practices of convolutional networks, however
there are several extensions that could be considered in future research.

One such extension would be to develop a partial differential operator (PDO) based counter-
part of coordinate independent CNNs on manifolds, which are currently limited to spatially
extended kernels. We already investigated such models on Euclidean spaces, finding a re-
quirement for steerable PDOs. It is obvious that these networks generalize to Riemannian
manifolds in the same way as Euclidean steerable CNNs with extended kernels did. We sup-
pose that such models could be formulated by 1) prolonging the associated bundle sections
(feature fields) to their jet bundles, 2) defining PDOs as linear maps from these jet prolonga-
tions back to an output field, and 3) deriving a steerability constraint from the requirement for
coordinate independence. An advantage of such a formulation would be that these models
could achieve full diffeomorphism equivariance, while spatially extended kernels allow in
general only for isometry equivariance. Furthermore, this formulation would be even closer
to the differential gauge theories in physics than our current non-differential version of it.
Note that the models in the literature and in Part[IV] would not be explained by PDO based
networks, since they are explicitly assuming spatially extended kernels.

A related extension would be to develop CNNs with continuous depth instead of discrete
layers. Such models exist already for non-convolutional (fully connected) networks, where
the neural activations’ dynamics in model depth is driven by a “neural ODE” [45]]. The con-
volutional counterpart would therefore be (steerable) neural PDEs, describing the evolution
of feature fields with continuous model depth.

Sticking with spatially extended kernels, one could consider alternative kernel projections
from the tangent spaces to the manifold. Our projection via the exponential map and trans-
porters along geodesics is a natural choice, since it corresponds on Euclidean spaces and the
sphere to the usual parametrization of kernels. However, we found in [67] that the “grav-
itational lensing” effect when following geodesics leads to a deteriorated performance on
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rugged manifolds. This issue is eased by reducing the kernel size (or using PDOs), however,
there are alternative approaches, which rely on the insight that the networks do not neces-
sarily require transporters along geodesics, but that any path (or isomorphism) will do. One
could for instance consider a path integral formulation, which accumulates the transporters
along all possible paths via a functional integral. Another related approach, proposed by
Sommer and Bronstein [280], is to accumulate features via diffusion over their associated
bundle.

There is furthermore a close relation between convolutions and spectral approaches, which is
captured by the well-known convolution theorem. This relation motivated many generalized
CNN models, and Xu et al. [337] have developed a spectral formulation of our steerable
CNNs on homogeneous spaces [56]]. Future research could investigate whether it is possible
to reformulate coordinate independent CNNs on manifolds in the same manner, for instance
by defining convolutions via point-wise multiplications of the spectrum of some generalized
Laplacian which acts on bundle sections (e.g. the connection or the Bochner Laplacian).

A current limitation of our Wigner-Eckart theorem is that it applies only to compact groups,
since it makes use of the Peter-Weyl theorem and the complete reducibility of the field types.
Leveraging Pontryagin duality [243], it should be possible to prove a similar theorem for
locally compact abelian groups. The obvious application would be to describe scale steerable
kernels, however, the requirement for abelian structure groups is quite limiting. Sellaroli
[265]] present a Wigner-Eckart theorem for the Lorentz group, which shows that extensions
beyond compact and abelian groups are in principle possible.

Further extensions of the theory could investigate structure groups that are not subgroups
of GL(d). An interesting application from quantum field theory would be networks that rely
on spin structures (G = Spin(d)) and operate on spinor bundles. One could moreover try to
learn a G-structure on a manifold instead of fixing it.

Besides equivariant linear operations (convolutions) and bias summation, which we char-
acterized completely, there are many potentially interesting nonlinear equivariant maps
between associated bundle sections. While we proposed, implemented and evaluated
many novel nonlinear operations, it remains unclear how nonlinear layers could be inves-
tigated in a systematic fashion. A promising approach for future research in this direc-
tion is to develop equivariant counterparts of common non-equivariant network operations.
For instance, the community already proposed several equivariant attention mechanisms
[1331 1247, 2451 246|197, 98] 42].

Our equivariant and coordinate independent CNNs could furthermore be combined with or-
thogonal advances in equivariant deep learning, like equivariant capsule networks [179} 1352,
308 or probabilistic equivariant models [16]], including in particular equivariant flows [[160}
244, [182] or equivariant neural processes 90,1122, [142]]. Another topic of interest is the uni-
versality of equivariant networks [340, 201}, 256/ 143|264} 240, (167,75, 1356, 1355 |38} [194].

In the long term, it remains to be seen whether either our approach of enforcing equivariance
and coordinate independence, or the antithetical philosophy of using unconstrained models
and learning equivariance purely from data, will prevail. In the infinite data limit, learning
would certainly yield optimal results, and might in addition yield more efficient data rep-
resentations (specifically optimal symmetry groups and their actions). However, this is a
somewhat trivial statement, as even a simple nearest neighbor classifier would perform op-
timally in this limit. Furthermore, we saw in Chapter [6| that, for finite datasets, equivariant
models have an improved data efficiency, convergence rate, and final performance in com-
parison to non-equivariant models. The question is therefore rather how close we will in
practice get to the infinite data limit and how costly training on such data will be. Models
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like Vision Transformers [[73]] and MLP-Mixer [302] showed that, leveraging huge datasets
like JFT-300M [292] with 300 million labeled images, non-equivariant models can achieve
a comparable performance to CNNs. However, these models still exploit the images’ spatial
structure in one way or the other and contain operations that share weights, such that learn-
ing equivariance is encouraged. We therefore believe that hardcoding geometric cues will
remain relevant, even though probably in a somewhat altered form. This holds specifically in
areas with little data, whenever interpretability is required, or in scientific applications like
computational chemistry, where exact equivariance is required.

M.3 List of publications

The Doctorate Regulations of the University of Amsterdam require a reference list of all arti-
cles contained in the thesis, stating the relative contributions of each (co-)author. The content
of this thesis is not a concatenation of my original publications, but is entirely rewritten from
scratchE] However, as the insights from these publications did in one form or another flow
into this work, they are nonetheless listed below. Authors that are not further mentioned in
the listed contributions took an advisory role. A superscript * marks a shared first authorship
(equal contributions).

Part[Il Equivariant Convolutional Networks on Euclidean Spaces, contains and extends on
insights from the following publications:

= 3D steerable CNNs [323]]:

Maurice Weiler”, Mario Geiger™, Max Welling, Wouter Boomsma, and Taco Cohen
3D steerable CNNs: Learning rotationally equivariant features in volumetric data
Conference on Neural Information Processing Systems (NeurIPS), 2018

Personal contributions: analytical solution of the kernel constraint in terms of spher-
ical harmonics and Clebsch-Gordan coefficients, implementation (with Mario), ex-
periments (with Mario and Wouter), and writing (with Mario, Wouter and Taco).
In addition, Mario derived the kernel constraint and Wouter created the protein
datasets.

= E(2)-steerable CNNs [322]:

Maurice Weiler*and Gabriele Cesa™
General E(2)-equivariant steerable CNNs
Conference on Neural Information Processing Systems (NeurIPS), 2019

Personal contributions: idea, irrep decomposition of the kernel constraint, ker-
nel Fourier expansion, e2cnn library design (with Gabriele), and writing (with
Gabriele). In addition, Gabriele derived the irrep kernel space solutions, imple-
mented and maintains the library and ran experiments.

= Steerable filter CNNs [321]:

Maurice Weiler, Fred Hamprecht, and Martin Storath
Learning steerable filters for rotation equivariant CNNs
Conference on Computer Vision and Pattern Recognition (CVPR), 2018

Personal contributions: theory, implementation, experiments and writing.

“Parts and were previously published as preprint on arXiv [325].
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Section[5.3]on G-steerable kernel bases and the generalized Wigner-Eckart theorem contains
insights from the previous three publications, and, in addition, from:

* Wigner-Eckart theorem [[173]:

Leon Lang and Maurice Weiler
A Wigner-Eckart Theorem for Group Equivariant Convolution Kernels
International Conference on Learning Representations (ICLR), 2020

Personal contributions: idea, writing (with Leon) and advisory role. Leon worked

out all of the representation theory and proofs. This paper is based on Leon’s Mas-
ter’s thesis.

* E(IN)-steerable CNNs [40]:

Gabriele Cesa, Leon Lang, and Maurice Weiler
A program to build E(N)-equivariant steerable CNNs
International Conference on Learning Representations (ICLR), 2022

Personal contributions: advisory role. Gabriele worked out the theory, implemented
it, ran experiments and wrote the paper. Leon helped out with the theory and proofs.

Parts [[I| [ITT] and [TV] are based on the preprint Coordinate Independent Convolutional Net-
works [325]. Sections and [I8.2) describe (among other networks) models that were
originally published in [S7] and [67], respectively:

= Coordinate independent CNNs [325]:

Maurice Weiler, Patrick Forré, Erik Verlinde, and Max Welling
Coordinate independent convolutional networks —
isometry and gauge equivariant convolutions on Riemannian manifolds
arXiv preprint arXiv:2106.06020, 2021

Personal contributions: theory, implementation, experiments and writing.

* Gauge equivariant & icosahedral CNNs [57]:

Taco Cohen™, Maurice Weiler”, Berkay Kicanaoglu®, and Max Welling
Gauge equivariant convolutional networks and the Icosahedral CNN
International Conference on Machine Learning (ICML), 2019

Personal contributions: original idea, formulation of the gauge equivariant convo-
lution equation, derivation of the kernel constraint, implementation (with Berkay
and Taco), and experiments (with Berkay). In addition, Taco formalized the bundle
formulation and the convolution on the icosahedron in terms of an atlas of charts.

= Gauge equivariant mesh CNNs [67]]:

Pim de Haan™, Maurice Weiler™, Taco Cohen, and Max Welling
Gauge equivariant mesh CNNs: Anisotropic convolutions on geometric graphs
International Conference on Learning Representations (ICLR), 2021

Personal contributions: theory (with Pim), implementation of parallel transporters
and logarithmic maps on meshes, experiments (with Pim), and writing (with Pim
and Taco). In addition, Pim implemented the convolution operation given trans-
porters and logarithmic maps.
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Further publications, which are not part of this thesis are:

= Intertwiners between induced representations [55} 56|

Taco Cohen, Mario Geiger, and Maurice Weiler
A general theory of equivariant CNNs on homogeneous spaces
Conference on Neural Information Processing Systems (NeurIPS), 2019

= Steerable PDOs [137]:

Erik Jenner and Maurice Weiler
Steerable Partial Differential Operators for Equivariant Neural Networks
International Conference on Learning Representations (ICLR), 2022

* Homeomorphic VAEs [87]:

Luca Falorsi, Pim de Haan, Tim R Davidson, Nicola De Cao,
Maurice Weiler, Patrick Forré, and Taco Cohen
Explorations in homeomorphic variational auto-encoding
arXiv preprint arXiv:1807.04689, 2018

* Covariance in convolutional networks [46]:

Miranda Cheng, Vassilis Anagiannis, Maurice Weiler,
Pim de Haan, Taco Cohen, and Max Welling
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