
Maurice
 Weiler





EQUIVARIANT AND COORDINATE INDEPENDENT

CONVOLUTIONAL NETWORKS

A GAUGE FIELD THEORY OF NEURAL NETWORKS

The work described in this book has been carried out at the QUVA Deep Vision lab at the
University of Amsterdam. Funding for this research was provided by Qualcomm Technolo-
gies, Inc.

Copyright ©2023 by M. Weiler, Amsterdam, The Netherlands.



ii

Summary

In this book, Equivariant and Coordinate Independent Convolutional Networks, we develop
a gauge theory of artificial neural networks for processing spatially structured data like im-
ages, audio, or videos. The standard neural network architecture for such data are convolu-
tional networks, which are characterized by their position-independent inference. Generaliz-
ing whatever they learn over spatial locations, convolutional networks are substantially more
data efficient and robust in comparison to non-convolutional models. This characteristic is
especially important in domains like medical imaging, where training data is scarce.

The independence from spatial locations is formally captured by the networks’ translation
group equivariance, i.e. their property to commute with translations of their input signals.
We show that the convolutional network design is not only sufficient for translation equiv-
ariance but is actually a necessary condition – convolutions can therefore be derived by de-
manding the model’s equivariance. The first part of this work leverages this insight to define
generalized convolutional networks which are equivariant under larger symmetry groups.
Such models generalize their inference over additional geometric transformations, for in-
stance, rotations or reflections of patterns in images. We demonstrate empirically that they
exhibit a significantly enhanced data efficiency, convergence rate, and final performance in
comparison to conventional convolutional networks. Our publicly available implementation
found wide use in the research community.

In the second part, we extend convolutional networks further to process signals on Rieman-
nian manifolds. Beyond flat Euclidean images, this setting includes, e.g., spherical signals
like global weather patterns on the earth’s surface, or signals on general surfaces like artery
walls or the cerebral cortex. We show that convolution kernels on manifolds are required to
be equivariant under local gauge transformations if the networks’ inference is demanded to
be coordinate independent. The resulting coordinate independent networks are proven to be
equivariant with respect to the manifolds’ global symmetries (isometries).

Our objective is not to propose yet another equivariant network design for a narrow applica-
tion domain, but to devise a unifying mathematical framework for convolutional networks.
The last part of this book demonstrates the generality of our differential geometric formula-
tion of convolutional networks by showing that is able to explain a vast number of equivariant
network architectures from the literature.

Convolutional neural networks (CNNs) process data in a position-independent manner.
Having learned to detect a pattern at one specific location, they will detect it at any other
location as well. This work develops a theory of generalized equivariant CNNs which
extend this property to 1) further geometric transformations and 2) arbitrary manifolds.
(Lizards adapted under the Creative Commons Attribution 4.0 International license by courtesy of Twitter.)

https://github.com/twitter/twemoji/blob/gh-pages/LICENSE-GRAPHICS
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iv Preface: A visual introduction

Why Equivariant & Coordinate Independent Convolutional Networks ?

A visual introduction

The gauge theory of “Equivariant and Coordinate Independent CNNs” describes neural net-
works for processing spatially structured data like audio, images, videos, or more general
signals on more general spaces. Why should such networks be equivariant, coordinate
independent, or convolutional, and why are they described by a gauge theory? The fol-
lowing paragraphs aim to give an informal and intuitive motivation for these properties and
the content of this work. A more technical introduction and full overview of this book’s
content is given in Chapter 1.

Why equivariant neural networks ?

To motivate the merits of an equivariant network design, consider the simple application of
image classification. The goal is to partition the space of images into various classes:

(Animal photos adapted under the free license by courtesy of Freepik.)

To solve this task, the network has to become invariant to the intra-class variability of each
class. For instance, there are many different appearances of fox images, and all of them
should be mapped to the same class label “fox”. The intra-class variabilities are partly due
to images showing truly different instances, e.g. the red and the arctic fox. In addition, “one
and the same” image can occur in different appearances:

original illumination translation (shift) reflection

In this work, we are focusing specifically on geometric transformations of spatial signals,
like, for instance, translations, rotations, reflections, scaling, or other affine transformations.
Such transformations are mathematically described by group actions of the corresponding
symmetry group.1

1An introduction to groups, actions, representations, and equivariant maps is found in Appendix B.

https://www.freepik.com/
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Being invariant to a geometric transformation means that the network’s prediction does not
change when its input is being acted on by the transformation group. This property is visu-
alized by the following commutative diagram:

To motivate equivariance, consider an image segmentation task (pixel-wise classification)
instead of image classification. The network’s output should transform here in the same way
as its input. The commutativity of the diagram below captures this requirement graphically:

A function f : X→ Y which commutes in such a way with group actions on its domain X
and codomain Y is said to be group equivariant:

f ◦ actionX = actionY ◦ f or, diagrammatically,

X Y

X Y

f

actionX actionY

f

The visualized segmentation task is therefore reflection equivariant, in this specific case with
the same reflection group action on its input and output. Probably somewhat surprisingly,
the invariant classification task fits under the umbrella of equivariance as well. The dif-
ference here is that the label space is “transformed” by the trivial reflection group action
(actionY = identity), which acts by “doing nothing”, and may therefore be collapsed in the
diagram. Invariant functions are hence a special case of equivariant functions, such that we
can talk without loss of generality about equivariant functions only. For rigorous definitions
of invariance and equivariance, and their mutual relation, we refer to Appendix B.4.

Why should we be interested in studying the equivariance properties of neural networks?
In principle, a neural network would learn to be invariant or equivariant whenever this is
desirable for the task it is being trained on. However, a naive network would have to learn
this explicitly, that is, it would need to be shown samples in every possible geometric pose
before it would understand their equivalence. This approach is clearly undesirable, as it leads
to long training times and yields non-robust predictions.
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Lecture 1
This is a lobster :

Lecture 2
"another" lobster :

EXAM DAY

You didn't
teach me!
You didn't
teach me!

What is this ?

(Vector graphics adapted under the Apache license 2.0 by courtesy of Google and the free license by courtesy of Freepik.)

A more sensible approach is to design the networks such that they are by construction con-
strained to be equivariant. Instead of having to learn over and over again how to process
essentially the same image, such networks automatically generalize their knowledge over
all considered transformations. Equivariance reduces the models’ complexity and number
of parameters, which frees learning capacity, accelerates the training process, and leads to
an improved performance.

First & last Lecture 
This is a lobster :

all of these are
lobsters as well !

Due to equivariance,

This work explains in a fairly general setting how to construct invariant and equivariant
convolutional neural networks (equivariant CNNs).

Why do we need a gauge theory of neural networks ?

With respect to which specific group of transformations should a convolutional network be
made equivariant? The answer to this question depends of course on the symmetries present
in the distribution of data under consideration. Most obvious are global transformations,
acting on signals as a whole.

For instance, aerial images do usually not
exhibit a preferred origin or orientation. To
process such data, it is hence reasonable to
employ networks that are equivariant under
the action of global isometries (i.e. transla-
tions, rotations and reflections of images).

In sets of photos that are not taken from an
aerial view, the gravitational field imposes a
preferred directionality, breaking the rota-
tional symmetry at the global scale. Networks
for processing such images should hence only
be equivariant under translations and reflec-
tions, but not under (global) rotations.

https://github.com/googlefonts/noto-emoji/blob/main/LICENSE
https://www.freepik.com/free-vector/world-teacher-s-day-background-with-owl-blackboard_2887650.htm
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In both of these examples, we argued based on the signals’ content at their global scale,
however, the distribution of local patterns may differ from this analysis. To give an exam-
ple, the image of the hedgehog below exhibits a preferred directionality at the global scale(

, but hopefully not
)
, while local patterns like the spines occur in arbitrarily rotated

poses
(
all of , , , may appear

)
:

(Hedgehog adapted under the free license by courtesy of Freepik.)

When processing such signals, the model should not only generalize everything it has learned
over global transformations of the full signal (global equivariance), but also over indepen-
dent transformations of local patterns, called “gauge transformations”.2

this is yet another pond with lobsters !
And due to local gauge equivariance,

this is also a pond with lobsters
Due to global equivariance,

Our gauge theory of convolutional networks formalizes such local gauge transformations
and explains how to construct gauge equivariant network layers. The neural activations (fea-
ture vectors) of gauge equivariant networks will thereby be guaranteed to encode the same
content (e.g. "hedgehog spines") in different poses

(
e.g. , ,

)
3, while the features

of non-equivariant networks would be entirely unrelated. We find empirically that local rota-
tion and reflection equivariance is essentially always beneficial, since low level features like
edges or corners usually appear in arbitrary orientations.

2Gauge transformations and gauge equivariant layers are more thoroughly introduced below.
3Mathematically, such feature vectors with “poses” are elements of a group representations space.

https://www.freepik.com/free-photo/hedgehog-walking-concrete-road_9867255.htm
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How to construct equivariant models ?

How can we guarantee the equivariance of a machine learning model? As a conceptually
simple example, let’s consider a linear regression task (curve fitting), and assume that the
ground truth f : R→ R is either known to be symmetric or known to be antisymmetric (i.e.
invariant or equivariant w.r.t. multiplications with −1)4:

symmetric: f(−x) = f(x) antisymmetric: f(−x) = −f(x)

A naive (non-equivariant) approach would be to fit an ordinary polynomial

y(x) =

N∑
n=0

wnx
n

of some degree N ∈ N, where the wn ∈ R are N+1 trainable parameters. However, this
general polynomial model would ignore our prior knowledge on the functions’ symmetry
properties – they would have to be learned from the training data.

To take advantage of the symmetries, we can constrain the polynomial model to respect the
symmetries a-priori. Doing so forces either the odd or even terms to zero, leaving us with
equivariant models

ysymm(x) =

N∑
n even

wnx
n (since (−x)n = xn for even n ∈ N)

and yanti(x) =

N∑
n odd

wnx
n (since (−x)n = −(xn) for odd n ∈ N) ,

which are by design symmetric and antisymmetric, respectively. Note that, in comparison
to unconstrained polynomials, these equivariant models have approximately half the number
of parameters. Furthermore, they generalize over reflections: having seen training data for
x > 0 only, they are automatically fitted for all x < 0 as well.

On an abstract level, we started with some space of generic machine learning models, which
is subsequently restricted to a subspace of equivariant models:

equivariant models
symmetry
⊂

constraint
generic models

The layers of equivariant neural networks may similarly be defined as symmetry-constrained
instances of common network operations (e.g. linear maps or bias summations). Specifi-
cally for the translation group, the subspaces of equivariant network operations correspond
exactly to convolutional network layers.

4We encourage the reader to visualize the defining constraints f(−x) = ±f(x) of (anti)symmetric
functions by drawing two commutative diagrams similar to those on page v. Hint: all nodes are R, the
blue transformation arrows are multiplications with −1, and the gray function arrows are labeled by f .
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Why convolutional neural networks ?

Convolutional neural networks (CNNs) are the standard network architecture for spatially
structured signals. They differ from plain, fully connected networks in two respects: firstly,
they usually have a local neural connectivity, and secondly, they share synapse weights (e.g.
a convolution kernel) between different spatial locations:

local connectivity

The weight sharing requirement applies to any type of operation employed in convolutional
networks, enforcing, for instance, that one and the same bias vector or nonlinearity is to be
used at every spatial position. CNNs owe their name to so-called convolution operations,
which are exactly those linear maps that share weights. Intuitively, convolutions can be
thought of as sliding a template pattern – the convolution kernel – across space, matching it
at each single position with the signal to produce a response field.

Both the local connectivity and weight sharing reduce the number of model parameters (vi-
sualized by the number and color of the synapse weights in the graphics above), which makes
CNNs less hungry for training data in comparison to fully connected networks. The local
connectivity implies in addition that each neuron is associated with a specific spatial location
(the center of its receptive field), such that they are naturally arranged in “feature maps”.

More important for us is, however, that the spatial weight sharing implies the translation
equivariance of convolutional networks:

spatial weight sharing =⇒ translation equivariance

To see that this is indeed the case, note that any translation of a network’s input shifts patterns
to other neurons’ receptive fields. Given that the neural connectivity is shared, these neurons
are guaranteed to evoke the same responses as those at the previous location.

(Lizards adapted under the Creative Commons Attribution 4.0 International license by courtesy of Twitter.)

https://github.com/twitter/twemoji/blob/gh-pages/LICENSE-GRAPHICS
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Instead of defining convolutional networks as sharing weights, and subsequently observing
that they happen to be equivariant, we show in this work that one can reverse the implication
arrow and derive weight sharing by demanding their equivariance:

spatial weight sharing ⇐= translation equivariance

We define conventional CNNs therefore equivalently as those neural networks that are trans-
lation equivariant.

Generalized equivariant CNNs & steerable kernels

The mutual implication “weight sharing ⇐⇒ translation equivariance” suggests the gener-
alization of convolutional networks by means of requiring their equivariance under extended
groups of (global) transformations. A quite general family of symmetry groups, covering
most practically relevant transformations of Euclidean space, are affine groups Aff(G). They
always contain translations, but augment them with additional transformations in the so-
called structure group G ≤ GL(d).5 The additional transformations in G allow to model,
for instance, rotations, reflections, or the scaling and shearing of signals.

As for conventional CNNs, we prove a mutual implication between the networks’ equivari-
ance and weight sharing, however, now over affine transformations:

affine weight sharing ⇐⇒ affine group equivariance

Recall that affine groups consist of 1) translations and 2) additional G-transformations. The
generalized affine weight sharing constraint splits accordingly into requirements for

1. spatial (or translational) weight sharing – just as for conventional CNNs – and
2. so-called “G-steerability” constraints on the shared neural connectivity.

The latter are additional G-equivariance requirements that any shared operation, e.g. any
shared kernel, bias, or nonlinearity, needs to satisfy. For instance, a G-steerable kernel
guarantees that anyG-transformation of its input results in a correspondingG-transformation
of its response feature vector.

Since the responses are vector valued features, steerable kernels comprise in general multiple
channels.6 Some clarifying examples follow shortly.

5Affine groups Aff(G) := (Rd,+)⋊G are a semidirect product ⋊ of translations (Rd,+) and
some matrix subgroup G ≤ GL(d) of general linear transformations (e.g. rotations in SO(d)).

6Steerable kernels are actually matrix-valued, having cout×cin channels when their input is a feature
vector field of cin-dimensional feature vectors and their response is a cout-dimensional feature vector.
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Applied at one single location, a kernel produces a single response feature vector, as shown
above. Convolutions apply the kernel at every point of space, and result therefore in a whole
feature vector field. Since convolutions are translation equivariant, and steerable kernels are
G-equivariant, any convolution with a steerable kernel is jointly translation and G-equiv-
ariant – they are hence Aff(G)-equivariant, as desired.

The main challenge in constructing Aff(G)-equivariant CNNs is to solve for and to param-
eterize the subspaces of G-steerable convolution kernels. These subspaces are characterized
by the specific G-symmetries that their constituent kernels have to satisfy. The particular
details of the kernels’ symmetries depend thereby on the choice of transformation laws (G-
actions) according to which their input and output feature vectors are supposed to transform.

To build a more concrete intuition for steerable kernels, we turn to some specific examples.

Reflection steerable kernels: The simplest non-trivial example is the one where G is the
reflection group, such that Aff(G) consists of translations and reflections.

Assume the convolution input to be a scalar field, modeling, for instance, a grayscale image.
Let the convolution kernel be symmetric, i.e. invariant under reflections. When being applied
to a reflected input such a kernel is guaranteed to produce exactly the same responses as for
the original input, however, now located at spatially reflected positions. As the output field
transforms in this example just like the input field, it is of scalar type as well.

Note that general, non-symmetric kernels would not satisfy this equivariance diagram. Their
two response fields on the right-hand side would rather be mutually unrelated.
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Next, let us consider antisymmetric kernels, which negate under reflections. Due to this
property, the response field to a spatially reflected scalar input field will not only appear
spatially reflected, but will additionally change its sign. This transformation behavior is a
valid reflection group action, corresponding to so-called pseudoscalar fields.

In both examples, we assumed a specific input field type and reflection steerable kernels to
be given, from which the output field type followed:

input field type , steerable kernel =⇒ output field type

Our formulation of Aff(G)-equivariant convolutions is, conversely, starting from the input
and output field types, and derives subsequently the corresponding subspaces of steerable
kernels that map equivariantly between them:

input & output field types =⇒ steerable kernels

Specifically for scalar inputs and scalar or pseudoscalar outputs, these subspaces contain
exactly symmetric and antisymmetric kernels, respectively.

Rotation steerable kernels: For our next example, consider the group G = SO(2) of ro-
tations in two dimensions. In general, SO(2)-steerability imposes some rotational symmetry
constraint on the kernels’ angular part, but does not affect their radial part.

A natural basis to expand such kernels are circular harmonics, which are the Fourier basis of
the kernels’ angular parts in polar coordinates. This basis is complete, that is, any (including
non-steerable) kernel can be constructed from it. SO(2)-steerability constrains the basis to
subsets of admissible angular frequencies, which depend on the specific types of feature
fields considered.
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As feature field types, the visualization below considers scalar and vector fields.7 In con-
trast to the previous examples, tangent vectors are not one-dimensional features, but com-
prise multiple channels. Steerable kernels for mapping between such field types are hence
accordingly matrix-valued. They can be viewed as spatially extended counterparts of well-
known differential operators, like the Laplacian (scalar→scalar), gradient (scalar→vector),
divergence (vector→scalar), or gradient of the divergence (vector→vector).

More general solutions than those visualized here exist: for instance, the mapping (vector→
vector) allows in addition for rotationally invariant kernels, and the radial parts are only
exemplary and get optimized during the training process. More expressive steerable kernel
spaces, which allow for higher circular harmonic frequencies and the mixing of different
frequencies, require more complex field types, e.g. general tensor fields. A full overview of
the complete solution spaces of SO(2)-steerable kernels is given in Table 5.2.

Note that the resemblance to common differential operators in the example above is no coin-
cidence – it is a direct consequence of the rotational symmetries of the laws of nature, which
necessitate steerable partial differential operators [137].

General steerable kernels: Although they are often formulated differently, any equivari-
ant convolutional network assumes some types of feature fields and applies corresponding
G-steerable kernels. Our contribution is to present a unified formulation, which describes all
of these models in a single coherent framework.
We furthermore found a complete characterization of G-steerable ker-
nel spaces, which explains in general how they may be constructed
from harmonic basis functions of G. For instance, the angular
parts of SO(3)-steerable kernels will always be assembled
from (subsets of) spherical harmonics, shown on the right.

Gauge equivariance: As mentioned above, G-steerability ensures kernel responses to
transform in a G-equivariant manner with their input. Recall that CNNs usually have a local
connectivity, i.e. apply kernels of finite spatial extent. Convolutions withG-steerable kernels
that have such narrow receptive fields are automatically gauge equivariant w.r.t. independent
G-valued gauge transformations of the kernels’ fields of view at different locations.

This claim is intuitively plausible, however, to put it on a formal basis, we need to introduce
the gauge theoretic framework of coordinate independent CNNs, which we do next.

7Note that this diagram is in contrast to the previous ones not commutative. For instance, div is
not the inverse of grad.
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Why coordinate independent neural networks ?

So far, we have only considered active transformations of signals. Passive transformations
do not act on signals themselves, but rather on the coordinate systems used to describe them:

How is this relevant for equivariant networks? Equivariant CNNs are guaranteed to respond
equivalently to actively transformed variants of the same signal. However, the perception of
a network depends only on its relative alignment towards the signal. We can therefore equiv-
alently think about keeping the signal fixed, and passively transforming the network’s view-
point. A network’s viewpoint can be identified with its internal frame of reference, which
justifies our interpretation as passive coordinate transformations.8

(Lizards adapted under the Creative Commons Attribution 4.0 International license by courtesy of Twitter.)

The fact that active and passive transformations are indistinguishable from the observer’s
viewpoint implies that the predictions of equivariant networks transform in a well defined
manner when passively changing their viewpoint – equivariant networks and their features
are hence coordinate independent, i.e. obey the principle of covariance. Conversely, a
requirement for equivariance follows when demanding coordinate independence.9

The equivalence of the active and passive interpretation holds not only for global coordinate
charts, but also for local frames of reference (gauges), which we leverage next to formalize
the networks’ local gauge equivariance. This local viewpoint becomes actually strictly nec-
essary when extending CNNs to general manifolds, as they do in general neither come with,
nor admit global coordinates.

8The network takes on the same role as an observer in special relativity.
9This statement assumes crucially that the network is co-moving with frames and their passive

coordinate transformations. It would not be true if the network was held in fixed relation to the signal.

https://github.com/twitter/twemoji/blob/gh-pages/LICENSE-GRAPHICS
https://en.wikipedia.org/wiki/Principle_of_covariance
https://en.wikipedia.org/wiki/Observer_(special_relativity)
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Manifolds, local frames & gauge symmetries: This work covers not only CNNs on Eu-
clidean spaces, but generalizes them to arbitrary Riemannian manifolds, including, for in-
stance, spheres or other curved surfaces, as shown below.

On Euclidean spaces, we defined convolutional networks by demanding their equivariance
and leveraging the implication “weight sharing⇐ equivariance”. However, manifolds are
in general asymmetric, that is, there exist in general no (global) transformations w.r.t. which
we could demand equivariance, such that this strategy does no longer apply. Instead, we
define CNNs on manifolds immediately as coordinate independent networks with spatially
shared synapse weights. It turns out that this requires, once again, equivariance constraints
(G-steerability constraints), however, now in a local gauge theoretic sense.

To motivate gauges and local gauge transformations, assume you are given a convolution
kernel, which should be applied at each spatial location of a manifold (weight sharing).
In contrast to Euclidean spaces, it is unclear how to do this, since there exists in general
no preferred reference direction (e.g. rotation or reflection) along which the kernel should
be aligned. A specific choice of alignment, which can be identified with a choice of reference
frame, is what we call a “gauge”:10

geometric
kernel alignment ≡ choice of

local reference frame ≡ gauge

Local gauge transformations are, accordingly, passive transformations between reference
frames and kernel alignments.

Above, we interpreted neural networks – as a whole – as global observers, whose geometric
alignment relative to the signal was identified with a global coordinate chart. Their coor-
dinate independence (viewpoint independence) was in one-to-one relation to their equivari-
ance under global coordinate transformations.

In the gauge theoretic interpretation, we are instead viewing every single neuron – whose
synapses (e.g. kernels) form a local sub-network – as an independent local observer. Their
geometric alignment is described by a local reference frame (gauge) of the correspond-
ing tangent space. Demanding the network’s (local) coordinate independence requires the
shared kernel’s equivariance under local gauge transformations. This gauge equivariance
constraint is exactly the G-steerability constraint discussed above.

local coordinate independence ⇐⇒ gauge steerable kernels

Intuitively, a kernel’s steerability regulates G-ambiguities of reference directions by guaran-
teeing that their responses in different alignments differ merely by some G-transformation.
Steerable kernel responses therefore encode both the gauge independent content of the signal
in their field of view, and its geometric pose relative to the chosen gauge.

10Mathematically, gauges are formalized as local trivializations of the tangent bundle.
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The active counterpart of passive local gauge transformations are independent active trans-
formations of signal patches in each kernel’s local field of view (keeping the gauges fixed).
As in the passive case, the kernel’s G-steerability ensures that their responses transform
equivariantly, i.e. encode the same content in a different pose.

(Lizards and butterflies adapted under the Creative Commons Attribution 4.0 International license by courtesy of Twitter.)

https://github.com/twitter/twemoji/blob/gh-pages/LICENSE-GRAPHICS
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As mentioned above, we can in general not assume Riemannian manifolds to have non-
trivial symmetries (called isometries). However, if a manifold happens to have a non-trivial
isometry group, it is natural to ask for the network’s isometry equivariance, i.e. the property
to commute with isometry group actions on signals. Our coordinate independent CNNs
satisfy this property by construction (the details depend on the choice of structure group G).

(Lizards adapted under the Creative Commons Attribution 4.0 International license by courtesy of Twitter.)

This result closes the loop to our Euclidean steerable CNNs above, which were defined by
requiring the networks’ global transformation equivariance. In fact, the gauge theoretic for-
mulation of coordinate independent CNNs reduces on Euclidean spaces to steerable CNNs.11

Theoretical and practical significance

The primary theoretical contribution of the gauge theory of “Equivariant and Coordinate In-
dependent CNNs” is that it represents a unified theory of convolutional networks, which is
capable of explaining many independently proposed CNN architectures in one single frame-
work. To substantiate this claim, we review more than 100 different models from the liter-
ature, showing for each single one how it can be viewed as a specific instantiation of our
general formulation. An overview of these models – ranging from Euclidean CNNs over po-
lar, spherical, icosahedral and Möbius CNNs to convolutional networks on general surfaces
and meshes – is given in Table 14.1 on page 273.

The reformulation of these networks as coordinate independent CNNs does not only clarify
their mutual relations, but implies in addition that all of them are actually equivariant under
local gauge transformations. This insight is remarkable, since these models were usually
conceived with solely global transformations in mind.

Applications: Above, we were mainly considering image processing tasks as exemplary
applications, however, coordinate independent CNNs are applicable to arbitrary types of
signals or fields (including e.g. vector or tensor fields) on any Riemannian manifold.

11The networks are on Euclidean spaces not only isometry equivariant, but Aff(G)-equivariant.
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Classically, equivariant networks were proposed for applications with
global symmetries, where they were shown to be up to 10× more data
efficient than non-equivariant models [329]. They are of particular im-
portance for biomedical imaging tasks, where training data is typically
scarce and accurate results are of greatest societal relevance.

A probably less expected result is that equivariant CNNs outperform non-equivariant models
even in applications without global symmetries. For instance, we find that replacing conven-
tional CNN layers with their rotation steerable counterparts reduces the error rate in image
classification tasks with globally preferred directionality by up to 25%; see Section 6.4.

The filter bank on the left shows convolution kernels of a non-
steerable CNN which was trained in a similar setting. It is ap-
parent that the kernels learned to respond to oriented patterns
in any possible direction – gauge equivariant layers incorporate
such symmetries of the neural connectivity by design, alleviating
the model from the burden of having to learn it explicitly.

Our theory explains CNNs
on manifolds of arbitrary
dimensionality d. For in-
stance, audio signals are sampled on d=1 time axis. Translation equivariance makes the net-
works generalize over different points in time, while scale equivariance makes them genera-

lize over (local) pitch-shifts. Typical examples for d=3 dimen-
sions are videos, point clouds, or voxel images like fMRI scans of
the brain. Specifically for the latter, one could alternatively think
about processing signals directly on the d=2-dimensional curved
surface of the cerebral cortex. Coordinate independent CNNs would
describe all of these approaches in a common language.

A particularly exciting new application area is “AI for
science”, which employs neural networks as computa-
tional tools in the physical and life sciences. The rele-
vant laws of nature are usually characterized by a rich set
of a-priori known symmetries (e.g. Lorentz invariance),
which should be incorporated into the models. Once
again, gauge symmetries play an important role: for in-
stance, local patterns in molecules, like the highlighted
···N−CH3, reappear multiple times in different poses.

Equivariant CNNs have also proven useful in reinforcement learning. For
example, the game board and rules of “Go” are invariant under reflec-

tions and rotations by π/2. This implies a corresponding equivariance
requirement on the learned policy in the sense that a transformed state
should result in accordingly transformed actions. Our implementa-

tion of steerable CNNs has already been used for multiple reinforcement
learning and robotic control tasks [216, 314, 360, 312, 129, 138, 188, 313, 315].

As these examples demonstrate, there is a wide variety of applications that rely on pro-
cessing spatial signals. Symmetries, whether global or local, abound in such tasks. In all
of these cases, “Equivariant and Coordinate Independent CNNs” explain how convolutional
networks can be constructed, and how the tasks’ symmetries can be taken into consideration.
The unified formulation enables thereby to transfer insights between different applications.
(Graphics on this page adapted from Kim et al. [149], Krizhevsky et al. [166], Winkler et al. [330], Freepik, and Rabich [237].)
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CHAPTER 1

Introduction

Computational methods became in the recent decades more and more relevant for a wide
range of applications. The underlying algorithms are classically hardcoded, that is, the pro-
grammer specifies explicitly how the algorithms process data. While this approach is suitable
for tasks with tightly controlled input and output spaces, it becomes quickly infeasible for
more complicated tasks like computer vision or speech recognition, where the data to pro-
cess exhibits substantial variability. Machine learning algorithms aim to resolve this issue
by replacing hardcoded algorithms with adaptive models that are fitted to data.

While the machine learning paradigm takes the burden of hardcoding an algorithm from the
programmer, the issue with tasks of increasing complexity remains – it manifests here in an
increased demand for training data, which quickly becomes infeasible as well. A large part of
machine learning research is focused on easing this issue by incorporating prior knowledge
about the learning task into the machine learning model. One of the arguably most successful
approaches is that of group equivariant models. Equivariant learning algorithms hardcode
symmetry properties or invariances of the learning task directly into the space of models to
be optimized over, which greatly enhances their data efficiency.

A prototypical example of this design principle are convolutional neural networks (CNNs)
[175, 166]. Conventional CNNs process signals on Euclidean spaces – for instance images –
and exploit their spatial structure via a local neural connectivity with spatially shared
synapse weights. Since the same convolution kernel (neural connectivity) is applied at each
point in space, convolutions are translation equivariant maps – any translation of their input

Figure 1.1: Convolutions
are translation equivari-
ant maps, i.e. they
commute with translation
group actions on their in-
put and output feature
maps. When a convo-
lutional network learned
how to process patterns
at one specific location, it
is guaranteed to general-
ize this knowledge to any
other location.
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(a) Microscopy image

(b) Aerial image (c) Equivariance diagram of a generalized Euclidean CNN

Figure 1.2: Left: Microscopy and aerial images are examples of signals that do not exhibit a preferred
notion of directionality. Patterns like cell boundaries or streets occur therefore not only at different
locations, but also in different rotations and reflections. Right: Neural networks processing such data
should generalize their inference over these additional geometric transformations. Formally, this is
captured by demanding that they are equivariant under (commute with) the extended group of symme-
tries. Conventional CNNs are merely translations equivariant, but disregard other transformations.
(Lizards adapted under the Creative Commons Attribution 4.0 International license by courtesy of Twitter.)

results in a corresponding translation of their output, as visualized by the commutative di-
agram in Fig. 1.1. As a consequence, convolutional networks generalize their inference
automatically over spatial positions, that is, they do not explicitly need to relearn how to
process a given pattern when it reappears at a different location. Due to their improved data
efficiency and robustness, convolutional networks are nowadays de-facto the standard mod-
els for processing spatially structured data like audio, images, volumetric signals or videos.

Given the considerable empirical success of conventional Euclidean CNNs, there is a great
interest in extending convolutional models to

1. be equivariant under larger symmetry groups, and ▷ Fig. 1.2

2. process signals on more general domains. ▷ Fig. 1.4

This work presents a gauge theory of Equivariant and Coordinate Independent Convolu-
tional Networks on Riemannian manifolds which addresses both of these points. To offer an
easy entry, and following the historic development, Part I begins by introducing equivariant
convolutions on Euclidean spaces (“steerable CNNs”), before Parts II and III develop the
full differential geometric formulation. Part IV demonstrates the generality of this formu-
lation by explaining a vast array of convolutional networks from the literature as specific
instantiations of coordinate independent CNNs; see Table 14.1 on page 273.

The remainder of this introductory section is accordingly split into a high level overview of
the Euclidean and Riemannian formulations of coordinate independent CNNs, and applica-
tions thereof. A detailed outline of this work’s contents follows on page 15. The preface
offers a less technical but more visual introduction and motivation.

https://github.com/twitter/twemoji/blob/gh-pages/LICENSE-GRAPHICS
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(a) Rotation steerable kernels (b) Reflection steerable kernels

Figure 1.3: Simple examples of steerable convolution kernels, which guarantee an equivariant mapping
between feature fields of different types (i.e. with different transformation laws). For simplicity, all
examples assume scalar input fields, such that the multiplicity of kernel channels is determined by the
output feature vector dimensionality. Left: SO(2)-steerable kernels obey a rotation equivariance con-
straint on their angular part; their radial part is unconstrained. A mapping from scalar to scalar fields
requires isotropic kernels, while a mapping to vector fields requires a circular harmonic angular part
of frequency one. Higher order circular harmonics result in feature vectors that transform according to
higher order irreducible representations of SO(2). Note that the first two examples correspond in the
infinitesimal limit to the Laplace and gradient operator [137]. Right: Reflection steerable kernels ex-
hibit some kind of reflectional symmetry. Symmetric and antisymmetric kernels map scalar input fields
to scalar or pseudoscalar output fields, respectively, the latter defined by a negation of their sign under
reflections. A mapping to fields transforming according to the two-dimensional regular representation
of the reflection group is performed by a convolution with a kernel whose two channels are reflected
copies of each other. Regular representations explain the widely used group convolutions [52, 162]
from a representation theoretic perspective; see Theorem 4.5.

Equivariant CNNs on Euclidean spaces ▷ Part I

In many applications, Motivation
& overview

characteristic patterns in the signal appear not only at arbitrary loca-
tions, but also in arbitrary directions or scale; see for instance Figs. 1.2a and 1.2b. While
generalizing over translations, conventional CNNs disregard such additional geometric fac-
tors of variation, that is, they need to explicitly learn over and over again how to process
a given pattern in any single geometric pose it may appear in. Quite some effort has been
made to alleviate this shortcoming by extending the equivariance properties of convolutional
networks to larger symmetry groups, as visualized in Fig. 1.2c. Such generalized equivariant
CNNs are guaranteed to share their inference over the extended group of symmetries, which
makes them even more data efficient and robust as compared to conventional CNNs.

In recent years, the research community made major progress in developing equivariant
Euclidean CNNs and demonstrated their superior empirical performance. However, while a
plethora of equivariant model architectures has been proposed, most publications considered
very specific settings and came up with their own nomenclature, notation and formulation,
making it increasingly hard to keep an overview and understand how different models relate
to each other. The first part of this work presents the theory of Euclidean steerable CNNs
[53, 323, 322, 173, 137, 40], which unifies many of the proposed models in a common
representation theoretic framework. Different architectures are shown to differ mainly in
the considered symmetry groups and feature field types, i.e. the specific transformation laws
(group representations) of their feature spaces. A geometrically consistent mapping between
fields of different types is guaranteed by some form of equivariant convolution operation.
We show that all of these operations can be abstractly described as conventional convolutions
with symmetry-constrained “group steerable” kernels, some examples of which are shown
in Fig. 1.3.



4 Chapter 1. Introduction

To cover a wide range of settings, weAffine
groups

consider affine groups Aff(G) := (Rd,+)⋊G, which
consist of translations (Rd,+) of Rd and transformations in some choice of structure group
(or stabilizer subgroup) G ≤ GL(d).1 The latter describes for instance rotations, reflections,
shearing or scaling, and controls the desired level of equivariance. Conventional CNNs,
which are merely translation equivariant, are covered for the trivial group G = {e}.
The feature spaces of steerable CNNs consist of feature vector fields,Feature

fields
i.e. fields of feature

vectors that are attached to each point of Euclidean space. Feature fields differ from conven-
tional feature maps in that they are equipped with an affine group action. The specifics of
the action depend on their field type – common examples are scalar, vector or tensor fields,
visualized in Fig. 4.3, or pseudoscalar and regular feature fields, shown in Fig. 5.1. Formally,
field types areG-representations ρ (Def. B.5.1), and the feature spaces (spaces of feature fie-
lds) are Aff(G)-representations IndAff(G)

G ρ that are induced from the field types (Def. 4.2.1).

Any layer (network operation) of a steerable CNN is required to be equivariant,Equivariant
layers

which means
that it needs to ensure that any transformation of its input field results in a corresponding
transformation of its output field. A common approach to introduce novel equivariant net-
work layers is to first specify their function definition, and subsequently prove their equiv-
ariance. The issue with this approach is that the operations are found heuristically instead of
being derived from first principles, which makes it hard to assess their generality and does
not cast light on how further equivariant operations could be found. We adopt therefore a
different strategy, which proceeds instead by 1) assuming a flexible ansatz for the layer (e.g.
linear maps), 2) fixing desired transformation laws (field types) of its input and output, and
3) solving the implied equivariance constraint on the ansatz. This approach applies to arbi-
trary groups and field types, and allows hence to solve for a whole class of equivariant layers
simultaneously, resulting in a general theory of equivariant Euclidean convolutions.

A central result following from this approach is that Aff(G)-equivariant layers rely generally
on an Aff(G)-invariant neural connectivity. In particular, the translational subgroup requires
spatial weight sharing, while the structure group G constrains this shared connectivity to be
G-steerable (i.e. G-equivariant). Specifically for linear maps as ansatz for the layer, spatial
weight sharing implies that it is necessarily a convolution, while G-steerability imposes
an equivariance constraint on the convolution kernel; see Fig. 1.3. As a consequence, all
that is required to extend convolutions to be affine group equivariant is to ensure that the
convolution kernel satisfies the steerability constraint.

Intuitively,G-steerable kernelsSteerable
kernels

summarize the features in their field of view such into an out-
put feature vector that anyG-transformation of their field of view results into a corresponding
G-transformation of the summarizing feature vector. A convolution with a G-steerable ker-
nel results thus in a whole field of output feature vectors with the correct transformation law.
Steerable kernels are formally equivalent to representation operators from quantum mechan-
ics (e.g. scalar, vector or tensor operators). A generalization of the Wigner-Eckart theorem
describes their construction from harmonic basis functions like circular or spherical har-
monics (Figs 5.2 and 5.3) and Clebsch-Gordan coefficients. The latter imply transition rules
between feature field types, similar to the state transition rules in quantum mechanics.

As steerable kernels perceive only a local field of view,Gauge
transforms

it is intuitively clear that steerable
CNNs are not only equivariant w.r.t. global Aff(G)-transformations of the signal, but also
w.r.t. independent local G-transformations – “gauge transformations” – of patterns; see
Fig. 1.9b. This property can not be described in the classical Euclidean theory of steerable
CNNs, but is proven in their differential geometric generalization, which is introduced next.

1GL(d) is the general linear group of Rd, consisting of all invertible d×dmatrices, andG≤GL(d)
means that G is some subgroup of it (Def. B.2.1). ⋊ denotes semidirect products (Def. B.2.5).
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(a) Cosmic microwave
background on S2 [296]

(b) Wall shear stress on
an artery surface [272]

Figure 1.4: Characteristic patterns in sig-
nals on general Riemannian manifolds oc-
cur commonly at different locations and in
arbitrary orientations. Convolutional net-
works address the former via their spa-
tial weight sharing. We show that the
latter requires convolution kernels to be
equivariant under local gauge transforma-
tions. If the manifold has global sym-
metries (isometries), e.g. rotations of the
sphere S2, the network can be designed to
be equivariant w.r.t. these isometries.

Coordinate independent CNNs on Riemannian manifolds ▷ Parts II & III

A related Motivation
& overview

line of research investigates the generalization of convolutional networks to
more general domains like Riemannian manifolds. Figs. 1.4a and 1.4b shows the cos-
mic microwave background on the sphere and the wall shear stress of an artery’s sur-
face as exemplary signals on non-Euclidean spaces that have been processed by con-
volutional models [228, 291]. As in the Euclidean case, distinctive patterns of fea-
tures are usually appearing at different locations, implying that spatial weight sharing
– i.e. a convolutional architecture – is still desirable.

A major complication in comparison to flat spaces is that manifolds do not come with a
preferred choice of reference direction, along which a convolution kernel could be aligned to
measure features; see Fig. 1.5. Since no reference direction is preferred, the kernel needs to
be aligned arbitrarily on the manifold. The central theme of Parts II and III of this work is
to regulate this arbitrariness by making the networks’ data processing independent from the
specific alignment of convolution kernels. As we will show, this requires kernels again to be
steerable, just as in the Euclidean setting. Since the response of a steerable kernel transforms
predictably when its alignment is changed, the extracted information content is guaranteed
to be the same for any (arbitrary) choice of alignment.

The use of steerable kernels makes the feature spaces of coordinate independent CNNs

1. covariant under (passive) coordinate transformations (gauge transformations), and
2. equivariant under active transformations of the input signal.

In contrast to the Euclidean case, we demand only the networks’ covariance (coordinate
independence), from which equivariance follows automatically.

To make these statements more precise and explain the necessity for steerable kernels, Gaugeswe
need to formalize the notion of “kernel alignment” on a manifold mathematically. We do so
by identifying the alignment of a kernel at some point p of the manifold M with a choice of
local reference frame – a gauge – of the corresponding tangent space TpM . Gauge transfor-
mations are local passive transformations between choices of reference frames and, hence,
kernel alignments. Fig. 1.7 visualizes the concept of aligning kernels along reference frames.
Aligning a kernel relative to the canonical (uniquely preferred) reference frame field of the
Euclidean plane R2, shown in the top, results in the usual kernel field of Euclidean CNNs.
A different frame field, shown in the bottom, implies an alternative kernel field and thus
network. As stated above, the choice of frames is on most manifolds inherently ambigu-
ous, such that no specific kernel alignment is preferred. Fig. 1.5 visualizes this issue for the
sphere, where frames are only unique up to rotations.
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Figure 1.5: Different observers A and B may perceive a pattern of features from a different “view-
point”. The satellites in our application are convolution kernels which summarize their local field of
view around p into a feature vector at p. Their “viewpoint” is a choice of local reference frame (gauge)
at p, along which the kernel is aligned. Since the observations from both viewpoints represent the
same pattern, the kernel responses should contain equivalent information, that is, the inference should
be coordinate independent. This constrains the convolution kernels to be steerable, i.e. equivariant
under local gauge transformations (changes of reference frames). The level of gauge equivariance is
determined by the structure group G, which depends both on the manifold and the application.
(Lizards adapted under the Creative Commons Attribution 4.0 International license by courtesy of Twitter.)

The level of ambiguity in the choice of frames depends on the geometric structureG-structures with which
the manifold is equipped. Such structure often allows to disambiguate reference frames up
to certain symmetry transformations (gauge transformations); see Fig. 1.6. This statement is
best explained with a few examples:

a naked smooth manifold M does not come with any preference in the choice of frames.
Gauge transformations between general frames are arbitrary invertible linear maps, that
is, they take values in the general linear group G = GL(d), where d = dim(M).
an orientation of the manifold allows to distinguish left-handed from right-handed
frames. Gauge transformations between frames of either handedness are orientation
preserving, i.e. they are elements of G = GL+(d) (invertible linear maps with positive
determinant).
a volume form allows to distinguish unit volume frames. Gauge transformations are then
volume preserving, that is, they take values in the special linear group G = SL(d).
the metric structure of a Riemannian manifold allows to measure distances and angles
in the tangent spaces and therefore allows to distinguish orthonormal frames. Gauge
transformations between orthonormal frames are rotations and reflections in the orthog-
onal group G = O(d).
together, an orientation and metric imply oriented orthonormal frames. Gauge trans-
formations are then only rotations in the special orthogonal group G = SO(d).
a frame field consists of a unique frame at every point of the manifold. Gauge transfor-
mations are in this case trivial, which is described by the trivial group G = {e}.

All of these geometric structures have in common that they define a preferred subset (sub-
bundle) of frames such that gauge transformations take values in some structure group
G ≤ GL(d). To emphasize the central role of the structure group G, such structures are
denoted as G-structures GM . Visual examples of G-structures for different structure groups
G and manifolds M are given in Fig. 1.6.

https://github.com/twitter/twemoji/blob/gh-pages/LICENSE-GRAPHICS
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(a) M=R2, G={e} (b) M=R2, G={e} (c) M=R2\{0}, G={e}

(d) M=R2, G=R (e) M=R2, G=R (f) M=R2\{0}, G=R

(g) M=R2, G=SO(2) (h) M=S2, G=SO(2) (i) M= “Suzanne”, G=SO(2)

(j) M=R2, G=S (k) M=S2\poles, G={e} (l) M=Möbius, G=R

Figure 1.6: Exemplary G-structures GM for different structure groups G and manifolds M . The
structure group G specifies which values gauge transformations can take, and therefore how “big” the
subset of distinguished frames at each point is. Fig. 1.6a shows the canonical {e}-structure (frame
field) of R2, corresponding to conventional Euclidean CNNs. The G-structures in Figs. 1.6d, 1.6g
and 1.6j add reflected (G = R), rotated (G = SO(2)) and scaled (G = S) frames, respectively. They
correspond to the Aff(G)-steerable CNNs from Part I. G-structures are usually not unique: Figs. 1.6b
and 1.6e show alternative G-structures on R2 (corresponding to an alternative metric w.r.t. which
their frames are orthonormal). They might not be practically relevant but demonstrate the flexibility
of our framework. The G-structures in Figs. 1.6c and 1.6f correspond to polar coordinates and model
SO(2) and O(2)-equivariant (but not translation equivariant) CNNs. As G-structures are required to
be continuous, the singularity at the origin 0 is removed. Fig. 1.6h shows the usual SO(2)-structure on
the 2-sphere S2, which is underlying SO(3)-equivariant spherical CNNs. Spherical coordinates, which
are singular at the (cut out) poles, imply the {e}-structure in Fig. 1.6k. Topological obstructions may
prevent continuous (non-singular) reductions of the structure group. For instance, topological spheres
as in Fig. 1.6i require at least G = SO(2), while non-orientable manifolds, like the Möbius strip in
Fig. 1.6l, require at least G = R to admit the G-structures’ continuity. G-steerable kernels are hence
strictly necessary for continuous convolution operations on topologically non-trivial manifolds.

https://en.wikipedia.org/wiki/Blender_(software)#Suzanne
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Figure 1.7: A key property of convolutions is
that they share weights over the manifold. The
alignment of a convolution kernel is formal-
ized by identifying it with a choice of refer-
ence frame. Different frame fields imply there-
fore different (convolutional) kernel fields.
The choice of frames, called gauge, is often
not unique. The ambiguity in this choice is en-
coded in G-structures; shown in Fig. 1.6. To
account for the arbitrariness of frames, the ker-
nels are then required to be G-steerable; see
Figs. 1.3 and 1.8.

Given a manifold with G-structure,Covariance we are confronted with an inherent G-ambiguity in the
choice of frames. Facing the same issue during the development of his general theory of
relativity, Albert Einstein proposed the principle of (general) covariance [80, 79]:

“Universal laws of nature are to be expressed by equations
which hold good for all systems of coordinates,

that is, are covariant with respect to any substitutions whatever.”

Along the same lines, we formulate a principle of G-covariance for deep learning:

“Convolutional neural networks are to be expressed by equations
which hold good for arbitrary frames of the G-structure,

that is, are covariant with respect to any G-valued gauge transformations.”

An important difference to Einstein’s general covariance is that we allow for arbitrary struc-
ture groups G ≤ GL(d), while general relativity is exclusively considering general linear
gauge transformations in G = GL(d). Our theory allows therefore to describe conventional
non-covariant CNNs (G = {e}), generally covariant CNNs (G = GL(d)) and the whole
spectrum of models in between.

The principle of G-covariance demands in particularFeature
fields

the coordinate independence of the
networks’ feature spaces. Feature vectors are therefore necessarily associated with some
G-representation ρ, which determines their transformation law under gauge transformations.
The particular choice of group representation determines hereby the geometric type of a
feature vector field. Note that such fields are the direct differential geometric generalization
of the Euclidean feature fields of steerable CNNs, here defined with a focus on passive local
gauge transformations of individual feature vectors instead of active Aff(G) transformations
of the global field. The latter is in the differential geometric setting described by pushforward
actions on the feature field.

Any network layer is required to respect the features’ (passive) transformation laws,Steerable
kernels

that is,
it needs to guarantee that its outputs transform as expected. Specifically for convolutions,
G-covariance demands that applying a shared kernel relative to different G-frames should
evoke the same response up to a gauge transformation, which requires the G-steerability
(gauge equivariance) of convolution kernels. In this context, one may think of G-steerable
kernels as measuring features relative to reference frames without introducing a dependence
on their absolute alignment, which would break the G-equivalence of gauges. Fig. 1.8 visu-
alizes the sharing of a reflection steerable kernel along different gauges, giving an intuition
on how the responses’ G-covariance comes about.
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Figure 1.8: Sharing of a reflection steerable kernel along two different gauges (red and green) of a
reflection G-structure. Due to the kernel’s reflection equivariance, the choice of gauge is in so far
irrelevant that it will affect the responses only by a predictable gauge transformation, guaranteeing the
features’ reflection covariance. Specifically, antisymmetric kernels map gauge invariant scalar fields to
pseudoscalar fields, which flip their sign under gauge transformations. A symmetric kernel (Fig. 1.3b,
left) would have resulted in a gauge invariant response, i.e. another scalar field.

(a) Passive local gauge trafo (b) Active local gauge trafo (c) Active global isometry action

Figure 1.9: An overview of the types of transformations relevant for coordinate independent CNNs.
Left: Passive local gauge transformations are transformations between local reference frames of the
manifold’s tangent spaces. “Locality” refers to the fact that each tangent space has its own frame, and
therefore independent gauge transformation. ”Passive” means that only the coordinate representations
of quantities like features change, while the actual geometric objects stay the same. “Active” transfor-
mations, by contrast, act on abstract geometric objects themselves. Middle: The active variant of local
gauge transformations transforms small patches of features independently from each other. A local
observer (e.g. convolution kernel) can’t distinguish between active and passive gauge transformations;
see Fig. 1.10. Right: Isometries are the (distance preserving) symmetries of Riemannian manifolds.
They act via “pushforward” on feature fields, which can be thought as carrying the fields along with the
group action. The isometry group of a manifold may be trivial. All: The features of coordinate inde-
pendent CNNs are covariant under passive gauge transformations and equivariant under active gauge
transformations and isometry group actions on signals.
(Lizards and butterflies adapted under the Creative Commons Attribution 4.0 International license by courtesy of Twitter.)

https://github.com/twitter/twemoji/blob/gh-pages/LICENSE-GRAPHICS
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Figure 1.10: From the viewpoint of a local observer, passive gauge transformation of their own refer-
ence frame are equivalent to (inverse) active gauge transformation of the signal in their local field of
view. In other words, observers (kernels) perceive features relative to their own frame of reference.
(Lizards adapted under the Creative Commons Attribution 4.0 International license by courtesy of Twitter.)

Besides being covariant under passive gauge transformations, which transform between ref-
erence frames but keep the actual signals on the manifold fixed (Fig. 1.9a), coordinate inde-
pendent CNNs are equivariant under active transformations of the signals themselves.

Firstly,Gauge
equivariance

steerable kernels respond by definition equivariantly to active G-transformations of
features in their field of view. The networks as a whole are therefore equivariant under inde-
pendent “active gauge transformations” of local patterns, shown in Fig. 1.9b. Fig. 1.10 clari-
fies how this relates to the models’G-covariance: a kernel’s response depends generally only
on its relative alignment towards the signal, such that passive transformations of the align-
ment and (inverse) active transformations of the signal result in the same change of kernel
response. If the kernel is in addition G-steerable, its responses change predictably, which is
in the passive and active case referred to as G-covariance and G-equivariance, respectively.

Secondly, the manifold may have global symmetries,Isometry
equivariance

which, in the case of Riemannian mani-
folds, are distance preserving maps, called isometries. These isometries act via pushforward
on feature fields, which can be thought of as “carrying features along” with the isometry
action;2 see Fig. 1.9c. We prove that a neural network is exactly then equivariant w.r.t. (a
subgroup of) isometries if their neural connectivity – or kernel field – is invariant:

isometry equivariant CNN ⇐⇒ isometry invariant kernel field
As visualized in Fig. 1.11, this requires that the neural connectivity is 1) shared spatially
over the isometry orbits and 2) steerable under the isometry group’s stabilizer subgroups.

This result implies that the isometry equivariance of convolutions depends on the symme-
tries of their convolutional kernel field. Since we define convolutions as sharing kernels
along frames of the G-structure, their convolutional kernel fields inherit the symmetries of
their underlying G-structure; see Fig. 1.12 for examples.3 It follows as a corollary that
convolutions are equivariant w.r.t. that subgroup of isometries that are symmetries of the
G-structure. This result reduces the design of equivariant CNNs on manifolds to the design
of invariant G-structures. The reader is encouraged to revisit the exemplary G-structures in
Fig. 1.6 in regard to their symmetries and the implied equivariance properties.

2Technically, this requires isometries that are principal bundle automorphisms of the G-structure.
3The specific choice of gauge is by the kernel’s G-steerability irrelevant.

https://github.com/twitter/twemoji/blob/gh-pages/LICENSE-GRAPHICS
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(a) SO(2)-invariant
kernel field

(b) O(2)-invariant
kernel field

Figure 1.11: A neural network is isometry equivari-
ant if and only if its kernel field (neural connectivity)
is isometry invariant. This implies 1) spatial weight
sharing over the isometry orbits (colored rings) and
2) a constraint on the kernels to be steerable w.r.t.
their respective orbit’s stabilizer subgroup. The
SO(2) and O(2) actions on the egg have the same
orbits, on which – but not between which – kernels
are shared. While the stabilizers are for the SO(2)
action trivial (ignoring the poles), those for O(2) are
reflections, requiring an accordingly steerable con-
nectivity. Note that the notion of “invariance” de-
pends here on the field types, and might for instance
imply antisymmetric kernels. The isometry equiv-
ariance of convolutions is discussed in Fig. 1.12.

Figure 1.12: Convolutional kernel fields are
constructed by aligning a convolution kernel
along (arbitrary) frames of aG-structure. They
are hence invariant under the G-structure’s
symmetries, and the implied convolution is
equivariant under the G-structure’s symme-
tries; cf. Fig. 1.11. The top G-structure corre-
sponds therefore to a convolution that is equiv-
ariant under horizontal (but not vertical) trans-
lations, while the bottomG-structure implies a
fully translation and reflection equivariant con-
volution operation.

Until now, Diffeo-
morphism
equivariance

we did not comment on why we consider Riemannian manifolds and isometries
instead of smooth manifolds and diffeomorphisms. The metric structure comes into play
since we consider spatially extended kernels, whose matching with features is performed
in geodesic normal coordinates. Specifically, the kernels are defined on flat space Rd, and
shared along gauges over the manifold’s tangent spaces. To match them with features, the
feature fields are projected to the tangent spaces (or normal coordinates) by pulling (and
parallel transporting) them back along Riemannian exponential maps as shown in Fig. 9.1.
Since the exponential map depends on the manifold’s metric structure, this projection is de-
formed by non-isometric diffeomorphisms, which prevents the models’ full diffeomorphism
equivariance. To remedy this shortcoming, and extend the models to be diffeomorphism
equivariant, it would be necessary to replace the finite sized steerable kernels with steerable
partial differential operators, which model local interactions [137]. Due to the wide use of
spatially extended kernels in deep learning, we stick with this design choice throughout.

For Euclidean spaces M = Rd, Euclidean
CNNs

equipped with their canonical {e}-structure (Fig. 1.6a),
coordinate independent CNNs reduce to conventional Euclidean CNNs. Similarly, the
G-structures in Figs. 1.6d, 1.6g and 1.6j recover the Aff(G)-steerable Euclidean CNNs
from Part I.4 This claim holds in fact for general affine groups, not only for isometries,
i.e. G ≤ O(d), since the Riemannian exponential map commutes on Euclidean spaces with
these more general symmetries. Note that coordinate independent CNNs allow to model
more general convolutions on Euclidean space than steerable CNNs since they allow for
alternative G-structures like those in Figs. 1.6b or 1.6e.

4There is a principal G-bundle isomorphism between these G-structures and Aff(G).
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Applications & literature review ▷ Chapters 6 & 10 and Part IV

The properties and practical utility of steerable and coordinate independent CNNs is demon-
strated in multiple chapters with an applied focus.

Chapter 6 presents an empirical evaluation of Euclidean steerable CNNs, verifying their
theoretically guaranteed generalization over affine transformations and showing their im-
proved data efficiency and convergence rates. Since they generalize in particular over local
gauge transformations, steerable CNNs are found to be highly useful even for natural images,
which have a globally preferred directionality imposed by the gravitational field. A bench-
mark study, which uses datasets with different global symmetries, clarifies which choices of
symmetry groups, field types and equivariant nonlinearities work best in practice.

Chapter 10 describes and evaluates an exemplary implementation of coordinate independent
CNNs on the Möbius strip, equipped with the reflection group structure from Fig. 1.6l. The
model is empirically shown to be isometry equivariant and outperform a naive non-covariant
(and non-equivariant) implementation.

Part IV presents a comprehensive literature review on convolutional networks. It demon-
strates the generality of our differential geometric formulation of convolutional networks by
describing more than 100 models as specific instances of coordinate independent CNNs. As
coordinate independent CNNs allow for arbitrary structure groups, they explain even non-
covariant models (G = {e}) on manifolds, which fix some gauge heuristically, relative to
which they apply non-steerable ({e}-steerable) kernels. Chapter 15 focuses specifically on
Aff(G)-equivariant convolutions on Euclidean spaces, proving in particular how coordinate
independent CNNs reduce in this setting to the classical formulation of steerable CNNs. Eu-
clidean convolutions that are based on polar or more general hyperspherical G-structures,
and are therefore rotation, but not translation equivariant, are discussed in Chapter 16. Log-
polar coordinates result similarly in rotation and scale equivariant models. Chapter 17 de-
scribes O(3), SO(3), O(2) and SO(2)-equivariant spherical CNNs, and icosahedral approx-
imations thereof. Implementations on general surfaces are covered in Chapter 18. Besides
describing the models in the literature, all of these chapters start by explaining the differ-
ential geometry and constructions like exponential maps or transporters on their specific
manifolds, which is helpful when implementing new models. An overview of the resulting
taxonomy of convolutional networks is given in Table 14.1 on page 273.

An implementation of G-steerable kernels and Euclidean steerable CNNs for arbitrary field
types of any structure group G ≤ GL(d) is available in our PyTorch extension escnn [39]
(formerly e2cnn [38]). The library is designed to abstract away most of the complicated
representation theory, such that the user only has to make basic choices like selecting the
symmetry group or feature field types. It has been widely used for tasks like aerial imag-
ing for object detection [116], deforestation segmentation [214], the processing of weather
data [122] dendrite-core detection in material science [96], understanding the human ventral
visual stream [147], fluid dynamics applications [317, 341, 225, 319], molecular energy pre-
diction [40, 353], molecular recognition [14], fMRI imaging [146], morphologic profiling of
cells and organelles [30], inverse problems [37], compressed sensing [168], reinforcement
learning, robotics and planning [216, 314, 360, 312, 129, 138, 188, 313, 315, 350], pose
regression [219], feature matching [227, 19, 286, 176, 7], oriented keypoint detection [177],
object tracking [113], symmetry detection [266], symmetry learning [313], shape genera-
tion [305], 3d mesh generation from images [214], visual reasoning [208], differential pri-
vacy [123], and other applications [354, 260, 135, 43, 137, 94, 331, 145, 215, 104, 89, 103,
104, 111, 9, 124, 190, 169, 155, 239, 218].
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Figure 1.13: The invariance of the laws of nature under Poincaré (or Galilean) transformations implies,
and is implied by, the equivariance of the system’s time evolution. This mutual implication is analo-
gous to that between an equivariant neural network and its invariant neural connectivity; see Fig. 1.2c.
Similar to an observer in physics, an equivariant network may only perform relative measurements.
The deep learning analogue to the inertial frames in physics, related by Lorentz (or Poincaré) transfor-
mations, are frames of a G-structure, which are related by G-valued gauge transformations (or affine
group actions). The laws of nature and the inference of convolutional networks are both governed by
steerable (gauge equivariant) operators. (Trajectories generated with code from Kipf et al. [153].)

Relation to physics

Our formulation of Equivariant and Coordinate Independent Convolutional Networks shows
some striking similarities to theories in physics, which we briefly highlight here.

Field theories: First of all, the feature spaces of CNNs are spaces of feature fields, which
are similar to the tensor fields occurring all throughout physics. Mathematically, both are
formalized as associated bundle sections, and are hence described by gauge field theories.

Relativity: We find that equivariant predictions of convolutional networks are in one-to-
one correspondence with an invariant neural connectivity. Equivalently, invariant laws of
nature imply, and are implied by, an equivariant system dynamics;5 visualized in Fig. 1.13.

Such invariances of physical laws are captured by the principle of relativity. The word “rel-
ativity” refers hereby to the fact that invariant laws of physics allow an experimenter only to
measure events relative to their frame of reference, but not in an absolute sense. Equivariant
CNNs have exactly the same property: they allow only for relative measurements of features,
but are constrained to be insensitive to their absolute pose. We can therefore claim to have
found a theory of relativity of neural networks.

In physics, one usually starts by studying the special theory of relativity, which considers flat
Minkowski spacetime and global Poincaré transformations between inertial frames. General
relativity generalizes this setting to curved spacetime and distinguishes local tetrad frames,
which are related by local Lorentz transformations. Similarly, we develop our theory of
equivariant CNNs first on flat Euclidean spaces, equipped with global affine group actions
that transition between affine charts (Def. 15.1.1). Coordinate independent CNNs generalize

5Eq. (B.28) in Appendix B.4 shows that this is a general property of equivariant maps.
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this setting to general Riemannian manifolds and local G-transformations between frames
of a G-structure. Note that all that is required to construct a relativistic neural network for
fields on spacetime is to choose the Lorentz group G = O(1, 3) as structure group of a
coordinate independent CNN.

From a philosophical viewpoint, it was argued that the assumption of invariant laws of nature
is essential for our ability to discover them empirically. For instance, Eugene Wigner, a
Nobel prize winner who greatly contributed to the application of group theory in modern
physics, claimed in this context [328]:

“... if there were no phenomena which are independent of all but a
manageably small set of conditions, physics would be impossible.”

In a universe in which the laws of nature were not Poincaré (or Galilean) invariant, exper-
imental outcomes would depend on the experiment’s location, orientation and time, thus
preventing any reproducibility and being at odds with the scientific method itself. The situ-
ation in machine learning is remarkably similar: if we would not assume an invariant neural
connectivity (i.e. an equivariant network), the model would laboriously have to (re)learn
how to process a given pattern in every possible pose and location. Following Wigner’s
quotation, we retain:

If there was no inference which is independent of all but a
manageably small set of conditions, machine learning would be infeasible.

Differential operators & equations: A seeming difference between the two research ar-
eas is that the field equations in physics involve partial differential operators, while convo-
lutional networks are usually applying spatially extended kernels. We bridged this gap in
our publication [137], which augments convolutional networks with (steerable) partial dif-
ferential operators (PDOs). Interestingly, we found that common operators in physics, like
gradients, divergences, curl, or the Laplacian, are all examples of steerable PDOs – this
PDO steerability is actually necessary for the laws of nature to be invariant.6

Convolutions do furthermore play a great role in solving inhomogeneous, linear, translation
invariant partial differential equations (PDEs): their solutions may be given by convolutions
with Green’s functions, which are “impulse responses” of PDEs. Note the terms “linear” and
“translation invariant”, which are exactly the conditions from which we derive convolutional
network layers in Theorems 3.2.1 and 4.3.1. It would be interesting to investigate whether
convolutional network layers can be viewed as solving some linear neural PDE, whose in-
homogenity is given by the layer’s input feature map.

Representation operators: Finally, we found that our G-steerable kernels, which map
between feature fields, are mathematically equivalent to the representation operators from
quantum mechanics, which map between quantum states. Both are therefore described
by a Wigner-Eckart theorem [173], which essentially identifies the admissible irreducible
G-representations that may be contained in the convolution kernel or quantum operator. The
implied state transition rules in quantum mechanics are therefore equivalent to the feature
transition rules in equivariant deep learning; see Fig. 5.4.

What is the reason for these similarities between physics and deep learning? The connection
is simply a consequence of both being geometric theories – all of the similarities are funda-
mental results of the underlying representation theory and differential geometry.

6For these examples, invariant under Galilean instead of Poincaré transformations.
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1.1 Outline

This work is organized into four main parts and an appendix. Part I develops a theory of
affine group equivariant CNNs on Euclidean spaces. Feature spaces are formulated as group
representation spaces and network layers are equivariant maps between them. Convolutions,
or more general forms of weight sharing, are shown to follow from the requirement for group
equivariance. Parts II and III generalize these models to Riemannian manifolds. Part II in-
troduces this generalization in an easily accessible language, expressing feature fields and
network layers relative to local coordinates (fiber bundle trivializations). The demanded
coordinate independence (covariance) of the models requires features to be associated with
some transformation law. Network layers are required to guarantee the correct transforma-
tion behavior of features. Part III formalizes these coordinate independent neural networks
in terms of associated fiber bundles. This allows for a global, coordinate free formulation,
which is particularly useful when investigating the networks’ isometry equivariance. The
definitions from Part II are recovered when expressing the coordinate free operations in lo-
cal bundle trivializations (coordinates). The reader not familiar with fiber bundles may skip
Part III at a first pass. Part IV turns to applications on specific geometries. It provides in
particular a detailed review of convolutional networks from the literature and reformulates
them as instantiations of coordinate independent CNNs for specific manifolds, G-structures
and field types. The appendix covers mathematical background, discusses further details
omitted in the main parts, and gives long proofs.

Detailed Overview

Part I: Chapter 2 gives a brief introduction to the general concept of invariant and equiv-
ariant models in machine learning. The basic design principle and advantages of such mod-
els are discussed in Section 2.1. Section 2.2 clarifies how equivariant neural networks may
be constructed as sequences of equivariant layers.

Chapter 3 reviews conventional Euclidean CNNs [175] from a group theoretic perspective.
The feature spaces of conventional CNNs are in Section 3.1 formalized as regular transla-
tion group representations, consisting of feature maps that are equipped with a translation
group action. Section 3.2 derives typical CNN layers, like convolutions, bias summation,
nonlinearities and pooling operations, from the requirement for the networks’ translation
equivariance. Such layers will generally exhibit some form of spatial weight sharing, which
means that they act by applying some shared local operation at each point of the space.

Chapter 4 generalizes these constructions and results to affine symmetry groups, resulting in
Euclidean steerable CNNs [53, 323, 322, 56, 137, 173, 40]. Affine groups Aff(G) are briefly
introduced in Section 4.1. The feature spaces of steerable CNNs are in Section 4.2 defined
as induced affine group representations. They consist of feature vector fields, which differ
from conventional feature maps in that they come with an affine group action instead of just a
translation group action. Affine group equivariant layers are derived in Section 4.3. Just like
conventional CNNs, these layers require spatial weight sharing, however, now with an addi-
tional G-steerability constraint on the shared neural connectivity. Section 4.4 explains how
networks with a varying level of equivariance in different layers may be constructed and how
this approach can be useful. Section 4.5 comments on group convolution based networks and
proves that they are a special case of steerable CNNs for regular G-representations.

Steerable convolutions are ultimately just convolutions with G-steerable kernels, which are
the subject of Chapter 5. Section 5.1 argues that steerable kernels form a vector subspace of
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general convolution kernels and explains how these can be parameterized for learning. To
build an intuition on such kernels, Section 5.2 derives some of them for the simple example
of the reflection group. A general solution of the kernel constraint for arbitrary represen-
tations of compact groups G in terms of a generalized Wigner-Eckart theorem is presented
in Section 5.3. Section 5.4 gives an overview of some alternative approaches to solving the
steerability constraint and parameterizing steerable kernels.

Chapter 6 investigates the properties of steerable CNNs empirically and benchmarks differ-
ent design choices like e.g. symmetry groups, field types or equivariant nonlinearities.

Part II: The second part of this work formulates a gauge theory of convolutional networks
on Riemannian manifolds, expressed in local coordinates.

Chapter 7 introduces the underlying mathematical framework of gauges, gauge transforma-
tions and G-structures. Specifically, Section 7.1 defines gauges as choices of isomorphisms
TpM ∼=vec Rd which associate numerical coefficients in Rd to tangent vectors in TpM .
A gauge determines not only how geometric quantities like tangent vectors are “measured”,
but implies also coordinate expressions for functions that map between them. Section 7.2
explains such induced coordinate expressions of functions mapping between tangent spaces.
As gauges are in one-to-one correspondence with choices of reference frames, a family of
geometrically distinguished gauges corresponds to a bundle of preferred frames. These so-
called G-structures are briefly discussed in Section 7.3.

The goal of Chapter 8 is to define coordinate independent feature spaces on Riemannian
manifolds. Section 8.1 introduces coordinate independent feature vector fields, which gen-
eralize the Euclidean feature fields from Part I to the differential geometric setting. As in the
case of tangent vectors, the numerical coefficients of feature vectors transform when transi-
tioning between reference frames. The gauge transformation laws (“field types”) of feature
vectors determine in particular their parallel transport and their pushforward when being
acted on by isometries, which are described in Sections 8.2 and 8.3, respectively.

Chapter 9 develops neural networks that map between feature fields. Pointwise operations,
like bias summation, 1×1-convolutions and nonlinearities, are discussed in Section 9.1. Sec-
tion 9.2 focuses on coordinate independent convolutions with spatially extended kernels.
Each of these operations is initially introduced without the weight sharing assumption, that
is, allowing for instance for a different kernel at each point of the manifold. These ker-
nels (or biases or nonlinearities) are beyond the requirement for coordinate independence
not constrained in any way. However, when requiring spatial weight sharing, they become
constrained to be gauge equivariant (G-steerable) since only equivariant quantities can be
shared in a coordinate independent manner. Section 9.3 gives a concise proof of the isome-
try equivariance of coordinate independent convolutions in terms of local coordinate expres-
sions. The key idea here is that isometries can be viewed as inducing gauge transformations
(passive interpretation), which are explained away by the kernels’ gauge equivariance.

Chapter 10 describes an implementation of orientation independent convolutions on the
Möbius strip. After reviewing the geometry of the Möbius strip in Section 10.1, multiple
types of feature fields are defined in Section 10.2. The following Sections 10.3 and 10.4 for-
mulate orientation independent CNNs analytically and describe their implementation. Sec-
tion 10.5 closes with an empirical evaluation of Möbius convolutions.

Part III: The third part formalizes and extends the content of Part II in the language of
associated fiber bundles.

Chapter 11 defines the relevant associated bundles and their local trivializations. A general
introduction to fiber bundles is given in Section 11.1. Sections 11.2 and 11.3 introduce
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the tangent bundle TM , the frame bundle FM , G-structures GM and G-associated feature
vector bundles A. Feature fields are globally defined as sections of feature vector bundles.
Local bundle trivializations (gauges), which are discussed in Section 11.4, express these
bundles in coordinates, thereby recovering our definitions from Part II. We demonstrate in
particular how local trivializations of the different bundles induce each other, such that their
gauge transformations (transition maps) are synchronized. Section 11.5 discusses parallel
transporters on G-bundles.

Chapter 12 reformulates the coordinate independent networks from Chapter 9 in terms of
fiber bundles. 1×1 -convolutions are in Section 12.1 described as specific vector bundle
M -morphisms. Alternatively, they may be viewed as sections of a homomorphism bun-
dle. Section 12.2 introduces coordinate free kernel fields and kernel field transforms. These
operations are similar to coordinate independent convolutions but are not required to share
weights, i.e. may apply a different kernel at each spatial location. Convolutional kernel fields
are constructed by sharing aG-steerable (gauge equivariant) kernel over the whole manifold.
A Coordinate free formulation of convolutions is then defined as kernel field transforms with
convolutional kernel fields. When expressing the coordinate free formulation of convolutions
relative to local trivializations (gauges), we recover the coordinate expressions of convolu-
tions from Section 9.2.

The isometry equivariance of convolutions is investigated in Chapter 13. After introduc-
ing isometries, Section 13.1 discusses their pushforward action on the fiber bundles. These
action may again be expressed in local trivializations, resulting in the formulation from Sec-
tion 8.3. Section 13.2 defines the action of isometries on kernel fields and proves that the
isometry equivariance of a kernel field transform implies the isometry invariance of its ker-
nel field and vice versa. Coordinate independent convolutions are proven to be equivariant
under the action of those isometries which are bundle automorphisms (symmetries) of the
G-structure GM . Section 13.3 investigates isometry invariant kernel fields in greater detail
and proves that they are equivalent to kernel fields on quotient spaces of the isometry ac-
tion – intuitively speaking, isometry invariant kernel fields are required to share kernels over
the isometry orbits. This result implies in particular that isometry equivariant kernel field
transforms on homogeneous spaces are necessarily coordinate independent convolutions.

Part IV: The fourth part of this work demonstrates that a vast number of convolutional net-
works from the literature can be interpreted as applying coordinate independent convolutions
for some choice of G-structure and field types. It starts in Chapter 14 with a general discus-
sion about the design choices of coordinate independent CNNs. Table 14.1 on page 273
gives an overview and classification of the models that are reviewed. The reader is invited
to have a look at the G-structures that are visualized in Part IV as their symmetries give an
intuitive idea about the properties of the corresponding convolutions.

Chapter 15 describes a family of coordinate independent CNNs on Euclidean spaces which
corresponds exactly to the affine group equivariant Euclidean steerable CNNs from Part I.
As a preparation, Section 15.1 describes the geometry of Euclidean spaces and constructs
Aff(G)-invariant G-structures from atlases of charts with Aff(G)-valued transition maps.
These G-structures are in Section 15.2 shown to result in Aff(G)-equivariant convolutions,
whose coordinate expressions are steerable CNNs. Section 15.3 comments briefly on such
models found in the literature, which differ mainly in the assumed choices of structure groups
and group representations.

Chapter 16 covers CNNs on punctured Euclidean spaces Ed\{0}, whose origin {0} was
removed. These models are rotation equivariant around the origin, however, they are not



18 Chapter 1. Introduction

translation equivariant. They are based on G-structures that correspond to polar coordinates,
log-polar coordinates or spherical coordinates.

Spherical CNNs are covered in Chapter 17. Section 17.1 discusses the geometry of the
(embedded) 2-sphere S2. Interpreting the tangent spaces as two-dimensional subspaces of
an embedding space R3, we derive closed form expressions of exponential and logarithm
maps, frames, gauges, transporters and isometry actions. Section 17.2 reviews SO(3) and
O(3)-equivariant spherical CNNs. We prove in particular that our theory includes the gen-
eral formulation of spherical convolutions by Cohen et al. [56] as a special case. Spherical
CNNs that are merely SO(2) rotation equivariant around a fixed axis are described in Sec-
tion 17.3. Section 17.4 reviews icosahedral CNNs. The icosahedron approximates the sphere
but consists of locally flat faces which allow for an efficient implementation of convolution
operations.

A survey of convolutional networks on general two-dimensional surfaces is found in Chap-
ter 18. Section 18.1 provides a brief introduction to the classical differential geometry of
embedded surfaces and their discretization in terms of triangle meshes. The surface convo-
lutions in the literature are categorized in two classes: The first class, covered in Section 18.2,
is based on G = SO(2)-steerable kernels. These models are independent from the specific
choice of right-handed, orthonormal frame. Section 18.3 reviews the second category of
models, which are based on {e}-steerable, i.e. non-equivariant kernels. These models rely
explicitly on a choice of frame field. They differ therefore mainly in the heuristics that are
used to determine reference frames. Note that such models are necessarily discontinuous on
non-parallelizable manifolds like for instance topological spheres.

Appendix: The appendices cover mathematical background, additional information about
the theory of equivariant CNNs and long proofs. A list of all proofs and definitions is given
in Appendix A.

The group and representation theory that is required to define steerable and coordinate inde-
pendent convolutions is discussed in Appendix B.

Appendix C introduces the coordinate chart formalism of differential geometry, and explains
in detail how it relates to the fiber bundle formalism that we are using primarily. Charts are
shown to induce specific bundle trivializations, known as coordinate bases (or holonomic
bases). The gauge transformations between these trivializations are the well-known Jaco-
bians of chart transition maps. Table C.1 gives an overview of the correspondences between
the two formalisms.

Coordinate independent convolutions are computed by expressing feature fields in geodesic
normal coordinates, where they are matched with G-steerable convolution kernels. This
process involves an integration over the tangent spaces which is described in Appendix D.

Appendix E comments on equivariant MLPs, in particular how equivariant fully connected
network layers may be constructed and parameterized.

Kondor and Trivedi [162], Cohen et al. [56] and Bekkers [10] proposed quite general theo-
ries of convolutions on homogeneous spaces. As these models share weights via the action
of some symmetry group, they are very similar to our isometry equivariant kernel field trans-
forms from Sections 13.2 and 13.3. Appendix F reviews these models and explains how they
relate to our coordinate independent convolutions.

Appendix G comments on the coordinate independence of kernels and weight sharing along
reference frames. A coordinate independent sharing of weights is only possible for G-
steerable kernels.
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The Wigner-Eckart theorem from Section 5.3 explains how steerable kernels are constructed
from harmonic basis functions, irrep endomorphisms and Clebsch-Gordan coefficients. To
give an intuition for the role of these ingredients, Appendix H introduces them step by step
along with a succession of increasingly general cases of kernel constraints.

The next four appendices give long proofs that were deferred in the main text.

Specifically, Appendix I asserts the well-definedness of our kernel field transforms and con-
volutions given that the underlying kernel field is smooth and consists of compactly sup-
ported kernels. Well-definedness means here that the defining integrals exist and that the
resulting feature fields are smooth.

Appendix J argues that feature fields which transform according to the regular representation
of the structure group G are equivalent to scalar fields on the G-structure. This is relevant
since some models, specifically group convolutions, take this viewpoint (cf. Section 4.5).

Appendix K.1 proves that isometry invariant kernel fields on the manifold are equivalent to
kernel fields on quotient spaces of the isometry action. The special case of homogeneous
spaces, on which isometry equivariant kernel field transforms are equivalent to coordinate
independent convolutions, is covered in Appendix K.2.

The spherical convolutions of Cohen et al. [56] are in Appendix L proven to be a special case
of our coordinate independent spherical convolutions – any spherical CNN that is covered
by their theory is therefore explained by our theory as well.

This book is based on the main author’s doctoral dissertation. Appendix M lists the main
research questions raised during the doctoral studies and summarizes brief answers. It fur-
thermore discusses some conclusions and directions for future research. As this appendix
provides an overview of the book’s content, it may be consulted as an alternative introduc-
tion.
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Introduction & overview

Spatially structured signals, like images, videos or audio, are nowadays most commonly
processed by convolutional neural networks (CNNs). A main characteristic of convolutional
networks is their translation equivariance, i.e. their property to produce feature maps that
move along when shifting the models’ input (Fig. 1.1). As we will show, the convolu-
tional network design is not just sufficient to produce an equivariant response, but is actually
necessary – in other words, CNNs are fully characterized by and can be derived from the
requirement for translation equivariance. Based on this insight, we generalize convolutional
networks on Euclidean spaces by defining them as neural networks that are equivariant under
an extended group of geometric symmetries.

Chapter 2 introduces the general idea and merits of invariant and equivariant neural net-
works. Chapter 3 formalizes conventional Euclidean CNNs in a representation theoretic
language, defining their feature spaces as translation group representations and deriving
their layers as equivariant maps between such representation spaces. This procedure is in
Chapter 4 mirrored for more general affine symmetry groups, resulting in Euclidean steer-
able CNNs. Affine equivariant networks are found to rely on steerable convolution kernels,
which are investigated further in Chapter 5. Chapter 6 presents an empirical study and bench-
marking of steerable CNNs.

Euclidean steerable CNNs will be revisited in Part IV, Chapter 15, which explains how
they are recovered from their differential geometric generalization to Riemannian manifolds
from Parts II and III. This alternative formulation clarifies the models’ independence from
choices of global affine coordinate charts, occurring in implementations as choices of pixel
grids. Appendix F is furthermore commenting on the generalization of steerable CNNs to
homogeneous spaces, like, for instance, the sphere.





CHAPTER 2

Invariant and equivariant models

Viewed abstractly, feed forward neural networks are sequences of parameterized functions,
denoted as layers. The most common approach to construct equivariant networks is, accord-
ingly, to compose them as a sequence of equivariant layers, each satisfying an individual
symmetry constraint.

An equivariant model design is twofold free lunch: On the one hand, it guarantees that the
model respects the symmetries of the learning task by construction, and generalizes whatever
it learned over group orbits, i.e. all inputs that are related by the symmetry group action. On
the other hand, the symmetry constraint reduces the number of model parameters, which
leads to a faster convergence and makes the models robust against overfitting.

Before discussing equivariant neural networks in Section 2.2, we review general equivariant
models in machine learning and their reduced hypothesis spaces in Section 2.1.

2.1 Equivariant machine learning and quotient hypothesis spaces

The task in machine learning is typically to approximate some target function T : Fin → Fout
with a model M : Fin → Fout. The domain Fin and codomain Fout are the input and output
feature spaces, respectively, for instance spaces of images and class labels. Denote the
unconstrained hypothesis space, i.e. the space of models under consideration during the
training process, by Hfull.

2.1.1 Invariant and equivariant target functions

Invariant and equivariant models are used in learning tasks where some symmetry group acts
on the feature spaces and the target function commutes with these actions. Let G therefore
be some symmetry group (Def. B.1.1) and consider some group action (Def B.3.1)

▷in : G×Fin → Fin, (g, x) 7→ g ▷in x (2.1)

on the input feature space Fin. The target function T is said to be G-invariant iff it satisfies

T(g ▷in x) = T(x) ∀ g ∈ G, x ∈ Fin . (2.2)
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This is visualized by the commutativity of the following diagram:1

Fin

Fout

Fin

L

g▷in

L

(2.3)

Examples for invariant tasks are image classification, which is usually translation invari-
ant, or the classification of a set (as a whole), where the order (permutation) of elements is
irrelevant. These two examples are visualized in Figs. 2.1c and 2.1a, respectively.

While the output of an invariant function does not change when its input is transformed,
the output of an equivariant function responds with a corresponding transformation. We
consider therefore a second, potentially different group action

▷out : G×Fout → Fout, (g, y) 7→ g ▷out y (2.4)

on the output feature space Fout. A G-equivariant target function w.r.t. these group actions
satisfies a more general relation

T(g ▷in x) = g ▷out T(x) ∀ g ∈ G, x ∈ Fin , (2.5)

which corresponds to a slightly modified commutative diagram:

Fin Fout

Fin Fout

T

g▷in g▷out

T

(2.6)

Equivariant functions include invariant functions since the group action on Fout may be cho-
sen to be trivial (invariant), as visualized in the diagram in Eq. (B.27). Figs. 2.1d and 2.1b
visualize examples of translation equivariant image segmentation and the permutation equiv-
ariant processing of set elements.

2.1.2 Quotient hypothesis spaces

Given that the target of a learning task is known to be invariant or equivariant, it is reasonable
to guarantee this behavior in the considered class of machine learning models by design.
Specifically, if T is invariant, Eq. (2.2), one restricts to a constrained hypothesis space

Hinv :=
{
M : Fin → Fout

∣∣M(g ▷in x) = M(x) ∀ g ∈ G, x ∈ Fin

}
⊆ Hfull (2.7)

consisting of invariant models only. Similarly, if T is equivariant, Eq. (2.5), the hypothesis
space should be constrained to equivariant models:

Hequiv :=
{
M : Fin → Fout

∣∣M(g ▷in x) = g ▷out M(x) ∀ g ∈ G, x ∈ Fin

}
⊆ Hfull

(2.8)

1Diagrams give a visual overview of functions and the spaces between which they map. For ins-
X Y

Z

f

h
g

tance, the diagram on the left implies that there are functions f : X → Y ,
g : Y → Z and h : X → Z. If the compositions of functions along all paths
with the same start and endpoint agree, the diagram is said to be commutative.
Our example diagram is commutative if (and only if) h = g ◦ f holds.
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(a) Permutation invariant
luggage classification.

(b) Permutation equivariant
identification of dangerous objects.

(c) Translation invariant
image classification.

(d) Translation equivariant
image segmentation.

Figure 2.1: Invariant classification (left) and equivariant segmentation (right) of sets (top) and images
(bottom). The elements of a set (or rather tuple) are acted on by the permutation group, while images
are acted on by geometric transformations like translations, rotations or reflections. Invariant models
are guaranteed to produce the same result when acting on their input. The outputs of equivariant
models, on the other hand, transform in a predictable way with the input – the model commutes with
the symmetry group actions on the input and output. Invariant maps are a special case of equivariant
maps, where the group action on the model output is trivial. Both invariant and equivariant models
generalize what they have learned over the symmetry group orbits, i.e. inputs that are related by the
group action. Fig. 2.2 shows this in more detail for the case of the permutation invariant luggage
classification in Fig. 2.1a.
(Vector graphics adapted under the Apache license 2.0 by courtesy of Google.)

https://github.com/googlefonts/noto-emoji/blob/main/LICENSE
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Injecting this prior knowledge into the optimization problem can speed up training, regular-
ize it against overfitting and improve the model accuracy [322].

The hypothesis space of invariant models can be understood as a quotient hypothesis space.
To see this, note that invariant models assign the same response M(x) to all elements on the
group orbit (Def. B.3.3 and Fig. B.3)

G ▷in x :=
{
g ▷in x

∣∣ g ∈ G} ⊆ Fin (2.9)

of x inFin. Such models can therefore be viewed as assigning a response to orbits as a whole,
instead of single elements. To make this precise, consider the quotient space (Def. B.3.4)

G\Fin :=
{
G ▷in x

∣∣x ∈ Fin

}
, (2.10)

consisting of all G-orbits in Fin, and the corresponding quotient map

q▷in
: Fin → G\Fin, x 7→ G ▷in x , (2.11)

which sends elements in Fin to their orbits. G-invariant models M ∈ Hinv are then in one-
to-one correspondence to an unconstrained map M↓ : G\Fin → Fout on the quotient space,
where M = M↓ ◦ q▷in

. This relation is visualized by the following commutative diagram:

Fin Fout

G\Fin

M

q▷in
M↓

(2.12)

The hypothesis space of invariance constrained maps can thus be viewed as the quotient
hypothesis space

H
↓
inv :=

{
M↓ : G\Fin → Fout

} ∼= Hinv . (2.13)

Figs. 2.2 and 6.1 visualize this concept at concrete examples, which make the benefit of
using symmetry constrained hypothesis spaces obvious.

A similar construction of quotient hypothesis spaces could be made for equivariant maps,
however, it would be more technical since we would be required to work with quotient
representatives (Def. B.3.5). The interested reader is pointed to Section 13.3, where we
make this construction in a slightly different setting explicit.

2.2 Equivariant neural networks

A (feed forward) neural network is a sequenceLN◦LN−1◦ . . . ◦L3◦L2◦L1 of parameterized
layers Ll : Fl−1 → Fl, mapping between adjacent feature spaces:

F0 F1 F2 . . . F
N−1 F

N

L1 L2 L3 LN−1 LN (2.14)

The feature spaces F
l

are usually defined to be vector spaces. The sequence of network
layers is often composed of blocks which comprise a linear map, a bias summation and a
nonlinearity.2

2Many other types of layers exist, including e.g. normalization layers or bilinear maps between
features.
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Figure 2.2: A detailed view on the permutation equivariant luggage inspection from Fig. 2.1a, visu-
alizing the concepts of group orbits and quotient spaces. The elements in the luggage are ordered
3-tuples

(
, ,

)
, acted on by the permutation group G = S3. Whether a dangerous item is

present in the tuple is independent from the specific ordering of the tuple elements – the classifier
M : Fin → Fout should therefore be S3-permutation invariant, i.e. M ∈ Hinv. This is equiva-
lent to demanding that the model considers the luggage items as elements of an unordered (multi)set{

, ,
}

. Formally, these multisets correspond to group orbits S3 ▷in

(
, ,

)
⊂ Fin

(blue boxes) of tuples, and can therefore be viewed as elements of the quotient space S3\Fin. The
space of S3-invariant models M ∈ Hinv is equivalent to the quotient hypothesis space H↓

inv of uncon-
strained maps M↓ : S3\Fin → Fout. Injecting such prior knowledge into the model by design greatly
simplifies the learning problem and leads to an improved performance.
(Vector graphics adapted under the Apache license 2.0 by courtesy of Google.)

https://github.com/googlefonts/noto-emoji/blob/main/LICENSE


30 Chapter 2. Invariant and equivariant models

The most common way to construct equivariant networks is to design its layers such that
they are individually equivariant.3 Each feature space F

l
is therefore to be equipped with its

own group action

▷
l
: G×F

l
→ F

l
, (g, x) 7→ g ▷

l
x . (2.15)

The actions ▷0 and ▷
N

on the network’s input F0 and output F
N

are thereby specified by the
learning task, while the intermediate actions ▷

l
for l = 1, . . . , N − 1 are hyperparameters

chosen by the user. Note that this is similar to the case of general neural networks, where the
input and output feature spaces F0 and F

N
are given by the task, but the intermediate feature

spaces F
l

for l = 1, . . . , N − 1 are user-chosen.

If each individual layer Ll : Fl−1 → Fl is designed to be equivariant w.r.t. its input and
output group actions, i.e. satisfies Ll(g ▷

l−1 x) = g ▷
l
Ll(x) for any g ∈ G and any

x ∈ F
l−1, the network is by induction equivariant as a whole. This is visualized by the

following diagram, which commutes for any g ∈ G:

F0 F1 F2 . . . F
N−1 F

N

F0 F1 F2 . . . F
N−1 F

N

L1

g▷0

L2

g▷1

L3

g▷2

LN−1 LN

g▷
N−1

g▷
N

L1 L2 L3 LN−1 LN

(2.16)

Invariant networks usually comprise 1) an equivariant subnetwork LN ◦ . . . ◦ L1, 2) an
invariant map Linv and 3) an unconstrained subnetwork L̃M ◦ . . . ◦ L̃1, operating on the
resulting G-invariant features:4

F0 . . . F
N

F̃0 . . . F̃
M

F0 . . . F
N

L1

g▷0

LN

Linv

g▷
N

L̃1 L̃M

L1 LN

Linv

(2.17)

An example are convolutional networks for translation invariant image classification, which
usually composed of 1) a convolutional subnetwork, 2) a global pooling operation, and 3) an
unconstrained MLP, operating on the resulting translation invariant features. A further vari-
ation are networks which become after some depth equivariant w.r.t. a subgroup of symme-
tries; see Section 4.4 and [322].

3An alternative approach is to use a non-equivariant network f , and feed any G-transformed input
through it. The |G| outputs

[
f(gx)

]
g∈G

transform then according to the regular G-representation
(Def. B.5.18), i.e. are permuted when acting on the input. Invariant responses could then be computed
by taking the mean or the maximum over responses [174]. The disadvantage of this approach is that it
enforces equivariance post-hoc, and does not reduce the number of model parameters.

4This design is again a special case of the fully equivariant formulation in Eq. (2.16), assuming
trivial group actions for all layers L̃l, l = 0, . . . ,M . One may therefore w.l.o.g. consider “fully
equivariant networks” as in Eq. (2.16).
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We discuss the specific design of equivariant MLPs in Appendix E. The feature spaces are
here finite group representation spaces, that is, finite vector spaces that are equipped with
linear group actions (representations, Def. B.5.1). Linear equivariant layers between such
representation spaces are intertwiners (Def. B.5.7). Appendix E characterizes these inter-
twiner spaces by decomposing them into their irreducible components.

For completeness, we need to mention that there are alternative approaches to construct
equivariant networks. A simple approach is to use an unconstrained network and to train it
to be approximately equivariant – this is usually achieved by augmenting the dataset with
G-transformed samples. To give an example, one could use an MLP instead of a CNN
to process images, and train them by feeding in translated versions of the images. This
approach is clearly disadvantageous since the unconstrained network has a larger number of
parameters and is therefore more prone to overfitting [106, 318]. An equivariant network, on
the other hand, has a greatly reduced hypothesis space: instead of being required to learn the
correct mapping for each G-related feature individually, it generalizes automatically over
orbits in Fin. Another approach to construct invariant networks was proposed by Laptev
et al. [174]. The authors propose to use an unconstrained network, feed in all G-transformed
versions of the input explicitly, and take the maximum response over the resulting responses.
Since the G-action leads to a mere permutation of the responses, this design is G-invariant.
The approach is, however computationally expensive and does not lead to a reduced number
of parameters due to weight sharing.





CHAPTER 3

Translation equivariance & conventional Euclidean CNNs

Spatially structured signals, like audio, images, voxel data, videos or physical fields on a
flat spacetime, are with great success processed by Euclidean convolutional neural networks
(CNNs) [175, 166]. As the name suggests, these models process the signals (or feature maps)
by convolving them with some convolution kernel, the parameters of which are learned. The
central difference in comparison to general linear maps is that the convolution operation is in
addition translation equivariant – it commutes with translations of the feature maps. CNNs
are therefore equivariant neural networks in the sense introduced in the previous chapter.

To make this precise, we introduce feature maps in the following Section 3.1 as regular
representations of the translation group, i.e. equip them with a linear action of the translation
group. Typical translation equivariant layers between such feature spaces are convolutions,
bias summation, nonlinearities or local and global pooling layers. Instead of defining these
layers and subsequently proving their equivariance, we show in Section 3.2 how they can be
derived from the requirement for translation equivariance.

This formulation sets the stage for our definition of more general affine group equivariant
(steerable) CNNs in Chapter 4. Fig. 3.2 gives an overview of the design choices that dis-
tinguish non-equivariant fully and locally connected networks, translation equivariant CNNs
and affine group equivariant steerable CNNs. In a nutshell, translation equivariance requires
translational weight sharing (e.g. convolutions), while affine group equivariance requires the
shared neural connectivity additionally to be G-steerable (G-equivariant).

3.1 Euclidean feature maps as translation group representations

An Euclidean feature map in d dimensions with c channels is a function

F : Rd → Rc (3.1)

that assigns a c-dimensional feature vector F (x) to each point x ∈ Rd; see Fig. 3.1. An
example are audio signals on d = 1 time dimension and with c = 1 or 2 channels for
mono or stereo sources, respectively. Images on d = 2 spatial dimensions come usually
with c = 1, 3, 4 or more channels, and are then denoted as grayscale images, RGB images,
RGBA images or hyperspectral images, respectively. Volumetric data lives in d = 3 spatial
dimensions, while videos are feature maps on d = 2+1 spacetime dimensions. The number
of channels in intermediate layers of the network are user-chosen hyperparameters.



34 Chapter 3. Translation equivariance & conventional Euclidean CNNs

Figure 3.1: Euclidean feature maps are func-
tions F : Rd → Rc that assign c-dimensional
feature vectors F (x) ∈ Rc to each point
x ∈ Rd. The regular representation of the trans-
lation group (Rd,+) acts on feature maps by
shifting them spatially; see Eq. (3.5). Shown
here is a c = 3 channel RGB image in d = 2
spatial dimensions, discretized on a pixel grid.
Feature fields, visualized in Figs. 4.3 and 4.4,
generalize feature maps by equipping them with
an affine group action.

The shift of an audio signal in time or of an image in space is modeled by an action of
the translation group of the corresponding dimensionality. In d dimensions, the translation
group is defined as the tuple (Rd,+), i.e. the set Rd with addition + : Rd × Rd → Rd,
(t, s) 7→ t+ s as binary operation. The inverse of t ∈ Rd is accordingly −t and the identity
element is 0 ∈ Rd.

The translation group acts naturally on the Euclidean space Rd by shifting its points:

(Rd,+)× Rd → Rd , (t, x) 7→ x+ t (3.2)

It acts furthermore on Euclidean feature maps F : Rd → Rc by sending them to shifted
feature maps [t▷F ] : Rd → Rc, defined by[

t▷F
]
(x) := F (x− t) . (3.3)

The feature spaces of translation equivariant Euclidean CNNs are spaces of such feature
maps, which we formalize in the following definition. Since we want to apply convolutions,
we require the feature maps in addition to be square integrable.
Definition 3.1.1 (Euclidean feature maps as regular translation group representations).

The feature spaces of translation equivariant Euclidean CNNs are vector spaces

L2
(
Rd,Rc

)
:=

{
F : Rd → Rc

∣∣∣ ∫
Rd

dx
∥∥F (x)∥∥2 ≤ ∞} (3.4)

of square integrable c-channel feature maps in d dimensions, equipped with the trans-
lation group action

▷ : (Rd,+)× L2
(
Rd,Rc

)
→ L2

(
Rd,Rc

)
, (t, F ) 7→ t▷ F (3.5)

defined by [
t▷F

]
(x) := F (x− t) . (3.6)

This action corresponds, in fact, to a linear representation (Def. B.5.1) (Rd,+) →
GL
(
L2
(
Rd,Rc

))
of the translation group, which is known as regular representation1

(Def. B.5.18).

Note that such defined feature maps do not have a well defined behavior under other geo-
metric transformations like rotations, reflections, scaling or shearing. This shortcoming will
be alleviated in Chapter 4 where we define Euclidean feature fields, which are affine group
representations.

1More precisely, for c channels, this would be a direct sum of c regular representations.
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local connectivity

Figure 3.2: Architectural design choices that turn a fully connected network (MLP) into a convolu-
tional network. Left: Each neuron of an unconstrained MLP connects with its own weights to each
pixel of the input image. If there are M input pixels and N hidden neurons, this requires O(MN)
parameters. Fully connected networks have no equivariance guarantees. Middle left: Restricting each
neuron’s connectivity to a local receptive field reduces the number of parameters to O(M). Being
associated to a specific region in the input image, the hidden neurons are naturally organized in a fea-
ture map. However, this network design still does not guarantee any equivariance properties. Middle
right: Convolutional networks share synapse weights over spatial locations, which can be thought of as
convolving the image with a convolution kernel. The translational weight sharing ensures the model’s
translation equivariance. The parameter cost is independent of the image size, i.e. O(1) (it still scales
with the number of channels and kernel size). Right: If the convolution kernel itself is additionally
G-equivariant (steerable), where G ≤ GL(d) could for instance model rotations, reflections, scaling
or shearing, the resulting steerable CNN is equivariant under the affine group Aff(G) = (Rd,+)⋊G,
i.e. simultaneous translations and G-transformations. The G-steerability constraint on the kernels can
be viewed as a form of weight sharing over G-transformations and reduces the model’s parameter cost
further. Chapter 3 derives the convolutional network design from the requirement for translation equiv-
ariance. Chapter 4 derives the additional G-steerability constraint on the kernels from the requirement
for Aff(G)-equivariance. Note that the local connectivity (local kernel support) is not actually required
for the model’s equivariance, but is rather an empirical design choice. We are furthermore modeling
CNNs on continuous spaces Rd, instead of discrete pixel grids Zd visualized above.

3.2 Translation equivariant layers and convolutions

Translation equivariant network layers between feature maps with cin input channels and cout
output channels are functions L : L2

(
Rd,Rcin) → L2

(
Rd,Rcout) such that the following

diagram commutes for arbitrary translations t ∈ (Rd,+):

L2
(
Rd,Rcin) L2

(
Rd,Rcout)

L2
(
Rd,Rcin) L2

(
Rd,Rcout)

L

t▷in t▷out

L

(3.7)

We derive in the following some of the most common CNN layers from the demand for
translation equivariance.
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3.2.1 Convolutions as translation equivariant linear maps

Linear translation equivariant functions between feature maps (regular translation group rep-
resentations) are necessarily convolutions. In the most general case, we would have to con-
sider distributional convolutions, including for instance the application of partial differential
operators [137]. For simplicity, we will here focus on convolutions with kernels that are con-
ventional functions (instead of general Schwartz distributions).

Our ansatz for an unconstrained linear map between feature maps is therefore given by an
integral transform

Iκ : L2
(
Rd,Rcin

)
→ L2

(
Rd,Rcout

)
(3.8)

that is parameterized by a (square integrable) matrix-valued two-argument kernel

κ : Rd × Rd → Rcout×cin (3.9)

and defined by2

Iκ
[
F
]
(x) :=

∫
Rd

dy κ(x, y)F (y) ; (3.10)

see Fig. 3.3 for a visualization. The matrix-valued codomain of the kernel is thereby ensuring
that the cin input channels are mapped to cout output channels. As proven in the following
theorem, such linear maps are necessarily convolutions if they are required to be translation
equivariant:
Theorem 3.2.1 (Regular translation intertwiners are convolutions). The integral trans-

form Iκ in Eq. (3.8) is translation equivariant w.r.t. the regular translation group action
on feature maps in Eq. (3.5), i.e. satisfies

Iκ
[
t▷in F

]
= t▷out Iκ

[
F
]

∀ t ∈ (Rd,+) , (3.11)

if and only if the two-argument kernel satisfies κ(x + t, y + t) = κ(x, y) for any
x, y, t ∈ Rd. Such kernels depend only on the relative distance between x and y and
are therefore equivalent to a one-argument kernel

K : Rd → Rcout×cin , ∆x 7→ K(∆x) := κ(∆x, 0) . (3.12)

The integral transform reduces thus to a convolution integral

Iκ
[
F
]
(x) =

[
K ∗ F

]
(x) =

∫
Rd

dy K(x− y)F (y) . (3.13)

Proof: Writing out the left-hand side of Eq. (3.11) yields

Iκ
[
t▷in F

]
(x) =

∫
Rd

dy κ(x, y)
[
t▷in F

]
(y)

=

∫
Rd

dy κ(x, y)F (y − t)

=

∫
Rd

dỹ κ(x, ỹ + t)F (ỹ) , (3.14)

2In components, Iκ
[
F
]
i
(x) =

∑cin
j=1

∫
Rd dy κij(x, y)Fj(y), where i = 1, . . . , cout labels the

output channels.
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(a) General integral transform. (b) Translation equivariant integral transform.

Figure 3.3: The general integral transform Iκ in Eq. (3.8) maps a cin-channel input feature map linearly
to a cout-channel output feature map. Output feature vectors Iκ

[
F
]
(x) ∈ Rcout at x ∈ Rd are thereby

computed by accumulating input feature vectors F (y) ∈ Rcin via a matrix-valued two-argument kernel
κ : Rd × Rd → Rcout×cin , integrating over all points y ∈ Rd. A-priori, the kernel values are entirely
unconstrained. However, when demanding translation equivariance, the kernel values κ(x, y) may
only depend on the relative distance x−y of the arguments; see Fig. 3.3b. As proven in Theorem 3.2.1,
this implies that the integral transform can be written as a convolution integral with a spatially shared
single (relative) argument kernel K : Rd → Rcout×cin .

while the right-hand side is given by

[
t▷out Iκ[F ]

]
(x) =

∫
Rd

dy κ(x− t, y)F (y) . (3.15)

Demanding both sides to be equal for any translation t ∈ (Rd,+) and any feature map
F ∈ L2

(
Rd,Rcin

)
implies the translation invariance constraint

κ(x+ t, y + t) = κ(x, y) ∀ x, y, t ∈ Rd (3.16)

on the neural connectivity (spatial weight sharing) that was claimed in the theorem.

We can now w.l.o.g. choose t = −y in Eq. (3.16), resulting in κ(x, y) = κ(x− y, 0),
and define the one-argument kernel K(∆x) := κ(∆x, 0). This proves that the require-
ment for translation equivariance makes the integral transform a convolution. □

The convolution with a kernel K : Rd → Rcout×cin is essentially applying this kernel at each
point to the image – is is therefore often thought of as a translational weight sharing of the
neural connectivity. Convolution kernels are in practice often compactly supported, such
that each neuron is only connected to a local receptive field; see Fig. 3.2. This design choice
is not strictly necessary for the network’s translation equivariance, but reduces its parameter
cost.

Theorem 4.3.1 in Section 4.3 generalizes these considerations to more general affine sym-
metry groups, resulting in an additional equivariance constraint on the convolution kernel
itself.
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3.2.2 Translation equivariant bias summation

After applying a linear operation, it is common to sum a learned bias to the network’s fea-
tures. While one could in principle sum an arbitrary bias field b : Rd → Rcin to the feature
maps, the requirement for translation equivariance demands that this bias field is translation
invariant, i.e. spatially constant, as we will show in the following. Note that bias summation
operations preserve the number of feature channels, i.e. cin = cout =: c, and therefore in
particular the translation group action ▷in = ▷out =: ▷ on their input and output.

To derive the spatial bias weight sharing, consider an unconstrained bias summation opera-
tion

Bb : L2
(
Rd,Rc

)
→ L2

(
Rd,Rc

)
, F 7→ F + b (3.17)

that is parameterized by a general square integrable bias field

b ∈ L2
(
Rd,Rc

)
. (3.18)

Theorem 3.2.2 (Translation equivariant bias summation). The bias summation layer in
Eq. (3.17) is translation equivariant w.r.t. the regular translation group action on fea-
ture maps in Eq. (3.5), i.e. satisfies

Bb

[
t▷ F

]
= t▷Bb[F ] , (3.19)

if and only if the bias field is constant:

b(x) = b for some b ∈ Rc (3.20)

Proof: The left-hand side of Eq. (3.19) at x ∈ Rd becomes

Bb

[
t▷ F

]
(x) =

[
t▷ F

]
(x) + b(x) = F (x− t) + b(x) , (3.21)

while the right-hand side is given by[
t▷Bb[F ]

]
(x) =

[
t▷ (F + b)

]
(x) = F (x− t) + b(x− t) . (3.22)

Equating the two expressions results in b(x) = b(x − t) for arbitrary x, t ∈ Rd – the
bias field is thus required to be translation invariant, i.e. constant. □

3.2.3 Translation equivariant local nonlinearities

Since any sequence of linear operations and bias summation collapses to a single affine
transformation, one alternates them with nonlinearities. The space of possible nonlinearities
is vast, however, convolutional networks usually rely on such nonlinearities that act locally,
i.e. individually on each feature vector F (x) ∈ Rc at x ∈ Rd. Similar to the general bias
fields above, these nonlinearities could again be position-dependent, but the requirement for
translation equivariance demands them to be translationally invariant.

To prove this claim, consider a spatially dependent localized nonlinearity ansatz

σ : Rd × Rcin → Rcout , (x, f)→ σx(f) , (3.23)

mapping a cin-dimensional input feature vector f to a cout-dimensional output feature vector.
Let its action on feature fields be given by the operation

Sσ : L2
(
Rd,Rcin

)
→ L2

(
Rd,Rcout

)
, (3.24)

defined by

Sσ

[
F
]
(x) := σx

(
F (x)

)
(3.25)
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Theorem 3.2.3 (Translation equivariant local nonlinearities). The spatially dependent
localized nonlinearity operation in Eq. (3.24) is translation equivariant w.r.t. the regu-
lar translation group action on feature maps in Eq. (3.5), i.e. satisfies

Sσ

[
t▷in F

]
= t▷out Sσ[F ] , (3.26)

if and only if the underlying field of localized nonlinearities is position-independent:

σx = s : Rcin → Rcout for any x ∈ Rd (3.27)

Proof: Again, we write out the left-hand side of the constraint in Eq. (3.26),

Sσ

[
t▷in F

]
(x) = σx

(
[t▷in F ](x)

)
= σx

(
F (x− t)

)
, (3.28)

and demand that it equals the right-hand side[
t▷out Sσ[F ]

]
(x) = Sσ[F ](x− t) = σx−t

(
F (x− t)

)
(3.29)

for any x, t ∈ Rd. This results in the claimed position dependence σx = σx−t := s of
the underlying pointwise nonlinearity field. □

3.2.4 Translation equivariant local pooling operations

Besides convolutions, bias summation and nonlinearities, most CNN architectures rely on
pooling operations. These pooling operations come in two flavors, namely local pooling
operations, which are (faithfully) translation equivariant, and global pooling operations,
which produce a translation invariant output, as required for instance for classification tasks.
We start with local max pooling and average pooling and discuss the global operations in the
next paragraph. Note that local pooling operations (with single pixel stride) are in discretized
implementations on pixel grids often followed by a s pixel stride subsampling step, which is
only partially equivariant as discussed below.

Local max pooling: Local max pooling is a nonlinear operation that produces a feature
field whose value at x ∈ Rd is given by the channel-wise maximum of feature values in
some pooling regionRx ⊂ Rd around x ∈ Rd:

local_max_pool : L2
(
Rd,Rc

)
→ L2

(
Rd,Rc

)
, F 7→ max

y∈Rx

F (y) (3.30)

If the pooling regions at different points agree, this operation is translation equivariant:
Theorem 3.2.4 (Translation equivariance of local max pooling). The local max pooling

operation in Eq. (3.30) is translation equivariant, that is,

local_max_pool
[
t▷ F

]
(x) =

(
t▷ local_max_pool[F ]

)
(x) (3.31)

for any x ∈ Rd and any t ∈ (Rd,+), if and only if the pooling windows are translation
invariant (spatially shared), i.e. satisfy

t−1Rx = Rx−t ∀ x ∈ Rd, t ∈ (Rd,+) , (3.32)

Proof: The statement follows by expanding the left-hand side

local_max_pool
[
t▷ F

]
(x) = max

y∈Rx

F (y − t) (3.33)

= max
y∈ t−1Rx

F (y)
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and the right-hand side(
t▷ local_max_pool[F ]

)
(x) = local_max_pool[F ](x− t) (3.34)

= max
y∈Rx−t

F (y)

and demanding that they agree for any feature map F ∈ L2
(
Rd,Rc

)
and arbitrary

positions x ∈ Rd and translations t ∈ (Rd,+). □

Local average pooling: Instead of taking the single maximal response in a pooling win-
dow, local average pooling computes their channel-wise average. If we allow for a weighted
average, this operation is just a (channel-wise) convolution

local_avg_poolk : L2
(
Rd,Rc

)
→ L2

(
Rd,Rc

)
, F 7→ k ∗ F (3.35)

with a scalar weighting kernel k : Rd → R.

Theorem 3.2.5 (Translation equivariance of local average pooling). The local average
pooling operation in Eq. (3.35) is by construction translation equivariant, that is,

local_avg_pool
[
t▷ F

]
(x) =

(
t▷ local_avg_pool[F ]

)
(x) (3.36)

for any x ∈ Rd and any t ∈ (Rd,+).

Proof: This is a special case of Theorem 3.2.1, applied to each channel individually. □

Subsampling: In practice, it is common to have sampled feature maps F : Zd → Rd on
a pixel grid Zd, equipped with the regular action of the discrete translation group (Zd,+).
The local pooling operations are then usually followed by a subsampling operation with a
stride of s ∈ N pixels,

subsamples : L
2(Zd,Rc)→ L2(sZd,Rc) , F 7→ F

∣∣
sZd

, (3.37)

given by a restriction of the domain and resulting in a feature map on the subgrid sZd.
This operation is not fully (Zd,+) translation equivariant, but equivariant w.r.t. the sub-
group (sZd,+) of translations by s pixels.

Theorem 3.2.6 (Translation subgroup equivariance of subsampling).
Let ▷Zd be the group action of the translation subgroup (sZd,+) on L2(Zd,Rc) defined
by
[
t▷Zd F

]
(x) := F (x− t) and let ▷

sZd be its restriction to an action on subsampled
feature maps L2(sZd,Rc). The subsampling operation in Eq. (3.37) commutes with
these actions, that is, for any x ∈ sZd and t ∈ (sZd,+) it holds that:

subsamples
[
t▷Zd F

]
(x) =

(
t▷

sZd subsamplesF
)
(x) (3.38)

Proof: This claim is obvious since subsamples is the restriction map and ▷
sZd is the corre-

spondingly restricted group action. □

Note that a repeated subsampling by strides of s1, . . . , sN pixels results in a network that is
as a whole only (Z∏N

i=1
si
,+)-equivariant. Zhang [348] analyzes this issue empirically and

proposes to alleviate it by preceding the subsampling step with a low-pass filtering. The
exactly (Zd,+)-equivariant subsampling operation by Xu et al. [336] relies on choosing a
shifted subsampling grid, corresponding to a choice of coset t + sZ ∈ Z/sZ (Def. B.2.2),
in an equivariant (data-dependent) way.
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3.2.5 Translation invariant global pooling operations

Global max pooling and global average pooling result in translation invariant features.

Global max pooling: The former is defined by

global_max_pool : L2
(
Rd,Rc

)
→ Rc, F 7→ max

x∈Rd
F (x) , (3.39)

where the process of taking the maximum value is again understood to be taken indepen-
dently for each channel.
Theorem 3.2.7 (Translation invariance of global max pooling). The global max pooling

operation in Eq. (3.39) is translation invariant, that is,

global_max_pool
[
t▷ F

]
(x) = global_max_pool[F ](x) (3.40)

for any x ∈ Rd and t ∈ (Rd,+).

Proof: The maximum value depends obviously not on its specific location (argmax). □

Global average pooling: Global average pooling is a map

global_avg_pool : L2
(
Rd,Rc

)
→ Rc, F 7→

∫
Rd

dxF (x) (3.41)

which averages the feature map over the whole Euclidean space.
Theorem 3.2.8 (Translation invariance of global average pooling). The global average

pooling operation in Eq. (3.41) is translation invariant, i.e. for any x ∈ Rd and
t ∈ (Rd,+) one has

global_avg_pool
[
t▷ F

]
(x) = global_avg_pool[F ](x) . (3.42)

Proof: The translation invariance follows from a simple substitution,

global_avg_pool
[
t▷ F

]
=

∫
Rd

dxF (x− t) =

∫
Rd

dx̃ F (x̃) (3.43)

= global_avg_pool(F ) ,

where t ∈ (Rd,+) is arbitrary. □





CHAPTER 4

Affine group equivariance & steerable Euclidean CNNs

There are many cases in which a signal processing task should not only be translation equiv-
ariant, but be equivariant under the action of affine groups Aff(G). Besides translations,
affine groups contain G-transformations, where the structure group G ≤ GL(d) could for
instance model rotations, reflections, scaling or shearing of the signal. A prototypical use
case are medical or satellite imaging tasks, where the rotation or reflection of the image is
irrelevant; see Fig. 1.2.

In order to construct affine group equivariant network layers, we need to specify affine group
actions on the feature spaces. A natural and quite general choice are induced representa-
tions, acting on feature vector fields. In addition to moving feature vectors spatially over
Rd, induced representations act on the feature vectors F (x) ∈ Rc themselves via some G-
representation ρ : G → GL(c). Fig. 4.3 shows scalar fields and vector fields as specific
examples of feature fields. Feature fields with a reflection group action are visualized in
Fig. 5.1.

Steerable CNNs consist of Aff(G)-equivariant maps between such feature fields. Most no-
tably, linear equivariant maps between feature fields (induced representation intertwiners)
are shown to be convolutions with G-steerable kernels, i.e. matrix-valued kernels satisfying
a linear G-equivariance constraint; see Fig. 4.1. More generally, the neural connectivity is
required to be shared over Aff(G)-transformations – in addition to a spatial weight sharing,
this requires a local G-equivariance of the shared operations.

After briefly introducing affine groups in Section 4.1, we define Euclidean feature fields in
Section 4.2 as induced affine group representations. Section 4.3 derives steerable convo-
lutions and other affine equivariant network layers like steerable bias summation, nonlin-
earities and pooling operations. While this section derives the G-steerability constraint on
convolution kernels, a review of their construction and implementation is deferred to the fol-
lowing Chapter 5. Section 4.4 introduces an equivariance group restriction operation, which
allows to build networks with different levels of equivariance in different layers. Most work
on equivariant CNNs relies on regular group convolutions instead of general steerable convo-
lutions. Section 4.5 clarifies the relation between the two, showing that group convolutions
are a special case of steerable convolutions for regular inducing representations.
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Figure 4.1: Schematic idea of convolutions with G-steerable kernels as induced representation inter-
twiners. The feature fields F : Rd → Rc of steerable CNNs are affine group representations which are
induced from some G-representation ρ : G→ GL(c). Given a group element tg ∈ Aff(G), a feature
field F transforms according to

[
Indρ(tg)

]
F = ρ(g)F (tg)−1, that is, 1) a spatial transformation

of the domain Rd by (tg)−1 and 2) a fiber action on the codomain Rc by ρ(g) (mixing channels).
Theorem 4.3.1 proves that the most general linear Aff(G)-equivariant integral transform (intertwiner)
between induced representations Ind ρin and Ind ρout is given by convolutions with G-steerable ker-
nels K : Rd → Rcout×cin , i.e. matrix-valued kernels subject to the linear G-equivariance constraint in
Eq. (4.18). For simplicity, we visualized the case of a cin = 1-dimensional scalar input field (trivial
representation ρin) and a cout = 2-dimensional output field, transforming according the SO(2)-irrep
with frequency 3 – requiring a SO(2)-steerable kernel of shape 2×1 and angular frequency 3; see
Table 5.2. More generally, the input would have multiple channels and the matrix-valued kernel would
comprise cout×cin elementary scalar kernels.
Lizards adapted under the Creative Commons Attribution 4.0 International license by courtesy of Twitter.)

An empirical evaluation of Euclidean steerable CNNs is presented in Chapter 6. For a
differential geometric formulation of affine equivariant steerable CNNs, which discusses in
particular their coordinate independence and local gauge equivariance, we point the reader
to Chapter 15.

The theory of Euclidean steerable CNNs is largely understood, however, an implementation
supporting general field types requires quite some experience and effort. To take this burden
from the user, we provide the PyTorch extension e2cnn [38] and its successor escnn [39],
which implement feature fields and equivariant layers for arbitrary representations ρ of com-
pact structure groups G ≤ O(2) and G ≤ O(d), respectively. The frontend is thereby
designed such that the user only has to select a symmetry group and its actions on feature
spaces (field types), while all of the representation theory is hidden in the backend.

4.1 Affine groups

Affine groups Aff(G) := (Rd,+) ⋊G are semidirect products (Def. B.2.5) of translations
and some structure groupG ≤ GL(d). This includes for instance the Euclidean groups E(d),
i.e. isometries of Rd, for G = O(d), or the special Euclidean groups SE(d) for G = SO(d).
Pure translations are covered for the trivial structure group G = {e}.

As usual for semidirect products, any group element tg ∈ Aff(G) can be uniquely split into
factors, here a translation t ∈ (Rd,+) and an element g ∈ G. The affine group acts naturally

https://github.com/twitter/twemoji/blob/gh-pages/LICENSE-GRAPHICS
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Figure 4.2: Affine equivariant CNNs generalize whatever they learn over Aff(G)-orbits of images, i.e.
subsets of images that are related by translations andG-transformations. For instance, an Aff(SO(2))-
invariant classification model is guaranteed to assign the same (invariant) class label to any translated
or rotated version of the same image. It can therefore be viewed as effectively operating on the quotient
image space Aff(G)\Fin, as explained in Section 2.1 and Fig. 2.2. More general Aff(G)-equivariant
CNNs respond with an affine group transformation of their output in Fout if their input in Fin is trans-
formed. Section 6.1 investigates the generalization properties of Aff(G)-steerable CNNs empirically.
Lizards and butterflies adapted under the Creative Commons Attribution 4.0 International license by courtesy of Twitter.)

on Euclidean spaces Rd:

Aff(G)× Rd → Rd, (tg, x) 7→ gx+ t (4.1)

Structure group elements act hereby by matrix multiplication, which is possible since the
structure group is by definition a matrix group. For convenience, we note that the action of
an inverse group element is given by

(
(tg)−1, x

)
7→ g−1(x− t), which is easily confirmed

by composing the actions of tg and (tg)−1.

Since affine groups contain translations (Rd,+) ≤ Aff(G) as subgroups, their action on
Rd is transitive (Def. B.3.8). It is for G ̸= {e} not fixed point free (Def. B.3.10), but has
stabilizer subgroups Stabx ≤ Aff(G) (Def B.3.6) that are isomorphic toG. As we will see in
Section 4.3 below, these local G-symmetries will result in a requirement for the operations’
local G-steerability.

For completeness, we mention that affine groups may be viewed as a principal G-bundle
q : Aff(G) → Aff(G)/G ∼= Rd over a Euclidean base space, where the quotient map q :
tg 7→ tG serves as a bundle projection. The interpretation of G as structure group relies on
this identification. More details on principal bundles in general can be found in Section 11.1
while the specific case of Aff(G) as principal bundle and its local gauge transformations
are discussed in Chapter 15. The reader may safely ignore the interpretation of Aff(G) as
principal bundle for now.

https://github.com/twitter/twemoji/blob/gh-pages/LICENSE-GRAPHICS
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Figure 4.3: Transformation behavior of scalar and vector fields. A group element tg ∈ Aff(G) acts on
a scalar field s : Rd → R by moving its values spatially, that is,

[
tg ▷scalar s

]
(x) := s

(
(tg)−1x). The

individual vectors that make up a vector field v : Rd → Rd carry directional information. They are
therefore additionally transformed by a multiplication with g, i.e.,

[
tg ▷vector v

]
(x) := gv

(
(tg)−1x).

Feature fields generalize this transformation law, acting on feature vectors with some G-
representation ρ; see Eq. (4.3). Scalar, vector or tensor fields are recovered by choosing specific
representations, which are the trivial representation ρ(g) = 1, the defining representation ρ(g) = g
and tensor product representations ρ(g) = ⊗s(g−1)⊤ ⊗r g, respectively.
(Microbes adapted under the Apache license 2.0 by courtesy of Google.)

4.2 Euclidean feature fields as induced affine group representations

The laws of nature are formulated in terms of scalar, vector, or tensor-fields, which have
a well defined transformation behavior under affine transformations (or even diffeomor-
phisms); see Fig. 4.3. Note that the transformation law

[
(tg)▷vector v

]
(x) = gv

(
(tg)−1x

)
of vector fields does not only involve a spatial transformation of the field on Rd, but also a
G-action on each individual (feature) vector (fiber) in Rc. Feature vector fields generalize
this transformation law by acting with some G-representation ρ : G → GL(c) (Def. B.5.1)
on feature vectors. Specifically, a feature vector field of geometric type ρ is a map

F : Rd → Rc (4.2)

that is acted on by the ρ-induced Aff(G)-action[
tg ▷ρ F

]
(x) = ρ(g)F

(
(tg)−1x

)
.

fiber action on Rc spatial action on Rd

(4.3)

More formally, we define Euclidean feature fields as follows:

Definition 4.2.1 (Euclidean feature fields). The feature spaces of Aff(G)-equivariant Eu-
clidean steerable CNNs are vector spaces

L2
(
Rd,Rc

)
:=

{
F : Rd → Rc

∣∣∣ ∫
Rd

dx
∥∥F (x)∥∥2 ≤ ∞} (4.4)

of square integrable c-channel feature fields in d spatial dimensions. They are as-
sociated to some G-representation (geometric type) ρ : G → GL(c) and transform
according to the induced group action

▷ρ : Aff(G)× L2
(
Rd,Rc

)
→ L2

(
Rd,Rc

)
, (4.5)

(tg, F ) 7→ tg ▷ρ F := ρ(g)F (tg)−1 .

https://github.com/googlefonts/noto-emoji/blob/main/LICENSE
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As this action is linear, it corresponds to a group representation, known as induced
representation1,2

Ind
Aff(G)
G ρ : Aff(G) → GL

(
L2
(
Rd,Rc

))
, tg 7→ tg ▷ρ ( · ) . (4.6)

Euclidean feature fields are therefore just the elements of induced affine group repre-
sentation spaces.

A trivial structure group G = {e}, and thus trivial inducing representation ρ, recovers
Def. 3.1.1, i.e. Euclidean feature maps as regular translation group representations. A formal
definition of induced representations on general homogeneous spaces (Def. B.3.11) is found
in [35].

Different choices of representations ρ yield different types of feature fields. For instance, the
trivial representation, defined by

ρtriv : G→ GL(1), g 7→ 1 (4.7)

describes fields of G-invariant scalars. Examples of scalar fields are grayscale images, tem-
perature fields, pressure fields or probability distributions. Tangent vector fields, like optical
flow or fluid velocity fields, correspond to the defining representation

ρvector : G→ GL(d), g 7→ g (4.8)

of the matrix group. More general tensor fields of type (r, s) are described by tensor product
representations

ρtensor(r,s) : G→ GL
(
(Rd)⊗r ⊗ (Rd∗)⊗s

)
, g 7→ g⊗r ⊗ (g∗)⊗s , (4.9)

where g∗ = (g−1)⊤ is the dual representation of the defining representation g. They model
for instance diffusion tensor images, electromagnetic field tensors or stress tensors. Another
common choice are regular representations (Def. B.5.18), which act by permuting feature
vector entries. They are of great practical relevance in equivariant deep learning since they
describe the transformation of the features of group convolutional networks [52]; see Sec-
tion 4.5. Feature fields which transform under irreducible representations (irreps, Def. B.5.6)
were investigated in [335, 323, 301, 161, 3, 322, 139]. A more detailed overview and an ex-
tensive benchmark of different field types or representations in deep learning is presented in
Chapter 6.

Since finite dimensional unitary G-representations decompose generally into a direct sum
of irreducible representations (Theorem B.5.16), one may view feature fields of such types
as being a direct sum of the corresponding irrep fields. The original and decomposed rep-
resentations and feature vectors are hereby related by a (linear) change of basis. Linear
operations, like convolutions, may be derived in any choice of basis, implying that one may
w.l.o.g. focus on irrep fields when studying them [322, 173, 40]. However, general nonlin-
ear operations depend on the particular choice of basis, such that we will consider general
G-representations, instead of only irreducible ones, in the following.

The coordinate free and coordinate independent description of feature fields on general man-
ifolds is described in Sections 8.1, 11.3.3 and 11.4.4; see specifically the commutative di-
agram in Fig. 11.7. The induced representation action corresponds in this setting to the
pushforward of associated bundle sections (pushforward of feature fields), discussed in Sec-
tion 8.3 and Def. 13.1.2.

1Ind
Aff(G)
G is a functor that turns G-representations into Aff(G)-representations.

2There is generally a one-to-one correspondence between linear group actions and group represen-
tations; see the discussion around Eqs. (B.35) and (B.36) in Appendix B.5.1.
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Figure 4.4: A full feature space of steerable CNNs comprises multiple individual feature fields
Fi : Rd → Rci of potentially different types ρi and dimensionalities ci. The composite field F =⊕

i Fi transforms according to the direct sum
⊕

i Ind
Aff(G)
G ρi = Ind

Aff(G)
G

⊕
i ρi, and can there-

fore be viewed as being of type
⊕

i ρi (here ρ1 ⊕ ρ2 ⊕ ρ3 ⊕ ρ4). The block structure of the direct
sum representation guarantees hereby that the individual fields fi transform independently from each
other, that is, their channels do not mix under G-transformations. Compare this to Fig. 8.3, which
emphasizes the passive transformation viewpoint, i.e. coordinate independence, of feature fields.

Stacked Euclidean feature fields: The feature maps of translation equivariant CNNs con-
sist of multiple channels, which transform independently from each other under translations.
The feature spaces of Aff(G)-steerable CNNs consist in analogy of multiple independent
feature fields Fi : Rd → Rci , each coming with its own type ρi. Taken together, these in-
dividual fields make up a composite (

∑
i ci)-dimensional feature field, which is formally

given by their direct sum3

F =
⊕

iFi : Rd → R
∑

i
ci (4.10)

and transforms thus according to the direct sum
⊕

i Ind
Aff(G)
G ρi of the individual induced

representations. The induction functor commutes with the direct sum [55],⊕
i Ind

Aff(G)
G ρi = Ind

Aff(G)
G

⊕
iρi , (4.11)

such that the composite feature field can be viewed as being of type

ρ =
⊕

iρi . (4.12)

Figure 4.5: The three color chan-
nels of an RGB image are geomet-
rically identified as scalar fields, the
full feature space therefore trans-
forms according to the direct sum
ρ(g) = (1)⊕ (1)⊕ (1).

A visual interpretation of the transformation law of
stacked feature fields is given in Fig. 4.4.

As a practical example of a steerable feature space con-
sisting of multiple fields consider an RGB image as de-
picted in Fig. 4.5. Similar to a grayscale image, the in-
dividual color channels encode intensity values which
do not mix under G-transformations like rotations or re-
flections. The full RGB image is therefore to be iden-
tified with three scalar fields, each of which transforms
independently under the trivial representation. Not all
individual feature fields need to be of the same type ρi.
For instance, in a weather forecasting application the input signal might consist of scalar

3The direct sum ⊕ of vectors Fi(x) can be thought of as “stacking” these into a concatenated
vector. Consistently with this, the direct sum of representations ρi can be thought of as building a
block diagonal matrix containing the ρi as blocks; see Def. B.5.3 and Figs. 4.4 and 4.5.
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fields encoding features like temperature or pressure and vector fields like wind flow ve-
locities. A description as ρi fields of corresponding types ensures the geometrically correct
processing of such data. While the field types ρi of a network’s input and output are typically
given by the learning task, the field types used in hidden layers are chosen by the user as a
hyperparameter similar to the choice of channels for a conventional CNN.

Since stacked feature fields are defined as a direct sum, they transform independently from
each other. This allows to investigate the equivariant network layers in the following section
for each constituent field individually, that is, one can without loss of generality consider
single (non-stacked) input and output feature fields. Layers that map between full feature
spaces of stacked fields are then combined from these operations between individual fields.

4.3 Affine equivariant layers and steerable convolutions

Aff(G)-equivariant (steerable) network layers between feature fields of types ρin : G →
GL(cin) and ρout : G→ GL(cout) are functions L : L2

(
Rd,Rcin) → L2

(
Rd,Rcout) such that

the following diagram commutes for arbitrary affine transformations tg ∈ Aff(G):

L2
(
Rd,Rcin) L2

(
Rd,Rcout)

L2
(
Rd,Rcin) L2

(
Rd,Rcout)

L

tg▷ρ
in

tg▷ρout

L

(4.13)

As done for translation equivariant layers in the previous Chapter 3, we derive here the most
commonly used affine equivariant layers, i.e. steerable convolutions, biases, nonlinearities
and pooling operations. Since translations (Rd,+) ≤ Aff(G) form a subgroup of the affine
groups, we will recover the constraints that we encountered for conventional CNNs, namely
a requirement for spatial weight sharing. However, the spatially shared network connectivity
(e.g. kernel or bias) is additionally constrained by the structure group G < Aff(G), i.e. an
additional G-steerability constraint. Together, these constraints can be viewed as a weight
sharing over Aff(G)-transformations.

4.3.1 Steerable convolutions as affine equivariant linear maps

Linear Aff(G)-equivariant maps between feature fields (induced affine group representa-
tions) are necessarily convolutions with G-steerable (G-equivariant) kernels. As before, the
convolution ensures translational equivariance. Fig. 4.6 visualizes the role of the kernel’s
G-steerability: it summarizes the ρin-features in its field of view such into a ρout-feature vec-
tor that anyG-transformation of the field of view results in a correspondingG-transformation
of the output feature vector. Applied in a convolutional manner, this ensures exactly that the
resulting field of output feature vectors transforms according to their induced representation,
Def. 4.2.1.

The statement that linear Aff(G)-equivariant maps are convolutions withG-steerable kernels
has been proven in different settings. Jenner and Weiler [137] considered general linear func-
tionals, corresponding to steerable kernels in the distributional sense. This setting includes
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Figure 4.6: A convolution kernel at x ∈ Rd summarizes the field of input feature vectors around x into
a single output feature vector F (x) ∈ Rcout . Since the kernel is applied in a convolutional manner, i.e.
at each point x ∈ Rd, it produces a field of output feature vectors. Aff(G)-equivariant convolutions
rely according to Theorem 4.3.1 on G-steerable kernels, satisfying the G-equivariance constraint in
Eq. (4.18) and diagram (4.19). Intuitively, G-steerable kernels guarantee that a transformation of the
input features in their field of view by g ∈ G (or more specifically by Ind

Aff(G)
G ρin(g)) results in a

transformation of the output feature vector by ρout(g). Applied convolutionally, the resulting field of
output feature vectors is guaranteed to transform according to the induced representation Ind

Aff(G)
G ρout.

More details on G-steerable kernels are found in Chapter 5 below.

convolutions with classical kernel functions, but also with other Schwartz distributions, like
e.g. partial differential operators. For simplicity, we will here follow the original derivation
of the G-steerability constraint by Weiler et al. [323], considering specifically convolutions
with classical kernel functions, derived from an integral transform ansatz. In contrast to their
derivation, we allow here for general structure groups G ≤ GL(d) instead of compact struc-
ture groups G ≤ O(d) only. This will result in an additional volume scaling factor |det g |
occurring in the G-steerability constraint on convolution kernels.

As simple ansatz for unconstrained linear maps between feature fields, we consider the same
integral transforms as in Section 3.2, i.e.

Iκ : L2
(
Rd,Rcin

)
→ L2

(
Rd,Rcout

)
, defined by Iκ

[
F
]
(x) :=

∫
Rd

dy κ(x, y)F (y) .

(4.14)

They are parameterized by square integrable matrix-valued two-argument kernel functions

κ : Rd × Rd → Rcout×cin (4.15)

which specify how input features from any point y ∈ Rd are aggregated into an output
feature vector at x ∈ Rd; see Fig. 3.3.

The following theorem proves that the demand for affine group equivariance requires this
integral transform to be a convolution with a G-steerable kernel:
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Theorem 4.3.1 (Steerable convolutions). The integral transform Iκ in Eq. (4.14) is Aff(G)

equivariant w.r.t. induced affine group representations Ind
Aff(G)
G ρin and Ind

Aff(G)
G ρout,

that is, satisfies

Iκ
[
tg ▷ρin

F
]
= tg ▷ρout

Iκ
[
F
]

∀ tg ∈ Aff(G) , (4.16)

if and only if

1. it is a convolution integral

Iκ
[
F
]
(x) =

∫
Rd

dy K(x− y)F (y) =:
[
K ∗ F

]
(x) (4.17)

with a one-argument kernel K : Rd → Rcout×cin satisfying the translation rela-
tivity condition κ(x, y) =: K(x− y), and

2. the kernel K is G-steerable, that is,

K(gx) =
1

|det g |ρout(g)K(x) ρin(g)
−1 ∀ x ∈ Rd, g ∈ G . (4.18)

This G-steerability constraint is captured by the commutativity of the diagram

Rd Rcout×cin

Rd Rcout×cin

g ·

K

1

|det g | ρout(g) [ · ] ρin(g)
−1

K

(4.19)

for arbitrary g ∈ G. Chapter 5 below discusses G-steerable kernels in depth.

Proof: We write out the left-hand side of Eq. (4.16), which yields

Iκ
[
tg ▷ρin

F
]
(x) =

∫
Rd

dy κ(x, y)
[
tg ▷ρin

F
]
(y) (4.20)

=

∫
Rd

dy κ(x, y) ρin(g)F
(
(tg)−1y

)
=

∫
Rd

dỹ |det g |κ
(
x, (tg)ỹ

)
ρin(g)F (ỹ)

after a substitution of ỹ := (tg)−1y = g−1(y − t) with
∣∣∣det(dỹdy)∣∣∣ = ∣∣det(g−1)∣∣ =

|det g |−1. The right-hand side is given by[
tg ▷ρout

Iκ[F ]
]
(x) = tg ▷ρout

∫
Rd

dy κ(x, y)F (y) (4.21)

=

∫
Rd

dy ρout(g)κ
(
(tg)−1x, y)F (y) .

These expressions agree for any tg ∈ Aff(G) and any feature map F ∈ L2
(
Rd,Rcin

)
if

and only if

κ
(
(tg)x, (tg)y) =

1

|det g |ρout(g)κ(x, y) ρin(g)
−1 (4.22)

holds for any x, y ∈ Rd and any tg ∈ Aff(g).
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This constraint implies:

1. As already seen in Theorem 3.2.1 on translation equivariant convolutions, the
two argument kernel may only depend on the relative translation between its
arguments, i.e. κ(x+ t, y+ t) = κ(x, y) for any t ∈ (Rd,+) ≤ Aff(G). This
allows to express the two argument kernel in terms of a one (relative) argument
kernel K : Rd → Rcout×cin , given by K(∆x) := κ(∆x, 0). Equivalently, we
have κ(x, y) = K(x−y), implying that the integral transform is a convolution
with kernel K.

2. Expressing the general constraint in Eq. (4.22) in terms of the one-argument
kernel, we obtain

κ
(
(tg)x, (tg)y

)
= κ

(
gx+ t, gy + t

)
(4.23)

= K
(
g(x− y)

)
=

1

|det g |ρout(g)K(x− y) ρin(g)
−1,

for any x, y ∈ Rd and g ∈ G, which, after inserting ∆x := x − y, is the
claimed G-steerability constraint. □

After being published for Euclidean spaces in [323], this theorem was in [56] generalized
to H-equivariant convolutions on homogeneous spaces H/G. The symmetry group H was
hereby assumed to be locally compact and unimodular, such that no determinant factor oc-
curred in the G-steerability constraint. Appendix F explains such convolutions on homoge-
neous spaces in more detail. Jenner and Weiler [137] generalized our result on Euclidean
spaces furthermore from our integral transform ansatz to arbitrary linear maps, and proved
that these can generally be expressed as convolutions with G-steerable Schwartz distribu-
tions. This framework covers in particular equivariant partial differential operators, includ-
ing for instance gradients, divergence, curl and the Laplace operator.

The active Aff(G)-equivariance of steerable convolutions is in Chapter 15 shown to be re-
lated to their (passive) independence from choices of coordinate charts or pixel grids with
transition maps in Aff(G); see Fig. 15.2. Note that the independence of the neural connec-
tivity from choices of Aff(G)-related charts is equivalent to the invariance of physical laws
under choices of Poincaré-related inertial frames in the special theory of relativity. Steerable
CNNs are therefore best thought of as performing Aff(G)-relative measurements.

It is intuitively clear that compactly supportedG-steerable kernels are equivariant w.r.t. inde-
pendent “local G-transformations” of their field of view at different locations; see Fig. 4.7a.
This property is not adequately captured by our derivation of Aff(G)-steerable convolutions,
which focused on global transformations of the image as a whole. We formalize this lo-
cal G-equivariance in Parts II and III on coordinate independent CNNs, which generalize
steerable CNNs to Riemannian manifolds and focus on passive gauge transformations, i.e.
changes between local reference frames (Fig. 4.7b).

Many equivariant network architectures in the literature are described as group convolutions
instead of steerable convolutions [52, 162, 324, 10]. While their theoretical formulation may
look quite different, group convolutions are actually a special case of steerable convolutions,
operating specifically on feature fields whose type is the regularG-representation. Steerable
CNNs are more general in that they allow for arbitrary field types, which allows for instance
to model vector or tensor fields. This equivalence of group convolutions and regular steerable
convolutions is proven in Section 4.5.

Chapter 5 below expands on the parametrization and implementation of G-steerable kernels.
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(a) Active local gauge equivariance of steerable CNNs

(b) Passive local coordinate independence of steerable CNNs

Figure 4.7: Top: Steerable convolutions are not only globally Aff(G)-equivariant, but more generally
equivariant under independent local G-transformations gp and gq of the kernels’ fields of view at dif-
ferent locations p and q in Rd. This “local gauge equivariance” of steerable convolutions is formalized
in Parts II and III. Bottom: As argued in Fig. 1.10, kernels only perceive their relative alignment to-
wards features. The G-transformation of their response vectors when transforming their field of view
is therefore equivalent to that when their own alignment is transformed. Parts II and III describe kernel
alignments as choices of local reference frames and interpret steerable CNNs therefore as being coor-
dinate independent.
(Lizards and butterflies adapted under the Creative Commons Attribution 4.0 International license by courtesy of Twitter.)

https://github.com/twitter/twemoji/blob/gh-pages/LICENSE-GRAPHICS
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4.3.2 Steerable bias summation

In analogy to the case of translation equivariant bias summation, we investigate the summa-
tion

Bb : L2
(
Rd,Rc

)
→ L2

(
Rd,Rc

)
, F 7→ F + b (4.24)

of a square integrable field of bias vectors

b ∈ L2
(
Rd,Rc

)
, (4.25)

however, now subject to an affine group equivariance constraint. Instead of only being
required to be spatially constant (translation invariant), the bias field now has to be in-
variant under Aff(G)-transformations – this implies in particular that biases may only be
summed to the trivial subrepresentations of ρin. Note that we have again cin = cout =: c and
▷in = ▷out =: ▷ since bias summation necessarily preserves the field type.
Theorem 4.3.2 (Affine equivariant bias summation). The bias summation in Eq. (4.24)

is Aff(G)-equivariant w.r.t. the actions of the induced affine group representations
Ind

Aff(G)
G ρin and Ind

Aff(G)
G ρout, i.e. satisfies

Bb

[
tg ▷ρ F

]
= tg ▷ρ Bb[F ] , (4.26)

if and only if the bias field is Aff(G)-invariant:

tg ▷ρ b = b ∀ tg ∈ Aff(G) (4.27)

This requires

1. a spatially constant bias field, i.e. b(x) = b for any x ∈ Rd and some shared
bias vector b ∈ Rc, and

2. this shared bias needs to be G-invariant, that is, b = ρ(g)b for any g ∈ G.

Proof: The left- and right-hand sides of Eq. (4.26) at x ∈ Rd become

Bb

[
tg ▷ρ F

]
(x) =

[
tg ▷ρ F

]
(x) + b(x) (4.28)

= ρ(g)F
(
(tg)−1x

)
+ b(x) ,

and [
tg ▷ρ Bb[F ]

]
(x) =

[
tg ▷ρ (F + b)

]
(x) (4.29)

= ρ(g)F
(
(tg)−1x

)
+ ρ(g)b

(
(tg)−1x

)
,

respectively, which yields Eq. (4.27). Specifically, we have b(x) = b(x − t) for any
translation t ∈ (Rd,+) ≤ Aff(G), implying the spatially constant bias field b(x) = b.
Reinserting this into the constraint for general tg ∈ Aff(G), we get the G-invariance
b = ρ(g) for any g ∈ G. □

To get an insight into the implications of the G-invariance constraint b=ρ(g)b ∀g ∈G,
assume ρ to be reducible into a direct sum of irreps, which is by Theorems B.5.14 and B.5.16
w.l.o.g. the case for compact groups, including any G ≤ O(d). Let Q ∈ GL(c) be a
change of basis that decomposes ρ into irreps ρj , i.e. satisfies Qρ(g)Q−1 =

⊕
j ρj(g)

for any g ∈ G, and let Qb =: b̃ =
⊕

j b̃j be the corresponding decomposition of the
bias vector into irreducible subspaces labeled by j. The constraint in this basis becomes



4.3. Affine equivariant layers and steerable convolutions 55

⊕
j b̃j =

[⊕
j ρj(g)

][⊕
j b̃j
]
, i.e. it splits into independent constraints b̃j = ρj(g)̃bj on

the subspaces. The latter is always satisfied for the trivial irreducible subrepresentations of
ρ, satisfying ρ0(g) = 1. For all non-trivial irreducible subrepresentations of ρ, the constraint
is only satisfied for zero vectors, i.e. b̃j ̸=0 = 0. If follows that the vector space

BGρ :=
{
b ∈ Rc

∣∣ b = ρ(g)b ∀g ∈ G
}

(4.30)

of G-invariant bias vectors coincides with the (subspaces of) trivial subrepresentations of ρ.
Its dimensionality – and therefore the number of learnable parameters – equals the multi-
plicity of trivial subrepresentations contained in ρ.

Two simple examples of feature fields to which one might want to sum a spatially shared and
G-invariant bias vector are scalar fields and tangent vector fields. By definition, scalars are
G-invariant, that is, they transform according to the trivial representation ρ(g) = 1 ∀g ∈ G.
One can therefore sum any (scalar) bias b ∈ R to them. In contrast, tangent vectors transform
according to the non-trivial, irreducible defining representation ρ(g) = g of G. This repre-
sentation does not contain any trivial subrepresentation, such that it is impossible to sum a
shared bias vector to tangent vector fields while maintaining Aff(G)-equivariance. As a third
example, consider regular representations of compact groups, which describe for instance
the feature fields of group convolutional networks. By the Peter-Weyl theorem B.5.22, it is
known that regular representations contain exactly one trivial subrepresentation. The bias to
be summed to regular feature fields is therefore seen to be described by a single parameter.
Section 10.3.1 explicitly derives some more examples for representations of the reflection
group.

4.3.3 Steerable local nonlinearities

As probably expected, locally acting Aff(G)-equivariant nonlinearities are not only required
to be spatially independent, but also equivariant w.r.t. field types ρin and ρout, between which
they map. To show this, are again starting with a spatially dependent ansatz

Sσ : L2
(
Rd,Rcin

)
→ L2

(
Rd,Rcout

)
, (4.31)

for the local nonlinearities, given by

σ : Rd × Rcin → Rcout , (x, f)→ σx(f) , (4.32)

and

Sσ

[
F
]
(x) := σx

(
F (x)

)
, (4.33)

and then demand affine equivariance.

Theorem 4.3.3 (Affine equivariant local nonlinearities). The spatially dependent local-
ized nonlinearity operation in Eq. (4.31) is Aff(G)-equivariant w.r.t. the actions of
the induced affine group representations IndAff(G)

G ρin and Ind
Aff(G)
G ρout, i.e. satisfies

Sσ

[
tg ▷ρin

F
]
= tg ▷ρout

Sσ[F ] , (4.34)

if and only if:

1. the underlying field of localized nonlinearities is position-independent, that is,
σx = s for some shared nonlinearity s : Rcin → Rcout and any x ∈ Rd, and
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2. this shared nonlinearity is G-equivariant, i.e. ρout(g) s = s ρin(g) ∀ g ∈ G.
Proof: The constraint in Eq. (4.34) demands that

Sσ

[
tg ▷ρin

F
]
(x) = σx

(
[tg ▷ρin

F ](x)
)

(4.35)

= σx
(
ρin(g)F

(
(tg)−1x

))
,

and [
tg ▷ρout

Sσ[F ]
]
(x) = ρout(g)Sσ[F ]

(
(tg)−1x

)
(4.36)

= ρout(g)σ(tg)−1x

(
F
(
(tg)−1x

))
agree for any x ∈ Rd and any tg ∈ Aff(g), and therefore:

1. focusing specifically on translations t ∈ (Rd,+) ≤ Aff(G) first, we obtain
σx
(
F (x−t)

)
= σx−t

(
F (x−t)

)
, implying the claimed position independence

of the nonlinearity field

2. reinserting this partial result into the constraint yields, for any tg ∈ Aff(G)

and arbitrary feature fields, s
(
ρin(g)F

(
(tg)−1x

))
= ρout(g) s

(
F
(
(tg)−1x

))
,

implying the G-equivariance of s. □

Due to the nonlinearity of the steerability constraint ρout(g) s = s ρin(g) ∀ g ∈ G, it cannot be
solved in a systematic fashion by decomposing it into irreducible subspaces, as done for ker-
nels in Section 5.3.2 and for biases in Section 4.3.2. One is instead forced to design steerable
local nonlinearities on a case-by-case basis. The following list summarizes some common
design choices for specific families of field types that were proposed in the literature:

Trivial reps: For trivial representations ρin and ρout, the constraint ρout(g) s = s ρin(g) be-
comes itself trivial. As a consequence, any nonlinearity is admissible for scalar fields.

Unitary reps: A general class of representations are unitary representations (Def. B.5.13),
which preserve the norm of their representation space, that is, they satisfy
|ρunitary(g)F (x)| =

∣∣F (x)∣∣ ∀ g ∈ G. As proven in [322], nonlinearities which
solely act on the norm of feature vectors but preserve their orientation are equiv-
ariant w.r.t. unitary representation actions. They can in general be decomposed in
σnorm : Rc → Rc, F (x) 7→ η

(
|F (x)|

) F (x)
|F (x)| for some nonlinear function η : R≥0 →

R≥0 acting on the norm of feature vectors. Norm-ReLUs, defined by η(|F (x)|) =
ReLU(|F (x)| − b) where b ∈ R≥0 is a learned bias, were used in [335, 323]. In
[253], the authors consider squashing nonlinearities with η(|F (x)|) = |F (x)|2

|F (x)|2+1 .
Gated nonlinearities were proposed in [323] as conditional version of norm nonlin-
earities. They act by scaling the norm of a feature field by learned sigmoid gates

1
1+e−s(x) , parameterized by a scalar feature field s. Note that any representation of
compact groups, including any G ≤ O(d), can by Theorem B.5.14 be considered as
being unitary. The nonlinearities described here are in practice often used for irrep
feature fields of such groups.

Permutation reps: Permutation representations act by permuting feature vector channels.
This action commutes generally with any element-wise nonlinearity, for instance
ReLU activations that are applied to each vector entry individually. Practically rel-
evant examples are regular representations (Def. B.5.18), corresponding to group
convolutions (Theorem 4.5.1), quotient representations (Def. B.5.20), and the trivial
representation.
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Tensor product reps: Feature vectors F1(x) ∈ Rc1 and F2(x) ∈ Rc2 of arbitrary types ρ1
and ρ2 can be combined to a tensor product feature

[
F1 ⊗ F2

]
(x) ∈ Rc1c2 , whose

type is the tensor product representation ρ1 ⊗ ρ2; Def. B.5.4. The tensor product is
a nonlinear (but still bilinear) operation, such that some authors choose not to apply
further nonlinearities [161, 323, 163, 3].

All of these examples satisfy the equivariance constraint ρout(g) s = s ρin(g) ∀ g ∈ G. Which
particular nonlinearity works well in practice is, however, an empirical question. Section 6.5
presents a benchmarking of different field types and correspondingly steerable nonlineari-
ties. The results are summarized in Table 6.6 – regular (permutation) representations with
element-wise nonlinearities perform best overall, while gated nonlinearities perform best for
unitary representations that do not act via permutations, like e.g. O(d)-irreps. Franzen and
Wand [94] provide a harmonic distortion analysis of nonlinearities that are applied to the
channels of regular feature fields, or subrepresentations of it.

4.3.4 Steerable local pooling operations

As for translation equivariant CNNs, we discuss local and global pooling operations. The
requirement for affine group equivariance imposes additional G-symmetry constraints on
these operations, or may allow their application to specific field types ρ only.

Channel-wise local max pooling: Since local max pooling operates channel-wise, it com-
mutes only with permutation representations. It requires furthermore an affine invariant
choice of pooling regions, for instance balls of a certain radius for G = SO(d).
Theorem 4.3.4 (Affine equivariance of local max pooling for permutation reps).

Let the field type ρ : G → GL(c) be a permutation representation, i.e. act by permut-
ing field channels. The local max pooling operation in Eq. (3.30) is then affine group
equivariant, that is,

local_max_pool
[
tg ▷ρ F

]
(x) =

(
tg ▷ρ local_max_pool[F ]

)
(x) (4.37)

for any x ∈ Rd and any tg ∈ Aff(G), if and only if the pooling windows are affine
group invariant (spatially shared and locally G-invariant), i.e. satisfy

(tg)−1Rx = R(tg)−1x ∀ x ∈ Rd, tg ∈ Aff(G) , (4.38)

Proof: Using that permutation representations commute with the channel-wise application
of local max pooling, and substituting the pooling region Rx for (tg)−1Rx, the left
hand side becomes

local_max_pool
[
tg ▷ρ F

]
(x) = max

y∈Rx

ρ(g)F
(
(tg)−1y

)
(4.39)

= ρ(g) max
y∈(tg)−1Rx

F (y) .

The statement follows by setting this equal with the right hand side, which is given by(
tg ▷ρ local_max_pool[F ]

)
(x) = ρ(g) local_max_pool[F ]

(
(tg)−1x

)
(4.40)

= ρ(g) max
y∈R(tg)−1x

F (y) . □

A typical example of permutation representations are regular representations.
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Local norm max pooling: An alternative approach to max pool feature fields is local
norm max pooling, which selects feature vectors based on their maximum norm within some
pooling region. It applies to any field whose type ρ is a unitary representation since their
actions preserve the feature vector norm. It is defined as a map

local_norm_max_pool : L2(Rd,Rc)→ L2(Rd,Rc) (4.41)

that is for a pooling regionRx ⊂ Rd around x ∈ Rd given by

local_norm_max_pool[F ](x) = F
(
argmax
y∈Rx

∣∣F (y)∣∣) . (4.42)

If a stacked feature field F =
⊕

i Fi is given by a direct sum of feature fields Fi of unitary
type, local_norm_max_pool is usually applied to each summand individually.

Theorem 4.3.5 (Affine equivariance of local norm max pooling for unitary reps).
Let F be a feature field of unitary type ρ : G → GL(c), preserving the norm∣∣ρ(g)F (x)∣∣ = |F (x)| of feature vectors under G-actions. If the pooling regions are
affine invariant, i.e.

(tg)−1Rx = R(tg)−1x ∀ x ∈ Rd, tg ∈ Aff(G) , (4.43)

the local norm max pooling operation in Eq. (4.42) is then affine group equivariant, i.e.

local_norm_max_pool
[
tg ▷ρ F

]
(x) =

(
tg ▷ρ local_norm_max_pool[F ]

)
(x)
(4.44)

for any x ∈ Rd and any tg ∈ Aff(G).

Proof: Using the unitarity
∣∣ρ(g)F (y)∣∣ = ∣∣F (y)∣∣ of ρ in the third step and a substitution of

the pooling region, which requires a corresponding correction of the argmax result, in
the fourth step, the left hand side of the equivariance constraint in Eq. (4.44) becomes:

local_norm_max_pool
[
tg ▷ρ F

]
(x) (4.45)

=
[
tg ▷ρ F

](
argmax
y∈Rx

∣∣∣[tg ▷ρ F ](y)∣∣∣)
= ρ(g)F

(
(tg)−1 argmax

y∈Rx

∣∣∣ρ(g)F ((tg)−1y)∣∣∣)
= ρ(g)F

(
(tg)−1 argmax

y∈Rx

∣∣∣F ((tg)−1y)∣∣∣)
= ρ(g)F

(
(tg)−1(tg) argmax

y∈(tg)−1Rx

∣∣F ∣∣(y))
= ρ(g)F

(
argmax
y∈(tg)−1Rx

∣∣F ∣∣(y))
The right hand side is given by[

tg ▷ρ local_norm_max_poolF
]
(x) = ρ(g)F

(
argmax
y∈R(tg)−1x

∣∣F ∣∣(y)) . (4.46)

These expressions agree for any tg ∈ Aff(G) and any unitary feature field F ∈
L2(Rd,Rc) if and only if the pooling regions are affine invariant, that is, satisfy
(tg)−1Rx = R(tg)−1x. □
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Local average pooling: We defined local average pooling in Eq. (3.35) as a channel-wise
convolution with a scalar weighting kernel k : Rd → R. If this operation is to be affine
equivariant, the weighting kernel is additionally required to be G-steerable. Local average
pooling may be applied to fields of any type ρ since the convolution with a scalar kernel
commutes with the G-action.
Theorem 4.3.6 (Affine equivariance of local average pooling). Let k : Rd → R be a

scalar weighting kernel that is G-steerable in the sense that

k(gx) =
1

|det g |k(x) ∀ x ∈ Rd, g ∈ G . (4.47)

The local average pooling operation in Eq. (4.42) is then affine group equivariant, i.e.

local_avg_pool
[
tg ▷ρ F

]
(x) =

(
tg ▷ρ local_avg_pool[F ]

)
(x) (4.48)

for any x ∈ Rd, any tg ∈ Aff(G) and any F ∈ L2(Rd,Rc).
Proof: The equality of both sides of the equivariance constraint is shown by

local_avg_pool
[
tg ▷ρ F

]
(x) (4.49)

=

∫
Rd

dy k(x− y)
[
tg ▷ρ F

]
(y)

=

∫
Rd

dy k(x− y) ρ(g)F
(
(tg)−1y

)
= ρ(g)

∫
Rd

dỹ |det g |k
(
x− (tg)ỹ

)
F (ỹ)

= ρ(g)

∫
Rd

dỹ k
(
(tg)−1x− ỹ

)
F (ỹ)

= ρ(g) local_avg_pool[F ]
(
(tg)−1x

)
=
(
tg ▷ρ local_avg_pool[F ]

)
(x) ,

where we substituted ỹ := (tg)−1y and made use of the weighting kernel’s G-
steerability in the fourth step:

k
(
x− (tg)ỹ

)
= k

(
x− gỹ + t

)
= k

(
g
(
g−1x− t)− ỹ

))
(4.50)

= k
(
g
(
(tg)−1x− ỹ

))
=

1

|det g |k
(
(tg)−1x− ỹ

)
□

Note that the convolution with a G-steerable weighting kernel is analogous to the use of
affine invariant pooling regions.

As for regular translation equivariant CNNs, local pooling operations are in discretized affine
equivariant steerable CNN implementations often followed by a subsampling step. For fea-
ture fields of regular representation type, this may be done using the method of Xu et al.
[336], which subsamples the field on an equivariant choice of coset (Def. B.2.2).

4.3.5 Steerable global pooling operations

Global affine equivariant pooling operations result in a single feature vector that is position-
independent but still G-steerable.
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Channel-wise global max pooling: Channel-wise global max pooling was defined in
Eq. (3.39). Applied to permutation representations, it is affine equivariant:
Theorem 4.3.7 (Affine equivariance of global max pooling for permutation reps).

If the field type ρ is a permutation representation, (channel wise) global max pooling is
affine equivariant in the sense that

global_max_pool
[
tg ▷ρ F

]
= ρ(g) global_max_pool[F ] (4.51)

holds for any tg ∈ Aff(G) and any F ∈ L2(Rd,Rc).
Proof: Since the maximum of field values is taken for each channel separately, this operation

commutes with the channel permutation action of the field type. Taking the maximum
field value is furthermore position-independent. We therefore have

global_max_pool
[
tg ▷ρ F

]
(4.52)

= max
x∈Rd

[
tg ▷ρ F

]
(x)

= max
x∈Rd

ρ(g)F
(
(tg)−1x

)
= ρ(g)max

x∈Rd
F
(
(tg)−1x

)
= ρ(g)max

x∈Rd
F (x)

= ρ(g) global_max_pool[F ] . □

Global norm max pooling: We define global norm max pooling for unitary representation
field types ρ as the map

global_norm_max_pool : L2(Rd,Rc)→ Rc (4.53)

defined by

global_norm_max_pool[F ](x) = F
(
argmax
x∈Rd

∣∣F (x)∣∣) . (4.54)

Theorem 4.3.8 (Affine equivariance of global norm max pooling for unitary reps).
Let the field type ρ : G → GL(c) be a unitary representation. The global norm max
pooling operation in Eq. (4.54) is then affine group equivariant in the sense that

global_norm_max_pool
[
tg ▷ρ F

]
= ρ(g) global_norm_max_pool[F ] (4.55)

holds for any tg ∈ Aff(G) and any F ∈ L2(Rd,Rc).
Proof: Let tg ∈ Aff(G) and F ∈ L2(Rd,Rc), then

global_norm_max_pool
[
tg ▷ρ F

]
(4.56)

=
[
tg ▷ρ F

](
argmax
x∈Rd

∣∣∣[tg ▷ρ F (x)]∣∣∣)
= ρ(g)F

(
(tg)−1 argmax

x∈Rd

∣∣∣ρ(g)F ((tg)−1x)∣∣∣)
= ρ(g)F

(
(tg)−1(tg) argmax

x∈Rd

∣∣F (x)∣∣)
= ρ(g) global_norm_max_pool[F ] ,

where the third step made use of the unitarity of ρ and expressed the argument of the
spatially transformed field in terms of a spatially transformed argument of the original
field. □
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Global average pooling: If we consider the (channel wise) global average pooling op-
eration from Eq. (3.41), we find that it is affine equivariant and results in a feature vector
of type |det g |ρ(g). The determinant factor accounts hereby for non-volume preserving
field transformations. Note that g 7→ |det g |ρ(g) is a well defined G-representation (lin-
ear group homomorphism), i.e. satisfies

∣∣det(gh)∣∣ ρ(gh) = (|det g |ρ(g))(|deth|ρ(h)) for
any g, h ∈ G.

Theorem 4.3.9 (Affine equivariance of global average pooling). Let F ∈ L2(Rd,Rc) be
a feature field of arbitrary type ρ and tg ∈ Aff(G), then

global_avg_pool
[
tg ▷ρ F

]
= |det g | ρ(g) global_avg_pool[F ] . (4.57)

Proof: To prove the claim, we simply need to observe that ρ(g) commutes with the integra-
tion and substitute x̃ := (tg)−1x:

global_avg_pool
[
tg ▷ρ F

]
(4.58)

=

∫
Rd

dx
[
tg ▷ρ F

]
(x)

=

∫
Rd

dx ρ(g)F
(
(tg)−1x

)
= |det g | ρ(g)

∫
Rd

dx̃ F (x̃)

= |det g | ρ(g) global_avg_pool[F ] . □

4.4 Local symmetries and equivariance group restriction

The key idea of equivariant networks is to exploit symmetries in the distribution of charac-
teristic patterns in data. Specifically for feature fields, the level of symmetry might vary over
different length scales. For instance, natural images typically show small features like edges,
intensity gradients or the blossom leafs in Fig. 4.8 in arbitrary orientations and reflections.
On a larger length scale, however, the rotational symmetry is broken, as manifested in visual
patterns that are exclusively appearing in upright rotation but still in different positions and
reflections. Each individual layer of a convolutional network should therefore be adapted to
the symmetries present at the length scale of its neurons’ receptive fields.

A loss of symmetry can be implemented by restricting the equivariance constraints at a
certain layer to a subgroup Aff(H) < Aff(G), whereH < G; e.g. from rotations and reflec-
tions G = O(2) to mere reflections H = R in the natural image example above. Formally,
this is achieved by the (forgetful) restriction functor (Def. B.5.2)

Res
Aff(G)
Aff(H) :

(
L2(Rd,Rc), IndAff(G)

G ρ
)
→

(
L2(Rd,Rc), ResAff(G)

Aff(H) Ind
Aff(G)
G ρ

)
∼=
(
L2(Rd,Rc), IndAff(H)

H ResGH ρ
)
, (4.59)

which maps feature fields with induced Aff(G)-action to fields with induced Aff(H)-action
by simply forgetting the full group action and acting with subgroup elements only. The iso-
morphism on the right-hand side emphasizes that the restriction of a feature field as a whole
(first row) can equivalently be viewed as a restriction of its field type to an H-representation
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Figure 4.8: Natural images have preferred “up” and
“down” directions on their global scale, however,
local patterns, like the leafs of the sunflower blos-
soms, appear commonly in arbitrary rotations. This
can be exploited by composing a full network from
subnetworks with different levels of equivariance.
Formally, the transition from an Aff(G)-equivariant
subnetwork to an Aff(H)-equivariant subnetwork
with H < G is achieved by a group restriction of
the original field type ρ : G → GL(c) to type
ResGH ρ : H → GL(c).
(Image credit: FreeImages.com/bodee)

ResGH ρ. This equivalence is easily seen as follows,[
Res

Aff(G)
Aff(H) Ind

Aff(G)
G ρ (th) F

]
(x) =

[
Ind

Aff(G)
G ρ (th) F

]
(x) (4.60)

= ρ(h)F
(
(th)−1x

)
=
[
ResGH ρ

]
(h)F

(
(th)−1x

)
=
[
Ind

Aff(H)
H ResGH ρ (th) F

]
(x) ,

where F ∈ L2(Rd,Rc), x ∈ Rd and th ∈ Aff(H) are chosen arbitrarily. The removal and
addition of the restriction functors in the first and third step was hereby possible since they
are just a restriction of the respective representation’s domain.

As a forgetful functor, the equivariance group restriction layer ResAff(G)
Aff(H) does not change

the actual data of the feature field on which it acts, and the resulting field will implicitly
still transform according to the forgotten Aff(G)-action. However, the restriction functor
allows for the subsequent layers to be Aff(H)-equivariant only, i.e. to break full Aff(G)-
equivariance. The resulting network as a whole will only be Aff(H)-equivariant, while the
Aff(G)-equivariant subnetwork will nonetheless generalize its inference over a larger group
of symmetries:

L2(Rd,Rcin)

L2(Rd,Rcmid)

L2(Rd,Rcmid)

L2(Rd,Rcout)

Aff(G)-equivariant subnetwork

full network,
Aff(H)-equivariant Res

Aff(G)

Aff(H)

Aff(H)-equivariant subnetwork

(4.61)

A simple example to illustrate these ideas are feature fields that transform under the regular
representation (Def. B.5.18 and Remark B.5.19) of a dihedral group G = DN . These fields
have c = 2N channels associated to N rotations in two reflections each. Upon restriction to
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mere reflections H = R < DN , the 2N -dimensional feature vectors decouple into N two-
dimensional fields, each transforming according to the regular representation of the reflection
group. The DN -action is implicitly still present, however, the reinterpretation as multiple
reflection steerable fields puts less equivariance constraints on the following layer, allowing
the network to break rotational equivariance (rotational relativity) by attending to different
rotations in an absolute sense.

Conversely to the symmetry breaking on large length scales, it is also imaginable that local
patterns are aligned, while patterns that emerge on a larger scale are more symmetrically
distributed – think for instance about a solid that is locally magnetized (rotationally aligned)
but globally amorphous (rotationally symmetric). This could analogously be exploited by
merging |G : H| fields of H-type ρ into a single field of induced G-type IndGH ρ, where
H < G.4 Other use cases would be autoencoders, which would require an induction step
in their decoder subnetwork to mirror a group restriction in their encoder subnetwork, or
generative adversarial networks (GANs).

An implementation and empirical evaluation of this network design was presented by Weiler
and Cesa [322][38]. Romero and Lohit [249] proposed a related approach which relies on
“equivariance” w.r.t. a learned (and not necessarily closed) subset of group elements. An
example are networks that are “equivariant” w.r.t. rotations in an interval [−θ, θ] ⊆ SO(2),
where the angle 0 ≤ θ ≤ π is learned.

4.5 Affine group convolutions as regular steerable convolutions

One of the most common and successful design for equivariant CNNs are group convolu-
tional neural networks (GCNNs) [52, 162, 324, 10]. Here we argue that group convolutions5

correspond to steerable convolutions with regular feature fields, i.e. feature fields whose
field type is the regular G-representation ρGreg.

Group convolutions: Group convolutions process feature maps that are functions on sym-
metry groups and transform according to the (left) regular representations (Def. B.5.18) of
these symmetry groups. In our specific application on affine equivariant CNNs, these would
be the regular Aff(G)-representations ρAff(G)

reg , whose actions on functions

f : Aff(G)→ R , (4.62)

are for arbitrary tg and t̃g̃ in Aff(G) given by[
ρ
Aff(G)

reg (tg) f
]
(t̃g̃) := f

(
(tg)−1 t̃g̃

)
, (4.63)

i.e. by a “shift” of f on Aff(G) by tg.

An affine group convolution with a kernel k : Aff(G)→ R on the group is then defined as[
f ∗

Aff(G)
k
]
(tg) :=

∫
Aff(G)

d(t̃g̃) f
(
(t̃g̃)

)
k
(
(t̃g̃)−1tg

)
; (4.64)

see Appendix F.1 for more details.
4|G : H| is the index (number of left cosets) of H in G, which equals |G|/|H| for finite groups.
5Group convolutions are to be distinguished from “grouped convolutions” [290], which are just

conventional convolutions with a sparse connectivity between “groups” of feature maps.



64 Chapter 4. Affine group equivariance & steerable Euclidean CNNs

Equivalence: In order to show that Aff(G) group convolutions are Aff(G) steerable con-
volutions between G-regular feature fields, we leverage two properties of induced represen-
tations. Firstly, regular representations can be understood as being induced from the trivial
representation ρ{e}

triv
of the trivial group {e}. For instance, the regular G-representation is

given by

ρGreg
∼= IndG{e} ρ

{e}
triv

. (4.65)

Secondly, the induced representation satisfies for any nested subgroups K ≤ G ≤ H and
K-representation ρK the algebraic property

IndHG IndGK ρ
K ∼= IndHK ρ

K , (4.66)

known as induction in stages [35]. Taken together, with K := {e} ≤ G < Aff(G) =: H ,
this shows the equivalence of GCNN feature maps on Aff(G) and G-regular feature fields
on Rd:

ρ
Aff(G)

reg
∼= Ind

Aff(G)
{e} ρ

{e}
triv

(regular repr. induction from trivial, Eq. (4.65) ) (4.67)

∼= Ind
Aff(G)
G IndG{e} ρ

{e}
triv

(induction in stages, Eq. (4.66) )

∼= Ind
Aff(G)
G ρGreg (regular repr. induction from trivial, Eq. (4.65) )

Since steerable convolutions are derived as the most general Aff(G)-equivariant integral
transforms between such feature spaces, they cover Aff(G) group convolutions as a special
case:

Theorem 4.5.1 (Aff(G) group convolutions as G-regular steerable convolutions).
The feature spaces L2

(
Aff(G),R

)
and L2

(
Rd,R|G|

)
of Aff(G) group convo-

lutions and steerable convolutions between Euclidean feature fields of regular
G-representation type, transforming according to ρAff(G)

reg and Ind
Aff(G)
G ρGreg, respec-

tively, are isomorphic.(
L2
(
Aff(G),R

)
, ρ

Aff(G)

reg

)
∼=
(
L2
(
Rd,R|G|

)
, Ind

Aff(G)
G ρGreg

)
(4.68)

The group convolutions and steerable convolutions between such feature spaces are
equivalent.

Proof: The equivalence of the feature spaces (representation spaces) follows from 1) the
induction in stages and 2) the induction of regular representations from trivial represen-
tations, as discussed above. That group convolutions and regular steerable convolutions
are equivalent follows from the observation that both are the most general integral trans-
forms between such feature spaces. □

A similar equivalence holds between convolutions on homogeneous spaces on the one hand,
described in Appendix F.2 and [162, 10], and steerable convolutions with quotient represen-
tation fields on the other hand.6

(4.69)

6In this case we use that G/K quotient representations (Def. B.5.20) are induced as ρG/K

quot
∼=

IndG
K ρK

triv
, such that ρAff(G)/K

quot
∼= Ind

Aff(G)
K ρK

triv
∼= Ind

Aff(G)
G IndG

K ρK
triv
∼= Ind

Aff(G)
G ρ

G/K

quot
∀K ≤ G.
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Generality: Bekkers [10][11] argues that “group convolutions are all you need” to con-
struct equivariant convolutional networks. Since group convolutions correspond specifically
to steerable convolutions with regular feature fields, this raises the question in how far more
general steerable convolutions with arbitrary field types are covered. In a nutshell, general
feature fields for compact G may always be embedded into regular feature fields – implying
that group convolutions are in this sense indeed sufficient to represent arbitrary steerable con-
volutions. However, an embedding of low-dimensional feature fields into high (or infinite)
dimensional regular fields would consume an excessive amount of computational resources.
Steerable convolutions, on the other hand, operate explicitly on feature fields in the relevant
(sub)representation spaces. We would therefore argue that steerable convolutions are all you
need, however, in this case without excess subrepresentations.

To make these arguments more precise, we make use of the Peter-Weyl theorem B.5.22,
which guarantees that the regular representation of a compact group G decomposes into
a direct sum of irreducible subspaces. Specifically, denoting the isomorphism classes of
irreps of G by Ĝ, one has ρGreg

∼=
⊕̂

j∈Ĝ
⊕mj

i=1 ρ
G
j , where mj ≥ 1 is the multiplicity of

order j irreps ρGj in the regular representation. The direct sum commutes with the induction
functor [55], such that regular feature fields decompose into a direct sum of irrep feature
fields:

Ind
Aff(G)
G ρGreg

∼= Ind
Aff(G)
G

⊕̂
j∈Ĝ

⊕mj

i=1
ρGj
∼=
⊕̂

j∈Ĝ

⊕mj

i=1
Ind

Aff(G)
G ρGj (4.70)

Note further that Theorem B.5.16 ensures the complete reducibility of finite dimensional
representations of unitary groups G into irreps, which implies that arbitrary (finite dimen-
sional) feature fields decompose in irrep fields as well. Since each irrep field appears in
regular feature fields with positive multiplicity mj ≥ 1, a sufficient number of such regular
fields allows to encode steerable feature fields of arbitrary (finite) type.

An example are scalar fields (trivial representation fields), which are in the regular represen-
tation embedded as constant functions on the group. However, instead of a single channel,
this embedded encoding would require |G| channels for finite and “infinite channels” for
non-finite groups. As a second example, consider vector fields of cyclic groups G = CN ,
corresponding to the two-dimensional CN -irrep of order one. These vector fields could in
principle be encoded into the N -dimensional regular representations of CN , however, with
a linearly growing memory cost O(N) and quadratically growing compute cost O(N2) in-
stead of the fixed cost for steerable CNNs. We see therefore that while all steerable feature
fields can in principle be embedded in regular feature fields, this approach might consume
an excessive amount of memory and compute resources. In addition, the user would have
to implement the embedding of general feature fields into regular fields manually to process
e.g. vector field valued data like optical flow with regular GCNNs.





CHAPTER 5

G-steerable convolution kernels

Theorem 4.3.1 proved that Aff(G)-equivariant convolutions generally require kernels
K : Rd → Rcout×cin satisfying the linear G-steerability constraint

K(gx) =
1

|det g |ρout(g)K(x) ρin(g)
−1 ∀ x ∈ Rd, g ∈ G , (5.1)

which corresponds to the commutativity of the following equivariance diagram for any g
in G:

Rd Rcout×cin

Rd Rcout×cin

g ·

K

1

|det g | ρout(g) [ · ] ρin(g)
−1

K

(5.2)

As visualized in Fig. 4.6, a G-steerable kernel at x ∈ Rd is intuitively thought of as summa-
rizing the field of input feature vectors around x such into an output feature vector at x that a
local G-transformation of the input feature field by g ∈ G results in a transformation of the
resulting feature vector by ρout(g).

This chapter investigates the nature of G-steerable kernels in greater detail, giving explicit
examples and discussing general solution strategies for the kernel constraint. Section 5.1
starts off with the general observation that G-steerable kernels form a vector space. Any
G-steerable kernel may consequently be parameterized and expanded in terms of a basis
of G-steerable kernels. To build a first intuition for the workings of steerable kernels, Sec-
tion 5.2 discusses the particularly simple and instructive example of reflection steerable ker-
nels. The resulting kernels, visualized in Table. 5.1, exhibit some type of reflection symme-
try, depending on the choice of input and output field types, shown in Fig. 5.1. Section 5.3
presents a generalized Wigner-Eckart theorem for G-steerable kernels, which gives a recipe
to construct complete steerable kernel bases from 1) harmonic basis functions (Figs. 5.2
or 5.3), 2) irrep endomorphisms (reduced matrix elements), and 3) Clebsch-Gordan coeffi-
cients. It is applied to derive SO(2)-steerable kernel bases, which are listed in Table 5.2.
Section 5.4 gives a brief overview of alternative approaches that were proposed to parame-
terize equivariant convolution kernels.

Before coming to our investigation of G-steerable kernels, we want to mention that the
G-steerability constraint may alternatively be derived in a more general differential geo-
metric setting, as done in Sections 9.2.3 and 12.2.1 below. Kernels are here interpreted as
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“local observers”, which measure a feature field relative to some choice of local reference
frame. G-steerability is in this setting required to ensure that convolutional weight shar-
ing is independent from particular choices of frames (gauges). This derivation emphasizes
a compelling analogy between steerable – or frame relativistic – kernels on the one hand
and relativistic laws of nature on the other hand: they are necessary for a group equivariant
network inference and a Poincaré equivariant evolution of physical systems, respectively.

Implementations of G-steerable kernels for arbitrary representations of any subgroups G ≤
O(3) and G ≤ O(2) are available as part of the escnn library by Cesa et al. [39].

5.1 The vector space of G-steerable kernels and steerable basis expansion

Steerable kernel spaces: A first observation that we can make to parameterize steerable
convolutions is that G-steerable kernels form a vector space and can therefore be expanded
in a steerable kernel basis. To see this, consider the set

K :=
{
K : Rd → Rcout×cin

}
(5.3)

of general, i.e. not necessarily G-equivariant, kernels. Equipped with the standard summa-
tion and scalar multiplication of functions, this set forms the usual vector space of convolu-
tion kernels. G-steerable kernels form the subset

KG
ρin,ρout

:=
{
K : Rd → Rcout×cin

∣∣∣K(gx) =
1

|det g | ρout(g)K(x) ρin(g)
−1 (5.4)

∀ x ∈ Rd, g ∈ G
}

of all convolution kernels that satisfy the G-steerability constraint in Eq. (5.1). As this con-
straint is linear, KG

ρin,ρout
turns out to be a linear vector subspace of K. It is therefore possible

to solve for a basis of G-steerable kernels, in terms of which Aff(G)-steerable convolutions
can be parameterized. Note that the reduced dimensionality of the (sub)space of G-steerable
kernels implies an improved parameter efficiency in comparison to conventional convolu-
tions.

The remainder of this section will briefly elaborate on implementation aspects of steerable
convolutions. We will thereby assume a basis of KG

ρin,ρout
to be given, deferring a discussion

of their construction to the following sections.

Steerable basis expansion: Working in the continuous setting, K and KG
ρin,ρout

are usu-
ally infinite dimensional function spaces, and would therefore require an infinite number of
trainable parameters. To obtain a finite steerable kernel basis {K1, . . . ,KN}, a given in-
finite basis of KG

ρin,ρout
needs to be discretized subject to some smoothness conditions. For

instance, SO(2)-steerable kernels can generally be expanded in terms of the circular har-
monics in Fig. 5.2 with an unconstrained radial part. A finite basis may then obtained by
restricting to 1) bandlimited circular harmonics up to some cutoff frequency and 2) smooth
radial parts, e.g. the smooth rings in different rows of Fig. 5.2. Another example are reflec-
tion steerable kernels, Table. 5.1, which could be sampled on a finite number of points of a
pixel grid.



5.1. The vector space of G-steerable kernels and steerable basis expansion 69

Given a finite steerable kernel basis {K1, . . . ,KN}, a generalG-steerable kernel is expanded
as

K =

N∑
i=1

wiKi , (5.5)

where the expansion coefficients {w1, . . . , wN |wi ∈ R} are the trainable parameters of the
kernel. An Aff(G)-steerable convolution operation is then just a conventional convolution
operation after an additional kernel expansion step:

Algorithm: Aff(G)-steerable convolution – forward pass

Input: G-steerable kernel basis {K1, . . . ,KN}
trainable weights {w1, . . . , wN}
input feature field Fin

Output: output feature field Fout

expand learned kernel: K ←
∑N

i=1 wiKi

convolve to obtain output feature field: Fout ← K ∗ Fin

return Fout

The cost of the additional kernel expansion operation is usually negligible compared to the
cost of the convolution operation itself: when performing convolutions in continuous space
(e.g. sampled at a point cloud), the continuous kernel needs to be expanded in some basis
anyways. If the kernel is instead sampled on a square pixel grid, it does not need to be
expanded, but is given directly as a parameter tensor of shape (s1, . . . , sd, cout, cin), where the
si ∈ N are the extensions of the kernel pixel grid in different spatial dimensions. Consider
furthermore a batch of B ∈ N feature fields, given as a tensor of shape (B,X1, . . . , Xd, cin),
whereXi ∈ N are the spatial extensions of the fields’ pixel grid. The computational cost of a
convolution scales then asO

(
B
∏
isiXi coutcin

)
.1 In comparison, a sampled steerable kernel

basis {K1, . . . ,KN} is represented by a tensor of shape (N, s1, . . . , sd, cout, cin), and the
kernel expansion scales as O

(
N
∏
isi coutcin

)
. Since N ≪ B

∏
iXi in usual applications,

the kernel expansion’s runtime is negligible in comparison to the convolution operation itself.
Note furthermore that the kernel expansion is only necessary during training – as soon as the
parameters are fixed (i.e. during test time), the kernel needs to be expanded only once and
one is left solely with the cost of the convolution operation.

Similar arguments hold for the backward pass of Aff(G)-steerable convolutions, where one
needs to backpropagate additionally through the kernel expansion to obtain loss gradients
∂L
∂wi

for the expansion coefficients wi:

1Here we are assuming a “spatial” implementation of the convolution operation, which is for the
typically small kernels of convolutional networks cheaper than an implementation in terms of fast
Fourier transforms.
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Algorithm: Aff(G)-steerable convolution – backward pass

Input: G-steerable kernel basis {K1, . . . ,KN}
trainable weights {w1, . . . , wN}
input feature field Fin

loss gradients w.r.t output feature field ∂L
∂Fout

Output: loss gradients w.r.t input feature field ∂L
∂Fin

loss gradients w.r.t trainable weights ∂L
∂wi

, i = 1, . . . , N

expand learned kernel: K ←
∑N

i=1 wiKi

backprop through convolution: ∂L
∂Fin

, ∂L
∂K
← conv_backprop

(
Fin,K,

∂L
∂Fout

)
backprop through kernel expansion: ∂L

∂wi
← ∂K

∂wi

∂L
∂K

= Ki
∂L
∂K

return loss gradients ∂L
∂Fin

and ∂L
∂wi

, i = 1, . . . , N

The backward pass conv_backprop through the convolution is hereby performed as usual,
i.e. it is given by convolutions of the output gradient field ∂L

∂Fout
with the (spatially reflected)

kernel and input field. This operation is again dominating the overall computational cost
in comparison to the cost of the kernel expansion and its backward pass. Note that the
backpropagation through Aff(G)-steerable convolutions does not need to be implemented
explicitly, since it is composed of differentiable primitives (kernel expansion and convolu-
tion), such that the backward pass is taken care of by differentiable programming languages.

We will in the following sections turn to analytical derivations of the steerable kernel bases
themselves, starting with the example of reflection steerable kernels.

5.2 Simple example – reflection steerable kernels

Reflection steerable kernels are the arguably simplest example of G-steerable kernels. The
reason for their simplicity is that the reflection group R = {e, s} consists of two elements,
the identity e and the reflection (Spiegelung) s, only. They are composed according to the
following simple multiplication table:

e s
e e s
s s e

(5.6)

The only nontrivial statement in this table is that two reflections annihilate, that is, s2 = e,
or, equivalently, s−1 = s. Here we assume the reflection group to be instantiated as a
subgroup R =: G ≤ GL(d) of the general linear group, such that it acts canonically on Rd
by reflecting points along some choice of reflection axis.

As a preparation for solving for reflection steerable kernels, Section 5.2.1 introduces some
group representations of the reflection group, corresponding to the field types shown in
Fig. 5.1. The steerable kernels that map between any pair of these field types are derived
in Section 5.2.2. The reflection symmetries of the resulting kernels, shown in Table 5.1,
guarantee the correct transformation behavior of feature fields and reduce the parameter cost
by approximately a half.



5.2. Simple example – reflection steerable kernels 71

Figure 5.1: Examples of reflection steerable feature field types and their respective induced repre-
sentation actions ▷ρ. Left: Scalar fields correspond to the trivial representation ρtriv, Eq. (5.7). The
induced representation acts by reflecting the field spatially, but leaves the scalar values themselves
invariant. Middle: The one-dimensional sign-flip representation ρsign, Eq. (5.9), is characterized by
ρsign(s) = −1. It models pseudoscalar fields, whose values are negated under reflections. Right: The
regular representation ρreg of the reflection group, Eq. (5.11), acts on two-dimensional feature vectors
by swapping their two values. Regular feature fields consist therefore of two channels and the induced
regular representation acts on such fields by 1) reflecting them spatially and 2) permuting their chan-
nels. Table 5.1 shows reflection steerable kernels that map between any pair of field types – the reader
should validate intuitively that the given kernels will indeed guarantee the correct transformation be-
havior of the output field when being applied to transformed input fields.

Empirical results for convolutions with reflection steerable kernels are reported in Tables 6.2,
6.4, 6.5 and 6.6 where the reflection group R = D1 is sometimes identified with the dihedral
group of order 1. Chapter 10 furthermore discusses orientation independent convolutions
on the (non-orientable) Möbius strip, which necessarily need to apply reflection steerable
kernels.

5.2.1 Reflection steerable feature fields

According to Def. 4.2.1, each feature field F : Rd → Rc is characterized by its geomet-
ric type – here a reflection group representation ρ : R → GL(c) which specifies how the
field’s channels transform under reflections. We introduce three field types, scalar fields,
pseudoscalar fields, and regular feature fields, which correspond to trivial, sign-flip and reg-
ular representations, respectively. The reader should check that the presented representations
are in accordance with Def. B.5.1 indeed group homomorphisms (Def. B.1.3), i.e. satisfy
ρ(gh) = ρ(g)ρ(h) ∀ g, h ∈ R.
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Scalar fields: The most basic example is the trivial representation

ρtriv : R → GL(1) ,
e 7→

[
1
]

s 7→
[
1
] , (5.7)

which assigns the 1×1 identity matrix to both group elements. It models scalar fields Ftriv :
Rd → R1, which reflect spatially, but whose scalar values stay invariant:[

s▷ρtriv
Ftriv

]
(x) = Ftriv(sx) (5.8)

Pseudoscalar fields: A second one-dimensional representation is the sign-flip representa-
tion

ρsign : R → GL(1) ,
e 7→

[
1
]

s 7→
[
91
] , (5.9)

which differs from the trivial representation by assigning the negative 1×1 identity matrix to
reflections. The corresponding pseudoscalar fields Fsign : Rd → R1 change their sign when
being reflected: [

s▷ρsign
Fsign

]
(x) = −Fsign(sx) (5.10)

Since the trivial representation and the sign-flip representation are one-dimensional, they are
both irreducible representations (irreps) of the reflection group. In fact, they are the only two
irreps of the reflection group.

Regular feature fields: As a finite group, R has a finite-dimensional (two-dimensional)
regular representation

ρreg : R → GL(2) ,

e 7→
[
1 0
0 1

]
s 7→

[
0 1
1 0

] , (5.11)

which represents the group elements by permutation matrices. By definition, the regular rep-
resentation models the permutation of the group elements in R when acting on themselves.
Compare this to the columns of the multiplication table in Eq. (5.6): the middle column can
be thought of as originating from the action of ρreg(e) on the leftmost column, while the
swapped group elements in the right column correspond to the permutation described by the
action of ρreg(s) on the left column.

The regular representation models regular feature fields Freg : Rd → R2 of R, which com-
prise two channels that are swapped under reflections:[

s▷ρreg
Freg
]
(x) = ρreg(s)Freg(sx) =

[
0 1
1 0

]
·
[
Freg,1
Freg,2

]
(sx) =

[
Freg,2
Freg,1

]
(sx) (5.12)

5.2.2 Reflection steerable convolutions

To solve for reflection steerable kernels for a given pair of input and output field type, con-
sider the general G-steerability constraint in Eq. (5.1). For the reflection group, several
things simplify:
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ρout
ρin trivial sign-flip regular

trivial

K11(sx) = K11(x) K11(sx) = −K11(x) K11(sx) = K12(x)     ,



sign-flip

K11(sx) = −K11(x) K11(sx) = K11(x) K11(sx) = −K12(x)     ,



regular

K11(sx) = K21(x) K11(sx) = −K21(x)
K11(sx) = K22(x)

K12(sx) = K21(x)








,

,


Table 5.1: Visualization of reflection-steerable kernels for all considered pairs of input and output
field types ρin and ρout and d = 2 spatial dimensions. In general, these kernels need to satisfy the
R-steerability kernel constraint K(sx) = ρout(s)K(x)ρin(s) where K : R2 → Rcout×cin . Each entry
of the table states the specific constraint for the corresponding input and output representations and
visualizes one exemplary steerable kernel. Note that the constraint binds the reflected kernel K(sx)
to a linear transformation of the non-reflected kernel K(x) by the input and output representation. It
results therefore in reflectional symmetries of the kernels.

1. reflections are isometries, that is, the volume scaling factor |det g | = 1 drops out.

2. the constraint needs to hold for any g ∈ R, however, there are only two elements e and
s, and the constraint is trivial for the former. We therefore only have to consider the
reflection g = s.

3. since reflections are their own inverse, i.e. s = s−1, we can replace ρin(s)
−1 with ρin(s).

Overall, we obtain the simplified reflection steerability constraint

K(sx) = ρout(s) ·K(x) ·ρin(s) ∀ x ∈ Rd , (5.13)

stating that the spatially reflected kernel on the l.h.s. equals the non-reflected kernel on the
r.h.s. after being left and right multiplied by the input and output representations, respec-
tively.

We will in the following solve this constraint for all nine pairs of field types. The resulting
kernels, all of which are in one or another sense symmetric under reflections, are visualized
in Table 5.1.
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scalar← scalar: Kernels K = [K11] : Rd → R1×1 which map between scalar fields
are required to satisfy the constraint[

K11

]
(sx) =

[
1
]
·
[
K11

]
(x) ·

[
1
]
=
[
K11

]
(x) ∀ x ∈ Rd . (5.14)

They are necessarily symmetric (invariant) under reflections; see the upper left entry
in Table 5.1.

sign-flip← scalar: The kernels K = [K11] : Rd → R1×1 which map a scalar field to a
sign-flip field need to satisfy[

K11

]
(sx) =

[
91
]
·
[
K11

]
(x) ·

[
1
]
= −

[
K11

]
(x) ∀ x ∈ Rd . (5.15)

This implies antisymmetric kernels as visualized in the middle row in the first col-
umn of Table 5.1.

regular← scalar: In order to map from a scalar field to a regular feature field one needs
to apply kernels of the form K = [K11, K21]

⊤ : Rd → R2×1, which map from
one input channel to two output channels. The demanded permutation of the output
channels is guaranteed if the kernel satisfies[

K11

K21

]
(sx) =

[
0 1
1 0

]
·
[
K11

K21

]
(x) ·

[
1
]
=

[
K21

K11

]
(x) ∀ x ∈ Rd . (5.16)

This constraint requires that the two channels contain kernels which are reflected
copies of each other, that is, K11(sx) = K21(x) for all x ∈ Rd (this already covers
the second line of the constraint in Eq. (5.16)). This case is visualized in the bottom
left entry of Table 5.1.

scalar← sign-flip: Kernels K = [K11] : Rd → R1×1 that map from sign-flip to scalar
fields are again antisymmetric since they need to satisfy the same constraint[

K11

]
(sx) =

[
1
]
·
[
K11

]
(x) ·

[
91
]
= −

[
K11

]
(x) ∀ x ∈ Rd (5.17)

like kernels which map in the opposite direction.

sign-flip← sign-flip: The kernels K = [K11] : Rd → R1×1 which preserve the trans-
formation behavior of sign-flip fields are symmetric since the two sign inversions in
the constraint[

K11

]
(sx) =

[
91
]
·
[
K11

]
(x) ·

[
91
]
=
[
K11

]
(x) ∀ x ∈ Rd (5.18)

cancel out.

regular← sign-flip: In the case of kernels K = [K11, K21]
⊤ : Rd → R2×1 which map

from sign-flip to regular feature fields, we get the constraint[
K11

K21

]
(sx) =

[
0 1
1 0

]
·
[
K11

K21

]
(x) ·

[
91
]
= −

[
K21

K11

]
(x) ∀ x ∈ Rd . (5.19)

The two lines imply each other, such that they can be summarized by the single
kernel constraint K11(sx) = −K21(x) ∀x ∈ Rd. This constraint requires that the
two channels of the kernel contain reflected, negated copies of each other; see the
visualization in the middle of the bottom row of Table 5.1.
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scalar← regular: The kernels which map regular feature fields to scalar fields have
two input channels and one output channel and are therefore of the form K =
[K11, K12] : Rd → R1×2. The constraint

[
K11 , K12

]
(sx) =

[
1
]
·
[
K11 , K12

]
(x) ·

[
0 1
1 0

]
=
[
K12 , K11

]
(x) , (5.20)

which can be reduced to the requirement K11(sx) = K12(x) ∀x ∈ Rd, again
demands that the two entries of the kernel contain reflected copies of each other.

sign-flip← regular: Mappings from regular feature fields to sign-flip fields utilize ker-
nels K = [K11, K12] : Rd → R1×2 that satisfy

[
K11 , K12

]
(sx) =

[
91
]
·
[
K11 , K12

]
(x) ·

[
0 1
1 0

]
= −

[
K12 , K11

]
(x) , (5.21)

or, equivalently, K11(sx) = −K12(x) ∀x ∈ Rd. As probably already expected,
they are made up from kernels whose two channels contain reflected, negated copies
of another.

regular← regular: Lastly, we consider kernels K =

[
K11 K12

K21 K22

]
: Rd → R2×2 which

map regular fields to regular fields and therefore have 2× 2 matrices as codomain.
Their constraint, coming from a left and right multiplication with the regular repre-
sentation, becomes[

K11 K12

K21 K22

]
(sx) =

[
0 1
1 0

]
·
[
K11 K12

K21 K22

]
(x) ·

[
0 1
1 0

]
=

[
K22 K21

K12 K11

]
(x) (5.22)

for any x ∈ Rd. This is equivalent to the two independent constraints

K11(sx) = K22(x) ∀x ∈ Rd (5.23)

and

K12(sx) = K21(x) ∀x ∈ Rd , (5.24)

which couple the four kernel entries such that there are two pairs of mutually re-
flected kernels. This case is visualized in the bottom right entry of Table 5.1.

While the derived results tell us how to map between individual feature fields, convolutional
networks typically operate on feature spaces that consist of multiple, potentially differing
feature fields. The kernels that map between these stacks of feature fields can be thought
of as being built from blocks which map between the individual fields. To give an example,
consider the case where both the input and output feature spaces contain one of the discussed
representations each, that is, ρin = ρout = ρtriv⊕ ρsign⊕ ρreg. The number of input and output
channels is then cin = cout = 1 + 1 + 2 = 4, such that the full kernel is of the form
K : Rd → R4×4. Since the input and output representations are defined as direct sums,
they are block diagonal. The full constraint decouples thus into nine independent constraints
between all pairs of individual input and output fields, which correspond in this case exactly
to the nine solutions presented above. The 4 × 4 entries of the full kernel will therefore be
required to have the same symmetries as the 4× 4 kernels which are visualized in Table 5.1
as a whole.
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5.3 A generalized Wigner-Eckart theorem for G-steerable kernels

Let G be a compact group. The Wigner-Eckart theorem for steerable kernels by Lang and
Weiler [173] and Cesa et al. [40], describes then the construction of a complete basis of G-
steerable kernels on G-orbits on Rd and which map between field types that are irreducible
representations. General G-steerable kernels – on the whole of Rd and which map between
arbitrary finite dimensional field types – are easily assembled from these elementary solu-
tions.

The ingredients from which the basis of G-steerable irrep kernels is constructed are

1. harmonic basis functions on G-orbits, e.g. the circular or spherical harmonics in
Figs. 5.2 and 5.3,

2. irrep endomorphisms, Def. B.5.9, which allow to steer the harmonics in a learned
manner, and

3. Clebsch-Gordan coefficients, Def. B.5.17, which determine the specific harmonics
that are consistent with an equivariant mapping between the irreducible input and
output field types.

While the harmonic basis and the Clebsch-Gordan decomposition are algebraically fixed, the
endomorphisms form a vector space and constitute the learnable parameters of the kernel.
They correspond to the reduced matrix elements in the original Wigner-Eckart theorem from
quantum mechanics.

The following two Sections 5.3.1 and 5.3.2 lay the foundation of the Wigner-Eckart theorem
by arguing that 1) the steerability constraint may always be restricted to individual G-orbits,
and 2) one may w.l.o.g. consider irreducible representations as field types. The theorem
itself is formulated in Section 5.3.3. Since a formal proof would require a deep dive into rep-
resentation theory, we omit it here and point the reader to the original publications [173, 40].
Instead, Appendix H discusses a succession of increasingly complex constraints, which in-
troduces the three ingredients and their role in steerable kernels step by step. Section 5.3.4
applies the theorem to derive SO(2)-steerable kernels. Considerations regarding the sam-
pling of continuous kernels on pixel grids are briefly discussed in Section 5.3.5.

5.3.1 Restriction to G-orbits

Inspecting the steerability constraint, we see that it relates kernel values at points x ∈ Rd to
those at any other point gx on the group orbit Gx = {gx | g ∈ G} ⊂ Rd; see Def. B.3.3 and
Fig. B.3. Values on different orbits are not related, such that we can focus on solving the
constraint on the individual orbits. By construction, the G-action is transitive (Def. B.3.8)
on the orbits, making them homogeneous G-spaces (Def B.3.11) – we will therefore from
now on consider G-steerable kernels K : X → Rcout×cin on homogeneous spaces X ⊂ Rd.

A common example for homogeneous spaces for SO(2)-steerable kernels are circles of dif-
ferent radii, visualized in Fig. 5.2. Similarly, forG = SO(3), we get (the origin and) spheres
of different radii as homogeneous spaces, allowing to solve for steerable kernels on S2 in-
stead of R3, as shown in Fig. 5.3.

While one can solve the constraint independently on the orbits, it may be desirable to obtain
a solution that is smooth when embedding the orbits in Rd. Cesa et al. [40] explain how this
smoothness can generally be achieved.
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Figure 5.2: Visualization of circular harmonics angular parts
(
cos(jϕ), sin(jϕ)

)
for different fre-

quencies j ≥ 0 (top row), modulated by different radial parts (left column) to form kernels
on R2 ∼= S1×R>0 ∪ {0}. The circular harmonics span the (real) irreducible subrepresentations of
the regular representation of SO(2), i.e. square integrable functions on the circle SO(2) ∼=top S

1.
The constant function for frequency zero corresponds to the one-dimensional trivial representation.
All other (real) irreps are two-dimensional and transform according to frequency j rotation matrices
(Eq. (5.33)). Any SO(2) or O(2)-steerable kernel can be expanded in terms of a subspace of cir-
cular harmonics as prescribed by the Wigner-Eckart theorem for G-steerable kernels [173, 40]; see
Tables 5.2 and 5.3.

5.3.2 Restriction to irrep fields

If the structure group G is compact, we can w.l.o.g. consider unitary representations; see
Appendix B.5.2. Theorem B.5.16 asserts the complete reducibility of finite unitary repre-
sentations (of any group) into a direct sum of irreps, while the Peter-Weyl theorem B.5.22
proves the same property for regular and quotient representations of compact groups. We
can for compact groups G furthermore drop the determinant factor |det g | = 1.

Assuming the complete reducibility of the field types from now on, we show that it is suf-
ficient to solve the kernel constraint for irreducible representations. Let Qin ∈ GL(cin) and
Qout ∈ GL(cout) be the change of basis matrices that decouple the field types ρin and ρout into
irreps, that is,

Qin ρin(g)Q
−1
in =

⊕
l∈Iin

ρl(g) and Qout ρout(g)Q
−1
out =

⊕
J∈Iout

ρJ(g) ,

(5.25)

where Iin and Iout are index sets of the irreps ρl and ρJ contained in ρin and ρout, respectively.
Left and right multiplying the kernel constraint with Qout and Q−1in , and inserting identities
of the form idRcout = Q−1outQout and idRcin = Q−1in Qin yields the equivalent constraint

Qout K(gx)Q−1in = Qout ρout(g)
[
Q−1outQout

]
K(x)

[
Q−1in Qin

]
ρin(g)

−1Q−1in

⇐⇒ Kirrep(gx) =
(⊕

J∈Iout
ρJ(g)

)
Kirrep(x)

(⊕
l∈Iin

ρl(g)
)−1

, (5.26)
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Figure 5.3: Visualization of (real) spherical harmonics
#»
Yj : S2 → R2j+1 (rows), where j ∈ N0, with

components Y m
j for−j ≤ m ≤ j (columns). The spherical harmonics span the (2j+1)-dimensional

irreducible representation ρj of SO(3) (Wigner D-matrices). They are the harmonic basis functions oc-
curring in the Peter-Weyl decomposition (Theorem B.5.22) of the quotient representation ρSO(3)/ SO(2)

quot

of SO(3) on SO(3)/ SO(2) ∼=top S
2. Any SO(3)-steerable kernel on R3 ∼= S2×R>0 ∪ {0} can be

constructed in terms of spherical harmonics angular parts, modulated by an unconstrained radial part
(the 3d analog of Fig. 5.2) [323].

for any x ∈ X and g ∈ G on the kernel Kirrep := Qout KQ
−1
in in the irrep basis. Since the

direct sum representations are block diagonal, the irrep kernel decomposes into |Iin| · |Iout|
blocks KJl

irrep : X → Rdim ρJ×dim ρl that are independently required to satisfy the kernel
constraint for irreps

KJl
irrep(gx) = ρJ(g)K

Jl
irrep(x) ρl(g)

−1 ∀ x ∈ X, g ∈ G . (5.27)
This decomposition into irreducible kernel blocks is visualized in the following equation:
KJ1l1

irrep KJ1l2
irrep . . .

KJ2l1
irrep KJ2l2

irrep . . .
...

...
. . .

(gx)
︸ ︷︷ ︸

Kirrep(gx)

=


ρ
J1
(g)

ρ
J2
(g)

. . .


︸ ︷︷ ︸⊕

J∈Iout
ρJ(g)


KJ1l1

irrep KJ1l2
irrep . . .

KJ2l1
irrep KJ2l2

irrep . . .
...

...
. . .

(x)
︸ ︷︷ ︸

Kirrep(x)


ρ
l1
(g)−1

ρ
l2
(g)−1

. . .


︸ ︷︷ ︸⊕

l∈Iin
ρl(g)

−1

Given a basis for irrep steerable kernelsKJl
irrep, the general steerable kernel basis is recovered

by inserting these solutions into the right blocks and undoing the change of basis. For the
remainder of this section, we will exclusively consider irrep fields ρin = ρl and ρout = ρJ ,
but drop the subscript “irrep” to reduce clutter. Note that, while the steerability constraint
may w.l.o.g. be solved in the irrep basis, the specific choice of basis matters as soon as we
apply nonlinear network operations.

5.3.3 Statement of the Wigner-Eckart theorem

This section states the Wigner-Eckart theorem for G-steerable kernels. It assumes some
familiarity with representation theoretic concepts that are introduced in Appendix B.5. The
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individual ingredients going into the construction of the theorem are motivated in a less
formal setting in Appendix H.

To formulate the theorem, we fix some notation. Let (ρj , Vj), j ∈ Ĝ, be the j-th order
real irreducible representation of G and assume a basis to be chosen, such that we can iden-
tify the representation space Vj with Rdimj , where dimj := dimVj . Denote the consid-
ered G-orbit by X ⊂ Rd and let

#»

Yji : X → Rdimj be the harmonic basis functions that
span the irrep subspaces Vji ∼= Vj , i = 1, . . . ,mj in the Peter-Weyl decomposition (The-
orem B.5.22) of L2

R(X) ∼=
⊕

j∈Ĝ
⊕mj

i=1 Vji. Consider the endomorphism space End(Vj)

of j-th order irreps (Def. B.5.9) and let cjr ∈ End(Vj), r = 1, . . . ,dimEnd(Vj), be any
basis of the endomorphism space. Let furthermore CGlJ : Vl ⊗ VJ →

⊕
j∈Ĝ

⊕mj,lJ

s=1 Vj
be the Clebsch-Gordan decomposition from Def. B.5.17, which decomposes the irrep tensor
product Vl ⊗ VJ back into irreducible subspaces, where irrep order j occurs with multi-
plicity mj,lJ . Denote the projection of Vl ⊗ VJ on the s-th irreducible subspace of order j
by CGlJ,js := projjs ◦CGlJ and its pseudoinvserse, which embeds that subspace into the
tensor product, by CG+

lJ,js.

Given the assumed identification of Vj with Rdimj , we can identify the endomorphisms cjr
with matrices in Rdimj × dimj and the Clebsch-Gordan projectors CGlJ,js with matrices in
Rdimj ×(dimJ diml). The pseudoinverses CG+

lJ,js are then R(dimJ diml)×dimj -matrices, which
turn out to be given by the transpose of the matrices representing CGlJ,js. Lastly, let vec :
RdimJ × diml → RdimJ · diml be the vectorization operator, which stacks the columns of a
dimJ ×diml-matrix into a dimJ ·diml-dimensional vector, and let unvec be its inverse.

Equipped with these prerequisites, we can state the Wigner-Eckart theorem for steerable
vectors in the formulation of Cesa et al. [40]:2

Theorem 5.3.1 (Wigner-Eckart theorem for G-steerable kernels). Let G ≤ GL(d) be
compact and consider a G-orbit X and irreducible field types ρin = ρl and ρout = ρJ .
The space of G-steerable irrep kernels

KG,X
ρl,ρJ

:=
{
KJl : X → RdimJ × diml

∣∣KJl(gx) = ρJ(g) ·KJl(x) ·ρl(g)−1 (5.28)

∀ x ∈ X, g ∈ G
}

on X is then spanned by basis kernels

KJl
srji = unvecCG+

lJ,js cjr
#»

Yji , (5.29)

that is,

KG,X
ρl,ρJ

= span
{
KJl
srji

∣∣ j ∈ Ĝ, s ≤ mj,lJ , i ≤ mj , r ≤ dimEnd(Vj)
}
. (5.30)

The following diagram visualizes the definition of the steerable basis:

X Rdimj Rdimj RdimJ · diml RdimJ × diml

#»
Yji

KJl
srji

cjr CG+
lJ,js unvec

(5.31)
2The formulation by Lang and Weiler [173] is equivalent, but differs in that it decomposes a tensor

product Vl ⊗ Vj into irreps VJ , instead of the decomposition of Vl ⊗ VJ into irreps Vj here.
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Proof: For a formal proof, we point the reader to the original publications Lang and Weiler
[173] and Cesa et al. [40]. A constructivistic motivation of the theorem is given in
Appendix H. □

A steerable kernel on Rd as a whole can be assembled from these solutions for the individual
G-orbits. Section 5.3.4 below solves for SO(2)-steerable kernels on R2 as a practically
relevant example application of the theorem.

Figure 5.4: Visualization of the selection
rules specifying which harmonics

#»
Yj may

map between SO(3)-irrep fields of orders l
and J . The irrep orders are color coded in
red (0), yellow (1), green (2), blue (3) and
violet (4).

Selection rules: Note that the Clebsch-Gordan
coefficients CGlJ,js are generally sparse in j – im-
plying that only certain harmonics frequencies j
are allowed to map between field types of irrep
orders l and J . This is a direct analog to the se-
lection rules in quantum mechanics, which restrict
the range of operators that may map between cer-
tain quantum states.

For instance, for G = SO(3), the Clebsch-
Gordan decomposition of Vl ⊗ VJ contains all of
the 2min(l, J)+1 irreps Vj with indices |l−J | ≤
j ≤ l + J . SO(3)-steerable kernels that map be-
tween fields of types Vl and VJ contain therefore
only harmonics

#»

Yj with frequencies in that range.
Fig. 5.4 visualizes the admissible transitions be-
tween different SO(3) field types.

5.3.4 SO(2) and O(2)-steerable kernels

To illustrate the practical use of the Wigner-Eckart theorem, we derive complete bases for
SO(2)-steerable irrep kernels on R2. The SO(2)-action partitions the plane into orbits,
which are the origin and rings at different radii. As the solutions at the origin are trivial
(they turn out to be intertwiners), we consider the case of orbits X ∼= S1 that are circles, that
is, we are interested in kernels with angular parts

KJl : S1 → RdimJ × diml such that KJl(gϕ) = ρJ(g)K
Jl(ϕ)ρl(g)

−1 (5.32)

for any ϕ ∈ S1 and g ∈ SO(2) .

Full kernels on R2 follow by expanding this angular steerable kernel basis with an uncon-
strained radial part.

The following paragraph lists the ingredients required by the Wigner-Eckart theorem. Subse-
quently, we put these ingredients together to construct steerable kernel bases. The complete
solution spaces of the steerability constraint for different SO(2)-irreps of orders l and J are
summarized in Table 5.2. Table 5.3 gives their analog for G = O(2).

List of ingredients: To construct the steerable kernel basis according to the Wigner-Eckart
theorem, we require the harmonics, endomorphism spaces and Clebsch-Gordan coefficients
for all SO(2)-irreps. The irreps of SO(2) are the trivial irrep (ρ0, V0) with V0 = R and
the two-dimensional irreps (ρj , Vj), j ≥ 1, with Vj = R2, whose actions are given by the
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identity matrix and frequency j rotation matrices, respectively:

ρ0(ϕ) = (1) and, for j ≥ 1, ρj(ϕ) =

(
cos(jϕ) − sin(jϕ)
sin(jϕ) cos(jϕ)

)
(5.33)

Their endomorphism spaces are
End(V0) = span(c01) and, for j ≥ 1, End(Vj) = span(cj1, cj2) (5.34)

with c01 = (1) with cj1 =

(
1 0
0 1

)
and cj2 =

(
0 91
1 0

)
.

The corresponding harmonics are the circular harmonics

#»

Y0(ϕ) = (1) and, for j ≥ 1,
#»

Yj(ϕ) =

(
cos(jϕ)
sin(jϕ)

)
(5.35)

that are visualized in Fig. 5.2. Note that we dropped the index i, which is possible since all
orders j occur with multiplicity mj = 1 in the Peter-Weyl decomposition.

The non-zero Clebsch-Gordan coefficients CGlJ are in matrix form given by:

l = J = 0: if both irreps are trivial, we have V0 ⊗ V0 ∼= V0 and CG00,01 = (1)

l = 0, J ≥ 1: if Vl is trivial and VJ is not, then V0 ⊗ VJ ∼= VJ and CG0J,J1 = idR2

l ≥ 1, J = 0: for non-trivial Vl and trivial VJ , we have Vl⊗V0 ∼= Vl and CGl0,l1 = idR2

l, J ≥ 1: for non-trivial irreps Vl and VJ , one has to distinguish three different cases.
The tensor product splits in all cases into multiple irreps, such that we need
to consider different values for the indices j and s in CGlJ,js.
J > l ≥ 1: in this case, Vl ⊗ VJ ∼= VJ−l ⊕ Vl+J with

CGlJ =

CGlJ,J−l,1

CGlJ,J+l,1

 =
1√
2


1 0 0 1
0 1 −1 0
1 0 0 −1
0 1 1 0

 . (5.36)

l > J ≥ 1: here, Vl ⊗ VJ ∼= Vl−J ⊕ Vl+J with

CGlJ =

CGlJ,l−J,1

CGlJ,l+J,1

 =
1√
2


1 0 0 1
0 −1 1 0
1 0 0 −1
0 1 1 0

 . (5.37)

l = J ≥ 1: if the irrep orders are equal, Vl ⊗ VJ ∼= V0 ⊕ V0 ⊕ Vl+J and

CGlJ =


CGlJ,0,1

CGlJ,0,2

CGlJ,l+J,1

 =
1√
2


1 0 0 1
0 1 −1 0
1 0 0 −1
0 1 1 0

 (5.38)

Note that these Clebsch-Gordan coefficients are ultimately the same, just
with the roles of l and J swapped in the first two cases and, in the third
case l = J , with the projection CGlJ,|l−J|,1 of Vl ⊗ VJ on V|l−J| = R2

split further into two projections CGlJ,0,1 and CGlJ,0,2 on the two separate
trivial subrepresentations V0 ⊕ V0 = R⊕ R.

All other Clebsch-Gordan coefficients are zero. As stated above, the pseudoinverses CG+
lJ,js

are given by transposition of CGlJ,js.
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Constructing solutions: With these ingredients we are ready to instantiate the SO(2)-
steerable bases with elements

KJl
srj := unvecCG+

lJ,js cjr
#»

Yj j ∈ Ĝ, s ≤ mj,lJ , r ≤ dimEnd(Vj) , (5.39)

where we dropped the index i as mentioned above. The following list constructs these bases
for all qualitatively different combinations of input and output irreps. The admissible circular
harmonic frequencies j are thereby determined by the non-zero Clebsch-Gordan coefficients
listed above. All results are summarized in Table 5.2.

V0← V0: Kernels K00 : S1 → R1×1 that map between scalar fields, i.e. l = J = 0,
have a one-dimensional (angular) basis

K00
110(ϕ) = unvecCG+

00,01 c01
#»

Y0 = unvec (1)(1)(1) = (1) , (5.40)

that is, they are necessarily rotation invariant. Fig. 16.5 visualizes such kernels
when adding a learnable radial part.

VJ≥1← V0: Convolutions that map scalar fields, l = 0, to non-trivial irrep fields,
J ≥ 1, rely on circular harmonics kernels KJ0 : S1 → R2×1 of frequency J .
Their two-dimensional (angular) basis is spanned by

KJ0
11J(ϕ) = unvecCG+

0J,J1 cJ1
#»

YJ (5.41)

= unvec

(
1 0
0 1

)(
1 0
0 1

)(
cos(Jϕ)
sin(Jϕ)

)
=

(
cos(Jϕ)
sin(Jϕ)

)
and

KJ0
12J(ϕ) = unvecCG+

0J,J1 cJ2
#»

YJ (5.42)

= unvec

(
1 0
0 1

)(
0 91
1 0

)(
cos(Jϕ)
sin(Jϕ)

)
=

(
9 sin(Jϕ)
cos(Jϕ)

)
.

Learned linear combinations of these two basis kernels correspond to a phase-
shifted and amplitude scaled circular harmonics pair of frequency J . Fig. 4.1 visu-
alizes the corresponding convolution for l = 0 and J = 3 (ignoring the learnable
radial part and with arbitrary phase-shift).

V0← Vl≥1: If we are, conversely, mapping an order l ≥ 1 irrep field to a scalar field,
J = 0, this requires kernels K0l : S1 → R1×2 that are spanned by the transpose of
the previous case, namely

K0l
11l(ϕ) = unvecCG+

l0,l1 cl1
#»

Yl (5.43)

= unvec

(
1 0
0 1

)(
1 0
0 1

)(
cos(lϕ)
sin(lϕ)

)
= (cos(lϕ) sin(lϕ))

and

K0l
12l(ϕ) = unvecCG+

l0,l1 cl2
#»

Yl (5.44)

= unvec

(
1 0
0 1

)(
0 91
1 0

)(
cos(lϕ)
sin(lϕ)

)
= (9 sin(lϕ) cos(lϕ))

Note that the unvec operator maps the vectorized kernel here to a 1 × 2 instead of
a 2× 1 kernel, as in the previous case.
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VJ≥1← Vl≥1: If both the input and output field correspond to non-trivial irreps,
J, l ≥ 1, we have kernels KJl : S1 → R2×2. As there are different Clebsch-
Gordan coefficients for J > l ≥ 1, l > J ≥ 1 and l = J ≥ 1, we need to
make the same distinction in our construction of the steerable basis. As it turns out,
the resulting solutions can ultimately be brought in the same form, which allows to
ignore this case distinction in the solution Table 5.2.

- J > l ≥ 1: In this case we have the two non-zero Clebsch-Gordan coefficients
CGlJ,J−l,1 and CGlJ,J+l,1 from Eq. (5.36) and the two endomorphism basis
elements cj1 and cj2 (for j = J − l or j = J + l) from Eq. (5.34). This results
in four (angular) basis kernels, two for the sum and two for the difference
frequencies:

KJl
11,J−l(ϕ) = unvecCG+

lJ,J−l,1 cJ−l,1
#»

YJ−l (5.45)

∝ unvec

1 0
0 1
0 91
1 0

(1 0
0 1

)(
cos((J − l)ϕ)
sin((J − l)ϕ)

)

=

(
cos((J − l)ϕ) 9 sin((J − l)ϕ)
sin((J − l)ϕ) cos((J − l)ϕ)

)

KJl
12,J−l(ϕ) = unvecCG+

lJ,J−l,1 cJ−l,2
#»

YJ−l (5.46)

∝ unvec

1 0
0 1
0 91
1 0

(0 91
1 0

)(
cos((J − l)ϕ)
sin((J − l)ϕ)

)

=

(
9 sin((J − l)ϕ) 9 cos((J − l)ϕ)
cos((J − l)ϕ) 9 sin((J − l)ϕ)

)

KJl
11,l+J(ϕ) = unvecCG+

lJ,l+J,1 cl+J,1
#»

Yl+J (5.47)

∝ unvec

0 1
1 0
1 0
0 91

(1 0
0 1

)(
cos((l + J)ϕ)
sin((l + J)ϕ)

)

=

(
cos((l + J)ϕ) sin((l + J)ϕ)
sin((l + J)ϕ) 9 cos((l + J)ϕ)

)

KJl
12,l+J(ϕ) = unvecCG+

lJ,l+J,1 cl+J,2
#»

Yl+J (5.48)

∝ unvec

0 1
1 0
1 0
0 91

(0 91
1 0

)(
cos((l + J)ϕ)
sin((l + J)ϕ)

)

=

(
9 sin((l + J)ϕ) cos((l + J)ϕ)
cos((l + J)ϕ) sin((l + J)ϕ)

)
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- l > J ≥ 1: Here we have the same two-dimensional endomorphism basis from
Eq. (5.34) but other Clebsch-Gordan coefficients, now from Eq. (5.37). As
CGlJ,l+J,1 occurred already before, we will obtain the same two basis kernels
KJl

11,l+J and KJl
12,l+J from them. From CGlJ,l−J,1 we get the other two basis

elements:

KJl
11,l−J(ϕ) = unvecCG+

lJ,l−J,1 cl−J,1
#»

Yl−J (5.49)

∝ unvec

1 0
0 91
0 1
1 0

(1 0
0 1

)(
cos((l − J)ϕ)
sin((l − J)ϕ)

)

=

(
cos((l − J)ϕ) sin((l − J)ϕ)

9 sin((l − J)ϕ) cos((l − J)ϕ)

)
=

(
cos((J − l)ϕ) 9 sin((J − l)ϕ)
sin((J − l)ϕ) cos((J − l)ϕ)

)

KJl
12,l−J(ϕ) = unvecCG+

lJ,l−J,1 cl−J,2
#»

Yl−J (5.50)

∝ unvec

1 0
0 91
0 1
1 0

(0 91
1 0

)(
cos((l − J)ϕ)
sin((l − J)ϕ)

)

=

(
9 sin((l − J)ϕ) cos((l − J)ϕ)
9 cos((l − J)ϕ) 9 sin((l − J)ϕ)

)
= −

(
9 sin((J − l)ϕ) 9 cos((J − l)ϕ)
cos((J − l)ϕ) 9 sin((J − l)ϕ)

)
The last equalities bring the basis elements in a different form, emphasizing
that KJl

11,l−J = KJl
11,J−l agrees with the previous result, and that KJl

12,l−J =

−KJl
12,J−l is the negative of what we had before. Overall, this implies that

these kernels span the same basis as in the previous case J > l ≥ 1, such that
they don’t need to be distinguished further.

- l = J ≥ 1: If the irrep orders are equal, there are three invariant subspaces in the
decomposition of their tensor product, and accordingly three components in
the Clebsch-Gordan coefficients in Eq. (5.38). The one corresponding to the
sum frequency, CGlJ,l+J,1, is again the same as before, and yields therefore
the same two basis kernels KJl

11,l+J and KJl
12,l+J . For the other two Clebsch-

Gordan coefficients CGlJ,0,1 and CGlJ,0,2 we get two more basis elements:

KJl
110(ϕ) = unvecCG+

lJ01 c01
#»

Y0 ∝ unvec

1
0
0
1

 (1) (1) (5.51)

=

(
1 0
0 1

)
=

(
cos(0ϕ) sin(0ϕ)
sin(0ϕ) 9 cos(0ϕ)

)
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KJl
120(ϕ) = unvecCG+

lJ02 c01
#»

Y0 ∝ unvec

 0
91
1
0

(1)(1) (5.52)

=

(
0 91
1 0

)
=

(
9 sin(0ϕ) 9 cos(0ϕ)
cos(0ϕ) 9 sin(0ϕ)

)
The last equalities are again written to emphasize that these solutions turn out
to be special cases of KJl

11,J−l and KJl
12,J−l for J = l.

Solution tables: The derived solutions of the SO(2)-steerability constraint for irrep fields
are summarized in Table 5.2.

Special Orthogonal Group SO(2)

out
in V0 Vl, l ≥ 1

V0

[
1
] [

cos(lϕ) sin(lϕ)
]
,
[
9 sin(lϕ) cos(lϕ)

]

VJ ,

J ≥ 1

[
cos(jϕ)
sin(jϕ)

]
,[

9sin(jϕ)
cos(jϕ)

]
[
cos

(
(j−l)ϕ

)
9sin

(
(j−l)ϕ

)
sin

(
(j−l)ϕ

)
cos

(
(j−l)ϕ

)],[9 sin((j−l)ϕ) 9cos
(
(j−l)ϕ

)
cos

(
(j−l)ϕ

)
9sin

(
(j−l)ϕ

)],[
cos

(
(j+l)ϕ

)
sin

(
(j+l)ϕ

)
sin

(
(j+l)ϕ

)
9cos

(
(j+l)ϕ

)],[9 sin((j+l)ϕ) cos
(
(j+l)ϕ

)
cos

(
(j+l)ϕ

)
sin

(
(j+l)ϕ

)]
Table 5.2: Bases for the angular parts of SO(2)-steerable kernels satisfying the irrep steer-
ability constraint in Eq. (5.32). The SO(2)-irreps (ρj , Vj) are given by Eq. (5.33). General
SO(2)-steerable kernels on R2 follow by adding an unconstrained radial part.

Table 5.3 gives analogous solutions for O(2)-steerable irrep kernels, derived originally
by Weiler and Cesa [322]. In contrast to the SO(2) case, there is an additional sign-flip
irrep of O(2) and the higher order irreps involve an additional reflection action. Specifically,
parameterizing O(2) as

O(2) =

{(
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)(
1 0
0 s

) ∣∣∣∣ϕ ∈ [0, 2π), s ∈ {±1}
}
, (5.53)

where the additional parameter s models reflections, the irreps are given by:
ρ0(ϕ, s) = 1, ρsign(ϕ, s) = s (5.54)

and, for j ≥ 1, ρj(ϕ, s)

(
cos(jϕ) − sin(jϕ)
sin(jϕ) cos(jϕ)

)(
1 0
0 s

)
A major difference to SO(2) is that the endomorphism spaces of O(2)-irreps are all one-
dimensional and consist of scaled identity matrices (homothetys). As a result, all bases
involving higher order harmonics are of half the dimensionality as in the case of SO(2).

5.3.5 Kernel sampling and anti-aliasing:

Feature fields and kernels are in practice commonly sampled on a pixel grid or evaluated
at a finite set of sampling points. To prevent aliasing effects, it is necessary to bandlimit
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Orthogonal Group O(2)

out
in V0 Vsign Vl, l ≥ 1

V0

[
1
]

∅
[
9 sin(lϕ) cos(lϕ)

]
Vsign ∅

[
1
] [

cos(lϕ) sin(lϕ)
]

VJ ,

J ≥ 1

[
9sin(Jϕ)

cos(Jϕ)

] [
cos(Jϕ)

sin(Jϕ)

] [
cos

(
(J 9l)ϕ

)
9sin

(
(J 9l)ϕ

)
sin

(
(J 9l)ϕ

)
cos

(
(J 9l)ϕ

)
]
,

[
cos

(
(J+l)ϕ

)
sin

(
(J+l)ϕ

)
sin

(
(J+l)ϕ

)
9cos

(
(J+l)ϕ

)
]

Table 5.3: Bases for the angular parts of O(2)-steerable kernels satisfying the irrep steer-
ability constraint forG = O(2). The O(2)-irreps are defined in Eq. (5.54). As the endomor-
phism spaces End(Vj) for j ≥ 1 are for O(2) only one-dimensional, the dimensionalities of
the kernel spaces such irrep orders are reduced by half in comparison to the SO(2) solutions.
General O(2)-steerable kernels on R2 follow by adding an unconstrained radial part.

the continuous kernel before sampling it. This is luckily easily possible since our steerable
kernel bases in Eq. (5.30) are already defined in terms of a harmonic (Fourier) basis, i.e.
functions of a certain frequency.

Specifically for G = SO(d) or O(d), Weiler et al. [324] proposed to use a bandlimiting
heuristic with a radially dependent cutoff frequency, allowing for higher order harmonics on
orbits of larger radius only. This strategy was empirically shown to reduce the numerical
errors in the analytically proven G-equivariance of steerable convolutions. Cesa et al. [40]
furthermore discuss an adaptation of the Wigner-Eckart theorem for steerable kernels that
allows for solutions that are smooth across orbits.

5.4 Alternative approaches to construct steerable kernels

For completeness, this section mentions alternative approaches to parameterize equivariant
convolution kernels or solve the steerability constraint.

Heuristic approaches: While the vast majority of group equivariant CNNs relies implic-
itly on steerable kernels, most network architectures were proposed heuristically instead of
being derived from first principles. For instance, Worrall et al. [335] proposed harmonic net-
works, which apply circular harmonic kernels to map between SO(2)-irrep fields, Thomas
et al. [301] proposed tensor field networks, which map via spherical harmonics between
SO(3)-irrep fields, and Schütt et al. [263] construct their O(3)-invariant Schnet by applying
isotropic kernels. Similarly, many authors, e.g. [195, 196, 71, 358], observed that apply-
ing G-transformed copies of kernels to a signal results in an equivariant response – which
corresponds to group convolutions or convolutions between regular feature fields.

The difference to steerable CNNs is that these approaches do not derive the kernels from
a symmetry constraint, but merely observe that the proposed construction yields equivari-
ant responses. They are in particular not able to prove a notion of completeness of their
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kernel space – in fact, it happens commonly that the authors parameterize only a sub-
space of steerable kernels that would be consisting with the feature spaces’ transformation
laws [8, 232, 339]. Steerable CNNs allow furthermore to classify the zoo of equivariant
models in terms of feature field types.

Group convolutions: Many equivariant convolutional networks apply group convolutions,
which were in Section 4.5 shown to be equivalent to steerable convolutions between regular
feature fields. Convolution kernels (and feature fields) are in this setting viewed as uncon-
strained functions on the group, e.g. k : Aff(G)→ R. While this seems easier than imple-
menting regular representation constrained steerable kernels, the complexity is here hidden
in the definition of the group convolution operation itself, i.e. in Eq. (4.64).

We note that harmonic basis functions were prior to their use in steerable CNNs already
utilized to parameterize group convolution kernels [324].

Expansion in harmonic basis functions: The G-steerability constraint in its current form
was first derived by Weiler et al. [323], who considered G = SO(3). The authors observed
that the constraint may be restricted to spherical shells with an unconstrained radial part,
which corresponds to the restriction toG-orbits from Section 5.3.1. Considering irrep fields,
they found a spherical harmonics basis after applying a Clebsch-Gordan decomposition as
in the Wigner-Eckart theorem for steerable kernels. Weiler and Cesa [322][38] extended this
approach to arbitrary field types by introducing the irrep decomposition of kernels that was
described in Section 5.27. Focusing on subgroups G ≤ O(2), the kernels were expanded in
terms of circular harmonics, Fig. 5.2, and the authors found the solution Tables 5.2 and 5.3,
as well as their analogs for cyclic and dihedral groups. Lang and Weiler [173] formalized
these insights in terms of the Wigner-Eckart theorem for steerable kernels. This theorem
was implemented by Cesa et al. [40][39], who adapted the theory such that the individual
solutions on G-orbits vary smoothly across orbits.

Lie algebra representations: de Haan et al. [67] observed that it is already sufficient to
satisfy the steerability constraint for the generators of the group. They reformulate the con-
straint accordingly in terms of Lie algebra representations and solve it symbolically with the
help of a computer algebra system, again finding selection rules on harmonic subspaces.

Steering from orbit representatives: Since the G-steerability constraint relates kernel
values on each G-orbits, the full kernel can be reconstructed by steering values from some
choice of orbit representatives (Def. B.3.5) [56]. Specifically, let G\Rd be the quotient
space (Def. B.3.4) of Rd by the left G-action, consisting of all possible G-orbits, let
r : G\Rd → Rd be a choice of orbit representatives and let gr,x ∈ G be any group ele-
ment satisfying gr,xr(G.x) = x. Then, any G-steerable kernel K : Rd → Rcout×cin satisfies
for any x ∈ Rd

K(x) = K
(
gr,xr(G.x)

)
=

1

|det gr,x|
ρin

(
gr,x
)
K
(
r(G.x)

)
ρout

(
gr,x
)−1

, (5.55)

implying that it is possible to reconstruct the full kernel from its restriction

K
∣∣
r(G\Rd)

: r(G\Rd)→ Rcout×cin (5.56)

to orbit representatives by steering it via gr,x. The restricted kernel is still required to satisfy
the reduced steerability constraint

K
∣∣
r(G\Rd)

(r) =
1

|deth|ρin(h)K
∣∣
r(G\Rd)

(r) ρout(h)
−1 (5.57)
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for any r ∈ r(G\Rd) and any h ∈ Stabr , where Stabr ≤ G is the stabilizer subgroup
(Def. B.3.6) for r.3

We want to mention that this approach is problematic if the kernel is to be sampled, since
knowledge about the specific harmonics (frequency components) is required to prevent alias-
ing effects [324, 323, 322].

Numerical solutions: Assume that the structure group G is finite, and that the kernel is
sampled at a finite number of points, the set of which is invariant under the G-action. The
kernel constraint becomes then a (finite) system of linear equations, which can be solved
numerically. Cohen and Welling [53] used this approach to solve for D4 (dihedral group) or
C4 (cyclic group) steerable kernels on a square grid of s×s pixels.

MLP parametrizations: As an alternative to solving the steerability constraint, steerable
kernels may be parameterized implicitly by means of G-equivariant MLPs (fully connected
networks), mapping from Rd to Rcout·cin ∼= Rcout×cin and satisfying the kernel constraint by
construction. Finzi et al. [91] used a similar approach to parameterize regular group convo-
lutional kernels.4 A thorough investigation of (non-steerable) MLP-parameterized kernels is
found in [250].

3This constraint makes the construction in particular independent from the specific choice of gr,x.
4Since MLPs map between vector spaces, Finzi et al. [91] would parameterize a group convo-

lutional kernel k : Aff(G)→ R in terms of a kernel kLie : aff(G)→ R on the group’s Lie algebra,
associating the two via the Lie exponential and logarithmic map. Our formulation does not require this
extra step since steerable kernels K : Rd → Rcout×cin already map between vector spaces.



CHAPTER 6

Empirical evaluation of steerable CNNs

This chapter investigates the properties and design choices of steerable CNNs empirically,
thereby identifying general trends and caveats when working with equivariant models. In
a nutshell, equivariant models are characterized by an enhanced data efficiency and con-
vergence rate, leading to a significantly improved performance in comparison to their non-
equivariant counterparts. Some care has to be taken when designing the model architecture,
since for instance too much invariance or an unsuitable choice of field types or steerable non-
linearities may crucially impair the results. The following list gives a high level overview of
our findings.

Generalization: Section 6.1 presents experiments that measure the generalization of steer-
able CNNs over group orbits by training on data in a fixed representative pose and
testing over all other poses on the orbit. In theory, equivariant CNNs are guaranteed
to generalize perfectly over orbits, i.e. achieve the same result for any transformed
pose of a feature field. This guarantee holds indeed if the numerical discretization
of the continuous model is invariant under the symmetry group action, but may be
slightly broken if this is not the case (e.g. for continuous rotations on a pixel grid).
Numerically broken equivariance is easily restored via data augmentation over the
orbit. While conventional CNNs can also learn to be equivariant when being trained
with augmentation, this requires additional learning capacity from them, such that
they perform significantly worse.

Data efficiency and convergence: That equivariant models generalize their inference over
group orbits leads to an improved data efficiency and convergence in comparison to
non-equivariant models. Section 6.2 demonstrates this claim empirically by training
models with different levels of equivariance on varying dataset sizes and observ-
ing that equivariant models on small datasets may achieve better results than non-
equivariant models on significantly larger datasets. This is of particular importance
in settings where data is scarce or expensive to collect, as is for instance the case with
some medical imaging tasks.

Choice of symmetry group and group restriction: The performance of an equivariant model
depends heavily on its equivariance group and the level of symmetries present in
the data: too little equivariance does not make use of all available prior knowledge,
while too much equivariance overconstraines the model, forcing it to generalize over
transformations that are not respected by the ground truth itself. Section 6.3 presents
experiments which vary the levels of symmetries in the data and models, and inves-
tigates the interplay of the two. We experiment additionally with group restricted
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models, whose overall equivariance is adapted to the global symmetries of the data,
but whose initial layers have a larger equivariance group, which allows them to ex-
ploit local symmetries. These models are consistently achieving the best results.

Drop-in replacement for conventional convolutions: As many contemporary signal process-
ing pipelines are based on convolutional networks, practitioners may be interested in
how far these pipelines are compatible with steerable convolutions. Our experiments
in Section 6.4 take established image classifiers, replace their conventional with steer-
able convolutions, and train them subsequently with the original training procedure
and choice of hyperparameters. The equivariant models significantly outperform their
non-equivariant baselines, which suggests that steerable convolutions can be readily
used as drop-in replacements of conventional convolutions.

Natural image datasets: The above mentioned experiments from Section 6.4 are performed
on natural image datasets, which are characterized by a global rotational alignment
due to a preferred gravity direction. Their results show therefore additionally that
steerable convolutions yield substantial gains even if only local rotational symmetries
are present in the data.

Field type and nonlinearity benchmarking: Section 6.5 presents a benchmarking study of
the design choices of steerable CNNs, covering different symmetry groups G ≤
O(2), G-representations as field types, G-equivariant nonlinearities and G-invariant
maps for a pose-independent classification. Table 6.6 summarizes the results on three
transformed MNIST datasets with different levels of symmetries. Overall, we find
that group or quotient space convolutions, corresponding to regular or quotient repre-
sentations of finite subgroups of O(2), achieve the best performance. An alternative
are models whose field types are O(2) or SO(2)-irreps. These models are continu-
ously rotation equivariant and have lower-dimensional feature vectors, however, their
test errors are consistently higher than those of the regular or quotient representation
based models. The best results among these models are achieved by learned gated
nonlinearities [323].

Most of the results presented in this chapter were originally published by Weiler and Cesa
[322], while the generalization experiments in Section 6.1 are inspired by Weiler et al. [324].
Chapter 10 presents additional empirical results for the analog of Euclidean reflection steer-
able CNNs on a Möbius strip, investigating in particular the performance of the field types
from Fig. 5.1. Before coming to the actual experiments, the next two paragraphs describe
the datasets and models that are used.

Datasets: All of our experiments are run on image datasets, i.e. signals on R2, which is
a practically relevant setting and is in contrast to higher dimensionalities computationally
manageable. We focus on the supervised classification setting, which is computationally
cheaper and easier to optimize than other tasks. The insights should qualitatively generalize
to signals on higher dimensional spaces, to point cloud instead of pixel grid discretizations,
and other learning tasks beyond classification.1 A list of papers running experiments on
Euclidean spaces of other dimensionalities and using other signal discretizations is found
in Table 14.1. Literature using steerable CNNs for other learning tasks, like generative
modelling, reinforcement learning or tracking was listed in the paragraph “Applications &
literature review” in the introductory Chapter 1.

More specifically, we are running many experiments on G-transformed variants of the
MNIST dataset, whereG is either of the trivial group {e}, the reflection groupR, the rotation

1For instance, fully convolutional image segmentation is equivalent to a sliding window pixel clas-
sification [189].
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layer output features

network input 1 scalar field

conv block (7×7, pad 1) 16 regular fields
conv block (5×5, pad 2) 24 regular fields
max pooling (2×2) 24 regular fields
conv block (5×5, pad 2) 32 regular fields
conv block (5×5, pad 2) 32 regular fields
max pooling (2×2) 32 regular fields
conv block (5×5, pad 2) 48 regular fields
conv block (5×5, pad 0) 64 regular fields

G-invariant projection 64 scalar fields
R2 average pooling 64 scalars
fully connected 64 scalars
fully connected + softmax 10 scalars

Table 6.1: Basic model architecture from
which all models for the G-MNIST exper-
iments in Sections 6.1, 6.2, 6.3 and 6.5. are
derived. Each convolution block consists
of a convolution layer, batch-normalization
and a nonlinearity. The feature field types
are in the first three sections regular rep-
resentations of different discrete subgroups
of O(2), while the hyperparameter bench-
mark experiment in Section 6.5 uses the
representations listed in Table 6.6. The first
fully connected layer is followed by batch-
normalization and ELU.

group SO(2) or the orthogonal group O(2). MNIST has the advantage that the level of sym-
metries in the dataset is well controllable since most digits appear in an upright rotation and
have a preferred chirality (one would not use rotations or reflections for data augmentation
in the original MNIST dataset). This is in contrast to e.g. natural images, whose statistics
are usually reflection invariant. Following the construction of the official rotated MNIST
dataset, we split the G-MNIST datasets into a training set consisting of 12000 images and
test on the remaining 50000 images.

The experiments in Section 6.4 are conducted on CIFAR-10, CIAFAR-100 and STL-10,
all of which are datasets of natural images. They show a larger intra-class variability than
MNIST, have, in the case of CIFAR-100 more classes, and, in the case of STL-10 a higher
spatial resolution of 96×96 pixels.

Models: All of the experiments on the G-MNIST datasets rely on models that are vari-
ations of the architecture in Table 6.1. This baseline model is group convolutional, with
feature vectors in R16 that transform according to the regular C16-representation; see
Def. B.5.18 and Remark B.5.19. Regular representations act by permuting the |G| feature
vector entries according to the group’s binary operation, as exemplified for C4 in Table. B.1.
Variations of this model that use other field types have their multiplicities of feature fields
scaled such that the total number of model parameters is approximately held constant – de-
pending on the parameter efficiency of the model, this leads to a different total number of
channels. All experiments in Sections 6.1 - 6.4 stick with regular representations of different
cyclic and dihedral groups CN and DN ,2 while the variants in Section 6.5 adapt the field types
as reported in Table 6.6. All permutation representation based networks, i.e. all regular and
quotient representation based models, apply element-wise ELU nonlinearities [50], while
the irrep based models apply different types of norm-nonlinearities or gated nonlinearities;
see Section 4.3.3. Aff(G)-invariant models apply some G-invariant projection operation
to scalar fields after the last convolution, which is followed by spatial average pooling, to
produce invariant features for classification.

The models for CIFAR-10, CIFAR-100 and STL-10 in Section 6.4 are based on WideRes-
Nets [344], whose conventional convolutions are replaced with regular representation steer-
able convolutions. The numbers of feature fields are thereby either adapted to match the

2The dihedral groups DN comprise N rotations in two reflections each, implying that D1 = R is
the reflection group.

https://sites.google.com/a/lisa.iro.umontreal.ca/public_static_twiki/variations-on-the-mnist-digits
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{e}-MNIST train set R-MNIST train set

vanilla CNN R-steerable vanilla CNN R-steerable

original test set 0.87± 0.05 0.98± 0.09 1.61± 0.08 0.96± 0.05

reflected test set 61.49± 0.91 0.98± 0.09 1.65± 0.12 0.96± 0.05

Table 6.2: Test errors of conventional and reflection steerable CNNs on differently reflected training
and testing datasets. {e}-MNIST refers to a training dataset with digits in their original orientation,
while R-MNIST applies (random) reflectional data augmentation during training. The “original test
set” is again in the original orientation, while all digits in the reflected test set are (non-randomly)
reflected. As expected, vanilla CNNs do not generalize over reflections, while R-steerable CNNs do.
When being trained on reflection augmented digits, vanilla CNNs achieve a worse performance than
equivariant models.

number of parameters of the original model (resulting in more channels), or to match the
original models’ number of channels (resulting in fewer parameters).

All models are implemented using the PyTorch library e2cnn [38] or its successor
escnn [39].

6.1 Generalization over group orbits

The central idea of equivariant CNNs is that they generalize whatever they learn over their
group orbits; see Fig. 4.2. Here we investigate the generalization capabilities of steerable
CNNs by training a classifier network on a dataset of images in a fixed pose, but testing it
on datasets that contain images in another, transformed pose on the group orbit, measuring
how the classification error depends on the particular dataset transformation. As expected,
steerable CNNs are found to generalize over group orbits, while non-equivariant CNNs do
not. Non-equivariant CNNs that are trained with data augmentation are (more or less) gen-
eralizing over the augmentation orbit as well, however, as they explicitly need to learn the
mapping for each pose, their performance is significantly worse.

We experiment in the following with reflection and rotation symmetries on square pixel grids.
The qualitative difference between these two cases is that reflections are exact symmetries
of the pixel grid, while the rotational symmetries are broken by this discretization. We
disregard the translational generalization of steerable CNNs, since it is equivalent to that
of conventional CNNs and was already investigated by Azulay and Weiss [6] – pooling
layers are found to break translation equivariance, which can be alleviated via the approaches
suggested in [348, 336]. An animation of the generalization of a rotation equivariant model
is found at https://github.com/QUVA-Lab/e2cnn#demo.

Exact reflection symmetries: To measure the generalization of vanilla CNNs and steer-
able CNNs over reflections, we train and test them on differently transformed MNIST vari-
ants as summarized in Table 6.2.

Training on {e}-MNIST (left two columns) means that all digits in the training set are pre-
sented in their original orientation. When testing such trained models on non-reflected digits
(“original test set”), vanilla CNNs have a slight advantage over reflection invariant CNNs,

https://github.com/QUVA-Lab/e2cnn#demo
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Figure 6.1: Rotational generalization of a conventional CNN (blue) and a rotation steerable CNN
(orange) on a square pixel grid. The models are either trained on digits that are aligned upright ({e}-
MNIST, solid lines) or augmented with random rotations (SO(2)-MNIST, dashed lines). As expected,
the vanilla CNN does not generalize over rotations. The theoretically predicted C16-equivariance of
the steerable CNN is in practice broken to C4-equivariance since the pixel grid is only invariant under
rotations by multiples of π

2
. While the test error for π

4
is far from random chance (mind the logarithmic

y-axis), the rotational equivariance of the model can be improved further by using rotational data
augmentation. The error rates of both models are approximately rotation independent when being
trained on rotation augmented digits, but the error rate of the equivariant model is approximately half
of that of the vanilla CNN.

since the latter are unable to leverage any information about the digit orientation.3 However,
when being tested on reflected digits (“reflected test set”), the vanilla CNN’s performance
degrades significantly, since it never saw such samples during training. In contrast, the re-
flection steerable CNN generalizes perfectly to the unseen digit orientations, i.e. it achieves
exactly the same test error and standard deviation on both test sets.

If the learning task is a-priori known to be reflection equivariant, the usual approach is to
train the conventional CNN with reflectional data augmentation, denoted here as R-MNIST.
Augmentation leads to an approximately similar performance of the conventional CNN on
both test set orientations. However, due to the greater intra-class variability of this classi-
fication task, the performance is quite a bit worse as compared to training on non-reflected
digits. Reflection steerable CNNs are by design equivariant (here invariant), and therefore
not affected at all by the reflectional augmentation. The test error of the reflection steerable
CNNs is lower than that of augmentation trained vanilla CNNs, since they do not explicitly
need to learn to be equivariant.

Numerically broken rotation symmetries: The exact analytical equivariance and gener-
alization of steerable CNNs may be broken by the numerical implementation. An example
of great practical relevance are rotation equivariant CNNs on square pixel grids. We in-
vestigate the networks’ generalization as before by training either on digits that are aligned
upright ({e}-MNIST) or randomly rotated (SO(2)-MNIST) and testing on a set of datasets
that contain digits which are all rotated by the same angle. A plot of the resulting test errors
for different test set rotation angles is shown in Fig. 6.1.

3This issue can be alleviated via group restriction operations, which help (locally) reflection steer-
able CNNs to achieve even better results than vanilla CNNs. Section 6.3 proves this claim empirically.
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Figure 6.2: Dependence of the
SO(2)-MNIST test error on
the rotation group order N
of regular CN -steerable CNNs
and on the (relative) train-
ing set size. Especially for
low group orders, increas-
ing N may result in larger
gains than increasing the train-
ing set size by a factor of
four, which demonstrates the
improved data efficiency of
equivariant CNNs.

When training on {e}-MNIST, the vanilla CNN achieves a good performance on the non-
rotated test set, but the performance degrades quickly to random chance for larger test set
rotations. The small dip in the error rate for rotations around 180 degrees comes from digits
like 0 and 8, which are approximately invariant under such transformations. The rotation
steerable CNN is in theory expected to generalize its inference over test set rotations. As
seen from the plot, this expectation is in our implementation violated, and the test error is
π
2 -periodic, corresponding to the subgroup of rotational symmetries of the square pixel grid.
While the generalization is with≈ 3.7% test error in the worst case already much better than
random chance, there is still room for improvement.

The dashed lines correspond to models that were trained using augmentation with randomly
rotated digits. Both curves are approximately independent from the test set angle, but the
rotation steerable model has a lower test error. Rotational equivariance is therefore clearly
beneficial, even though it should be combined with data augmentation if it is broken by the
numerical discretization.

6.2 Data efficiency and convergence

The equivariance of steerable CNNs implies that they don’t need to learn to process any
transformed version of a feature field individually, but automatically generalize over group
orbits. As a consequence, they require less data to achieve better results and converge faster
than non-equivariant models.

Fig. 6.2 records the test errors of regular CN -steerable CNNs on SO(2)-MNIST for varying
rotation orders N and training set sizes. The test error decreases initially with growing N
before it saturates at aroundN = 12.4 The claim that equivariant CNNs exhibit an improved
data efficiency is apparent by the fact that an increase of the equivariance group order allows
to reduce the test error further than a doubling or even quadrupling of the training set size.

The improvements in data efficiency are even more significant in higher dimensions [329, 8],
since higher dimensional rotation groups consist of “more elements” and thus larger orbits to

4The exact order of saturation correlates with the chosen kernel size, which was here fixed to 5×5
pixels.
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Figure 6.3: Validation errors and losses during the training of a conventional CNN and CN -equivariant
models on SO(2)-MNIST. Networks with higher levels of equivariance converge faster and achieve
better final results.

generalize over. For instance, Winkels and Cohen [329] (Table 2) showed that incorporating
equivariance w.r.t. cubic symmetries (24 rotations in two reflections each, i.e. 48 elements)
may lead to larger gains in a detection task than a tenfold increase of the dataset size.

Fig. 6.5 shows a plot that is similar to Fig. 6.2, with the difference that the dataset size is
here plotted on the x-axis and the experiment is performed on the STL-10 dataset of natural
images. That the curves are straight lines in the log-log plot reflects the well-known fact that
test errors depend on the data set size via a power law [120].5 More data efficient models
result usually in shifted lines with the same slope, i.e. same power law exponent. Batzner
et al. [8] noticed that these exponents, and therefore data efficiencies, are for locally rotation
invariant models (scalar fields) lower than for locally faithfully rotation equivariant models
(non-scalar fields). Observing that our equivariant and non-equivariant models all show the
same slope suggests that this is an issue specific to locally invariant models. This issue with
purely scalar field based models is supported by the fact that such models perform overall
worst in our model benchmark in Table 6.6 (line 45, labeled as “irreps = 0”)

The evolution of validation errors and losses of CN -steerable CNNs during training on
SO(2)-MNIST is visualized in Fig. 6.3. One can see that higher rotation orders N do not
only lead to lower final losses and errors, but also to a faster model convergence. The reason
for this effect is again the models’ generalization over group orbits: conventional CNNs need
to learn all transformed versions of an input image explicitly, which requires either more it-
erations or a larger batch size in comparison to equivariant models. Equivariant CNNs may
therefore not only be more accurate than non-equivariant models, but also cheaper to train.

6.3 Choice of equivariance group and group restriction

The optimal choice of symmetry group w.r.t. which a model is equivariant depends on the
level of symmetry present in the learning task. Assuming that the data distribution is invari-
ant under Aff(Gdata), and the model (globally) is Aff(Gmodel)-equivariant, we can distinguish
three qualitatively different cases:

5The same effect manifests in Fig. 6.2 in the fact that the curves are equidistant on the (log scale)
y-axis.



96 Chapter 6. Empirical evaluation of steerable CNNs

Gmodel < Gdata: In this case the model does not fully exploit the symmetries present in the
data and is forced to learn to generalize over Gdata-orbits explicitly. As seen in the
previous sections, this results in a suboptimal performance in comparison to equivari-
ant models with Gmodel = Gdata. A common example would be to use a conventional
CNN, i.e. Gmodel = {e}, on satellite imaging data, which is often isometry invari-
ant, i.e. Gdata = O(2). Other examples are the conventional CNNs on R-MNIST in
Table 6.2 and on SO(2)-MNIST in Fig. 6.1.

Gmodel > Gdata: If the model assumes more symmetries than actually present in the data, it
generalizes over too large orbits and may draw wrong conclusions. For instance, the
digits of the original MNIST dataset appear all in an upright rotation, i.e. Gdata = {e}.
When using a rotation invariant model, Gmodel = SO(2), it confuses digits like 6
and 9, which are related by rotations. Similarly, the digits and (4 and 7) are
related by a reflection and a rotation by π/2, and might therefore be confused by a
Gmodel = O(2)-invariant model. Another example is the R-steerable CNN on {e}-
MNIST in Table 6.2, which performs worse than the vanilla CNN.

Gmodel = Gdata: Having the symmetries of the data and model matching is obviously the best
choice. This way we are neither giving away prior knowledge, nor overconstraining
the model with too much equivariance. The examples in Table 6.2 and Fig. 6.1 are the
vanilla CNN on {e}-MNIST, the R-steerable model on R-MNIST and the rotation
steerable model on SO(2)-MNIST.

The above analysis considered the global symmetries of the data and the overall equivari-
ance of the model. However, as described in Section 4.4, the statistics of local patterns in
the data are often invariant under a larger symmetry group Gdata,local > Gdata,global than that
present at the global scale. Each convolution layer is usually accumulating features from
a local receptive field, and its equivariance should be adapted to the symmetries present at
that scale. This can be achieved with the group restriction operation Res

Aff(Gdata,local)
Aff(Gdata,global)

from
Section 4.4, which we investigate here empirically. Our finding is that a higher level of
equivariance up to the final network layer generally seem to be helpful – this way the model
generalizes most of its inference over large Aff(Gdata,local)-orbits, but can ultimately discrim-
inate between features on different Aff(Gdata,global)-orbits. We abbreviate the restriction of a
model’s structure group G to a subgroup H after layer l in the following by G

∣∣
l
H .

G-MNIST: To investigate the interplay of equivariance groups and dataset symmetries,
we run fully DN , CN and {e}-steerable models and group restricted variants of them on
O(2)-MNIST, SO(2)-MNIST and {e}-MNIST. All models are Gmodel-invariant classifiers,
that is, they start confusing classes whenever Gmodel > Gdata,global. Fig. 6.4 and rows 2-10
and 19-27 in Table 6.6) summarize the results of these experiments.

For O(2)-MNIST, all models are in the regime Gmodel ≤ Gdata,global and models with larger
equivariance groups perform better than those with less. In particular, the DN models per-
form consistently better than the CN models of the same order N since they generalize
additionally over the reflections that are present in the dataset.

On SO(2)-MNIST, the CN models and the conventional CNN are still in the regimeGmodel ≤
Gdata,global and the test error decreases with growing rotation order N . The performance of
these models improved relative to the corresponding results on O(2)-MNIST since the intra-
class variability in SO(2)-MNIST is reduced. In contrast, the DN models are harmed by their
global reflection invariance – in fact, they are not able to distinguish between O(2)-MNIST
and SO(2)-MNIST at all, thus achieving exactly the same result on both datasets. ForN = 1
the dihedral model is purely reflection- but not rotation invariant, and therefore performs
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Figure 6.4: Test errors of DN and CN steerable and conventional CNNs on different G-MNIST vari-
ants. Left: All equivariant models improve upon the non-equivariant CNN baseline on O(2)-MNIST.
The error decreases before saturating at around 8 to 12 orientations. Since the dataset contains re-
flected digits, the DN -equivariant models perform better than their CN counterparts. Middle: Since the
intra-class variability of SO(2)-MNIST is reduced, the performances of the CN model and the baseline
CNN improve on this dataset. In contrast, the DN models are invariant to global reflections such that
they can’t distinguish between the O(2)-MNIST and SO(2)-MNIST datasets. For N = 1 this leads to
a worse performance than that of the CNN baseline. Restricted dihedral models, denoted by DN

∣∣
5
CN ,

make use of the local reflectional symmetries but are globally only rotation invariant. This makes them
perform even better than the CN models. Right: On {e}-MNIST the globally invariant models CN

and DN don’t yield better results than the baseline, however, the restricted (i.e. non-invariant) models
CN

∣∣
5
{e} and DN

∣∣
5
{e} do. For more details see the main text.

even worse than the CNN baseline. This issue is resolved by restricting the dihedral models
after the penultimate convolution (at layer 5) to CN ≤ DN , such that the group pooling after
the final convolution results in globally CN -invariant features. This model, denoted in the
figure by DN

∣∣
5
CN , achieves a slightly better accuracy than the pure CN -equivariant model

since it can leverage local reflectional symmetries.

For {e}-MNIST, the non-restricted DN models perform again worse than the CN models
since they are insensitive to the chirality of the digits. In order to explain the non-monotonic
trend of the curves of the CN and DN models, notice that some of the digits are approximately
related by symmetry transformations6. If these transformations happen to be part of the
equivariance group w.r.t. which the model is invariant the predictions are more likely to be
confused. This is mostly the case for N being a multiple of 2 or 4 or for large orders N .

6E.g.

9

and

6

(6 and 9) or
5

and
2

(2 and 5) are related by a rotations by π and might therefore
be confused by all models C2k and D2k for k ∈ N. Similarly, and (4 and 7) are related by a
reflection and a rotation by π/2 and might be confused by all models D4k.
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restriction
depth

SO(2)-MNIST {e}-MNIST

group test error (%) group test error (%) group test error (%)

(0) C16 0.82± 0.02 {e} 0.82± 0.01 {e} 0.82± 0.01

1 D16

∣∣
1
C16 0.86± 0.05 D16

∣∣
1
{e} 0.79± 0.03 C16

∣∣
1
{e} 0.80± 0.03

2 D16

∣∣
2
C16 0.82± 0.03 D16

∣∣
2
{e} 0.74± 0.03 C16

∣∣
2
{e} 0.77± 0.03

3 D16

∣∣
3
C16 0.77± 0.03 D16

∣∣
3
{e} 0.73± 0.03 C16

∣∣
3
{e} 0.76± 0.03

4 D16

∣∣
4
C16 0.79± 0.03 D16

∣∣
4
{e} 0.72± 0.02 C16

∣∣
4
{e} 0.77± 0.03

5 D16

∣∣
5
C16 0.78± 0.04 D16

∣∣
5
{e} 0.68± 0.04 C16

∣∣
5
{e} 0.75± 0.02

no restriction D16 1.65± 0.02 D16 1.68± 0.04 C16 0.95± 0.04

Table 6.3: Effect of the group restriction operation at different depths of the network on SO(2)-MNIST
and {e}-MNIST. Before restriction, the models are equivariant to a larger symmetry group than the
group of global symmetries of the corresponding dataset. A restriction at later layers leads to an im-
proved accuracy. All restricted models perform better than non-restricted, and hence globally invariant,
models.

Once again, the restricted models, here DN
∣∣
5
{e} and CN

∣∣
5
{e}, show the best results since

they exploit local symmetries but preserve information on the global pose of the digits. Since
the restricted dihedral model generalizes additionally over local reflections, its performance
is consistently better than that of the restricted cyclic model.

Restriction depth: The results in Fig. 6.4 demonstrate the benefit of using group restric-
tion operations right before the final convolutional layer of the network. Table 6.3 extends on
these experiments by varying the depth at which restriction is performed. The overall trend
is that a restriction at later stages of the model improves the performance and that restricted
models perform significantly better than the invariant models.

6.4 Drop-in replacement for conventional convolutions and natural
image datasets

Lots of effort has been made to design conventional CNN architectures and to tune their
hyperparameters, which raises the question in how far these findings transfer to steerable
CNNs. Here we explore whether steerable convolutions can be used as a drop-in replacement
for conventional convolutions without any further adaptations or hyperparameter tuning. To
this end, we take widely established WideResNet architectures [344], upgrade them to beG-
steerable, and optimize them according to the original training protocols and hyperparameter
settings reported in the literature. The resulting steerable WideResNets outperform their
baselines by a large margin, showing that steerable convolutions can be readily deployed for
various signal processing tasks. All experiments in this section are conducted on natural
image datasets7, thus demonstrating in addition that steerable CNNs are beneficial for this
particular image modality.

CIFAR: A first set of experiments, conducted on CIFAR-10 and CIFAR-100 and reported
in Table 6.4, replicates the WideResNet (wrn) architecture, training procedure and hyper-
parameters from [344] with steerable convolutions. The labels G1G2G3 signify hereby the

7The statistics of natural images are typically invariant under global translations and reflections,
i.e. Aff(D1), but not under global rotations.
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model CIFAR-10 CIFAR-100

wrn28/10 [344] 3.87 18.80
wrn28/10 D1 D1 D1 3.36± 0.08 17.97± 0.11

wrn28/10* D8 D4 D1 3.28± 0.10 17.42± 0.33

wrn28/10 C8 C4 C1 3.20± 0.04 16.47± 0.22

wrn28/10 D8 D4 D1 3.13± 0.17 16.76± 0.40

wrn28/10 D8 D4 D4 2.91± 0.13 16.22± 0.31

wrn28/10 [64] AA 2.6 ± 0.1 17.1 ± 0.3

wrn28/10* D8 D4 D1 AA 2.39± 0.11 15.55± 0.13

wrn28/10 D8 D4 D1 AA 2.05± 0.03 14.30± 0.09

Table 6.4: Test errors of different equivariant models on
the STL-10 dataset. Models with * are not scaled to the
same number of parameters as the original model but pre-
serve the number of channels of the baseline.

levels of equivariance in the three
main blocks of the networks, which
are separated by pooling layers. Reg-
ular representations are used through-
out the whole model except for the
last convolution which maps to a
scalar field to produce invariant pre-
dictions. For a fair comparison we
scale the width of all layers such that
the number of parameters of the origi-
nal wrn28/10 model is approximately
preserved. Note that, due to their en-
hanced parameter efficiency, our mod-
els become wider than conventional
CNNs. Since this implies a higher
computational cost, we add an equivariant model, marked by an additional *, which has
about the same number of channels as the non-equivariant wrn28/10. More details on the
training procedure and hyperparameters are found in [322].

The results of the D1 D1 D1 model in Table 6.4 confirm that incorporating the global sym-
metries of the data already yields a significant boost in accuracy. Interestingly, the C8 C4 C1

model, which is purely rotation but not reflection-equivariant, achieves better results, which
shows that it is worthwhile to leverage local rotational symmetries. Both symmetries are
respected simultaneously by the wrn28/10 D8 D4 D1 model. While this model performs
better than the two previous ones on CIFAR-10, it surprisingly yields slightly worse re-
sult on CIFAR-100. This might be due to the higher dimensionality of its feature fields
which, despite the model having more channels in total, leads to less independent fields.
The best results (without using auto augment) are obtained by the D8 D4 D4 model which
suggests that rotational symmetries are useful even on a larger scale. The small wrn28/10*
D8 D4 D1 model shows a remarkable gain compared to the non-equivariant wrn28/10 base-
line despite not being computationally more expensive. To investigate whether equivariance
is useful even when a powerful data augmentation policy is available, we further rerun both
D8 D4 D1 models with AutoAugment (AA) [64]. As without AA, both the computationally
cheap wrn28/10* model and the wider wrn28/10 version outperform the wrn28/10 baseline
by a large margin.

model group #params test error (%)

wrn16/8 [69] - 11M 12.74±0.23

wrn16/8* D1 D1 D1 5M 11.05±0.45

wrn16/8 D1 D1 D1 10M 11.17±0.60

wrn16/8* D8 D4 D1 4.2M 10.57±0.70

wrn16/8 D8 D4 D1 12M 9.80±0.40

Table 6.5: Test errors of different equivariant mod-
els on the STL-10 dataset. Models with * are not
scaled to the same number of parameters as the
original model but preserve the number of channels
of the baseline.

STL-10: In order to test whether the pre-
vious results generalize to natural images of
higher resolution we run additional experi-
ments on STL-10 [51]. While this dataset
was originally intended for semi-supervised
learning tasks, its 5000 training images are
also being used for supervised classification
in the low data regime [69]. We adapt the
experiments in [69] by replacing the non-
equivariant convolutions of their wrn16/8
model, which was the previous supervised
SOTA, with DN -steerable convolutions. As
in the CIFAR experiments, all intermediate
features transform according to regular representations. A final, invariant prediction is gen-
erated via a convolution to scalar fields. We are again using steerable convolutions as a mere
drop-in replacement, that is, we use the same training setting and hyperparameters as in the
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original paper. The four adapted models, reported in Table 6.5, are equivariant under either
the action of D1 in all blocks or the actions of D8, D4 and D1 in the respective blocks.
For both choices we build a large model, whose width is scaled up to approximately match
the number of parameters of the baseline, and a small model, which preserves the number of
channels and thus compute and memory requirements, but is more parameter efficient.

Figure 6.5: Data ablation study on STL-10.

As expected, all models improve signifi-
cantly over the baseline with larger mod-
els outperforming smaller ones. However,
due to their extended equivariance, the small
D8 D4 D1 model performs better than the
large D1 D1 D1 model. In comparison to the
CIFAR experiments, rotational equivariance
seems to give a more significant boost in ac-
curacy. This is expected since the higher reso-
lution of 96×96 pixels of the STL-10 images
allows for more detailed local patterns which
occur in arbitrary orientations.

Fig. 6.5 reports the results of a data ablation
study which investigates the performance of
the D8 D4 D1 models for smaller training set
sizes. The results validate that the gains from incorporating equivariance are consistent over
all training sets. More information on the exact training procedures is given in [322].

6.5 Field type, nonlinearity and symmetry group benchmarking

The framework of Aff(G)-equivariant steerable CNNs comes with many design choices,
like symmetry groups, field types or nonlinearities. While all of the above experiments used
regular representations of CN or DN as field types and applied element-wise nonlinearities,
the current section presents a benchmarking of alternative choices. The results are summa-
rized in Table 6.6 and analyzed in detail below. The first four columns state the equivariance
groupsG ≤ O(2),G-representations, nonlinearities andG-invariant maps which distinguish
the models. Column five cites related work that used the corresponding model design. As the
performance of the (G-invariant) models depends heavily on the level of symmetry present
in the data, we evaluate each model on O(2)-MNIST, SO(2)-MNIST and {e}-MNIST. The
statistics of each entry are averaged over (at least) 6 samples. All models in these exper-
iments are derived from the base architecture described in Table 6.1. The actual width of
each model is adapted such that the number of parameters is approximately preserved. Note
that this results in different numbers of channels, depending on the parameter efficiency of
the corresponding models. All models apply some form of G-invariant mapping to scalar
fields followed by spatial pooling after the last convolutional layer such that the predictions
are (up to discretization errors) guaranteed to be Aff(G)-invariant. The number of invariant
features passed to the fully connected classifier is approximately kept constant by adapting
the width of the last convolutional layer to the invariant mapping used.

Before guiding through the results in detail, we give a high level overview: All models
relying on regular or quotient representations discretize the continuous rotations in SO(2)
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or O(2) by N discrete rotations in the subgroups CN or DN , respectively.8 They apply
element-wise acting ELU nonlinearities [50], which is a valid choice for any permutation
representation; see Section 4.3.3. In addition, there are variants of the regular representa-
tion based models that are applying either a max-pooling operation over the feature vector
entries to produce a G-invariant (scalar) response field or, for CN , a vector pooling opera-
tion that maps the regular feature field to a vector field. As final G-invariant maps after the
last convolution layer, all of these models compute scalars via a G-pooling or G/H-pooling
operation over the regular or quotient feature vectors, respectively. For the continuous sym-
metry groups O(2) and SO(2), we benchmark different choices of irrep fields. These are
unitary representations, and are acted on by different types of either norm-nonlinearities or
gated nonlinearities, both of which were discussed in Section 4.3.3. An exception are scalar
fields, for which we use conventional ELU nonlinearities. Specifically for O(2), we also in-
vestigate field types that are defined by an induction of SO(2)-irreps to O(2)-representations.
The invariant maps are all variants of either a linear convolution mapping to scalar fields, or
a nonlinear mapping that takes the norm of non-trivial irrep features.

In a nutshell, regular representation based models, corresponding to group convolutions,
perform best. Among the irrep based models, those using gated nonlinearities work better
than those using norm-nonlinearities, and the O(2)-induced SO(2)-irreps outperform O(2)-
irreps. In the remainder of this subsection we will guide through the results presented in
Table 6.6 in detail.

Regular steerable CNNs: Fig. 6.4 summarizes the results for all regular steerable CNNs
on all variants of MNIST The models in (rows 2-10 and 19-27 in Table 6.6) are steerable
CNNs whose feature vectors are regular CN or DN -representations for varying rotation or-
ders N ; see Def. B.5.18 and Remark B.5.19. As argued in Section 4.5, these models corre-
spond to group convolutional neural networks [52, 324, 162, 10]. For the dihedral models
we choose a vertical reflection axis. We apply element-wise ELU nonlinearities

G-ELU : R|G| → R|G|, f :=
∑
g∈G

fgeg 7→
∑
g∈G

ELU(fg)eg (6.1)

to the regular feature vectors f ∈ R|G| and perform group pooling, defined by

G-pool : R|G| → R, f :=
∑
g∈G

fgeg 7→ max
g∈G

fg, (6.2)

as invariant map after the final convolution.

The relative performance of these regular steerable CNNs among each other was already
discussed in Section 6.3 (paragraph G-MNIST) and Fig. 6.4 above. In comparison to other
choices of group representations, regular steerable CNNs perform very well. The reason for
this is that G-regular feature vectors in R|G| can encode an independent response for each
individual element of G and that the nonlinearities act localized (element-wise).9 The model
for C1 = {e} corresponds to a conventional CNN, however, its performance is slightly
better than that of the CNN baseline in row 1, which seems to be a result of the smoothed
kernel parametrization in terms of (unconstrained) circular harmonics; see Chapter 5 and

8Alternatively, one can use a Monte-Carlo sampling of the infinite-dimensional regular representa-
tions of the continuous Lie groups [91, 40].

9This is analogous to conventional CNNs, whose features are regular (Rd,+)-representations:
their feature maps store an independent response (pixel) for each translation and nonlinearities act
point-wise.



group representation nonlinearity invariant map citation O(2)-MNIST SO(2)-MNIST {e}-MNIST

1 {e} trivial (conventional CNN) ELU - - 5.53± 0.20 2.87± 0.09 0.91± 0.06

2 C1 [324, 12] 5.19± 0.08 2.48± 0.13 0.82± 0.01

3 C2 [324, 12] 3.29± 0.07 1.32± 0.02 0.87± 0.04

4 C3 - 2.87± 0.04 1.19± 0.06 0.80± 0.03

5 C4 [52, 53, 324, 12, 71] 2.40± 0.05 1.02± 0.03 0.99± 0.03

6 C6 [125] 2.08± 0.03 0.89± 0.03 0.84± 0.02

7 C8 [324, 12] 1.96± 0.04 0.84± 0.02 0.89± 0.03

8 C12 [324] 1.95± 0.07 0.80± 0.03 0.89± 0.03

9 C16 [324, 12] 1.93± 0.04 0.82± 0.02 0.95± 0.04

10 C20

regular ρreg G-ELU G-pooling

[324] 1.95± 0.05 0.83± 0.05 0.94± 0.06

11 C4 5ρreg⊕2ρ
C4/C2

quot ⊕2ρC4

0 [53] 2.43± 0.05 1.03± 0.05 1.01± 0.03

12 C8 5ρreg⊕2ρ
C8/C2

quot ⊕2ρ
C8/C4

quot ⊕2ρC8

0 - 2.03± 0.05 0.84± 0.05 0.91± 0.02

13 C12 5ρreg⊕2ρ
C12/C2

quot ⊕2ρ
C12/C4

quot ⊕3ρC12

0 - 2.04± 0.04 0.81± 0.02 0.95± 0.02

14 C16 5ρreg⊕2ρ
C16/C2

quot ⊕2ρ
C16/C4

quot ⊕4ρC16

0 - 2.00± 0.01 0.86± 0.04 0.98± 0.04

15 C20

quotient

5ρreg⊕2ρ
C20/C2

quot ⊕2ρ
C20/C4

quot ⊕5ρC20

0

G/H-ELU G/H-pooling

- 2.01± 0.05 0.83± 0.03 0.96± 0.04

16 regular/scalar ρC16

0
conv−−−→ ρreg

G-pool−−−−→ ρC16

0 ELU, G-pooling [52, 195] 2.02± 0.02 0.90± 0.03 0.93± 0.04

17 regular/vector ρC16

1
conv−−−→ ρreg

vector pool−−−−−−→ ρC16

1 vector field [196, 198] 2.12± 0.02 1.07± 0.03 0.78± 0.03

18

C16

mixed vector ρreg⊕ρ1
conv−−→2ρreg

vector−−→
pool

ρreg⊕ρ1 ELU, vector field
G-pooling

- 1.87± 0.03 0.83± 0.02 0.63± 0.02

19 D1=R - 3.40± 0.07 3.44± 0.10 0.98± 0.03

20 D2 - 2.42± 0.07 2.39± 0.04 1.05± 0.03

21 D3 - 2.17± 0.06 2.15± 0.05 0.94± 0.02

22 D4 [52, 71, 53, 307, 216] 1.88± 0.04 1.87± 0.04 1.69± 0.03

23 D6 [125, 270] 1.77± 0.06 1.77± 0.04 1.00± 0.03

24 D8 - 1.68± 0.06 1.73± 0.03 1.64± 0.02

25 D12 - 1.66± 0.05 1.65± 0.05 1.67± 0.01

26 D16 - 1.62± 0.04 1.65± 0.02 1.68± 0.04

27 D20

regular ρreg ELU G-pooling

- 1.64± 0.06 1.62± 0.05 1.69± 0.03

28 D16 regular/scalar ρD16

0
conv−−−→ ρreg

G-pool−−−−→ ρD16

0 ELU, G-pooling - 1.92± 0.03 1.88± 0.07 1.74± 0.04



29 irreps ≤ 1
⊕1

j=0 ρ
SO(2)
j - 2.98± 0.04 1.38± 0.09 1.29± 0.05

30 irreps ≤ 3
⊕3

j=0 ρ
SO(2)
j - 3.02± 0.18 1.38± 0.09 1.27± 0.03

31 irreps ≤ 5
⊕5

j=0 ρ
SO(2)
j - 3.24± 0.05 1.44± 0.10 1.36± 0.04

32 irreps ≤ 7
⊕7

j=0 ρ
SO(2)
j - 3.30± 0.11 1.51± 0.10 1.40± 0.07

33 C-irreps ≤ 1
⊕1

j=0 ρ
SO(2),C
j [335] 3.39± 0.10 1.47± 0.06 1.42± 0.04

34 C-irreps ≤ 3
⊕3

j=0 ρ
SO(2),C
j [335] 3.48± 0.16 1.51± 0.05 1.53± 0.07

35 C-irreps ≤ 5
⊕5

j=0 ρ
SO(2),C
j - 3.59± 0.08 1.59± 0.05 1.55± 0.06

36 C-irreps ≤ 7
⊕7

j=0 ρ
SO(2),C
j

ELU, norm-ReLU conv2triv

- 3.64± 0.12 1.61± 0.06 1.62± 0.03

37 ELU, squash - 3.10± 0.09 1.41± 0.04 1.46± 0.05

38 ELU, norm-ReLU - 3.23± 0.08 1.38± 0.08 1.33± 0.03

39 ELU, shared norm-ReLU - 2.88± 0.11 1.15± 0.06 1.18± 0.03

40 shared norm-ReLU
norm

- 3.61± 0.09 1.57± 0.05 1.88± 0.05

41 ELU, gate - 2.37± 0.06 1.09± 0.03 1.10± 0.02

42 ELU, shared gate
conv2triv

- 2.33± 0.06 1.11± 0.03 1.12± 0.04

43 ELU, gate - 2.23± 0.09 1.04± 0.04 1.05± 0.06

44

SO(2)

irreps ≤ 3
⊕3

j=0 ρ
SO(2)
j

ELU, shared gate
norm

- 2.20± 0.06 1.01± 0.03 1.03± 0.03

45 irreps = 0 ρ
O(2)
0 ELU - [144] 5.46± 0.46 5.21± 0.29 3.98± 0.04

46 irreps ≤ 1 ρ
O(2)
0 ⊕ ρ

O(2)
sign ⊕ 2ρ

O(2)
1 - 3.31± 0.17 3.37± 0.18 3.05± 0.09

47 irreps ≤ 3 ρ
O(2)
0 ⊕ ρ

O(2)
sign

⊕3
j=1 2ρ

O(2)
j - 3.42± 0.03 3.41± 0.10 3.86± 0.09

48 irreps ≤ 5 ρ
O(2)
0 ⊕ ρ

O(2)
sign

⊕5
j=1 2ρ

O(2)
j - 3.59± 0.13 3.78± 0.31 4.17± 0.15

49 irreps ≤ 7 ρ
O(2)
0 ⊕ ρ

O(2)
sign

⊕7
j=1 2ρ

O(2)
j

ELU, norm-ReLU O(2)-conv2triv

- 3.84± 0.25 3.90± 0.18 4.57± 0.27

50 Ind-irreps ≤ 1 Ind ρ
SO(2)
0 ⊕ Ind ρ

SO(2)
1 - 2.72± 0.05 2.70± 0.11 2.39± 0.07

51 Ind-irreps ≤ 3 Ind ρ
SO(2)
0

⊕3
j=1 Ind ρ

SO(2)
j - 2.66± 0.07 2.65± 0.12 2.25± 0.06

52 Ind-irreps ≤ 5 Ind ρ
SO(2)
0

⊕5
j=1 Ind ρ

SO(2)
j - 2.71± 0.11 2.84± 0.10 2.39± 0.09

53 Ind-irreps ≤ 7 Ind ρ
SO(2)
0

⊕7
j=1 Ind ρ

SO(2)
j

ELU, Ind-norm-ReLU Ind-conv2triv

- 2.80± 0.12 2.85± 0.06 2.25± 0.08

54 O(2)-conv2triv - 2.39± 0.05 2.38± 0.07 2.28± 0.07

55
irreps ≤ 3 ρ

O(2)
0 ⊕ ρ

O(2)
sign

⊕3
j=1 2ρ

O(2)
j

ELU, gate
norm - 2.21± 0.09 2.24± 0.06 2.15± 0.03

56 Ind-conv2triv - 2.13± 0.04 2.09± 0.05 2.05± 0.05

57

O(2)

Ind-irreps ≤ 3 Ind ρ
SO(2)
0

⊕3
j=1 Ind ρ

SO(2)
j

ELU, Ind-gate
Ind-norm - 1.96± 0.06 1.95± 0.05 1.85± 0.07

Table 6.6: Benchmarking of Euclidean steerable CNNs for different groups G, representations, nonlinearities and final G-invariant maps. Multiplicities of
representations are reported in relative terms; the actual multiplicities are depth dependent integer multiples. The results are analyzed in Section 6.5.
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Fig. 5.2. The main disadvantage of regular representations is that they are R|G|-dimensional
– while this dimensionality is with |CN | = N and |DN | = 2N for usual values of N well
manageable, discrete subgroups of SO(3) or O(3) become prohibitively high-dimensional
for current hardware.

Quotient representations: As an alternative to regular representations we experiment
with some mixtures of G/H-quotient representations of G = CN (rows 11-15), which are
explained in Def. B.5.20 and Remark B.5.21. These models differ from the regular models
by enforcing more symmetries in the feature fields and thus kernels [322]. The individ-
ual feature fields are lower dimensional; however, by fixing the number of parameters, the
models use more different fields which in this specific case leads to approximately the same
number of channels and therefore compute and memory requirements. As nonlinearities, we
are again applying ELUs element-wise to G/H-quotient features f ∈ R|G|/|H|, i.e.

G/H-ELU : R|G|/|H| → R|G|/|H|, f :=
∑

gH∈G/H

fgHegH 7→
∑

gH∈G/H

ELU(fgH) . (6.3)

The invariant map after the final convolution is similarly a max-pooling over the quotient
space:

G/H-pool : R|G|/|H| → R, f :=
∑

gH∈G/H

fgHegH 7→ max
gH∈G/H

fgH (6.4)

We do not observe any significant difference in performance between regular and quotient
representations.

G-pooling and vector field nonlinearities: For C16 we implement a group pooling net-
work (row 16) and a vector field network (row 17). The former relies on steerable convo-
lutions from scalar to regular feature fields, which are then after each convolution mapped
back to scalar fields by applying the G-pooling operation from Eq. (6.2). Vector field net-
works [196] map the regular feature fields instead to vector fields, where the vectors’ norms
are again determined by the maximal response, but an additional directional information is
computed via an argmaxg∈G operation. Both pooling operations compress the features in
the regular fields, which can lead to lower memory and compute requirements. However,
since we fix the number of parameters, the resulting models are ultimately much wider than
the corresponding regular steerable CNNs. Since the pooling operations lead to a loss of in-
formation, both models perform worse than their purely regular counterpart on O(2)-MNIST
and SO(2)-MNIST. Surprisingly, the group pooling network, whose features are orientation
unaware, performs better than the vector field network. On {e}-MNIST the group pooling
network closes up with the regular steerable CNNs while the vector field network achieves an
even better result. We further experiment with a model which applies vector field nonlinear-
ities to only half of the regular fields and preserves the other half (row 18). This model is on
par with the regular model on both transformed MNIST versions but achieves the overall best
result on {e}-MNIST. Similar to the case of C16, the group pooling network for D16 (row
28) performs worse than the corresponding regular model, this time also on {e}-MNIST.

SO(2) irrep models: The feature fields of all SO(2)-equivariant models that we consider
are defined to transform according to irreducible representations ρSO(2)

j , which were defined
in Eq. (5.33) in Section 5.3.4. Note that this covers scalar fields and vector fields for the
trivial representation ρSO(2)

0 and defining representation ρSO(2)
1 , respectively. Overall, these
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models are not competitive compared to the regular steerable CNNs. This result is partic-
ularly important for SE(3) = Aff(SO(3))-equivariant CNNs whose feature fields are often
transforming according to SO(3)-irreps [301, 323, 161, 163, 3].

The models in rows 29-32 are inspired by Harmonic Networks [335] and consist of irrep
fields with the same multiplicity up to a certain threshold order. All models apply ELUs on
scalar fields and norm-ReLUs (see Section 4.3.3) on higher order fields. The projection to
invariant features is done via a convolution to scalar features (conv2triv) in the last convolu-
tional layer. We find that irrep fields up to order 1 and 3 perform equally well while higher
threshold orders yield worse results. The original implementation of Harmonic Networks
considered complex irreps of SO(2), which results in a lower dimensional steerable kernel
basis as discussed in [322]. We reimplemented these models and found that their reduced
kernel space leads to consistently worse results than ours (rows 33-36).

For the model containing irreps up to order 3 we implemented some alternative variants:
The model in row 37 replaces the norm-ReLU activations by squashing nonlinearities, in-
troduced in Section 4.3.3, which leads to a slightly worse performance. Row 38 shows a
variation which sticks with norm-ReLUs, but computes the final G-invariant responses by
taking the norms of all non-scalar fields. This network design does again not improve upon
the baseline variant. Instead of applying the norm-ReLU nonlinearity individually to each
higher order irrep field, the model in row 39 takes the norm of direct sums of higher order
irrep features (each with multiplicity one), which is valid since this direct sum representa-
tion is unitary. This shared norm-ReLU nonlinearity performs significantly better than its
baseline, but still far worse than regular steerable CNNs. Another variation in row 40 again
takes the norm of direct sums of irrep features, now including trivial ones, which results in
the overall worst results among all SO(2)-models. The models in rows 41-44 apply learned
gated nonlinearities, introduced in [323] and Section 4.3.3). These nonlinearities are either
applied to each higher order irrep feature individually (gate), or to their direct sum (shared
gate). While not beating regular steerable CNNs, these models close up to their performance.
This insight might be interesting for SE(3) or E(3)-equivariant models, for which regular
representations are quite high dimensional.

O(2) models: As for SO(2), we are investigating steerable CNNs whose features transform
according to O(2)-irreps (Section 5.3.4, Eq. (5.54)) up to a certain order and apply norm-
ReLUs (rows 46-49). In this case we choose twice the multiplicity for two-dimensional field
types ρO(2)

j≥1 in comparison to that of one-dimensional types ρO(2)
0 and ρO(2)

sign , which reflects
the multiplicities of irreps contained in the regular representation of O(2). Invariant predic-
tions are computed by convolving in equal proportion to fields which transform under trivial
irreps ρO(2)

0 (scalar fields) and sign-flip irreps ρO(2)
sign (pseudoscalar fields), followed by taking

the absolute value of the latter (O(2)-conv2triv).10 We again find that higher irrep thresholds
yield worse results, this time already starting from threshold order 1. In particular, these
models perform worse than their SO(2)-equivariant counterparts, even on O(2)-MNIST.
This suggests that the kernel constraint for this particular choice of representations is too
restrictive.

If only scalar fields, corresponding to the trivial irrep ρO(2)
0 , are chosen, the kernel constraint

becomes K(gx) = K(x) ∀g ∈ O(2), and therefore allows for isotropic kernels only.
This limits the expressivity of the model so severely that it performs even worse than a
conventional CNN on SO(2)-MNIST and {e}-MNIST, while being on par for O(2)-MNIST;

10The motivation for O(2)-conv2triv is that the steerable kernel space for immediate conv2triv
convolutions from pseudoscalar fields (ρO(2)

sign ) to scalar fields (ρO(2)
0 ) is empty; see Table 5.3.
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see row 45. Note that isotropic kernels correspond to vanilla graph convolutional networks,
which are well known to oversmooth the signals they process [44, 31, 17].

In order to improve the performance of O(2)-steerable CNNs, we propose to use O(2)-
representations Ind

O(2)
SO(2) ρ

SO(2)
j , induced from the irreps of SO(2), as field types. By the

definition of induction, this leads to pairs of fields which transform according to ρSO(2)
j un-

der rotations in SO(2) but permute under reflections in O(2)/ SO(2) ∼=grp R [322]. The
multiplicity of the irreps of O(2) contained in this induced representation coincides with the
multiplicities chosen in the pure O(2)-irrep models. However, the change of basis, relat-
ing both representations, does not commute with the nonlinearities, such that the networks
behave differently. We apply Ind-norm-ReLU nonlinearities to the induced O(2) models
which compute the norm of each of the permuting subfields individually but share the norm-
ReLU parameters (the bias) to guarantee equivariance. In order to project to final O(2)-
invariant feature vectors, we first apply a convolution producing Ind

O(2)
SO(2) ρ

SO(2)
0 fields (Ind-

conv2triv). Since these transform like the regular representation of R ∼=grp O(2)/ SO(2), we
can simply apply G-pooling over the two reflections. The results, given in rows 50-53, show
that these models perform significantly better than the O(2)-irreps models and outperform
the SO(2)-irrep models on O(2)-MNIST.

We again build models that apply gated nonlinearities. As for SO(2), this leads to a greatly
improved performance of the pure irrep models; see rows 54-55. In addition we adapt the
gated nonlinearity to the induced irrep models (rows 56-57). Here we apply an independent
gate to each of the two permuting sub-fields (Ind-gate). In order to be equivariant, the gates
need to permute under reflections as well, which is easily achieved by deriving them from
Ind

O(2)
SO(2) ρ

SO(2)
0 fields instead of scalar fields. The gated induced irrep model achieves the

best results among all O(2)-steerable networks, however, it is still not competitive compared
to the DN models with large N .
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PART II

AN INTRODUCTION TO

COORDINATE INDEPENDENT CNNS
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Figure II.1: An intuition on the inherent ambiguity of weight sharing on manifolds. Left: A common
interpretation of weight sharing on the plane is to shift a kernel over the whole space. Since parallel
transport is on Euclidean spaces path independent, this is unambiguous. Middle: On curved spaces,
like the sphere, parallel transport is path dependent. Different paths result in kernels that are rotated
relative to each other. Right: The Möbius strip is a non-orientable manifold. Different paths can
therefore result in kernels that are reflected relative to each other. Bottom: We formalize different
kernel alignments by different choices of local reference frames of the corresponding tangent spaces. It
is well known that no choice of reference frames (gauge) is preferred on general manifolds. Different
coordinatizations are related by gauge transformations, which take values in the structure group G of
the manifold (the trivial group G = {e} for the plane, rotation group G = SO(2) for the sphere and
reflection group G = R for the Möbius strip). Coordinate independent CNNs address the ambiguity
of reference frames by applying G-steerable (gauge equivariant) convolution kernels.
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Introduction & overview

There are many applications where the signal to be processed by a neural network is not
supported on a flat Euclidean space, but on more general Riemannian manifolds; see for
instance Fig. 1.4. Parts II and III of this work address such applications by generalizing the
Euclidean steerable CNNs from Part I to the differential geometric setting. Since convolu-
tions are essentially characterized by their spatial weight sharing property, a central question
in this endeavor is how convolution kernels should be shared over Riemannian manifolds.11

In the Euclidean setting, weight sharing could be derived by demanding models to be affine
group equivariant. This approach generalizes to arbitrary homogeneous spaces (Def. B.3.11)
like the sphere or torus [56]. However, it is bound to fail on general manifolds since they
are potentially asymmetric, i.e. may have no transitive symmetries w.r.t. which one could
demand networks to be equivariant. Weights would only be shared over isometry group
orbits as visualized in Fig. 1.11 and no weight sharing at all would result for trivial isome-
try groups. An alternative intuition from the Euclidean setting is that kernels are shared by
“shifting” them over the space. Since parallel transporters on Euclidean spaces are path in-
dependent, this results in an unambiguous alignment of kernels; see Fig. II.1 (left). However,
transporters become on curved or non-orientable spaces path dependent, and thus unsuitable
for sharing weights. Fig. II.1 (middle and right) exemplifies this issue for the sphere and the
Möbius strip, where different paths lead to a different kernel alignment.

As it turns out, the alignment of convolution kernels on manifolds is inherently ambiguous.
A natural solution to address a G-ambiguity in the kernel alignment is to use G-steerable
kernels: different kernel alignments result then in equivalent responses, differing only by
a predictable group action. Viewing kernels as local observers who are measuring features
relative to their local frames of reference, this independence of the extracted information
from the chosen kernel alignments (frames) can be interpreted as the networks’ coordinate
independence (G-covariance).

The theory of coordinate independent CNNs is formalized in reverse order – its foundational
principle is the models’ coordinate independence, from which the requirement for the ker-
nels’ steerability is shown to follow. Chapter 7 introduces the underlying gauge theoretic
formalism, which describes coordinatizations of the tangent spaces and gauge transforma-
tions between different choices of coordinates. Based on this, Chapter 8 defines coordinate
independent feature spaces, in particular the gauge transformations, parallel transport and
isometry pushforward of feature vectors. Coordinate independent neural network layers
that map between such feature vector fields are developed in Chapter 9. An exemplary in-
stantiation of such coordinate independent feature fields and network layers on the Möbius
strip is presented in Chapter 10.

The aim of the current Part II is to introduce the theory of coordinate independent CNNs
in an easily accessible language. It describes all quantities and layers in local coordinates
(gauges), ensuring thereby that the particular choice of gauge remains irrelevant. This is in
contrast to Part III, which develops the corresponding coordinate free formulation in terms
of associated fiber bundles. The formulation presented here will be shown to follow from
the global theory when expressing it in local bundle trivializations.

11This question applies more generally to any shared template operation, including for instance
biases or pointwise nonlinearities.





CHAPTER 7

Gauges, gauge transformations and G-structures

Geometric quantities like tangent or feature vectors exist independently of coordinates, how-
ever, a (non-symbolic) computer implementation requires them to be expressed in terms of
numerical coefficients in some gauge, i.e. relative to some choice of reference frames. The
specific choice of coordinates is irrelevant – it represents just one of multiple equivalent de-
scriptions. The appropriate mathematical framework to regulate such redundant degrees of
freedom are gauge theories. A gauge theory accounts for the equivalence of different gauges
by consistently relating them to each other via gauge transformations.

This chapter discusses the coordinatization of tangent spaces, from which coordinate ex-
pressions of associated geometric quantities like feature vectors will follow. In particular,
Section 7.1 introduces gauges and gauge transformations of the tangent spaces as a for-
mal way of describing choices of local reference frames and transformations between them.
Section 7.2 explains how functions on tangent spaces are represented relative to different
coordinatizations – this introduces the idea of coordinate independent mappings, which we
use later to define coordinate independent network layers. Section 7.3 defines G-structures
and G-atlases.

7.1 Tangent spaces and reference frames

A d-dimensional (smooth) manifold M has a tangent space TpM ∼= Rd attached to each
point p ∈M. The tangent spaces are d-dimensional vector spaces, however, in contrast to Rd
they do in general not come with any preferred choice of reference frame. A tangent vector
v ∈ TpM is a coordinate free object and is thus not immediately represented numerically
by a coordinate tuple (v1, . . . , vd) ∈ Rd. More abstractly stated, each tangent space TpM
is isomorphic to Rd but in general no canonical isomorphism between them is given. Both
spaces are therefore structurally equivalent but are not identified with each other in any
preferred way.

A gauge (local trivialization of the tangent bundle) on UA ⊆ M is defined as a smoothly
position-dependent collection of invertible linear maps

ψAp : TpM → Rd , p ∈ UA , (7.1)
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Figure 7.1: Identification of TpM∼=R2 with R2 via different gauges. A (coordinate free) tangent vector
v ∈ TpM (orange) can be represented numerically by a coordinate tuple vA = ψA

p (v) =
(
1, 1

)⊤
relative to gauge ψA

p (red) or, equivalently, by vB = ψB
p (v) = (

√
2, 0)⊤ relative to gauge ψB

p (green).
A choice of gauge corresponds to a choice [eA1 , e

A
2 ] or [eB1 , e

B
2 ] of reference frame. On a general

manifold no choice of gauge or coordinatization is preferred a priori. Different gauges, and thus
reference frames, are related by gauge transformations gBA

p := ψB
p ◦ (ψA

p )
−1 (blue) which take values

in the thus defined structure group G. This figure is a graphical interpretation of the commutative
diagrams in Eq. (7.8) and Fig. 11.5a. Note that gauges are immediately assigning coordinates to tangent
spaces. Fig. 15.2 in Section 15.1 shows a similar diagram for (affine) charts, which assign coordinates
to the manifold, thereby inducing gauges (“coordinate bases”).

specifying the missing vector space isomorphisms between TpM and Rd. As visualized in
Fig. 7.1, they coordinatize the tangent spaces by assigning a coefficient vector

vA := ψAp (v) ∈ Rd (7.2)

to each coordinate free tangent vector v ∈ TpM . An inversion of this relation yields

v =
(
ψAp
)−1

(vA) =
(
ψAp
)−1(∑

i
vAi ϵi

)
=
∑

i
vAi
(
ψAp
)−1

(ϵi) =:
∑

i
vAi e

A
i ,

(7.3)

where we denoted by {ϵ1, . . . , ϵd} the standard basis of Rd and made use of the linearity
of the gauge to pull out the summation. This shows that the gauge can be thought of as
endowing each tangent space TpM with a reference frame[

eA1 , . . . , e
A
d

]
:=

[
(ψAp )

−1(ϵ1), . . . , (ψ
A
p )
−1(ϵd)

]
, (7.4)

defined as that d-tuple of linearly independent tangent vectors which results when mapping
the standard frame of Rd back through the inverse gauge map. For brevity, we will in the
following use the shorthand notation

[
eAi
]d
i=1

for frames
[
eA1 , . . . , e

A
d

]
. The coefficients vA

are the coordinates of v relative to this frame. The collection of frames induced by the ψAp
on UA is called (smooth) frame field; see Fig 7.2 for a visualization.

Gauges ψX coordinatize tangent spaces only on local neighborhoods UX ⊆ M , and can
due to topological obstructions in general not be extended to the whole manifold without
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Figure 7.2: Each point p of a Riemannian manifold
M has a tangent space TpM attached. A smooth
gaugeψA on a suitably chosen subsetUA ⊆M (red)
coordinatizes all tangent spaces TpM for p in UA

as shown in Fig. 7.1. It is equivalent to a choice of
smooth frame field on UA. Since it is in general not
possible to extend a gauge globally over the whole
manifold, it is necessary to consider a G-atlas, con-
sisting of gauges which cover M . Different coordi-
natizations ψA on UA (red) and ψB on UB (green)
are patched together via gauge transformations (or
transition maps) gBA : UA ∩ UB → G which are
defined on the overlap UA ∩ UB (striped) and take
values in the structure group G ≤ GL(d).

violating the smoothness assumption. One therefore considers an atlas

A =
{(
UX , ψX

)}
X∈X , (7.5)

consisting of smooth gauges on a set of neighborhoods UX covering the manifold, that is,
satisfying

⋃
X∈X U

X = M , where X is an index set.1 On the overlaps UA ∩ UB ̸= ∅
of neighborhoods, different gauges ψAp and ψBp are stitched together by smooth transition
functions

gBA : UA ∩ UB → GL(d), p 7→ gBAp := ψBp ◦
(
ψAp
)−1

. (7.6)

Here we assume the codomain (for now) to be given by the general linear group GL(d),
consisting of all invertible matrices in Rd×d, which explain the relation between any pair
of vector space isomorphisms (gauges) or reference frames. The action of such a transition
function on a given gauge defines a gauge transformation

ψBp = gBAp · ψAp . (7.7)

In terms of a commutative diagram, the relation between different gauges is visualized as:

Rd TpM Rd

gBA
p ·

ψA
p ψB

p

gAB
p · =

(
gBA
p

)−1 ·

(7.8)

Compare this diagram to its graphical interpretation in Fig 7.1.

A gauge transformation alters the coordinatization of the tangent spaces such that the same
coordinate free tangent vector v is represented by a different component vector

vB = gBAp vA . (7.9)

1An atlas of gauges is very similar to usual atlases of charts of a manifold (Appendix C). The
difference is that the here considered atlases directly assign coordinates to the tangent bundle TM
instead of to the manifold M .
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Since a gauge corresponds to a choice of frame field, a gauge transformation corresponds
to a transformation between frame fields. Specifically, a frame

[
eAi
]d
i=1

=
[
eA1 , . . . , e

A
d

]
at

p ∈M transforms to another frame[
eBi
]d
i=1

:=
[(
ψBp
)−1

(ϵi)
]d
i=1

(
gauge induced frame, Eq. (7.4)

)
=
[(
gBAp · ψAp

)−1
(ϵi)
]d
i=1

(
gauge transformation, Eq. (7.7)

)
=
[(
ψAp
)−1 ((

gBAp
)−1

ϵi

)]d
i=1

(
expanded inverse

)
=
[(
ψAp
)−1 (∑

j
ϵjϵ
⊤
j

(
gBAp

)−1
ϵi

)]d
i=1

(
inserted identity 1 =

∑
j ϵjϵ

⊤
j

)
=

[(
ψAp
)−1(∑

j
ϵj

((
gBAp

)−1)
ji

)]d
i=1

(
matrix elements of

(
gBA
p

)−1)
=

[∑
j

(
ψAp
)−1

(ϵj)
((
gBAp

)−1)
ji

]d
i=1

(
linearity of ψA

p

)
=

[∑
j
eAj

((
gBAp

)−1)
ji

]d
i=1

(
gauge induced frame, Eq. (7.4)

)
=:
[
eAi
]d
i=1

◁
(
gBAp

)−1
(7.10)

via the thus defined right action

◁ :
(
[ei]

d
i=1, g

)
7→ [ei]

d
i=1 ◁ g :=

[∑
j
ej gji

]d
i=1

(7.11)

of group elements on frames. Note that the inverse in this action in Eq. (7.10) is due to the
definition of Eq. (7.7) without inverse.2 One usually refers to the transformation behavior of
reference frames as covariant transformation while the transformation of gauges and vector
coefficients is denoted as contravariant transformation; see Appendix C.

Since the transformation behavior of the coefficients in Eq. (7.9) and the basis in Eq. (7.10)
are inverse to each other they compensate, that is, they leave the tangent vector v =∑
i v
A
i e

A
i =

∑
i v
B
i e

B
i invariant:

v =
∑

i
vBi e

B
i =

∑
i
vBi
∑

j
eAj

((
gBAp

)−1)
ji

=
∑

j

(∑
i

((
gBAp

)−1)
ji
vBi

)
eAj

=
∑

j
vAj e

A
j . (7.12)

This construction ensures that any calculation is ultimately independent of the chosen gauge,
which is usually denoted as coordinate independence. In general, any coordinate represen-
tation of a coordinate free object or function is for consistency reasons required to be coor-
dinate independent.

2Other conventions might flip the choice of inverses in ψB = gBAψA and [eBi ]
d
i=1 = [eAi ]

d
i=1 ◁(

gBA
)−1. An inverse in either of the two equations is necessary to make the left action · on gauges

and right action ◁ on frames compatible.
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Figure 7.3: A chart xA : UA → V A assigns coordinates V A ⊆ Rd to regions UA ⊆ M of the
manifold. It induces coordinate bases

[
∂

∂xA
1

∣∣
p
, . . . , ∂

∂xA
d

∣∣
p

]
and corresponding gauges ψA

p = d̂xAp

of the tangent spaces TpM over UA. We will mostly not work with charts but rather refer to points
p ∈ M in a coordinate free manner. Gauges (frames) are then directly assigned to the tangent spaces
instead of being induced.

For completeness we want to mention that the here presented formalism defines general
bases of the tangent spaces, sometimes referred to as non-coordinate bases (non-holonomic
bases), in terms of local gauges. A very popular but less general alternative are coordinate
bases (holonomic bases) [

∂

∂xA1

∣∣∣∣
p

, . . . ,
∂

∂xAd

∣∣∣∣
p

]
, (7.13)

which are induced by coordinate charts

xA : UA → V A ⊆ Rd (7.14)

of the manifold [221]. The corresponding gauges are given by the the chart differentials,
that is,

ψAp = d̂xAp =
(
d̂xAp,1 , . . . , d̂x

A
p,d

)⊤
: TpM → Rd . (7.15)

Gauge transformations coincide in this setting with the Jacobians

gBAp =
∂xB

∂xA

∣∣∣∣
xA(p)

∈ GL(d) (7.16)

of chart transition maps. An exemplary chart and its induced coordinate bases are visualized
in Fig. 7.3. Appendix C discusses the relationship between both formalisms in detail; an
overview is given in Table C.1.

In the remainder of this paper we will mainly work in the gauge formalism, which assigns
reference frames immediately to the tangent spaces instead of inducing them from charts.
Exceptions are the Möbius convolutions in Chapter 10, Euclidean CNNs in Chapter 15, log-
polar coordinates in Section 16.2 and icosahedral CNNs in Section 17.4. In all of these cases
the manifolds are locally flat and the charts are isometric, such that they induce orthonormal
frames. GM -convolutions on UA can then be computed in an efficient manner by running
Euclidean convolutions with G-steerable kernels on the charts’ codomains V A.
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Figure 7.4: Graphical interpretation of the commutative diagram in Eq. (7.23). A coordinate free map
M : TpM → TpM can be equivalently represented by functionsMA : Rd → Rd orMB : Rd → Rd

relative to different gauges ψA
p or ψB

p , respectively. These coordinatizations of M are defined by a
pre- and postcomposition with gauges in the domain and codomain, for instance, following the arrows,
MA := ψA

p ◦ M ◦
(
ψA

p

)−1. As a consequence, gauge transformationsMB = gBA
p MA

(
gBA
p

)−1

between coordinatizations are given by a pre- and postcomposition with transition maps gBA
p in the

domain and codomain. All quantities and mappings in this work will either be coordinate free (like
M) or will be expressed in a coordinate independent way in different gauges (likeMA andMB). We
will therefore need to define (or derive) transformation laws for any quantity and function.

7.2 Coordinate independent functions on tangent spaces

Just as the vectors v ∈ TpM , functions on the tangent spaces are coordinate free, that is,
they are defined without referring to any reference frame. A chosen gauge allows to rep-
resent such coordinate free mappings by functions which operate on coefficient vectors in
Rd. Similar to the coefficient vectors, coordinatizations of functions need to transform in a
specific way under gauge transformations in order to be consistently defined, i.e. to respect
coordinate independence. We will later apply the here presented concept of expressing co-
ordinate free mappings in terms of local coordinates to define GM -coordinate independent
convolutions.

As a simple example for a coordinate free operation, let us consider the case of a linear map

M : TpM → TpM . (7.17)

Let vin ∈ TpM be a tangent vector which is byM being mapped to vout =Mvin ∈ TpM .
Linear maps are in numerical implementations usually modeled by coefficient matrices
which map between coefficient vectors relative to some choice of reference frame. To make
this precise, assume some gauge ψAp to be given such that the coordinate free vectors vin and
vout in TpM are represented by coefficient vectors vAin = ψAp (vin) and vAout = ψAp (vout) in Rd.
The linear mapM is in this gauge represented by the matrix

MA := ψAp ◦M ◦
(
ψAp
)−1 ∈ Rd×d (7.18)
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whose definition is visualized by the commutative diagram below:

Rd TpM TpM Rd

MA

MψA
p ψA

p
(7.19)

The matrix is consistent with the coordinate free mapping since both imply each other:

MAvAin =
[
ψAp ◦M ◦

(
ψAp
)−1] ◦ [ψAp (vin)

]
= ψAp

(
Mvin

)
= ψAp (vout)

= vAout (7.20)

Of course one could have represented M relative to any other choice of gauge ψBp . We
know from Eq. (7.9) that coefficient vectors in different gauges are related by vB = gBAp vA.
Similarly,MB relates toMA by the gauge transformation

MB = ψBp ◦M ◦
(
ψBp
)−1

= ψBp ◦
(
ψAp
)−1◦MA ◦ ψAp ◦

(
ψBp
)−1

= gBAp MA
(
gBAp

)−1
, (7.21)

which acts here both on the domain and codomain.3 This transformation law is again seen
to be consistent by the mutual transformations canceling out:

MBvBin =
[
gBAp MA

(
gBAp

)−1] [
gBAp vAin

]
= gBAp MAvAin

= gBAp vAout

= vBout (7.22)

The derived gauge transformations therefore assert that all coordinatized computations are
ultimately coordinate independent. The relations between the coordinate free mapping and
its coordinatizations is summarized by the following commutative diagram

Rd Rd

TpM TpM

Rd Rd

gBA
p ·

MA

gBA
p ·

ψA
p

ψB
p

M
ψA

p

ψB
p

MB

(7.23)

which is graphically interpreted in Fig. 7.4.
3The transformation of the matrix coefficients via the left and right multiplication with gBA and(

gBA
)−1, respectively, identify the linear map as a tensor of type (1, 1).
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In practice one can not instantiate the coordinate free linear map M numerically without
referring to a choice of coordinatization. However, its existence is implied if (and only if)
its coordinatizations relate to each other as specified by Eq. (7.21), which ensures that the
correct transformation behavior of the input and output vector coefficients in Eq. (7.9) is
preserved.

7.3 Structure groups, G-structures and G-atlases

We will later on require neural networks to operate in a coordinate independent manner, that
is, we demand their inference to be independent from arbitrary choices of reference frames.
This raises the question to which extent the choice of reference frames on a manifold is
arbitrary. In the previous Sections 7.1 and 7.2 we allowed for any possible choice of gauge or
reference frame, which were thus related by general GL(d)-valued gauge transformations. In
many applications the manifold does, however, come with additional structure which allows
to distinguish a preferred subset of reference frames or gauges, whose transition functions
take values in a reduced structure group G ≤ GL(d). Such geometric structures – or rather
the subsets of preferred reference frames themselves, which encode equivalent information
– are denoted as G-structures.

G-structures are best understood by considering some specific examples. The following list
gives such examples, classified by their structure group G ≤ GL(d):

O(d): Consider the metric structure of a Riemannian manifold, which allows to measure
distances and angels, and therefore to distinguish orthonormal frames, that is,
those frames that satisfy η(ei, ej) = δij for any i, j = 1, . . . , d. Correspondingly,
a Riemannian metric allows to talk about isometric gauges ψAp , which identify the
metric of Rd with that of TpM , i.e. which satisfy η(v, w) = ⟨ψAp (v), ψAp (w)⟩Rd

for any v, w ∈ TpM . Since orthonormal frames and isometric gauges are de-
fined up to rotations and reflections, any gauge transformation between them will
take values in the orthogonal group O(d), which is that subgroup of GL(d) that
preserves angles and distances.

GL+(d): Similarly, an orientation of the manifold distinguishes left-handed from right-
handed frames and orientation preserving gauges from orientation reversing
gauges. Gauge transformations between frames of a given handedness take values
in GL+(d), that is, that subgroup of GL(d) which preserves orientations.

SO(d): Together, a given metric and orientation specify orthonormal frames of a certain
handedness. Gauge transformations between such frames are guaranteed to lie in
the subgroup SO(d) of GL(d).

{e}: A globally smooth frame field defines an {e}-structure on M . In this case there is
only one single distinguished frame at each position, such that gauge transforma-
tions lie in the trivial group {e} ≤ GL(d).

GL(d): If no additional structure is imposed, any reference frame of the tangent spaces is
equally valid. Gauge transformations are in this case general invertible liner maps
in GL(d) and the corresponding G-structure is just the frame bundle FM .



7.3. Structure groups, G-structures and G-atlases 121

structure group G G-structure GM equivalent structure on M

GL(d) all reference frames, i.e. GM=FM smooth structure only
GL+(d) positively oriented frames orientation of M
SL(d) unit volume frames volume form
CO(d) conformal frames —
Sp(d) symplectic frames —
O(d) orthonormal frames Riemannian metric

O(d− n, n) pseudo-orthonormal frames pseudo-Riemannian metric
SO(d) positively oriented orthonormal frames Riemannian metric + orientation
{e} parallelization (global frame field) —

Table 7.1: Examples ofG-structuresGM onM and their corresponding reduced structure groupsG ≤
GL(d) [159]. A G-structure is defined as a smoothly varying subset of reference frames (a principal
G-subbundle of the frame bundle FM ), where the frames of any tangent space are mutually related
by G-valued gauge transformations. While this is a quite abstract definition, it allows to view many
geometric structures on M in a unified way. For instance, a Riemannian metric on M allows to dis-
tinguish orthonormal frames. Conversely, a specification of orthonormality uniquely implies a metric.
A Riemannian metric and an orthonormal structure are thus equivalent to each other. Similarly, there
is a one-to-one correspondence between volume forms and unit volume frames. Note that a choice of
structure group G does not uniquely specify a G-structure. For example, different Riemannian metrics
could be chosen as O(d)-structure, different volume forms as SL(d)-structure or different global frame
fields as {e}-structure. Coordinate independent CNNs are designed to respect a given G-structure –
which particular structure this is depends on the learning task.

The common theme in those motivating examples is that they are all defined by

1. a (spatially smoothly varying) subset of distinguished reference frames,

2. a corresponding subset of preferred gauges and

3. a subgroup G ≤ GL(d) of gauge transformations which preserve the
distinguished notion of frames and gauges.

Such smoothly varying subsets of reference frames are denoted as G-structures GM on M
and the group G is denoted as (reduced) structure group – see Section 11.3 for a more
rigorous definition.4 The process of specifying a G-structure is known as a reduction of the
structure group from GL(d) to G. An atlas AG =

{(
UX , ψX

)}
X∈X is denoted as G-atlas

if all of its transition functions

gBA : UA ∩ UB → G, p 7→ gBAp := ψBp ◦
(
ψAp
)−1

(7.24)

lie in a reduced structure group G ≤ GL(d) (cf. Eq. (7.6)). The relation between reference
frames and gauges in Eq. (7.4) implies that anyG-atlas encodes a correspondingG-structure.

Multiple choices of G-structures may exist for a given structure group G. To connect to
the examples above: different Riemannian metrics specify different subsets of reference
frames as being orthonormal, that is, they correspond to different O(d)-structures OM . A
choice of metric is therefore equivalent to a choice of O(d)-structure. Similarly, different
choices of orientations of an orientable manifold specify a different set of frames as being

4Formally,GM is defined as a principalG-subbundle of the frame bundle FM , which is a principal
GL(d)-bundle.
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right-handed. The two possible choices of orientations therefore correspond to two possi-
ble choices of GL+(d)-structures GL+M . SO(d)-structures SOM may differ in both the
choice of orientation and metric. A further example are {e}-structure {e}M . They do not
allow for (non-trivial) gauge transformations and therefore correspond to choices of smooth,
global frame fields on M . Table 7.1 gives more examples of structure groups G and the
corresponding G-structures.

A reduction of the structure group to G, i.e. the existence of a G-structure, might be ob-
structed by the topology of the manifold. This implies that there is an “irreducible” structure
group beyond which the ambiguity of reference frames can not be resolved without violating
the smoothness (or even continuity) assumption of theG-structure. For example, the Möbius
strip in is non-orientable, which means that it does not admit a globally consistent, smooth
definition of frame handedness and thus {e}-structure (globally smooth frame field). As vi-
sualized in Fig. 10.1, a G-atlas of gauges covering the Möbius strip will unavoidably require
a reflection in one of the transition maps, implying an irreducible structure group G = R.
Coordinate independent CNNs on the Möbius strip is therefore required to be at least re-
flection equivariant. Similarly, the structure group of the sphere can not be reduced further
than G = SO(2). Smooth spherical CNNs are thus necessarily based on locally rotation
equivariant kernels.

Note that any (differentiable) manifold comes with someG-structure. For instance, a raw dif-
ferentiable manifold has a GL(d)-structure (containing any possible frame), a Riemannian
manifold an O(d)-structure and Rd is canonically equipped with an {e}-structure, visual-
ized in Fig. 13.3a. We will therefore without loss of generality refine the term “coordinate
independence” to GM -coordinate independence, i.e. the independence w.r.t. choices of ref-
erence frames in the G-structure given on M . Throughout, we will assume that gauges are
part of some G-atlas

AG =
{(
UX , ψX

)}
X∈X such that gBAp ∈ G ∀ ψAp , ψBp ∈AG, p ∈ UA ∩ UB,

(7.25)

corresponding to the given G-structure. Any quantity or function can be expressed relative
to any gauge from this atlas5, and the coordinatizations in different gauges relate uniquely
by some G-valued gauge transformation. Guaranteeing the coordinate independence of all
constructions, they will always correspond to some coordinate-free counterparts, in terms of
which we will formulate the global theory in Part III.

5This is a non-trivial statement since not any quantity can be expressed relative to arbitrary GL(d)-
related reference frames. For instance, the feature fields, introduced in Section 8.1, will only admit
G-valued gauge transformations and are therefore only defined relative to the preferred frames inGM .
As an intuitive example, consider the feature vectors of a conventional (non-equivariant) CNN on Rd,
which are extracted relative to the canonical {e}-structure of Rd and do not carry information about
the kernel responses relative to other reference frames.



CHAPTER 8

Coordinate independent feature vector fields

The feature spaces of coordinate independent CNNs are spaces of feature vector fields. Sim-
ilar to the case of tangent vector coefficients, the numerical coefficients of feature vectors are
required to transform consistently under gauge transformations. The specific transformation
law (group representation) of a feature field does hereby specify its field type, – common
examples are scalar fields, tangent vector fields, tensor fields, regular feature fields or irrep
fields. A field’s type determines furthermore how feature vectors are parallel transported or
acted on by isometries.

The goal of this chapter is to define coordinate independent feature fields and their geomet-
ric properties. Section 8.1 introduces feature vectors and their gauge transformation laws.
Parallel transporters of feature vectors and their representation relative to different coordi-
natizations are introduced in Section 8.2. Section 8.3 discusses isometries and their action
on geometric quantities like tangent and feature vectors.

The coordinate independent feature fields described here are the differential geometric gen-
eralization of the Euclidean feature fields from Section 4.2. The coordinate free definition of
feature vector bundles is given in Section 11.3.3 below.

8.1 Gauge transformations of feature vectors

Convolutional feature fields assign a feature vector, encoding information inferred from a lo-
cal neighborhood of the input signal, to each point of the manifold. The spatial accumulation
of information is performed by a convolutional kernel which is measuring feature fields in
its surrounding relative to its local reference frame. We are thus assuming a gauge ψA which
specifies the kernel alignments on a neighborhood UA. Relative to this gauge the kernel will
yield a smooth local field of responses (observations)

fA : UA → Rc , (8.1)

given by a c-dimensional numerical feature vector fA(p) at each position p ∈ UA. Assume
a second response field fB : UB → Rc, inferred relative to gauge ψB on UB , to be given.
Since the response of a kernel depends in general on its alignment, it is to be expected that
fA and fB do not agree on the overlap UA ∩UB . Without further restrictions the responses
of a convolution kernel will be arbitrarily gauge dependent.
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Figure 8.1: The numerical responses fA(p) ∈ Rc and fB(p) ∈ Rc of kernels that are oriented
according to different frames do in general not coincide. In order to represent numerical coefficients
of the same coordinate independent feature vector relative to the chosen gauge, they are required to be
related by gauge transformations ρ(gBA

p ) if the gauges are related by gBA
p . As derived in Chapter 9,

this requirement imposes a gauge equivariance constraint on the convolution kernels.

The principle of covariance, proposed by Albert Einstein [80, 79], states that:

“Universal laws of nature are to be expressed by equations which hold good for all systems
of coordinates, that is, are covariant with respect to any substitutions whatever.”

We believe that a similar principle should hold in geometric deep learning as well, that
is, the inference should be independent from any arbitrariness in the choice of reference
frames. Given that this arbitrariness in coordinatizations is precisely captured by the given
G-structure GM , this requires in particular that features should be GM -coordinate indepen-
dent geometric objects.1 We thus design convolution kernels such that their responses fA
and fB encode fields of feature vector coefficients which represent a coordinate free feature
vector field f locally in different gauges. A collection of such numerical coefficient fields
fX , expressed relative to a G-atlas of gauges ψX on neighborhoods UX covering M , is
equivalent to the global, coordinate free feature field f on M .

In order for this coordinate free feature field to be well defined, i.e. GM -coordinate indepen-
dent, the local coefficient fields (or kernel responses) are required to be consistently stitched
together viaG-valued transition maps. They must therefore transform in a principled manner
under gauge transformations. Since we are dealing with feature vector spaces, these trans-
formations are typically taken to be linear, that is, they are modeled by G-representations

ρ : G→ GL(c) . (8.2)

1In this point we deviate from Einstein’s general covariance, which always considers GL(d)-
valued gauge transformations (corresponding to diffeomorphism covariance). His setting is in our
formulation included for G = GL(d), however, we keep the assumed structure group flexible since
most applications will assume a reduced structure group.
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Figure 8.2: Examples of feature coefficient fields on M = R2 from classical image processing. Top:
For simplicity we assume a “parallel” frame field and consider the same gauge transformation, a rota-
tion by π/2, at each point p ∈M . Middle: The intensity values of a grayscale image are independent
from the choice of reference frames. They are therefore modeled by scalar fields, characterized by the
trivial representation ρ(g) = 1 ∀g ∈ G. Bottom: The two coefficient channels of a gradient image
are calculated from a scalar image by taking the derivatives along the frame axes – they are there-
fore gauge dependent. Gradient images w.r.t. different gauges are related by the group representation
ρ(g) = (g−1)⊤ and are therefore identified as covector fields (tensor fields of type (0, 1) or 1-forms).
For the visualized rotation by π/2 this leads to a new first channel (∂/∂xB

1
) equivalent to the old second

channel (∂/∂xA
2
) and a new second channel (∂/∂xB

2
) equivalent to the negative old first channel (∂/∂xA

1
).

Relative to their respective reference frames, both coefficient fields encode the same (coordinate free)
gradient field. The description is therefore automatically coordinate independent.

Similar to the transformation of tangent vector coefficients in Eq. (7.9), the feature vector
coefficients are then defined to transform under a G-valued gauge transformation gBAp ac-
cording to

fB(p) := ρ
(
gBAp

)
fA(p) , (8.3)

where p ∈ UA ∩ UB ; see Fig. 8.1 for a visualization. Being constructed to transform
synchronously, the spaces of reference frames, tangent vector coefficients and feature vector
coefficients are said to be G-associated to each other. Note that the construction via a G-
representation ρ does in general not describe GL(d)-valued gauge transformations, i.e. fully
coordinate independent features. The extracted feature vectors will therefore only have a
well defined expression relative to the frames in the considered G-structure GM , which is
captured by the term “GM -coordinate independence” (or G-covariance).

Bundle description: For completeness we briefly mention that coordinate free feature vec-
tor fields will in Part III be more formally defined as smooth sections f ∈ Γ(A) of a feature
vector bundle A πA−→M which is associated to the G-structure GM and has the feature vec-
tor coefficient spaces Rc as typical fibers. The coefficient vectors fA(p) and fB(p) in Rc are
local trivializations of a coordinate free feature vector f(p) ∈ Ap ∼= Rc, and are similarly
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Figure 8.3: As for steerable CNNs (Chapter 4), the full feature spaces of coordinate independent CNNs
consist of multiple independent feature fields fi of potentially different types ρi and dimensionalities
ci. The individual fields are in gauge ψA locally represented by coefficient fields fA

i : UA → Rci and
relate to coefficient fields in another gauge ψB via local gauge transformations fB

i = ρi
(
gBA

)
fA
i .

The representation modeling the whole feature space is given by a direct sum, here
⊕

iρi = ρ1⊕ρ2⊕
ρ3 ⊕ ρ4, which reflects that the coefficients of each individual field transform independently (i.e. do
not mix). This independent transformation behavior of the individual coefficient fields applies to active
transformations (isometry pushforwards) as well; cf. Fig. 4.4.

defined as the coefficients vA = ψAp (v) and vB = ψBp (v) of a tangent vector v ∈ TpM . Note
that, while being isomorphic, the feature spacesAp ∼= Aq at different points p ̸= q of M are
distinct from each other, such that their elements can not be summed together. The parallel
transporters, discussed in Sections 8.2 and 11.5, provide isomorphisms between different
feature vector spaces, which allows the summation of features (after transporting them into
the same vector space). Since these definitions are quite technical, we skip their details for
now and refer the interested reader to Section 11.3.

Stacked feature fields and coordinate independent feature spaces: As for steerable
CNNs, we define the feature spaces of coordinate independent CNNs as comprising mul-
tiple feature fields fi of potentially different types ρi and dimensionalities ci. A full field
of activations of a feature space is therefore defined as the direct sum f =

⊕
i fi. Its local

numerical representations fX =
⊕

i f
X
i transform according to the direct sum ρ =

⊕
i ρi

of the individual field types. The individual fields transform by construction independently
from each other:

ρ
(
gBA

)
fA =

[⊕
iρi
(
gBA

)][⊕
if
A
i

]
=
⊕

i

[
ρi
(
gBA

)
fAi
]

(8.4)

Fig. 8.3 visualizes the independent passive transformation of a direct sum of coefficient
fields under local gauge transformations. Compare this with the situation in Fig. 4.4, where
we instead visualized the active transformation of a feature coefficient field in a fixed gauge.
This active transformation viewpoint is in the differential geometric setting described by
pushforward actions of the isometry group, which are covered in Section 8.3 below.

For specific examples of stacked coordinate independent feature fields, we refer the reader
back to the end of Section 4.2.
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8.2 Parallel transport of feature vectors

The kernels of convolutional networks accumulate features from all points q in a neighbor-
hood around each point p of the manifold. Since features at different points live in different
feature vector spaces they need to be parallel transported along some path γ from q to p
before they can be processed further. We first discuss the transport of tangent vectors, which
is formalized by a parallel transport map

Pγ : TqM → TpM . (8.5)

This transporter is often computed from the canonical Levi-Civita connection of the man-
ifold, however, it might in some applications correspond to an alternative (G-compatible)
connection, as further discussed below and in the discussion of applications in Part IV. A
transporter of (G-associated) feature vectors follows from that of the tangent vectors if the
transport is G-compatible.

8.2.1 Tangent vector transporters

It is didactically reasonable to start with the specific case of Levi-Civita transporters on Eu-
clidean spaces, depicted in Fig. 8.4a, before proceeding to more general transporters and
manifolds. In this case the parallel transport is independent from the chosen path γ and
keeps the transported vector parallel in the usual sense on Euclidean spaces. Note that the
transporter Pγ is a coordinate free map between the tangent spaces TqM and TpM . It can,
however, be expressed relative to coordinates, then operating on numerical coefficient vec-
tors instead of tangent vectors. An intuition is given in Fig. 8.4a, where the frames at q
and p are not parallel2 such that the coefficients (1, 1)⊤ at q and

(√
2, 0
)⊤

at p differ even
though the corresponding (coordinate free) tangent vectors are parallel to each other. To
make this more precise, consider gauges ψÃq and ψAp to be given on neighborhoods U Ã of

q (red) and UA of p (green). Let a vector v =
(
ψÃq
)−1

(vÃ) ∈ TqM be given by its co-

efficients vÃ ∈ Rd. The coefficients of the transported vector Pγv at p are then given by
ψAp ◦ Pγ(v) = ψAp ◦ Pγ ◦

(
ψÃq
)−1

(vÃ). It follows that the coordinate expression of a
transporter is relative to gauges Ã and A expressed as:3

gAÃγ := ψAp ◦ Pγ ◦
(
ψÃq
)−1 ∈ GL(d) (8.6)

The group element gAÃγ accounts for non-parallel choices of reference frames at q and p. On
Rd, one typically assumes all frames to be parallel such that all coordinatizations of Levi-
Civita transporters become trivial – conventional and steerable Euclidean CNNs implicitly
make this assumption of parallel frames (Fig. 1.6a) and trivial transporters, which explains
why they don’t appear in their mathematical formulation.

As the transporter in Eq. (8.6) is coordinate dependent, we are interested in its gauge trans-
formations. Denote by ψB̃q and ψBp two alternative gauges on neighborhoods of q and p.

2In contrast to general manifolds, Rd comes with a canonical notion of parallelism of frames.
3gAÃ

γ takes values in GL(d) if we assume arbitrary (gl(d)-valued) connections and general struc-
ture groups G ≤ GL(d). For the so(d)-valued Levi-Civita connection and orthonormal frames, i.e.
G = O(d), one has gAÃ

γ ∈ O(d).
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(a) Parallel transport flat Euclidean space. (b) Parallel transport on the 2-sphere S2.

Figure 8.4: Parallel transport of tangent vectors v ∈ TqM at q to Pγv ∈ TpM at p. Fig. 8.4a visualizes
the special case of Levi-Civita transporters on flat Euclidean spaces M = E2. Independently from
the chosen path γ, the Levi-Civita transport keeps the vector (orange) parallel in the usual sense in
Euclidean spaces. Gauges ψÃ

q (red) and ψA
p (green) allow to express the coordinate free transporter

by a group element gAÃ
γ = ψA

p ◦ Pγ ◦
(
ψÃ

q

)−1 ∈ GL(d) which accounts for the change of vector
coefficients if the target frame does not agree with the transported source frame. Fig. 8.4b shows the
Levi-Civita transport on the 2-sphere S2, Eq. (17.18). The transporters Pγ1

and Pγ2
along different

paths γ1 and γ2 disagree in general. As before, the coordinate free transporters can be expressed by
group elements that operate on coefficients relative to the coordinate frames at q and p.

From the commutative diagram

Rd Rd

TqM TpM

Rd Rd

gB̃Ã
q ·

gAÃ
γ ·

gBA
p ·

ψÃ
q

ψB̃
q

Pγ
ψA

p

ψB
p

gBB̃
γ ·

(8.7)

one can then read off that the transporters in the different gauges are related by

gBB̃γ = gBAp gAÃγ
(
gB̃Ãq

)−1
(8.8)

Note the similarity of this transformation law and commutative diagram to those in
Eqs. (7.21) and (7.23). The difference between both is that the transporter has a different
domain TqM and codomain TpM , which are trivialized by different, independent gauges
and transform therefore independently.

In general, the parallel transport of tangent vectors is determined by some choice of connec-
tion, for instance (but not necessarily) by the canonical Levi-Civita connection of a Rieman-
nian manifold. A connection can be seen as a collection of infinitesimal transporters between
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adjacent tangent spaces, such that the full transporter Pγ is given by integrating the connec-
tion along the path γ. The transporters along different paths γ1 and γ2 from q to p need
not agree, which is in Fig. 8.4b exemplified by Levi-Civita transporters on the 2-sphere S2,
cf. Eq. (17.18). As for flat spaces, the coordinate free transporters can by Eq. (8.6) be ex-
pressed relative to gauges. The gauge transformations of such coordinatized transporters are
again given by Eq. (8.8). The transporters on a given manifold can in principle be calculated
analytically from the connection [100, 221] and can sometimes be expressed in closed form,
for instance for the sphere S2, Eq. (17.18). Several numerical algorithms exist to compute
parallel transporters on meshes; see Section 18.1.2. We will not go into more details on how
to compute tangent vector transporters Pγ but simply assume them to be given.

8.2.2 Feature vector transporters

Eq. (8.3) defines the transformation law of feature vector coefficients by their field type ρ.
Their parallel transporter, expressed relative to gauges ψÃq and ψAp , is analogously given by
wrapping the tangent vector coefficient transporter into this field representation, that is, by

ρ
(
gAÃγ

)
. (8.9)

Note that – since ρ : G→ GL(c) is a G-representation – this construction is only then well
defined when all transporters gAÃγ (for arbitrary paths γ and frames A, Ã) are actually tak-
ing values in the chosen structure group G. Whether this is the case depends both on the
particular choice of G-structure (or G-atlas) and the transporters (or connection) considered
– they need to be compatible [326].

All convolutional networks accumulate (thus transport) feature vectors in one way or the
other, and assume therefore some choice of connection and G-structure. If the chosen G-
structure is incompatible with the Levi-Civita connection, this implies that these models are –
often implicitly – assuming an alternative, G-compatible connection to accumulate features.
The reader should for now not worry about the specific choices of connections, which will
become more clear when reviewing specific applications in Part IV. In the remainder of this
section, we will elaborate more on the G-compatibility of connections and G-structures.
Assuming that feature transporters will in the following always be well defined, this part can
be safely ignored at a first reading.

A more rigorous, coordinate free discussion of transporters on the associated feature vector
bundles can be found in Section 11.5.

8.2.3 Compatibility of connections and G-structures

A connection is said to be G-compatible with a G-structure GM if the coordinate expres-
sions gAÃγ of its transporters Pγ relative to any frames A, Ã of GM take values in the struc-
ture group G [326].4 A G-compatible connection gives rise to transporters of G-associated
feature vectors.

4Equivalently, the connection 1-form of the connection, expressed relative to frames of GM , is
required to be g-valued, where g denotes the Lie algebra of G. More abstractly, we are interested in
principal Ehresmann connections on the principal G-bundle GM .
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To illuminate this somewhat abstract compatibility condition, we discuss a few specific ex-
amples. A simple example is that of the Levi-Civita connection on R2, Fig. 8.4a, Consider
the two {e}-structures on R2 that are shown in Figs. 13.3a and 13.3b. Here G = {e}, which
means that the field type ρ : {e} → GL(c) is a {e}-representation, such that the parallel
transport of feature vectors can only be defined if the coordinate expressions gAÃγ take val-
ues in {e}, i.e. are trivial. As the {e}-structure in Fig. 13.3a consists of “parallel” frames,
this is indeed the case – the Levi-Civita connection is thus compatible with this {e}-structure.
In contrast, the frames of the {e}-structure in Fig. 13.3b are “rotated” relative to each other,
resulting in non-trivial coordinate expressions gAÃγ that take values in SO(2) (visualized in
Fig. 8.4a). Since the field type ρ : {e} → GL(c) does not handle rotations, it is not possi-
ble to define the Levi-Civita transport of features associated to this {e}-structure – they are
incompatible. As a second example, consider the Levi-Civita connection on S2, shown in
Fig. 8.4b. The transport will in this case always be path dependent and lead to differently ro-
tated vectors, implying that gAÃγ will take values in SO(2). Feature vectors to be transported
according to Levi-Civita connection need therefore to be of some type ρ : SO(2) → GL(c)
that is an SO(2)-representations. This requires at least the SO(2)-structure on S2 that is
shown in Fig. 17.2a. The {e}-structure on S2 from Fig. 17.2b is incompatible with the
Levi-Civita connection.

Since the Levi-Civita connection is a metric connection, it preserves lengths of and angles
between tangent vectors, and thus transports orthonormal frames to orthonormal frames.
It follows that the Levi-Civita connection is always compatible with the O(d)-structure of
orthonormal frames, relative to which gAÃγ takes values in O(d). If the manifold is ori-
entable, the frame-handedness is preserved by Levi-Civita transporters, which means that
they are guaranteed to be compatible with SO(d)-structures of orthonormal, right-handed
frames on M . All of the convolutional networks in our literature review in Part IV that are
based on SO(d)-structures accumulate features via Levi-Civita transporters.

If a givenG-structure is incompatible with the Levi-Civita connection, one needs to define an
alternative, G-compatible connection to transport the feature vectors. The most prominent
example in our literature review is that of trivial connections on {e}-structures. A trivial
connection is characterized by the property that its transport is path independent [62]. Any
{e}-structure implies a unique trivial connection, which transports tangent vectors such that
they keep the same angle to the reference frames of the {e}-structure. This implies gAÃγ = e,
i.e. they transport coefficient vectors in Rc (relative to frames of the {e}-structure) without
transforming their numerical values. Such transporters are used in convolutional networks
that do not explicitly model non-trivial transporters – which applies to all networks with
G = {e} in Table 14.1, specifically those in Sections 17.3 and 18.3. Note that the trivial
connection is the only connection that is compatible with an {e}-structure.

As stated above, any convolutional network assumes some choice of compatible G-structure
and connection, most often Levi-Civita connections or trivial connections.

Section 11.5 elaborates on the compatibility of transporters and G-structures from a coordi-
nate free viewpoint.
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Figure 8.5: Visualization of the coordinate free pushforward of
tangent vectors and its coordinate expression relative to given
reference frames at the source and target location. The coor-
dinate free pushforward ϕ∗|p : TpM → Tϕ(p)M moves tangent

vectors v∈TpM to ϕ∗|p(v)∈Tϕ(p)M (orange). Let ψÃ
p be the

gauge at p that corresponds to the red reference frame and ψA
ϕ(p)

the gauge at ϕ(p) that corresponds to the green reference frame.
They explain the vectors before and after the pushforward by nu-
merical coefficients ψÃ

p (v) = (1, 1)⊤ and ψA
ϕ(p)

(
ϕ∗|p(v)

)
=(

0,−
√
2
)⊤. This transformation of vector coefficients is de-

scribed by the isometry induced gauge transformation gAÃ
ϕ (p) ∈

GL(d), that is, ψA
ϕ(p)

(
ϕ∗|p(v)

)
= gAÃ

ϕ (p) · ψÃ
p (v). The co-

efficients of feature vectors transform analogously according to
ρ
(
gAÃ
ϕ (p)

)
if gAÃ

ϕ (p) ∈ G.

8.3 Isometry actions and induced gauge transformations

Until now our discussion focused exclusively on the local gauge symmetries in the coor-
dinatization of tangent spaces. A manifold might, however, come with non-trivial sym-
metries itself, which are in the case of a Riemannian manifold M forming its isometry
group Isom(M). This section discusses isometries and their action on manifolds, tangent
vectors, reference frames and feature fields in a nutshell, summarizing results which are
more rigorously derived in Section 13.1. We will thereby highlight the equivalence of active
isometry actions and their passive interpretation in terms of isometry induced gauge trans-
formations. This equivalence will later on allow us to describe the isometry equivariance of
GM -convolutions.

Isometries are defined as the symmetries of Riemannian manifolds, that is, those maps (dif-
feomorphisms)

ϕ :M →M, (8.10)

that preserve the metric and thus distances on M . The set of all isometries of a Riemannian
manifold M forms its isometry group, which we denote as Isom(M). For instance, the Eu-
clidean group E(d) is the isometry group of Euclidean spaces Ed. It consists of translations,
rotations and reflections, all of which preserve the standard metric of Ed. The isometry group
of the 2-sphere S2 is given by the orthogonal group O(3), consisting of rotations and reflec-
tions. Fig. 8.5 shows an egg-shaped manifold, whose isometries are rotations and reflections
in O(2) around the vertical axis.

8.3.1 Pushforward of tangent vectors

Any isometry ϕ ∈ Isom(M) acts via its pushforward (or differential)

ϕ∗|p : TpM → Tϕ(p)M , (8.11)

naturally on tangent vectors. The pushforward can intuitively be thought of as carrying
tangent vectors along with the action of the isometry on the underlying manifold M . A
formal definition of the pushforward on TM is given in Appendix C.2, however, the given
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intuition is sufficient for our purpose. Since the pushforward is a coordinate free, linear
map between tangent spaces, its action is in coordinates represented by some d × d matrix.
Assuming gauges ψÃp and ψAϕ(p) at the source and target location, respectively, this matrix is
given by

gAÃϕ (p) := ψAϕ(p) ◦ ϕ∗|p ◦
(
ψÃp
)−1 ∈ GL(d) . (8.12)

It explains the transformation from the numerical coefficients of an original vector v ∈ TpM
in the source gauge and its pushforward ϕ∗|p(v) ∈ Tϕ(p)M in the target gauge, that is,
ψAϕ(p)

(
ϕ∗|p(v)

)
= gAÃϕ (p) · ψÃp (v). The commutative diagram

Rd Rd

TpM Tϕ(p)M

Rd Rd

gB̃Ã
p ·

gAÃ
ϕ (p)·

gBA
ϕ(p)·

ψÃ
p

ψB̃
p

ϕ∗|p
ψA

ϕ(p)

ψB
ϕ(p)

gBB̃
ϕ (p)·

, (8.13)

which is conceptually similar to that in Eq. (8.7), visualizes the definition of the tangent
vector pushforward’s coordinate expression. It furthermore implies that the gauge transfor-
mations between different coordinatizations are given by

gBB̃ϕ = gBAϕ(p) g
AÃ
ϕ

(
gB̃Ãp

)−1
, (8.14)

which is the conceptual analog to Eq. (8.8).

8.3.2 Pushforward of reference frames and symmetries of the G-structure

Since reference frames are just d-tuples of linearly independent frame vectors, the pushfor-
ward of tangent vectors induces a pushforward of reference frames by pushing the individual
frame axes forward. Specifically, the pushforward of a frame [ei]

d
i=1 at p is defined as the

frame
[
ϕ∗|p(ei)

]d
i=1

at ϕ(p).

This pushforward of frames is always well defined, however, it might not be compatible with
the G-structure, that is, there is in general no guarantee that frames in GM remain in GM
when being pushed forward. Take for instance the {e}-structure in Fig. 1.12 (top left), which
is preserved by horizontal translations but not by vertical translations or any other isometry
of R2. Similarly, the R-structure in Fig. 1.12 (bottom left) is preserved by translations and
horizontal reflections, but not by rotations. We consider therefore the subgroup

IsomGM :=
{
ϕ ∈ Isom(M)

∣∣∣ [ϕ∗(ei)]di=1
∈ GM ∀ [ei]di=1 ∈ GM

}
≤ Isom(M)

(8.15)

of isometries which are symmetries of the G-structure, i.e. which are guaranteed to map any
frame in GM to another frame that is also contained in GM .5 Note that IsomGM depends in

5More formally stated, such isometries are (or induce) principal bundle automorphisms of the
G-structure.
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general on the specific choice ofG-structureGM , not only on the structure groupG. For the
special case thatG ≥ O(d), it is guaranteed that IsomGM = Isom(M) coincide since isome-
tries are guaranteed to map orthonormal frames to orthonormal frames. We are interested in
the subgroup IsomGM since only those isometries will induce a well defined pushforward of
GM -coordinate independent feature vectors, as discussed further in the following section.

Before proceeding to the isometry action on feature vectors, we discuss what we call isom-
etry induced gauge transformations. For this purpose, let

[
eÃi
]d
i=1

be that frame at p that

corresponds to some source gauge ψÃp and let
[
eAi
]d
i=1

be that frame at ϕ(p) that corresponds
to some target gauge ψAϕ(p), as shown in Fig. 8.5 in red (left) and green (right), respectively.

The pushforward
[
ϕ∗|p(eÃi )

]d
i=1

of the source frame from p to ϕ(p) (translucent red, right)
does in general not coincide with the target frame. However, as proven in Section 13.1.3, the
two frames are related by the isometry induced gauge transformation[

ϕ∗|p(eÃi )
]d
i=1

=
[
eAi
]d
i=1

◁ gAÃϕ (p) , (8.16)

where gAÃϕ (p) is the group element from Eq. (8.12) and ◁ is the right action from Eq. (7.11).
The term “isometry induced gauge transformation” makes in so far sense that the geometries
around p and ϕ(p) are indistinguishable since ϕ is an isometry, i.e. a symmetry of M .
Identifying the two points with each other, one can therefore reinterpret the active action of
ϕ on a geometric quantity as a passive gauge transformation, i.e. an induced change from
the source to the target frame.

Theorem 13.1.3 in Section 13.1 asserts that G-structure preserving isometries in IsomGM

and G-valued induced gauge transformations imply each other, that is,

ϕ ∈ IsomGM ⇐⇒ gAÃϕ (p) ∈ G ∀ p ∈M (8.17)

holds for arbitrary gauges ψÃp and ψAϕ(p) of theG-atlas. The reader should verify these claims
at our examples in Fig. 1.12.

8.3.3 Pushforward of feature vectors

If (and only if) an isometry is a symmetry of the G-structure, it gives rise to a pushforward
of feature vectors. Intuitively, this pushforward moves feature vectors from points p to ϕ(p).
When being expressed relative to the two reference frames at p and ϕ(p), it is given by the
induced gauge transformation

ρ
(
gAÃϕ (p)

)
. (8.18)

Note that this transformation is well defined for any ϕ ∈ IsomGM , since the induced gauge
transformations gAÃϕ (p) will in this case take values in G and ρ is a G-representation. In
contrast, if ϕ is not a symmetry of the G-structure, it is impossible to define a corresponding
feature vector pushforward. This statement relates to the fact that the features of conven-
tional CNNs have no specified transformation behavior under rotations or reflections in the
Euclidean group E(d).

The pushforward of individual feature vectors implies an action on the whole feature field f ,
which we denote by ϕ▷ f . Relative to coordinates, this action is expressed as[

ϕ▷ f
]A

(ϕ(p)) = ρ
(
gAÃϕ (p)

)
f Ã(p) . (8.19)
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Note the similarity of this action to the induced representation action on Euclidean feature
fields in Eq. (4.3).

We will later prove that coordinate independent CNNs are equivariant w.r.t. the action of
isometries in IsomGM on feature fields; see Fig. 9.3. This property relies on the fact that the
active isometry action on feature fields can by Eq. (8.19) be understood as a mere passive
gauge transformation of feature vector coefficients.



CHAPTER 9

Coordinate independent networks and GM-convolutions

Neural networks process data by applying a series of parameterized mappings (layers) to an
input signal – in our case to a set of feature fields on a Riemannian manifold. The principle
of covariance requires thereby that the individual network layers should be GM -coordinate
independent operations. The coordinate representations of such layers will therefore have
to transform such that they respect the transformation laws of their input- and output fea-
ture field. Except form this consistency requirement, general coordinate independent layers
remain unconstrained.

A common design principle of neural networks which operate on spatial signals (feature
fields) is that they are in some generalized sense convolutional. The main characteris-
tic which most generalizations of the convolution operation share is that their inference
is position-independent. This is achieved by sharing template functions (neural connec-
tivity), for instance convolution kernels or biases, between different locations. Whenever
the structure group G is non-trivial, the weight sharing process is ambiguous since tem-
plate functions could be shared relative to different reference frames. As we will prove in
this chapter, this ambiguity requires the shared template functions to be equivariant under
G-valued gauge transformations (G-steerable). Gauge steerable template functions will be
indifferent to the specific reference frame in which they are applied and therefore allow for
a coordinate independent weight sharing. Intuitively, G-steerability can be thought of as ex-
tending spatial weight sharing to a weight sharing over the full G-structure, i.e. additionally
over G-transformations of frames.

In essence, neither coordinate independence nor weight sharing alone require the steerability
of the neural connectivity, but together they do:

GM coordinate independence

spatial weight sharing

}
−→ G steerability (gauge equivariance)

To emphasize this distinction, all of the network layers in this chapter are introduced in
a two step process: first, we only demand their coordinate independence, i.e. investigate
their coordinate representations relative to different frames. Subsequently, we require spatial
weight sharing, from which steerability constraints follow.

In this chapter we will consider network layers which take fields fin of type ρin as input and
produce field fout of type ρout as output. Section 9.1 discusses the specific case of layers
which operate pointwise, that is, whose output fout(p) at any p ∈ M depends only on the
single input feature vector fin(p) at the same location. The practically relevant examples
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considered here are gauge equivariant 1×1-convolutions in Section 9.1.1, bias summation in
Section 9.1.2 and nonlinearities in Section 9.1.3.

The more complicated case of convolutions with spatially extended kernels is treated in Sec-
tion 9.2. As a preparation, Section 9.2.1 discusses feature fields as seen from the viewpoints
of local observers (reference frames), relative to which the (convolution) kernels will be ap-
plied. Such observations are formalized as a pullback of the feature field to an observer’s
tangent space; see Fig. 9.1. Section 9.2.2 introduces so-called kernel field transforms, which
are similar to convolutions but do not assume spatial weight sharing and are therefore pa-
rameterized by a (smoothly varying) kernel field on M . The actual GM -convolutions are
in Section 9.2.3 defined as those kernel field transforms that are parameterized by a single,
shared template kernel. In order to ensure the coordinate independence of the weight shar-
ing process, the convolution kernels are required to be G-steerable, i.e. to satisfy a gauge
equivariance constraint.

Section 9.3 shows that GM -convolutions are automatically equivariant under those isome-
tries that are symmetries of the G-structure (IsomGM -equivariant). This means that GM -
convolutions commute with the action of isometries on feature fields as visualized in Fig. 9.3.

9.1 Pointwise gauge equivariant operations

To begin with, we consider some neural network operations for which the constraints com-
ing from the required coordinate independence and weight sharing are particularly easy to
derive. All of these operations have in common that they act pointwise on feature vectors,
that is, they compute output feature vectors fout(p) at p ∈ M solely based on the input fea-
ture vectors fin(p) at the same location. In order to satisfy the principle of G-covariance, the
coordinatizations of these operations are all required to transform according to a precom-
position with ρin and a postcomposition with ρout. When demanding that the operations are
determined in terms of shared weights, these transformation laws imply a requirement for
the gauge equivariance (or invariance) of the operations.

The derivations for the different pointwise operations in the following Sections 9.1.1, 9.1.2
and 9.1.3 are in the first steps mostly analogous and lead to essentially the same covariance
and equivariance constraints on the template functions. They could therefore be treated to-
gether, keeping the particular operation (or template function) abstract. However, since the
implications of the resulting constraints differ for the particular instantiations, and since we
want to keep the discussion close to the application, we will omit such an abstract formula-
tion and directly consider particular instantiations.

9.1.1 Gauge equivariant 1×1-convolutions

As a first example of pointwise operations, we consider the action of a family of linear maps
Cp, which send the input feature vector fin(p) at each p ∈M to an output feature vector

fout(p) := Cp fin(p) . (9.1)

If we add the assumption of spatial weight sharing, the linear maps Cp and Cq at different
locations p and q will be coupled, and the operation can be seen as a convolution with
a linear operator-valued Dirac delta kernel. This operation is quite common in computer
vision, where it is usually denoted as 1×1 -convolution, since the spatial discretization of a



9.1. Pointwise gauge equivariant operations 137

linear Dirac kernel which operates on two-dimensional images is given by a (matrix-valued)
kernel with a spatial extent of 1×1 pixels. We will in the following derive that the demand
for spatial weight sharing will result in a constraint, which forces the matrix-valued template
kernels to be intertwiners, that is, gauge equivariant matrices.

Prior to the assumption of weight sharing, the coordinate expressions of the linear maps Cp
and the gauge transformations between them behave very similar to those of the linear maps
on TpM , which were discussed in Section 7.2. Since the input and output feature vectors are
in coordinates represented by coefficient vectors fAin (p) ∈ Rcin and fAout(p) ∈ Rcout , the linear
map is naturally represented by that matrix CAp ∈ Rcout×cin that satisfies

fAout(p) = CAp · fAin (p) . (9.2)

This relation does of course hold for arbitrary coordinatizations, such that we have fBout(p) =
CBp ·fBin (p) for any other gauge, labeled byB. The transformation law which relates CBp to CAp
follows by the principle of covariance from the transformation laws of the input and output
features. Since these are given by fBin (p) = ρin

(
gBAp

)
fAin (p) and fBout(p) = ρout

(
gBAp

)
fAout(p),

one has

fBout(p) = CBp · fBin (p)
⇔ ρout

(
gBAp

)
fAout(p) = CBp ρin

(
gBAp

)
fAin (p)

⇔ fAout(p) = ρout

(
gBAp

)−1 CBp ρin

(
gBAp

)
fAin (p) . (9.3)

A comparison with Eq. (9.2) implies that the two coordinate expressions of Cp are necessarily
related by

CBp = ρout

(
gBAp

)
CAp ρin

(
gBAp

)−1
(9.4)

if they should respect the transformation laws of the feature vectors. As usual, these consid-
erations are concisely captured by a commutative diagram:

Rcin Rcout

Rcin Rcout

ρin

(
gBA
p

)
·

CAp ·

ρout

(
gBA
p

)
·

CBp ·

(9.5)

The important practical implication of this result so far is that the linear map Cp is not re-
stricted in any way. Differently formulated: as long as the coordinate expressions in different
gauges are related by Eq. (9.4), one is free to parameterize Cp in an arbitrary, fixed gauge A
by an unconstrained matrix CAp . As we will see, the situation changes when requiring the
linear maps to share weights.

Consider now the case where the linear maps Cp and Cq share weights. This means that we
assume them to be parameterized by a shared set of parameters, given by a 1×1-convolution
template kernel K1×1 ∈ Rcout×cin . The open question is how exactly the coordinate free
maps should be parameterized in terms of this template kernel. Our requirement for GM -
coordinate independence demands that we do not prefer any particular reference frame in the
weight sharing process, that is, that we treat all coordinatizations in the same manner. It is
therefore necessary to share the template kernel with all coordinatizations at the same time,
that is, to set

CXp = K1×1 for any gauge
(
UX , ψX) ∈AG with p ∈ UX , (9.6)
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where AG is the (maximal) G-atlas corresponding to the considered G-structure; see
Eq. (7.25). As the covariance constraint in Eq. (9.4) needs to hold for arbitrary G-related
gauges, and the coordinatizations CAp = CBp = K1×1 of the linear maps do all coincide,
the joint demand for weight sharing and GM -coordinate independence is seen to imply a
constraint

K1×1 = ρout(g)K1×1 ρin(g)
−1 ∀ g ∈ G (9.7)

on the template kernel. The corresponding adaptation of the commutative diagram in
Eq. (9.5) with weight sharing is for any g in G given by:

Rcin Rcout

Rcin Rcout

ρin(g)·

K1×1·

ρout(g)·

K1×1·

(9.8)

The conclusion of this analysis is that the template kernels which can be unambiguously
shared are exactly those which are invariant (equivariant) under the gauge action. The vec-
tor space of such gauge invariant 1×1-convolution kernels is simply the space of intertwining
maps (Def. B.5.7) between the representations ρin and ρout, that is,

HomG(ρin, ρout) :=
{
K1×1 ∈ Rcout×cin

∣∣∣K1×1 = ρout(g)K1×1 ρin(g)
−1 ∀g ∈ G

}
. (9.9)

Note that, according to Schur’s Lemma B.5.10, the requirement on K1×1 to be an in-
tertwiner prevents a mapping between fields that transform under non-isomorphic irre-
ducible representations via 1×1-convolutions. This severe restriction is unavoidable with
1×1-convolution kernels but will be resolved later when allowing for spatially extended ker-
nels.

At this point we want to mention that we use the terms “gauge equivariant template function”
and “gauge invariant template function” interchangeably. This is justified by the observa-
tion that the invariance constraint in Eq. (9.7) can be written as an equivariance constraint
K1×1 ρin(g) = ρout(g)K1×1 ∀g ∈ G. It is in general possible to view functions which are
equivariant w.r.t. some group action in their domain and codomain as the invariants of the
corresponding action on the function itself; see Eq. (B.28) in Appendix B.4. In our applica-
tion, the equivariance viewpoint highlights that a transformation of the input field will lead
to a corresponding transformation of the output field, which ensures that all involved quan-
tities transform covariantly with each other. On the other hand, the invariance viewpoint
emphasizes that the template function can be shared in an arbitrary gauge.

9.1.2 Gauge equivariant bias summation

After applying a convolution operation, it is common to sum a (shared) bias vector to the in-
dividual feature vectors. Together with the requirement of coordinate independence, weight
sharing will again lead to a linear constraint. This constraint will only allow for biases to be
summed to the invariant subspaces of the gauge action on the input feature field.

As before, we first consider the bias summation without requiring weight sharing. We thus
have biases bp, depending on the position p on the manifold, which are summed to an input
feature vector to produce an output feature vector

fout(p) = fin(p) + bp . (9.10)
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Relative to gauges ψAp and ψBp , the bias is represented by those coefficient vectors bAp and bBp
in Rc that satisfy fAout(p) = fAin (p) + bAp and fBout(p) = fBin (p) + bBp . Since the summation
of vectors does not allow to change their transformation laws, the group representations
associated with the input and output feature necessarily agree, that is,

ρin = ρout =: ρ . (9.11)

Together with the requirement for coordinate independence, this implies that the diagram

Rc Rc

Rc Rc

ρ
(
gBA
p

)
·

+bAp

ρ
(
gBA
p

)
·

+bBp

, (9.12)

which is the analog of that in Eq. (9.5), needs to commute. Written out as an equation, this
demands the relation ρ

(
gBAp

)
fAp + bBp = ρ

(
gBAp

)(
fAp + bAp

)
to hold. Since the linearity

of ρ(g) allows to rewrite the right-hand side as ρ
(
gBAp

)
fAp + ρ

(
gBAp

)
bAp , a subtraction of

the input feature vector leads to

bBp = ρ
(
gBAp

)
bAp . (9.13)

The coefficient vectors which represent a coordinate independent bias relative to different
gauges therefore need to transform exactly like the feature vectors to which they are summed.
As in the case of 1×1-convolutions, the coordinate independence does not restrict the bias
bp in any way, but only requires different coordinatizations of the same bias to be consis-
tent with each other. An implementation could therefore pick an arbitrary gauge and freely
parameterize the bias in that gauge by parameters in Rcin .

The situation changes again when asking for spatial weight sharing. Let b ∈ Rcin be a
template bias vector to be shared over the manifold. Since the only way to do this without
arbitrarily preferring any coordinatization is to share the bias vector in all gauges simultane-
ously, we have to require

bXp = b for any gauge
(
UX , ψX) ∈AG with p ∈ UX . (9.14)

in analogy to Eq. (9.6). The combination of the covariance constraint in Eq. (9.13) with this
gauge independent weight sharing then leads to the invariance constraint

b = ρ(g) b ∀ g ∈ G (9.15)

on the bias vector template. This is exactly what we found in Theorem 4.3.2 for Aff(G)-
steerable bias summation layers on Euclidean spaces, but here derived from a passive
instead of active transformation viewpoint. To complete the analogy to the case of
1×1-convolutions, we show the adapted version of the commutative diagram in Eq. (9.12)
with shared weights:

Rc Rc

Rc Rc

ρ(g)·

+b

ρ(g)·

+b

(9.16)
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Section 4.3.2 argued that the vector space

BGρ :=
{
b ∈ Rc

∣∣ b = ρ(g)b ∀g ∈ G
}

(9.17)

of such G-invariant bias templates coincides with the trivial subrepresentations in the irrep
decomposition of ρ and gave some specific examples. Examples for the reflection group are
explicitly derived in Section 10.3.1.

9.1.3 Gauge equivariant nonlinearities

Except from linear (convolution) operations and bias summations, the most basic operations
used in any neural network are nonlinearities. We will here consider the usual case of non-
linearities σp which act in a spatially localized way, that is, which compute output feature
vectors as fout(p) = σp

(
fin(p)

)
. A shared nonlinearity will again be required to be gauge

equivariant. As the reasoning which leads to this conclusion is essentially equivalent to that
in the previous cases, we will only summarize it shortly.

Similar to before, any coordinate free nonlinearity σp is relative to gauges A and B given by
coordinate expressions σAp : Rcin → Rcout and σBp : Rcin → Rcout , which are by the demand

for coordinate independence required to be related by σBp = ρout

(
gBAp

)
◦ σAp ◦ ρin

(
gBAp

)−1
.

A nonlinear template function s : Rcin → Rcout can only be shared in a coordinate indepen-
dent way when sharing it with all gauges simultaneously. This turns the covariance constraint
in an invariance constraint s = ρout(g) ◦ s ◦ ρin(g)

−1 ∀g ∈ G on the template function, or,
equivalently, in the corresponding equivariance constraint

ρout(g) ◦ s = s ◦ ρin(g)
−1 ∀ g ∈ G . (9.18)

This recovers the constraint on Aff(G)-equivariant local nonlinearities found previously in
Theorem 4.3.3. Due to the generality of nonlinear maps it is impossible to derive linear
solution spaces, as done for 1×1-convolutions and biases in Eqs. (9.9) and (9.17), respec-
tively. For specific examples and a benchmarking of steerable nonlinearities we refer back
to Sections 4.3.3 and 6.5.

9.2 Kernel field transforms and GM-convolutions

The central operation of convolutional networks is the convolution operation, which linearly
accumulates characteristic patterns of features from a local neighborhood around each point
p ∈M into a new feature vector fout(p). A spatially extended convolution kernel determines
thereby the specifics of this accumulation. The principle of covariance requires coordinate
independence, and therefore a specific transformation law of kernels under gauge transfor-
mations. As in the previous examples, an additional demand for weight sharing results in a
requirement on the template kernel to be gauge equivariant (G-steerable).

In accordance with the previous section, we clearly distinguish between the requirements
for coordinate independence and weight sharing. Section 9.2.2 starts therefore by discussing
fields of kernels and their transformations laws without demanding the kernels at individual
positions to be tied together. Such unrestricted kernel fields give rise to kernel field trans-
forms, which are integral transforms that can be seen as precursors of convolutions. The
actual GM -convolutions, which are parameterized by a shared, necessarily gauge equivari-
ant template kernel, are defined in Section 9.2.3. As a preparation, we will in the following
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Section 9.2.1 describe local representations of feature fields on the tangent spaces, where
they will be matched with the convolution kernels.

9.2.1 A local observer’s view on feature fields

In contrast to Euclidean spaces or more general homogeneous spaces like the sphere, the
local geometry of a general Riemannian manifold varies from point to point. It is therefore
not immediately clear how a convolution kernel should be defined on M and how it could
be shared between different locations. A common solution is to define the kernel as usual
on a flat, Euclidean vector space Rd, and to share it over the tangent spaces instead of the
manifold itself; see Sections 9.2.2 and 9.2.3 or prior work [204, 232, 293, 58, 57, 327,
67, 339]. Subsequently, the kernel can via the Riemannian exponential map be mapped
down to the manifold. It can be thought of as being applied by a local observer, who is
measuring features in its surrounding relative to its local reference frame. We will in this
section shortly elaborate on how feature fields are perceived from the perspective of different
local observers. Mathematically, this is formalized as the pullback and parallel transport of
the feature field to the tangent spaces; see Fig. 9.1 for a visualization.

In order to map between the tangent spaces and the manifold, we consider the Riemannian
exponential map (corresponding to the Levi-Civita connection).1 Assuming the manifold for
simplicity to be geodesically complete2, the exponential map at a specific point p ∈ M is a
map

expp : TpM →M . (9.19)

It identifies vectors v ∈ TpM with those points expp(v) ∈M that are reached when follow-
ing the geodesic through pwith an initial velocity of v for one unit of time. While preserving
radial distances, the exponential map does in general distort angels and fails to be injective.
For instance, if the manifold is a sphere, the exponential maps wrap their corresponding tan-
gent space infinitely often around it. It is, however, guaranteed that the exponential map is a
local diffeomorphism if its domain is restricted to distances shorter than the distance to the
cut locus (where injectivity fails).

Given the exponential maps, one can pull feature fields on the manifold back to the tangent
spaces. Specifically, let f be some feature field on M , then the pullback exp∗p f := f ◦ expp
is defined as that map that assigns the feature vector f(expp(v)) from expp(v) to v ∈ TpM .
Note that, due to the missing injectivity of the exponential map, each tangent vector might be
assigned to multiple tangent vectors v1 and v2 if expp(v1) = expp(v2) – this is somewhat
similar to gravitational lensing effects in physics. For the case that the exponential map
is injective, or when restricting it to its injectivity radius, the pullback corresponds to an
expression of the feature fields in geodesic normal coordinates [204].

Recall that the purpose of pulling the feature vectors back to the tangent spaces is to enable
that they can be accumulated by a convolution kernel. Unfortunately, this is not immediately
possible since the feature vectors at different locations live in different vector spaces and
are expressed relative to different gauges.3 It is therefore necessary to express all feature

1Even models which assume an alternative (G-compatible) connection to transport features utilize
usually the canonical Levi-Civita connection to compute geodesics and exponential maps.

2The assumption thatM is geodesically complete means that the exponential maps expp are for any
p ∈M defined on the whole tangent space TpM . In cases where this assumption is violated one can re-
sort to zero padding, which is commonly used in convolutional networks for finitely supported images.

3A very similar circumstance motivates the definition of covariant derivatives, which also needs to
combine geometric objects that live in different spaces.
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Figure 9.1: A feature field f on M and its local representation Exp∗
pf on TpM via the transporter

pullback Exp∗
p. Just like the usual pullback exp∗

p f of f along the exponential map expp : TpM →M ,
the transporter pullback assigns feature vectors f(expp(v)) to tangent vectors v ∈ TpM . However, as
we aim to accumulate the pulled back features by means of a convolution kernel, they need to be given
in the same space and be expressed relative to the same gauge at p. The transporter pullback therefore
additionally applies the (G-compatible) parallel transporter along the geodesic from expp(v) to p. Via
a gauge ψX

p , the transporter pullback of f on TpM can be expressed on Rd as [Exp∗
pf ]

X : Rd → Rc

– different choices of reference frames (observers) correspond hereby to different linear deformations
of the feature field. Kernel field transforms and GM -convolutions compute an output feature fout(p)
at p by matching a kernel Kp on TpM with Exp∗

pf (i.e. integrate their product over the tangent space;
see Eq. (9.30)).
(Lizards and butterflies adapted under the Creative Commons Attribution 4.0 International license by courtesy of Twitter.)

vectors [exp∗p f ](v) in the same vector space and relative to the same gauge. A natural
idea, proposed by Poulenard and Ovsjanikov [232], is to do this by parallel transporting the
feature vectors along the geodesics that define the exponential map from expp(v) to v.4 We
denote this pullback of f with additional transport as Exp∗pf to emphasizes its close relation
to the usual pullback exp∗p f to TpM . Fig. 9.1 gives a visual idea of this transporter pullback

of feature fields to the tangent space and its representations
[
Exp∗pf

]A
and

[
Exp∗pf

]B
on

Rd relative to different coordinatizations.

We formalize Exp∗pf by defining it in terms of its coordinate expression relative to some
choice of gauge. To this end, let ψAp be a gauge at p, relative to which the transported

features will ultimately be expressed and let ψÃexpp(v)
be an arbitrary gauge at expp(v),

which represents the feature vector at that location by a coefficient vector f Ã(expp(v)) ∈
Rc. Denote by

ρ
(
gAÃp←exppv

)
(9.20)

the G-compatible parallel transporter of feature vector coefficients along the geodesic from
expp(v) to p. Then we define the transporter pullback in coordinates as[

Exp∗pf
]A

: Rd → Rc, vA 7→
[
Exp∗pf

]A
(vA) (9.21)

:= ρ
(
gAÃp← expp(ψ

A
p )91(vA)

)
· f Ã

(
expp

(
ψAp
)−1

(vA)
)
,

4The parallel transport along any other path would be equally valid.

https://github.com/twitter/twemoji/blob/gh-pages/LICENSE-GRAPHICS
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where v =
(
ψAp
)−1

(vA) ∈ TpM is the coordinate free tangent vector referred to by the

coefficients vA via ψAp . As claimed before, the choice of gauge ψÃexpp(v)
at expp(v) is

by the coordinate independence of all equations irrelevant and cancels out. Specifically,
one could have used any other gauge ψB̃expp(v)

at expp(v), implying gauge transforma-

tions ρ
(
gAB̃p← expp(v)

)
= ρ

(
gAÃp← expp(v)

)
ρ
(
gB̃Ãexpp(v)

)−1
of the transporter by Eq. (8.8) and

f B̃
(
expp(v)

)
= ρ

(
gB̃Ãexpp(v)

)
f Ã
(
expp(v)

)
of the feature vector coefficients by Eq. (8.3),

which annihilate when composing both expressions.

The transporter pullback [Exp∗pf ]
A depends, however, still on the gauge at p, and there-

fore transforms under gauge transformations gBAp at p. As for any coordinatized function,
its transformation law is determined by the gauge transformations on its domain Rd and
codomain Rc. It is therefore given by[

Exp∗pf
]B

= ρ
(
gBAp

)
◦
[
Exp∗pf

]A ◦ (gBAp )−1
, (9.22)

which is summarized by the following commutative diagram:

Rd Rc

Rd Rc

gBA
p ·

[
Exp∗

pf
]A

ρ
(
gBA
p

)
·

[
Exp∗

pf
]B

(9.23)

Note that this is essentially the induced representation action on ρ-fields from Section 4.2,
however, here restricted to G and viewed passively on a tangent space. As visualized in
Fig. 9.1,

[
Exp∗pf

]A
and

[
Exp∗pf

]B
should be thought of as the perspective of different

local observers (reference frames) on the feature field.

In principle, one could consider alternative constructions for the pullback of feature fields
from M to TpM . Our definition of kernel field transforms and GM -convolutions in Sec-
tions 9.2.2 and 9.2.3 below is independent from this particular choice.

9.2.2 Coordinate independent kernels and kernel field transforms

GM -convolutions are coordinate independent operations which apply the same, shared ker-
nel at each point of the manifold. To clearly separate the assumptions being made, we first
discuss more general kernel field transforms, which are coordinate independent operations
but drop the requirement of weight sharing. They are therefore similar to GM -convolutions
but apply a potentially different kernel Kp to each point p of the manifold. In order to re-
spect the principle of covariance, the coordinate expressions of those kernels are required to
transform in a principled manner, however, the kernels themselves are left unconstrained.

Coordinate independent kernels: Since convolutions in deep learning map between
fields of feature vectors of dimensionalities Rcin and Rcout , the convolution kernels are
cout× cin matrix-valued. Discretized implementations of d-dimensional convolutions on Eu-
clidean spaces typically represent such kernels as arrays of shape (s1, . . . , sd, cout, cin). The
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Figure 9.2: A coordinate free kernel Kp on TpM and its coordinate expressions KX
p : Rd → Rcout×cin

relative to gauges ψX
p (only one of the cout × cin kernel channels is shown). The gauge transforma-

tions that relate different coordinatizations of a kernel follow from the transformation laws of their
domain Rd and codomain Rcout×cin . They are therefore for any v ∈ Rd given by KB

p

(
gBA
p v

)
=

ρout

(
gBA
p

)
KA

p (v) ρin

(
gBA
p

)−1. A kernel field K on M is a smooth assignment of kernels over the tan-
gent spaces (Def. 12.2.1). Note that we are here assuming the kernel on TpM to be given and express
it subsequently relative to different gauges on Rd. This is conceptually different from the situation
depicted in Figs. 1.5, 1.7, 8.1 and F.2, where we assume a template kernel K to be given on Rd and
subsequently define Kp on TpM via convolutional weight sharing relative to some reference frame. In
order to preserve coordinate independence during the weight sharing process, the shared kernel needs
to be invariant (or equivariant) under gauge transformations; see Section 9.2.3 and Appendix G.

first d axes represent hereby a spatial grid of s1 × · · · × sd pixels, each of which is assigned
a cout× cin matrix, encoded in the last two axes.5 In the continuous, Euclidean setting, such
kernels can be described as maps

K : Rd → Rcout×cin , (9.24)

which assign a cout× cin matrix to each point of Rd. As mentioned in the previous Sec-
tion 9.2.1, we define GM -convolutions as matching the transporter pullback Exp∗pfin on the
tangent space TpM with a kernel Kp on TpM . Since the tangent spaces are flat, it is natural
to define this matching as in the usual, fully Euclidean setting. We do therefore define the
kernels Kp via their coordinate expressions, which take the form in Eq. (9.24), that is,

KAp : Rd → Rcout×cin . (9.25)

Fig. 9.2 shows a given coordinate free kernel on TpM and its representations on Rd relative
to different reference frames.6

The transformation law between the coordinate representations KAp and KBp of a kernel Kp
on TpM follows as usual from the transformation laws of their domain and codomain. On
the domain Rd the transformation law is given by gBAp , while the transformation law of
Rcout×cin is, as in Eq. (9.4), given by a simultaneous left multiplication with ρout

(
gBAp

)
and

5The actual memory layout depends on the particular deep learning framework in consideration.
6We emphasize that we are here assuming a coordinate free kernel Kp which is given on TpM and

consider its coordinate expressions KX
p on Rd relative to reference frames X . Convolutional weight

sharing will later on pose us with the question of how to define a coordinate free kernel Kp on TpM
given a template kernel K on Rd. Appendix G elaborates on these two concepts and their relation to
the kernel’s G-steerability.
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right multiplication with ρin

(
gBAp

)−1
. The two coordinatizations of the kernelKp relate thus

for any v ∈ Rd by

KBp
(
gBAp v

)
= ρout

(
gBAp

)
· KAp (v) · ρin

(
gBAp

)−1
, (9.26)

which is visualized by the following commutative diagram:

Rd Rcout×cin

Rd Rcout×cin

gBA
p ·

KA
p

ρout

(
gBA
p

)
[ · ] ρin

(
gBA
p

)−1

KB
p

(9.27)

As in the examples from Section 9.1, the principle of covariance only requires a consistent
transformation behavior between different kernel coordinatizations but does not lead to a
constraint on the kernel itself. One might therefore parameterize the kernels Kp for any
p ∈ M and an arbitrary gauge at p by some unrestricted, matrix-valued kernel. We denote
smooth fields of such kernels as kernel fields, which play a major role in our analysis of the
isometry equivariance of GM -convolutions in Chapter 13.

Coordinate independent kernel field transforms: Given a smooth kernel fieldK, we can
define kernel field transforms, which are similar to convolutions but differ in that they might
apply a different kernel at each spatial position. They compute a field of output feature
vectors fout(p) by integrating the product of the corresponding kernel Kp and transporter
pullback Exp∗pfin of fin over TpM , that is,

fout(p) =

∫
TpM

Kp(v) Exp∗pfin(v) dv . (9.28)

To express this coordinate free definition in terms of coordinates, one has to replace all
quantities by their coordinate expressions and to pull the integration via the chosen gauge
from TpM to Rd. As described in Appendix D, the appropriate (gauge invariant) Riemannian
volume element is for a gauge ψAp given by√

|ηAp | dvA, (9.29)

where the factor
√
|ηAp |, defined in Eq. (D.6), is the (positive) volume spanned by the refer-

ence frame [eAi ]
d
i=1 at p. The coordinate expression of the kernel field transform thus reads

fAout(p) =

∫
Rd

KAp (vA)
[
Exp∗pfin

]A
(vA)

√
|ηAp | dvA . (9.30)

The coordinate independence of the kernel field transform is asserted by expressing it relative
to an alternative gaugeψBp and showing that the resulting output field transforms as expected,
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which is indeed the case:

fBout(p)
(1)
=

∫
Rd

KBp (vB)
[
Exp∗pfin

]B
(vB)

√
|ηBp | dvB

(2)
=

∫
Rd

[
ρout

(
gBAp

)
KAp

((
gBAp

)−1
vB
))
ρin

(
gBAp

)−1] [
Exp∗pfin

]B
(vB)

√
|ηBp | dvB

(3)
= ρout

(
gBAp

) ∫
Rd

KAp (vA)
[
ρin

(
gBAp

)−1[
Exp∗pfin

]B(
gBAp vA

)] √
|ηAp | dvA

(4)
= ρout

(
gBAp

) ∫
Rd

KAp (vA)
[
Exp∗pfin

]A
(vA)

√
|ηAp | dvA

(5)
= ρout

(
gBAp

)
fAout(p) (9.31)

Here we used the definition of kernel field transforms and the transformation law of ker-
nels (Eq. (9.26)) in the first two steps. The third step follows by pulling ρout out of
the integral and substituting vB with vA =

(
gBAp

)−1
vB , using that the volume element√

|ηBp | dvB =
√
|ηAp | dvA is by design gauge invariant. The last two steps follow then by

identifying the transformation law of the transporter pullback of the feature field in Eq. (9.22)
and the definition of the kernel field transform in gauge ψAp . Note that the coordinate inde-
pendence of the kernel field transform affirms the correctness of the kernel transformation
law in Eq. (9.26).

A kernel field transform is only well defined if the integrals over the tangent spaces converge,
which is more rigorously discussed in Section 12.2 and Appendix I. Theorem 12.2.6 proves
that a compact support of the kernels Kp is sufficient to guarantee this well-definedness. It
further proves that kernel field transforms that are based on smooth kernel fields will map
smooth input feature fields to smooth output feature fields.

9.2.3 GM-convolutions and G-steerable kernels

The freedom of kernel field transforms to apply a different kernel at each location does not
allow them to generalize learned inference over different locations and thus makes them data
inefficient. One does therefore typically consider convolutions, which can be seen as those
specific kernel field transforms that are based on convolutional kernel fields, i.e. kernel fields
that are parameterized by a single, shared template kernel. As before, a coordinate indepen-
dent weight sharing requires the template kernels to be gauge equivariant (G-steerable). This
gauge equivariance of the template kernels implies that patterns which appear in different,
G-related geometric poses are guaranteed to evoke the same response up to a corresponding
transformation of the feature vector via ρout.

Convolutional weight sharing: Let K : Rd → Rcout×cin be a template kernel to be shared
over all tangent spaces. In order to not prefer any particular gauge – which would contradict
our requirement for coordinate independence – we are forced to share the kernel with coordi-
natizations in all gauges simultaneously. Naively, this seems to suggest to share the template
kernel by setting KXp = K for any point p ∈ M and any gauge ψXp at p. While such a def-
inition of kernel sharing seems reasonable, it does not follow our principle of sharing local
template functions in a strict sense: instead of directly sharing the kernel, it is important to
share the whole local operation – which is here the whole integral transform in Eq. (9.30).
Since this operation is parameterized in terms of the kernel field K, this leads indirectly to a
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sharing of the template kernel, however, with a slightly different result as the naive sharing
considered above.

To find the correct definition of GM -convolutional kernel fields according to our principle
of sharing local template functions, we first need to identify these local operations. We do
this by abstracting kernel field transforms (in coordinates) as a collection of local integral
operators of the form

IAK,p : C
∞(Rd,Rc)→ Rc, F 7→

∫
Rd

KAp (v)F (v)
√
|ηAp | dv , (9.32)

where C∞
(
Rd,Rc

)
denotes the space of smooth maps from Rd to Rc. In our application,

these smooth maps are just the local feature field representations [Exp∗pf ]
A : Rd → Rc

as seen from the tangent spaces at p, which are by the kernel field transform mapped to an
output feature vector fAout(p) = IAK,p

(
[Exp∗pf ]

A
)

at p. Given our template kernel K : Rd →
Rcout×cin , we define a corresponding integral operator template

IK : C∞
(
Rd,Rc

)
→ Rc, F 7→

∫
Rd

K(v)F (v) dv , (9.33)

which multiplies a local field representationF with the template kernelK and then integrates
their product. Note that IK is as a template function necessarily agnostic to specific choices
of gauges and does therefore not involve a frame volume factor. A GM -coordinate inde-
pendent convolutional weight sharing scheme is imposed by demanding that this template
functional agrees with all the individual integral operators at any point and in any gauge, that
is,

IXK,p = IK for any gauge
(
UX , ψX) ∈AG with p ∈ UX , (9.34)

where AG is the (maximal) G-atlas corresponding to the considered G-structure; see
Eq. (7.25). This is equivalent to directly sharing the local template kernel according to

KXp =
K√
|ηXp |

for any gauge
(
UX , ψX) ∈AG with p ∈ UX , (9.35)

where the normalization factor reduces the “kernel density” by the reference frame volume√
|ηXp |. This volume factor will result in the factor |det g | in the G-steerability constraint,

which is necessary for 1) recovering Euclidean steerable CNNs from Part I and 2) guar-
anteeing the active gauge equivariance of coordinate independent CNNs for non-volume-
preserving symmetry groups, as discussed below.

We denote kernel fields which are parameterized by a shared kernel K according to
Eq. (9.35) as GM -convolutional kernel fields. The simultaneous requirement for weight
sharing and coordinate independence leads to an equivariance constraint on the template
kernels. To derive this constraint, insert the kernel sharing in Eq. (9.35) into the kernel
transformation law in Eq. (9.26), which results in

1√
|ηBp |

K
(
gBAp v

)
=

1√
|ηAp |

ρout

(
gBAp

)
· K(v) · ρin

(
gBAp

)−1
. (9.36)

Since the volumes of different reference frames are related by
√
|ηAp | =

∣∣det(gBAp )
∣∣√|ηBp |

and since the transformation law needs to hold for arbitrary G-related gauges, this implies
the G-steerability constraint

K(gv) =
1

|det g | ρout(g) ·K(v) · ρin(g)
−1 ∀ v ∈ Rd, g ∈ G . (9.37)
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object KXp K
[
Exp∗pf

]X
and F

√
|ηX | dvX and dv

density s 0 −1 0 −1 1

Table 9.1: An overview of the density exponents s of different objects involved in general ker-
nel field transforms and GM -convolutions. The coordinate expression of an s-density transforms
with a factor of |det g |s when the coordinates are transformed via g ∈ G. A general matrix-
valued kernel KX

p is according to Eq. (9.26) a 0-density. The same holds for feature fields and
their pullbacks, whose transformation laws are given in Eqs. (8.3) and (9.22). The whole integrand
KX

p (vX)[Exp∗
pf ]

X(vX)
√
|ηX | dvX of a general kernel field transforms in Eq. (9.30) is seen to be

a 0-density as well – note that this is necessary for its coordinate independence as demonstrated in
Eq. (9.31). As the integral operator template IK in Eq. (9.33) is agnostic of any choice of gauge, it
does not involve the frame volume factor

√
|ηX |. Since it should nonetheless behave like the integral

operators IX
K,p underlying kernel field transforms, the whole integrand K(v)F (v) dv of IK(F ) is re-

quired to be a 0-density. This necessitates the shared template kernels K themselves to transform like
−1-densities, which is reflected in the G-steerability constraint in Eq. (9.37). Note that this transfor-
mation law of template kernels is strictly necessary for the local G-equivariance of GM -convolutions
if the output features should transform like densities of weight 0; see Eq. (9.42). For an alternative per-
spective, we point the interested reader to Corollary 1 in [10], where the determinant factor is derived
from Haar measures on Lie groups.

on template kernels, which was already found in Theorem 4.3.1 on Euclidean steerable con-
volutions. Diagrammatically, a G-steerable kernels K is required to satisfy the commutativ-
ity of

Rd Rcout×cin

Rd Rcout×cin

g ·

K

1

|det g | ρout(g) [ · ] ρin(g)
−1

K

(9.38)

for any g ∈ G. Note that the inverse determinant factor |det g | in the kernel’s transformation
law makes it transform like a matrix-valued −1-density; see Table 9.1 for more details. In-
tuitively, G-steerable kernels are exactly those kernels that can be shared relative to arbitrary
G-related reference frames without that the particular choice of gauge would influence the
result.7 The ambiguity of kernel alignments – which motivated our investigation of coordi-
nate independent CNNs in the first place – is thus resolved by additional weight sharing over
all the equivalent reference frames (all gauges) in the consideredG-structureGM . For more
details on steerable kernels and their solution spaces we refer back to Chapter 5.

GM-coordinate independent convolutions: Given a G-steerable template kernel K ∈
KG
ρin,ρout

, the GM -convolution K⋆ with this kernel is defined as the kernel field transform

with the corresponding GM -convolutional kernel field, satisfying KXp = K/
√
|ηX | for any

point p ∈ M and any gauge ψXp . By inserting the GM -convolutional kernel field into the

7The G-steerability constraint can be rewritten as K(v) = |det g |−1ρout(g) ·K(g−1v) ·ρin(g)
−1

∀ v ∈ Rd, g ∈ G, which emphasizes that G-steerable kernels are the invariants under the gauge
action on the right-hand-side. Being invariant under gauge transformations, a G-steerable kernel leads
to the same coordinate free kernel Kp at p when being shared relative to any reference frame in GpM .
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Figure 9.2: Local G-equivariance of the
shared integral operator template IK un-
derlying a GM -convolution K⋆. An active
G-transformation Res

Aff(G)
G Ind

Aff(G)
G ρ of

a local field representation on Rd moves
feature vectors from g−1v to v and trans-
forms them additionally via ρin(g). While
the former moves features spatially, the lat-
ter transforms their numerical coefficients
(visualized as rotation and scaling of the
individual (tangent) vectors in the figure).
The application of IK to both inputs results
in different output feature vectors, however,
by theG-equivariance of IK , the responses
are guaranteed to be related by ρout(g); see
Eq. (9.42). An active G-transformation of
an input field therefore results in a cor-
responding active G-transformation of the
output feature vector. Note that the G-
equivariance of IK is a direct consequence
of the G-steerability of K.

kernel field transform, Eq. (9.30), the coordinate expression of the GM -convolution boils
down to

fAout(p) =
[
K ⋆ fin

]A
(p) :=

∫
Rd

K(v)
[
Exp∗pfin

]A
(v) dv = IK

(
[Exp∗pfin]

A
)
. (9.39)

It is thus simply given by matching the transporter pullback [Exp∗pfin]
A of the feature field

in an arbitrarily chosen gauge ψAp with the gauge independent convolution kernel K. GM -
coordinate independent convolutions are therefore easily implemented by 1) choosing arbi-
trary reference frames, 2) pulling (and transporting) the feature fields back to the tangent
space coordinatizations and 3) contracting them there with a (trainable) G-steerable kernel.

GM -convolutions exhibit multiple related symmetry properties, an overview of which is
given in Fig. 1.9:

GM -coordinate independence: As specific instances of kernel field transforms, GM -
convolutions are (passively) coordinate independent (or G-covariant), i.e. Eq. (9.31)
applies to them.

global isometry equivariance: They are equivariant under the active, global action of G-
structure preserving isometries in IsomGM on feature fields. Sections 9.3 and specif-
ically Chapter 13 discuss this property in detail.

local G-equivariance: The integral operator template IK is by the G-steerability of K it-
self G-equivariant. Any G-transformation of a local feature field representation on
Rd will therefore result in a corresponding transformation of the resulting feature
vector; see Fig. 9.2. Independent G-transformations of patterns that are centered at
different points pi ∈M will therefore lead to independent output feature transforma-
tions at these points (this holds only at these points and requires compactly supported
kernels whose entire field of view transforms according to the G-transformation).

To make the last point precise, we need to define active G-transformations of local feature
field representations as seen from a kernel’s viewpoint, i.e. G-actions on C∞(Rd,Rc).
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These are naturally given by the restriction of the induced representation (Eq. (4.6)) back
to G,8 that is, by

Res
Aff(G)
G Ind

Aff(G)
G ρ : G→ GL

(
C∞(Rd,Rc)

)
, (9.40)

whose actions are defined by[
Res

Aff(G)
G Ind

Aff(G)
G ρ

]
(g)F := ρ(g) ◦ F ◦ g−1 . (9.41)

Note that this is the active counterpart of the passive local gauge transformation of transporter
pullbacks from Eq. (9.22) above. Fig. 1.10 visualizes both, showing in particular that they
are indistinguishable from a kernel’s viewpoint.

The claimed G-equivariance of IK is easily seen by applying it to a transformed input,
followed by a substitution and making use of the G-steerability of K:

IK
(
Res

Aff(G)
G Ind

Aff(G)
G ρin(g) F

)
(9.42)

= IK
(
ρin(g) ◦ F ◦ g

−1) (
def. of Res

Aff(G)
G Ind

Aff(G)
G ρ, Eq. (9.41)

)
=

∫
Rd

K(v) ρin(g)F
(
g−1v) dv

(
def. of IK , Eq. (9.33)

)
=

∫
Rd

K(g ṽ) ρin(g)F
(
ṽ) |det g | dṽ

(
substitution of ṽ = g−1

v
)

=

∫
Rd

ρout(g)K(ṽ) F
(
ṽ) dṽ

(
G-steerability of K, Eq. (9.37)

)
= ρout(g) IK(F )

(
def. of IK , Eq. (9.33)

)
An active transformation of a local feature field representation F on some tangent space
coordinatization by Res

Aff(G)
G Ind

Aff(G)
G ρin(g) is therefore guaranteed to lead to a transfor-

mation of the resulting output feature vector by ρout(g). In other words, features which appear
in different G-related geometric poses will evoke the same response up to a transformation
via ρout. In terms of a commutative diagram, this is concisely summarized as:

C∞(Rd,Rcin) Rcout

C∞(Rd,Rcin) Rcout

IK

Res
Aff(G)
G Ind

Aff(G)
G ρin(g) ρout(g)

IK

(9.43)

Fig. 9.2 gives a visual interpretation of this equivariance property of IK .

Note that the equivariance under local G-transformations in Eq. (9.42) requires the G-
steerability constraint exactly as it is in Eq. (9.37), that is, in particular, with the determinant
factor |det g |−1 which makes the kernel transform like a −1-density. This factor is traced
back to our definition of convolutional weight sharing in Eq. (9.35) with the normalization
by the reference frame volumes

√
|ηXp |. The naive weight sharing mentioned in the begin-

ning of this section would therefore not have lead to the desired transformation behavior. In
other words: both the naive and the normalized version of the kernel sharing are coordinate
independent and behave therefore both consistently under passive gauge transformations

8The restriction back to G suppresses the translations in Aff(G).
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Figure 9.3: A network layer is
said to be isometry equivariant
when it commutes with their ac-
tion on feature fields, i.e. satisfies
K ⋆

(
ϕ▷fin

)
= ϕ▷

(
K ⋆ fin

)
for

any feature field fin and isometry ϕ.
GM -convolutions are by design
equivariant w.r.t. the subgroup
IsomGM of isometries that are sym-
metries of the G-structure.

That GM -convolutions are IsomGM -
equivariant relies on the facts that
1) kernels are shared over the whole
manifold, 2) isometries preserve the
transporter pullback of feature fields
and 3) that IsomGM induces G-
valued gauge transformations, which
are accounted for by the kernel’s
G-steerability. (Lizards adapted under the
Creative Commons Attribution 4.0 International
license by courtesy of Twitter.)

– in particular such which change the frame volume. However, in the case of the naive
kernel sharing, this is taken care of by the invariance of the Riemannian volume element√
|ηAp | dvA =

√
|ηBp | dvB . By canceling this factor in the normalized weight sharing, the

consistency of the transformation behavior is not guaranteed by the integration measure itself
anymore – which requires theG-steerable kernels themselves to explain volume changes via
the determinant factor. Only the latter generalizes to active transformations, where only the
feature field is transformed, while the integration measure stays invariant.

As our definition of GM -convolutions allows for arbitrary Riemannian manifolds, G-
structures and field types, it is quite general and covers a wide range of applications. We
substantiate this claim in Part IV, where we explain many CNNs on Euclidean affine spaces
Ed, the sphere S2 and general manifolds or meshes as specific instantiations of Eq. (9.39).
For an overview and a classification of these models, we refer to Table 14.1.

9.3 Isometry equivariance

Given that a manifold exhibits symmetries it is usually desirable that neural networks respect
these symmetries, i.e. are equivariant under their action on feature fields. GM -convolutions
are by design guaranteed to be IsomGM -equivariant, which means that they commute with
the action of isometries in IsomGM (Eq. (8.15)) on feature fields, as visualized in Fig. 9.3.9.

9Recall that an action on GM -coordinate independent feature fields can only be defined for the
G-structure preserving isometries in IsomGM . It is therefore not even possible to define a notion of
isometry equivariance for isometries that are not symmetries the G-structure. Note that this is without
loss of generality since one can always choose a structure group G = O(d), for which IsomGM =
Isom(M) coincides with the full isometry group.

https://github.com/twitter/twemoji/blob/gh-pages/LICENSE-GRAPHICS
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Expressed in equations, the GM -convolution K⋆ is equivariant when it satisfies the relation

K ⋆
(
ϕ▷fin

)
= ϕ▷

(
K ⋆ fin

)
∀ ϕ ∈ IsomGM (9.44)

for any possible input field fin, that is, when the following diagram commutes:

fin fout

ϕ ▷ fin ϕ ▷ fout

ϕ▷

K⋆

ϕ▷

K⋆

(9.45)

As a first step towards proving the isometry equivariance of GM -convolutions, recall that
they are pointwise defined as the contraction of a kernel K with the transporter pullback
[Exp∗pfin]

A of the input field fin. Since isometries preserve the Riemannian geometry of M
by definition, they preserve in particular the Riemannian exponential map and Levi-Civita
transporters; see Section 13.1.4 and Fig. 13.5.10 This implies that the transporter pullback
of the pushforward field ϕ▷ fin at ϕ(p) will only differ from the transporter pullback of the
original field fin at p by the isometry induced gauge transformation, that is,[

Exp∗ϕ(p)(ϕ▷ fin)
]A

= ρin

(
gAÃϕ (p)

)
◦
[
Exp∗pfin

]Ã ◦ gAÃϕ (p)−1 ; (9.46)

cf. Eq. (9.22) and, for the coordinate free formulation and a proof, Theorem 13.1.4.

Given this identity, the isometry equivariance of GM -convolutions is proven by the follow-
ing simple calculation, which crucially leverages theG-steerability of the template kernelK
to explain away the isometry induced gauge action:[

K ⋆ (ϕ▷ fin)
]A

(ϕ(p)) (9.47)
(1)
=

∫
Rd

K(v)
[
Exp∗ϕ(p)(ϕ▷ fin)

]A
(v) dv

(2)
=

∫
Rd

K(v)
[
ρin

(
gAÃϕ (p)

)[
Exp∗pfin

]Ã(
gAÃϕ (p)−1v

)]
dv

(3)
=

∫
Rd

[
K
(
gAÃϕ (p) ṽ

)
ρin

(
gAÃϕ (p)

)] [
Exp∗pfin

]Ã
(ṽ)

∣∣∣det gAÃϕ (p)
∣∣∣ dṽ

(4)
=

∫
Rd

[
ρout

(
gAÃϕ (p)

)
K
(
ṽ
)] [

Exp∗pfin
]Ã

(ṽ) dṽ

(5)
= ρout

(
gAÃϕ (p)

)
· f Ãout(p)

(6)
=
[
ϕ▷ fout

]A
(ϕ(p))

(7)
=
[
ϕ▷

(
K ⋆ fin

)]A
(ϕ(p))

The first step follows hereby from the definition of GM -convolutions in Eq. (9.39) while
the second step inserted the induced gauge transformation according to Eq. (9.46). A sub-
stitution from v to ṽ = gAÃϕ (p)−1v justifies step three. In the fourth step the G-steerability

10More generally, whenever an alternative G-compatible connection is chosen to transport feature
vectors, we assume this connection to be invariant under the action of IsomGM ; see Section 13.1.4.
This assumption is satisfied for all models that are covered in the literature review in Part IV.
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of the template kernel, i.e. Eq. (9.37), is applied (recall Eq. (8.17), which states that the
IsomGM -induced gauge transformations are G-valued). What follows is that the resulting
output feature vector is transformed by the induced gauge transformation. After identifying
this as the coordinate expression of the pushforward of the output field in Eq. (8.19), the
statement follows. As all steps are valid for arbitrary isometries in IsomGM , we see that
GM -convolutions are automatically equivariant w.r.t. any G-structure preserving isometry.
They are not necessarily equivariant w.r.t. general isometries in Isom(M), which might dis-
respect the G-structure, however, full isometry equivariance is guaranteed for orthonormal
structure groups G = O(d) (or supergroups of it).

Invariant kernel fields: A more in depth analysis of the isometry equivariance of gen-
eral kernel field transforms can be found in Sections 13.2 and 13.3. The central result
of this investigation is Theorem 13.2.4, which states that the isometry equivariance of a
kernel field transform implies the isometry invariance of its kernel field and vice versa.
Fig 13.6 visualizes such an invariant kernel field, which is required to share weights over
the orbits of the isometry action. The required invariance of the kernel field is intuitively
plausible since isometry equivariance certainly requires the inference of the network to be
the constant on each orbit. This abstract results implies the isometry equivariance of GM -
convolutions by observing that GM -convolutional kernel fields – which are determined by
a single, shared template kernel – are invariant under isometries in IsomGM ; see Theo-
rem 13.2.5 and Fig. 1.12. The template kernel’s G-steerability accounts thereby for the
invariance of kernels under the action of stabilizer subgroups of the isometry group.

Homogeneous spaces: While the demand for isometry equivariance requires kernels to be
shared over orbits of the isometry group, it does in general not require convolutional weight
sharing over the whole manifold. An important exception is the case of manifolds that
are homogeneous spaces of their isometry group, like for instance Rd or the sphere S2. By
definition, the isometry action is on such spaces transitive, that is, there exists only one single
orbit. Consequently, there will only be one independent kernel, which is via the action of the
isometry group being shared over the whole space. Theorem 13.3.3 in Section 13.3 proves
that isometry equivariant kernel field transforms on homogeneous spaces are necessarily
coordinate independent convolutions. This observation establishes a formal link between
our theory and prior work on convolutional networks on homogeneous spaces by Kondor
and Trivedi [162], Cohen et al. [56] and Bekkers [10], who are defining convolutions via
their equivariance w.r.t. global symmetries of the underlying space.

Diffeomorphism equivariance: The reader might wonder whether it is possible to make
our coordinate independent CNNs fully diffeomorphism equivariant. As one can easily see,
the pointwise operations from Section 9.1, i.e. 1×1-convolutions, biases and nonlinearities,
are already diffeomorphism equivariant. Specifically, let

DiffGM :=
{
ϕ ∈ Diff(M)

∣∣∣ [ϕ∗(ei)]di=1
∈ GM ∀ [ei]di=1 ∈ GM

}
≤ Diff(M)

(9.48)

be the subgroup of G-structure preserving diffeomorphisms, i.e. the analog to Eq. (8.15)
without the requirement on ϕ to be an isometry. Similarly to Eq. (8.17) and Theorem 13.1.3,
the coordinate expressions (induced gauge transformations) of G-structure preserving dif-
feomorphisms are guaranteed to take values in G, that is,

ϕ ∈ DiffGM ⇐⇒ gAÃϕ (p) ∈ G ∀ p ∈M . (9.49)
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TheG-equivariance of the shared pointwise template functions will guarantee that they com-
mute with these DiffGM -induced gauge transformations – and therefore with the active dif-
feomorphism action itself.

GM -convolutions with spatially extended kernels, on the other hand, are in general not
equivariant w.r.t. diffeomorphisms. The reason for this is that the transporter pullback
Exp∗pf relies on exponential maps, which are inherently Riemannian constructions that do
not commute with diffeomorphisms. However, as the kernels are G-steerable, DiffGM -
equivariance should nonetheless hold in the limit of the kernel support going to zero, where
they correspond to steerable partial differential operators [137]. Given that convolution
kernels are in typical deep learning applications quite small, diffeomorphism equivariance
should in practice hold approximately.

Affine equivariance: Euclidean spaces constitute a special case since they allow for GM -
convolutions that are equivariant under the action of affine groups Aff(G). That this is the
case relies on the fact that the exponential map commutes on Euclidean spaces not only
with the action of isometries but more generally with affine transformations. The affine
group equivariance of Euclidean GM -convolutions, which correspond to Euclidean steer-
able CNNs, is proven in Section 15.2.



CHAPTER 10

Reflection steerable Möbius CNNs

To make the theoretical considerations in the previous chapters more tangible, we turn now
to an exemplary application. While not being of immediate practical importance, GM -
convolutions on the Möbius strip are a suitable toy model since its geometry and the involved
representation theory are particularly simple. Due to its non-orientability, reference frames
can only be (smoothly) preferred up to reflections. As expected, coordinate independent
CNNs, applying reflection equivariant template functions, outperform a naive, coordinate
dependent implementation. They are furthermore shown to be equivariant under the action
of the Möbius strip’s isometry group.

The following Section 10.1 discusses the geometry of the flat Möbius strip. Due to its twist,
its structure group can not be reduced further than to the reflection group G = R, such that
one needs to consider an R-atlas of gauges as visualized in Fig. 10.1. The isometry group
is given by rotations along the strip and induces R-valued gauge transformations. RM -
coordinate independent feature fields, some of which are discussed in Section 10.2, necessar-
ily have to transform according to some representation of the reflection group. Section 10.3
discusses orientation independent convolutional network operations like RM -convolutions,
bias summation and nonlinearities. The RM -convolutions rely hereby on the R-steerable
kernels from Section 5.2 and Table 5.1. A numerical implementation of the proposed model
family is discussed in Section 10.4 and evaluated in Section 10.5. The code is publicly
available at https://github.com/mauriceweiler/MobiusCNNs.

10.1 Geometry of the Möbius strip

The manifold M under consideration is the flat Möbius strip with boundary, as shown
in Fig. 10.1. It can be thought of as being constructed by taking a rectangular subset
[0, X]× [0, Y ] of R2 and gluing two opposing ends together in a twisted way. Such defined,
the Möbius strip inherits the canonical metric of R2, which endows it with a Riemannian
structure. The metric specifies in particular a Levi-Civita connection and therefore exponen-
tial maps and parallel transporters, which are further discussed below.

A first question to answer when constructing a coordinate independent CNN is to which ex-
tent the choice of reference frames is ambiguous. Given the Riemannian metric on the strip,
we can restrict our attention to orthonormal frames. One can furthermore single out one of
the two directions along the strip to (smoothly) disambiguate the rotation of the reference

https://github.com/mauriceweiler/MobiusCNNs


156 Chapter 10. Reflection steerable Möbius CNNs

Figure 10.1: The flat geometry of the Möbius strip allows for local subsets which can be isometrically
identified with corresponding subsets of R2. We fix an isometric atlas, consisting of two charts xA and
xB on UA (red) and UB (green), which cover the whole strip. Gauges ψX

p = d̂xXp : TpM → Rd for
p ∈ UA are induced as chart differentials. Due to the twist of the Möbius strip, the transition functions
gBA
p will at one of the overlapping regions be trivial, while the other region will necessarily transition

between gauges via flips s. The chosen atlas of charts therefore induces an R-atlas of gauges and
implies a corresponding R-structure RM , consisting of two reflected frames at each point ofM . Each

of the charts xX induces a smooth local frame field, given by the coordinate bases
[

∂

∂xX
i

∣∣
p

]
d

i=1
. The

flip in the transition functions at one overlap shows in a reflection of frames.
(Lizards adapted under the Creative Commons Attribution 4.0 International license by courtesy of Twitter.)

frames by aligning their first axes with this direction. This leaves us with an ambiguity of
frame handedness, with the two orientations corresponding to the two possible directions
of the second frame axis perpendicular to the strip. Being a non-orientable manifold, the
Möbius strip does not admit a globally smooth (or even continuous) choice of frame orienta-
tions. To get an intuition about this statement, consider the attempt of constructing a smooth
frame field by picking an arbitrary frame at a random position and to smoothly extend this
choice over the whole strip. After one revolution around the strip the constructed frames
will unavoidably be reflected w.r.t. the initial frames, and therefore contradict the desired
smoothness. It is thus topologically impossible to define an {e}-structure, i.e. a globally
smooth field of frames, on the Möbius strip. We are thus left with an irreducible structure
group

G = R ∼= Z/2Z , (10.1)

which models the reflection of frames. As already discussed in Section 5.2 on R-steerable
kernels, the reflection group contains only two elements, the identity e and the reflection
(Spiegelung) s. They are composed according to the following simple multiplication table:

e s
e e s
s s e

(10.2)

The only nontrivial statement in this table is that two reflections annihilate, that is, s2 = e,
or, equivalently, s−1 = s. Given the irreducibility of the structure group R, we will in the
following need to consider the corresponding R-structure RM which consists of two frames
of opposing handedness at each point on the Möbius strip.

https://github.com/twitter/twemoji/blob/gh-pages/LICENSE-GRAPHICS
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To encode smooth RM -coordinate independent feature fields onM , one needs to specify an
R-atlas, consisting of R-related gauges that cover the whole strip. We choose to do this by
fixing an atlas of charts

xX : UX → V X ⊂ R2 (10.3)

which cover the strip, and subsequently induce the gauges from it. Fig. 10.1 visualizes
such an atlas, consisting of two charts xA and xB on UA (red) and UB (green) which map
two overlapping halves of the strip isometrically to corresponding rectangular regions of
R2. As described in Appendix C.3, the charts induce gauges, which are given by the chart
differentials, that is,

ψXp := d̂xXp : TpM → R2 for any p ∈ UX and X = A,B . (10.4)

The transition functions coincide then with the Jacobians gBA = ∂xB

∂xA . Due to the twist,
the transition maps are at one of the two overlapping regions all trivial, that is, gBAp = e,
and on the other end necessarily reflected, i.e. gBAp = s. The induced atlas of gauges is
therefore indeed identified as an R-atlas. Being derived from coordinate charts, the smooth
local frame fields corresponding to the gauges are just the usual coordinate bases, that is, the
frames

[
eXi
]d
i=1

at p ∈ UX are given by
[
∂

∂xX
i

∣∣
p

]d
i=1

. Since the charts are isometric, the

induced frame field is automatically orthonormal. However, the two rectangular regions V A
and V B in R2 must not be rotated relative to each other in order to induce an R-atlas and a
corresponding R-structure RM .

We need to emphasize that the approach of inducing gauges via coordinate charts is not
strictly necessary – it is just a convenient option since the flat Möbius strip is locally iden-
tified with regions of R2 in an isometric way. This will later allow us to transfer regular
sampling grids from R2, like for instance the pixel grid Z2, to regular sampling grids on the
strip. As this is not possible for manifolds that are not locally flat, for instance meshes in
computer graphics, most implementations on general manifolds (or meshes) assign coordi-
nates immediately to the tangent spaces; see Chapter 18.

The canonical Levi-Civita connection on the Möbius strip defines a notion of parallel trans-
port of tangent vectors. Since the strip is locally isometric to the plane R2, this transport can
on local patches be understood as flattening these patches out into a plane and moving the
vectors as usual on R2. If no single patch can cover a path γ, there will be an open covering
such that the full transport is explained by a sequence of transporters over the local patches.
It is easy to see that the transport will relative to frames of the chosen R-structure take values
gAÃγ in the reflection group R. This means that the Levi-Civita connection is R-compatible

with RM . It does therefore imply well defined transporters ρ
(
gAÃγ

)
of R-associated feature

vectors.

The group IsomRM of isometries that preserve the R-structure contains all rotations which
shift the strip along itself. Note that a rotation once around the strip, which we denote by an
angle of 2π, does not correspond to the identity but rather maps the strip in a reflected way on
itself. Only a rotation by 4π, i.e. two full revolutions, map the strip back to itself.1 The action
of the isometry group on the manifold and on reference frames is visualized in Fig. 10.2.
Relative to coordinates, the isometry action will induce R-valued gauge transformations.

1The Möbius strip is therefore seen to have the cylinder as double cover.
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Figure 10.2: Visualization of the group of R-structure preserving isometries IsomRM of the Möbius
strip, which is isomorphic to SO(2). It consists of all rotations along the strip. Due to the twist, a
rotation by 2π, i.e. once around the strip, does not yet map it back to itself but results in a reflection.
After a second revolution, that is, a total rotation of 4π, the strip is mapped back to itself. Induced
gauge transformations take values in R.
(Lizards adapted under the Creative Commons Attribution 4.0 International license by courtesy of Twitter.)

10.2 Orientation independent feature fields

The principle of covariance requires the feature fields on the Möbius strip to be RM -
coordinate independent, that is, they need to be equivalently expressible relative to frames
of either handedness. They are therefore characterized by a choice of group representation
ρ : R → GL(c) of the reflection group, which specifies the transformation of numerical
feature vectors when switching between the two orientations. As in Section 5.2.1 on reflec-
tion steerable feature fields on Euclidean spaces, we will consider scalar, pseudoscalar and
regular feature fields, corresponding to trivial, sign-flip and regular representation, respec-
tively. In contrast to these Euclidean feature fields, which were defined in terms of their
global transformation law according to induced representations IndAff(R)

R ρ, the orientation
independent feature fields on the Möbius strip are defined by their local gauge transforma-
tions when reflecting frames. We will therefore reintroduce R-steerable feature fields from
this more general viewpoint. In addition, we discuss irrep decompositions of regular feature
fields. Our numerical implementation of such feature fields is described in Section 10.4.

Local gauge transformations of orientation independent features: Scalar fields are
fields of one-dimensional feature vectors whose coefficients fAtriv(p) ∈ R1 transform accord-
ing to the trivial representation ρtriv, Eq. (5.7), i.e. stay invariant under frame reflections:

ρtriv(s)f
A
triv(p) = fAtriv(p) (10.5)

The sign-flip representation ρsign, Eq. (5.9), assigns the negative 1×1 identity matrix to
reflections. It models pseudoscalar fields, which are one-dimensional and are characterized
by the property that their numerical coefficients fAsign(p) ∈ R1 change their sign under
reflections, that is,

ρsign(s)f
A
sign(p) = −fAsign(p) . (10.6)

Scalar and pseudoscalar fields are the two irreducible field types of the reflection group – any
other feature field can be decomposed into a direct sum of these types, as explained below.

https://github.com/twitter/twemoji/blob/gh-pages/LICENSE-GRAPHICS
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Regular feature fields correspond to the two dimensional regular representation of the re-
flection group, defined in Eq. (5.11). Their feature vector coefficients fAreg(p) ∈ R2 have two
numerical values, which are swapped under frame reflections:

ρreg(s)f
A
reg(p) =

[
0 1
1 0

]
·
[
fAreg,1
fAreg,2

]
(p) =

[
fAreg,2
fAreg,1

]
(p) (10.7)

The description in terms of local gauge transformations allows to model such feature fields
on any manifold admitting an R-structure. For completeness, we want to point out that
the Euclidean R-steerable feature fields in Section 5.2.1 correspond to the R-structure in
Fig. 1.6d. The induced representations IndAff(R)

R ρ acting on such fields is in the differential
geometric setting recovered as the pushforward action ϕ▷ of isometries ϕ in IsomRM =
Aff(R) = (Rd,+)⋊R on feature fields; see Section 8.3.3.

Irrep decomposition of feature fields: Any finite-dimensional representations of com-
pact (including finite) groups is completely reducible into a direct sum of irreps; see Theo-
rem B.5.16 or [102, 72, 267]. This suggests that any covariant feature vector, transforming
under a compact structure group, can up to a change of basis be constructed from irrep fea-
tures. As argued in Section 5.3.2 and [322], it is in this case possible to reduce any affine
network operation (i.e. linear or summation layers) to equivalent operations between irrep
fields, which simplifies the construction of the space of G-steerable kernels and G-invariant
biases.

An example are regular feature fields, which contain two proper invariant subspaces corre-
sponding to a scalar and a pseudoscalar field. Specifically, the regular representation can be
thought of as being constructed of the direct sum ρtriv ⊕ ρsign of the trivial and sign-flip irrep
and a change of basis Q :

ρreg(g) = Q
(
ρtriv⊕ ρsign

)
(g) Q⊤ where Q =

1√
2

[
1 91
1 1

]
(10.8)

The validity of this statement is easily asserted by inserting the right-hand side for both group
elements:

Q
(
ρtriv⊕ ρsign

)
(e) Q⊤ =

1

2

[
1 91
1 1

]
·
[
1 0
0 1

]
·
[

1 1
91 1

]
=

[
1 0
0 1

]
= ρreg(e) (10.9)

Q
(
ρtriv⊕ ρsign

)
(s) Q⊤ =

1

2

[
1 91
1 1

]
·
[
1 0
0 91

]
·
[

1 1
91 1

]
=

[
0 1
1 0

]
= ρreg(s) (10.10)

We will in the following Section 10.3.1 show how the orientation independent bias summa-
tion operation can either be derived directly in the regular representation basis or in the irrep
basis.

While the equivariance constraints may be equivalently solved in any basis, nonlinear net-
work operations are sensitive to the chosen basis. This statement is in Section 10.5 shown
empirically by comparing convolutions that use regular feature fields and those that use the
corresponding irrep fields.

10.3 Orientation independent convolutional networks

In order to construct orientation independent CNNs on the Möbius strip we need to instanti-
ate the gauge equivariant layers from Chapter 9 for the reflection group R. More specifically,



160 Chapter 10. Reflection steerable Möbius CNNs

each of the shared equivariant template functions defining the orientation independent lay-
ers needs to be instantiated for any choice of the considered field types ρtriv, ρsign and ρreg.
Section 10.3.1 starts by solving for the spaces BRρ of gauge invariant bias templates from
Eq. (9.17). Some admissible choices of gauge equivariant nonlinearities for the different
field types are proposed in Section 10.3.2. Section 10.3.3 comments on RM -convolutions,
which rely on the R-steerable kernels that were already derived in Section 5.2. More gen-
eral isometry equivariant kernel field transforms are discussed in Section 10.3.4. While this
section will mainly consist of theoretical derivations, the following Section 10.4 will cover
more practical implementation details.

10.3.1 Orientation independent bias summation

The space of bias templates that can be summed to a field of type ρ without interfering with
the coordinate independence assumption was in Section 9.1.2 shown to be given by

BR
ρ :=

{
b ∈ Rc

∣∣ b = ρ(g)b ∀g ∈ R
}
. (10.11)

For the case of the reflection group, there are only two group elements and thus two con-
straints. The constraint for the identity element g = e is trivially satisfied since ρ(e) = idRc

is by definition always the identity on Rc. In the following it is therefore sufficient to restrict
attention to the constraint b = ρ(s)b coming from the reflection g = s.

We start with the case of scalar fields, i.e. the trivial representation. The reflection constraint
then reads b = ρtriv(s)b = b, which is always satisfied. It follows that the space of bias
templates

BR
ρtriv

= R (10.12)

remains unconstrained such that arbitrary real-valued biases can be summed to scalar fields.
For the sign-flip representation the reflection constraint becomes b = ρtriv(s) b = −b and is
therefore only satisfied for biases which are zero:

BR
ρsign

= {0} (10.13)

It is thus impossible to sum biases to sign-flip fields while maintaining coordinate indepen-
dence. Our third exemplary field type is the two-dimensional regular representation. The
corresponding reflectional constraint on b ∈ R2 reads[

b1
b2

]
= b = ρreg(s)b =

[
0 1
1 0

]
·
[
b1
b2

]
=

[
b2
b1

]
(10.14)

and leads to the one-dimensional solution space

BR
ρreg

=
{
b ∈ R2

∣∣ b1 = b2
}
=

{[
β
β

] ∣∣∣∣β ∈ R
}
. (10.15)

The coordinate independence of this constraint is intuitively clear: since the regular repre-
sentation swaps the two channels which make up the field, the bias summation is only then
coordinate independent when the values summed to both channels are equal, such that their
order does not matter.

As argued in Section 4.3.2, the solution space BR
ρ for a representation ρ coincides exactly

with its trivial subrepresentations. This is certainly true for the trivial representation, to
which one can sum any bias, and the sign-flip representation, which has itself no trivial
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subrepresentation and therefore does not admit biases at all. A more interesting example is
the regular representation, which was in Eq. (10.8) shown to decompose into a direct sum of
the trivial and the sign-flip representation. The one-dimensional solution space in Eq. (10.15)
corresponds exactly to the single trivial subrepresentation contained in ρreg. To check the
validity of this statement, note that the admissible biases for the direct sum representation
ρtriv ⊕ ρsign are of the form (β, 0)⊤, where β ∈ R. This results can via the change of basis
Q be translated back to the regular representation, which indeed recovers our solution in
Eq. (10.15):

Q ·
[
β
0

]
∝
[
1 91
1 1

]
·
[
β
0

]
=

[
β
β

]
(10.16)

10.3.2 Orientation independent nonlinearities

To construct a deep network, we need to come up with equivariant nonlinearities for each of
the field types. As already discussed in Section 4.3.3, scalar fields can due to their invariance
under gauge transformations be acted on by any nonlinearity striv : R → R. Usual choices
are ReLU or ELU nonlinearities.

For the sign-flip fields one might take the absolute value ∥fAsign(p)∥ of feature vectors, which
maps the sign-flip field to a scalar field. In our implementation below we instead use nonlin-
earities of the form

ssign : f 7→ ReLU
(
∥f∥ − b

)
· f

∥f∥
, (10.17)

where b ∈ R≥0 is a learnable bias parameter. This choice is easily seen to map sign-flip
fields to sign-flip fields since the first multiplicand is acting on the gauge invariant norm of
feature vectors while the second multiplicand is preserving the feature vector’s sign.

As a permutation representation, the regular representation allows for any nonlinearity that
acts on each field channel individually, without changing the field type. An example are
ReLU nonlinearities, that are applied element-wise to the entries of a feature vector:

ρreg(s) ◦ sreg

[
f1
f2

]
=

[
0 1
1 0

] [
ReLU(f1)
ReLU(f2)

]
=

[
ReLU(f2)
ReLU(f1)

]
(10.18)

= sreg

[
f2
f1

]
= sreg ◦ ρreg(s)

[
f1
f2

]
While the regular representation is linearly equivalent to ρtriv ⊕ ρsign, we can not apply inde-
pendent element-wise nonlinearities to the two channels in the irrep basis. This substantiates
the claim that nonlinearities make the networks sensitive to the particular choice of basis of
the representation.

10.3.3 Orientation independent convolutions

The last operations that we instantiate here are reflection equivariant convolutions. This
requires us on the one hand to explain the exponential map and parallel transport on the
strip, and on the other hand to solve for the R-steerable kernel spaces.
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Due to the locally flat geometry of the strip, the computation of exponential maps and
transporters is almost trivial since we can choose isometric charts and identify the op-
erations with their counterparts on R2. More specifically, consider an isometric chart
xA : UA → V A ⊂ R2 and assume first the trivial case where the whole geodesic of
the exponential map expp(v) is contained in the chart domain, in particular p ∈ UA and
expp(v) ∈ UA. The exponential map is then in the chart codomain given by the sum
xA
(
expp(v)

)
= xA(p)+ d̂xAp (v) on R2 and the transporter is trivial. If the geodesic leaves

the chart’s domain UA, one can split it in a first exponential map up to the boundary of UA,
and then transition to another chart xB on UB and continue there. Transporters along such
geodesics are composed of the gauge transformations ρ

(
gBA

)
at all chart transitions.

The R-steerable kernel spaces were already derived in Section 5.2. They consist of kernels
with certain reflectional symmetries, where the specific type of symmetry depends on the
field types; see Table 5.1.

It follows that RM -convolutions are within a chart (co)domain simply Euclidean convolu-
tions with reflection steerable kernels. We handle the boundaries of the chart (co)domain,
where the kernel transitions between charts, via the “transport padding” operation shown
in Fig. 10.3. More details on our numerical implementation of RM -convolutions on the
Möbius strip are given in Section 10.4 below.

10.3.4 General isometry equivariant kernel field transforms on the Möbius strip

For completeness, we briefly elaborate on general kernel field transforms and isometry
equivariant kernel field transforms on the Möbius strip. In the general case the smooth kernel
field remains entirely unrestricted, that is, no weights need to be shared and the individual
kernels are not required to have any reflectional symmetries whatsoever. In order for the
kernel field transform to be equivariant w.r.t. isometries, the applied kernel field is required
to be invariant under isometry actions. This requires weights to be shared over the isometry
orbits, which come in two different types.

The first type corresponds to the single orbit lying exactly in the middle of the strip. Points
on this orbit return back to themselves after being shifted one revolution around the strip,
while the strip itself ends up reflected over this central orbit. An IsomRM -invariant kernel
field will therefore have some kernel shared over this central orbit. Since the kernel is after
one revolution mapped back on itself in a reflected manner, it kernel is additionally required
to have some reflectional symmetry like the R-steerable kernels in Table 5.1.2

Any other orbit is of the second orbit type. Consider some point at a given distance from the
central orbit. The isometry action will move this point at this distance from the center along
the strip. Due to the strip’s twist, it will not return to the initial point after one revolution but
to that point which lies at the same distance on the opposite of the central orbit. Only after a
second revolution around the strip the orbit will close. The demanded isometry invariance of
the kernel field will thus require kernels to be shared over all points with the same distance in
either direction of the strip’s center (but allows for different kernels at different distances). In
contrast to the central orbit’s kernel, these kernels are not required to be reflection equivariant
themselves, but the shared kernels will be reflected over the central orbit.

2Section 13.3 describes such situations in a more general setting as stabilizer subgroup constraints
of the isometry group. In the current case, the subgroup of rotations once around the strip stabilizes the
points on the central orbit. It is isomorphic to the reflection group and therefore leads to reflectional
symmetries in the kernels.
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This analysis shows that any isometry equivariant kernel field transform requires R-steerable
kernels, although strictly only on the central orbit. Conversely, the convolutional kernel field,
corresponding to the application of the same R-steerable kernels on the whole manifold, is
certainly invariant under isometries. The orientation independent convolution on the Möbius
strip is therefore IsomRM -equivariant, which is empirically confirmed below.

10.4 Numerical implementation of Möbius convolutions

Being prepared with the analytical derivations in the previous sections we are ready to dis-
cuss a numerical implementation of orientation independent CNNs on the Möbius strip.
The implementation is publicly available at https://github.com/mauriceweiler/
MobiusCNNs.

Feature spaces: The first question to answer when implementing convolutions on the
Möbius strip is how the feature fields should be represented numerically. Since the Möbius
strip is a flat manifold, we can conveniently inherit (subsets of) the regular sampling grid
Z2 from R2 over to the strip. This intuition is formalized by the pullbacks fX ◦

(
xX
)−1

:

V X → Rc of the local feature field coordinatizations fX : UX → Rc via the (inverse)
charts

(
xX
)−1

: V X → UX to a new domain V X ⊂ R2, where X = A,B. The numerical

discretization is then defined as a restriction fX ◦
(
xX
)−1∣∣

V X∩Z2 of the pullback to the
sampling grid, which is in Fig. 10.1 shown as an overlay.

Note that this representation is due to the overlap UA ∩ UB ̸= ∅ of the charts redundant.
To remove this redundancy one needs to identify those regions that are represented twice
and store only one, shared copy of the corresponding feature vectors. One possible scheme
to do so, which we use in our numerical implementation, is to store the feature fields in
the multidimensional array corresponding to the magenta rectangle in Fig. 10.3. It can be
thought of as being defined by “gluing” those regions in V A and V B which are identified
by trivial gauge transformations gBA together (“id” in Fig. 10.1 and central four pixels in
Fig. 10.3). What remains is a redundancy of feature vectors at the second overlapping region
with reflecting gauge transformations (“flip” in Fig. 10.1). It is resolved by assigning those
feature vectors in equal parts to either end of the “glued” local field representation (orange
pixels in Fig. 10.3). Together, the pixels in the magenta box represent the feature space in
a non-redundant way by assigning a c-dimensional feature vector to each of them. The ring
of two pixels around the magenta rectangle is not part of the feature space but visualizes a
padding region which will only be used during the forward pass of the convolution operation
as discussed below.

The actual dimensions (shape) of the array that encodes a feature space depend on the chosen
field multiplicities. Let mtriv, msign and mreg be those integer multiplicities of feature fields
which make up a feature space. Since the scalar and sign-flip fields are one-dimensional and
the regular feature fields are two-dimensional, the overall number of channels (or dimen-
sionality of stacked feature vectors) is given by c = mtriv +msign + 2mreg. Assume further
that the spatial resolution of the magenta rectangle is X × Y pixels and assume a batch
size of N samples. The array that encodes a feature space is then of shape (N, c,X, Y ),
as usual in image processing. Note that this numerical representation of the feature space is
both agnostic to the twisted geometry of the strip and the actual type of the contained feature
fields (except for their dimensionality). The actual geometric information is therefore solely
carried by the network layers which process the fields.

https://github.com/mauriceweiler/MobiusCNNs
https://github.com/mauriceweiler/MobiusCNNs
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Figure 10.3: Numerical representa-
tion of feature fields on the Möbius
strip and Levi-Civita transport of fea-
ture vectors during the convolution.
The flat geometry of the strip allows
to cut it open and flatten it out iso-
metrically to the inner magenta rect-
angle. When assigning the canoni-
cal reference frames of R2 this corre-
sponds to a gluing of the two charts
V A and V B from Fig. 10.1 at their
overlap with trivial gauge transforma-
tions (“id”). In order to avoid redun-
dancies, we assign half of the width of

the second chart overlap with reflective gauge transformations (“flip”) to either end of the flattened
magenta strip (orange pixels). Feature fields are stored as an array with spatial dimensions corre-
sponding to the magenta box and c channels. During the convolution operation, the kernel collects
features from all pixels that it covers. Choosing a kernel size of 5× 5 pixels, we need to specify all
values in a radius of 2 pixels around its center, which overall requires to pad a border region of 2
pixels around the magenta rectangle. The border at the top and bottom correspond to the boundary
of the strip. Since no valid feature values can be assigned there, we zero-pad the array as commonly
done in computer vision. The left and right border of the flattened strip are glued together with a
twist. We implement the parallel transport of those features by cutting an area of two pixels width
from either end of the strip (orange) and padding them in a reflected way to the opposite ends (blue).
As the twist implies a gauge transformation, the feature fields need to be acted on by ρ(s) when
being reflected. After padding, the convolution is run with “valid” boundary conditions, such that
its output again has the size of the magenta box. Operations which act pointwise do not require the
padding but can be applied to the magenta array right away.
(Lizards adapted under the Creative Commons Attribution 4.0 International license by courtesy of Twitter.)

Bias summation: To implement the orientation independent bias summation, recall the
results from Section 10.3.1 that the vector spaces of reflection equivariant template biases are
for scalar fields and regular fields one-dimensional and for sign-flip fields zero-dimensional.
At initialization of the bias module we therefore allocate an mtriv-dimensional parameter
vector βtriv and an mreg-dimensional parameter vector βreg. During the forward pass we
expand these parameters into a c-dimensional bias vector bfull, which is to be summed to
the full stack of feature fields. This is done by allocating a c-dimensional array of zeros and
filling the firstmtriv elements with the scalar field bias parameters and the last 2mreg elements
with the mreg regular field bias parameters, each repeated twice to satisfy the structure of the
solution space in Eq. (10.15). After this expansion the full bias vector

bfull =
[
βtriv,1, . . . , βtriv,mtriv︸ ︷︷ ︸

mtriv

, 0, . . . , 0,︸ ︷︷ ︸
msign

, βreg,1, βreg,1, . . . , βreg,mreg , βreg,mreg︸ ︷︷ ︸
2mreg

]⊤
(10.19)

in Rc is summed to the feature field array as usual. Its orientation independence (gauge
invariance) justifies the summation to the array in Fig. 10.3, despite it being glued from
feature vectors in two different gauges.

Nonlinearities: The nonlinearities can be implemented straightforwardly as defined in
Section 10.3.2. We do this by splitting the full stack of feature fields into three stacks of
fields of the same type, applying the respective reflection equivariant nonlinearities to them,
and finally concatenating the results. Due to the definition of the nonlinearity for sign-flip

https://github.com/twitter/twemoji/blob/gh-pages/LICENSE-GRAPHICS
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fields in Eq. (10.17) with a learnable bias, the nonlinearity module has msign trainable pa-
rameters.

GM-convolutions: Since convolution operations do not operate pointwise but accumulate
all features covered by the kernel, their implementation is less trivial. The forward pass is
split in three steps, namely 1) the expansion of reflection symmetric kernels from parameter
arrays, 2) a Levi-Civita transport of feature vectors and 3) the actual convolution.

Recall that the space KR
ρin,ρout

of R-steerable kernels is a linear subspace of the space of
unconstrained kernels K in Eq. (5.3). To parameterize R-steerable kernels it is necessary
to choose a basis of KR

ρin,ρout
, in terms of which the kernels are expanded. The trainable

parameters of the convolution operation are the expansion coefficients in this basis. Our
implementation parameterizes all kernels that correspond to the same pair of input and output
field types jointly since they share the same symmetries and thus basis. Considering the nine
pairs of field types shown in Table 5.1, this means that the convolution module holds nine
corresponding parameter arrays. The actual kernels are then expanded from these parameters
during each forward pass. To give an example, consider the subset of kernel channels that
map from mtriv scalar fields to msign sign-flip fields and assume a kernel size of s× s pixels.
The corresponding parameter array is then of shape (msign, mtriv,

s
2 , s) and represents the

mtriv ×msign individual kernel channels with a basis of s
2 × s antisymmetric kernels each.

The expansion is implemented as filling the upper s2×s pixels with the unaltered parameters
while the bottom s

2 × s pixels are filled with the negated and spatially reflected parameters.
As a second example, consider the kernel channels that map from mreg regular fields to mtriv
scalar fields. The parameter array for this case is of shape (mtriv, mreg, s, s) and stores
one of the two kernel channels per input and output field. The second, symmetric channels
are during the forward pass expanded by spatially reflecting the first kernel channels as
shown in Table 5.1. After expanding the full kernel in this fashion from all of its sub-
blocks corresponding to the different combinations of field types, it has the usual shape of
kernels in deep learning but is guaranteed to respect the symmetries derived in Section 5.2.
Note that the kernel symmetries make RM -convolutions more parameter efficient than a
corresponding non-equivariant CNN with the same number of channels c. Specifically for
R-steerable kernel the number of parameters reduced by a factor of two3.

After expanding the kernels, they are convolved with the feature fields. This requires an
implementation of the exponential map and the R-compatible Levi-Civita transporters on the
Möbius strip – or rather on its numerical representation by the magenta array from Fig. 10.3.
The flat geometry of the Möbius strip makes the implementation almost trivial, however,
its boundaries and circular connectivity require some special care. We therefore need to
distinguish between three qualitatively different cases, which correspond to 1) exponential
maps that lie completely within the magenta array, 2) exponential maps that would cross a
boundary and are therefore not well defined and 3) exponential maps whose geodesics run
out at one end of the array and enter it (twisted) at the other end. The first case is trivial
and corresponds to the exponential map on R2 itself. Since the strip is flat and the reference
frames within the array are all parallel, the transport along these geodesics is trivial. Within
the interior region of the array, where the (finitely supported) kernels do not protrude out of
it, one can therefore implement the convolution as usual on R2. The second case concerns
the top and bottom rows of the array where the exponential maps might cross the boundary

3The improved parameter efficiency of R-steerable kernels by a factor of 2 is exact for continuous
kernels or for even kernel sizes s. If s is odd, the number of parameters scales for symmetric kernels
like s(s+1)/2 and for antisymmetric kernels like s(s−1)/2 since the former are freely parameterizing
the central row of pixels while the latter need to set them to zero.
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of the strip (or array). This is analogous to the boundary problems for usual flat, rectangular
images, where the issue is most commonly solved via zero-padding. Adopting this solution,
we pad the array with rows of zeros, shown as the two light gray strips above and below the
magenta rectangle in Fig. 10.3. Given a kernel size of s × s pixels with s being odd, one
needs to pad (s − 1)/2 rows of zeros at both sides. The third case occurs at the left and
right end of the array, where the strip was cut open to flatten it out. Fig. 10.3 visualizes an
exemplary geodesic which crosses the cut line and therefore enters the array in a reflected
direction at the opposite side. Due to the reflection, the parallel transporter across the cut is
given by ρ(s). In order to be able to run a conventional convolution routine, we implement
the transport across the cut by copying a region of (s − 1)/2 pixels from both ends of the
array (orange), reflecting them upside down to model the twist, acting on them with ρ(s)
to account for the reflected gauges and finally appending them to the opposite side of the
array (blue). Having padded the array in this way, all relevant geodesics and transporters are
reduced to their trivial counterparts on R2.

Overall, our implementation of the convolution operation applies the three steps mentioned
above. It first expands the R-steerable kernels and pads the magenta feature field array
with zeros and the field values which are transported over the cut. The expanded kernel is
then convolved with the padded feature fields, calling a conventional convolution routine for
flat images. We use “valid” boundary settings for the convolution, which means that the
operation does not implicitly pad further zeros and only computes feature vectors for those
points where the kernel does not protrude beyond the boundaries of our manually padded
array. The resulting feature field will therefore again have the same spatial dimensions as the
original magenta rectangle.

Pooling: Conventional CNNs usually apply spatial pooling operations which summarize
feature vectors from a given pooling window, for instance a region of 2×2 pixels, into a new
feature vector. Such operations reduce the spatial resolution, which lowers the computational
cost and increases the effective field of view of the convolution kernels. A common way of
pooling is the so-called “max-pooling”, which takes the maximum value of each individual
feature channel in the pooling region. This operation can be applied to scalar fields right
away since they are gauge invariant. It is further admissible for regular feature fields since
taking the maximum commutes with the permutation of channels. However, as sign-flip
fields change their sign under gauge transformations, max-pooling is not equivariant w.r.t.
their transformation law. An equivariant alternative is average pooling, which takes the
average of features in the pooling region and therefore commutes with a change of sign.
Another option, that we use in our experiments below since it performs slightly better, is
to pool sign-flip fields based on their absolute value, which is again invariant under sign
inversions. We then multiply the sign of the pooled field values with maximum norm back
in to preserve the original transformation law.

While such defined pooling operations are equivariant w.r.t. gauge transformations, their
design principle interferes fundamentally with the desired isometry equivariance. This is the
case since they reduce the spatial resolution of the numerical discretization, such that the out-
put is only exactly equivariant w.r.t. the subgroup of symmetries of the lower resolution grid.
This effect is well known for conventional CNNs [6]. Even though some attempts to rectify
the situation were made [348], the partial loss of translation (or isometry) equivariance to a
subgroup is usually accepted as it is.

Unit tests: All of the proposed coordinate independent operations are unit tested in order
to guarantee their gauge equivariance and isometry equivariance. The gauge equivariance
tests pass for all of the proposed operations as well as for the whole networks described in
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the following section. For the convolution, bias summation and nonlinearities, our unit tests
confirm isometry equivariance to hold exactly. As expected, the spatial pooling operations
are not exactly equivariant w.r.t. the symmetries of the high resolution grid.4 However,
we confirm their isometry equivariance for that subgroup of isometries which are simulta-
neously a symmetry of the lower resolution grid. Our empirical results, which we discuss
next, suggest that the inexact isometry equivariance affects the isometry invariance of a full
network’s classification predictions in most cases only marginally.

10.5 Empirical evaluation of Möbius convolutions

We evaluate the coordinate independent operations and their claimed equivariance properties
on a simple classification task of MNIST images which are projected on the Möbius strip.
Different combinations of field types are compared by instantiating similar model architec-
tures for them. As a baseline we train a non coordinate independent CNN on the Möbius
strip, which is significantly outperformed by the equivariant models.

The Möbius MNIST dataset is constructed by taking the standard MNIST digits of 28× 28
pixels and projecting them on the strip by identifying the left and right border with an addi-
tional twist. In compliance with the rotated MNIST dataset, which is a standard benchmark
for rotation equivariant Euclidean CNNs, we reduce the training set size to 12000 sam-
ples [324, 322]. Since MNIST contains single channel grayscale digits, which are invariant
under gauge transformations, its samples are identified as scalar fields. Each sample is there-
fore represented by an array of shape (1, 28, 28), corresponding to the magenta rectangle in
Fig. 10.3. Note that the identification of the left and right border does not lead to any discon-
tinuities for the specific case of MNIST digits since their background color is constant black
(i.e. zero). In order to demonstrate the induced isometry equivariance of the coordinate inde-
pendent CNNs, we construct two versions of this dataset. The first one contains digits which
are all centered, that is, which occur at the same position on the strip. The second dataset
puts the digits at random positions around the strip, i.e. shifts them by randomly sampled
isometries as visualized in Fig. 10.2. Any isometry equivariant model is expected to general-
ize their inference from the dataset of centered digits to the isometry shifted dataset, which is
confirmed by our experiments. While Möbius MNIST clearly is a toy dataset, it exhibits all
the theoretical properties which we are interested in and serves as a convenient test case to
demonstrate the difference between conventional CNNs and coordinate independent CNNs.

All network architectures are as usual constructed as a series of convolutional layers, fol-
lowed by a global pooling operation and an invariant, fully connected classifier; see Ta-
ble 10.1 for a comparison. The convolutional parts are built from six convolutional blocks
with spatial pooling operations after the second and fourth convolution block. The con-
volution blocks are pretty basic and consist of only one convolutional layer followed by a
bias summation and a nonlinearity layer. All intermediate pooling operations utilize pooling
windows of 2 × 2 pixels and therefore halve the spatial resolution. In the case of reflection
equivariant models, the last convolutional layer maps to 64 scalar fields. Their invariance
under gauge transformations guarantees that the subsequent global max-pooling operation
produces both position and gauge invariant features. An MLP with a final softmax activa-
tion takes those features to produce invariant predictions. It consists for all models of the
same two MLP blocks, which apply a batch-normalization, ELU nonlinearity, dropout with

4Note that this issue is inherent for pooling operations and applies to conventional CNNs as well [6,
348].



168 Chapter 10. Reflection steerable Möbius CNNs

layer output field multiplicities (mtriv,msign,mreg) / channels / neurons
scalar sign-flip regular irreps mixed CNN

network input (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) 1

conv block (16, 0, 0) (0, 16, 0) (0, 0, 8) (8, 8, 0) (4, 4, 2) ⌊16/
√
α⌋

conv block (32, 0, 0) (0, 32, 0) (0, 0, 16) (16, 16, 0) (8, 8, 4) ⌊32/
√
α⌋

pooling
conv block (64, 0, 0) (0, 64, 0) (0, 0, 32) (32, 32, 0) (16, 16, 8) ⌊64/

√
α⌋

conv block (128, 0, 0) (0, 128, 0) (0, 0, 64) (64, 64, 0) (32, 32, 16) ⌊128/
√
α⌋

pooling
conv block (256, 0, 0) (0, 256, 0) (0, 0, 128) (128, 128, 0) (64, 64, 32) ⌊256/

√
α⌋

conv block (64, 0, 0) (64, 0, 0) (64, 0, 0) (64, 0, 0) (64, 0, 0) 64

global max-pool 64 64 64 64 64 64

MLP 32 32 32 32 32 32

MLP + softmax 10 10 10 10 10 10

Table 10.1: Overview of the compared model architectures. All models consist of a convolutional
part on the Möbius strip, followed by a global max-pooling operation and an MLP classifier. The five
orientation independent CNNs differ in their multiplicities (mtriv,msign,mreg) of field types but agree
exactly in their number of channels and approximately in their number of parameters. Their inputs,
i.e. the MNIST digits, are assumed to be scalar fields. All orientation independent models map in their
last convolution to 64 gauge invariant scalar fields. A subsequent global pooling operation therefore
produces position and coordinate independent features. The baseline CNN model comes in two flavors,
which differ by their factor of

√
α in the number of channels. A first version assumes α = 1, and

therefore utilizes the same number of channels like the coordinate independent models. Due to the
inferior parameter efficiency of non-equivariant CNNs, this model uses approximately twice as many
parameters. For a fair comparison we add a second version with α = 2 and therefore approximately
the same number of parameters like the equivariant models.

30% dropping probability and a linear (or affine) layer, whose number of output neurons is
listed in Table 10.1. The differences between the different models are therefore restricted to
the convolutional part.

The five coordinate independent models that we instantiate differ in the utilized field types:
there are three pure models, denoted by “scalar”, “sign-flip” and “regular”, which assume
only the suggested field type. Due to their higher dimensionality, the field multiplicities of
the regular feature fields are halved in comparison to those of scalar and sign-flip fields.
A fourth model, denoted by “irrep”, uses a mixture of scalar and sign-flip fields in equal
proportions. Note that the feature fields of this model are linearly equivalent to those of the
“regular” models since the change of basis from Eq. (10.8) translates between both. A fifth,
“mixed” model applies all three field types. The nonlinearities in use for the different field
types are those described in Section 10.3.2. As stated before, all models assume scalar inputs
and outputs.

All coordinate independent layers are unit testes and found to be exactly gauge equivariant,
implying that the models are overall exactly gauge invariant. Since they apply two pooling
steps, which reduce the spatial resolution by a factor of 2 each before the global pooling, the
isometry equivariance (invariance) holds only for the subgroup of shifts by multiples of 4
pixels. The theoretically claimed properties therefore hold as expected.

As a baseline, we compare the reflection equivariant models to conventional coordinate de-
pendent CNNs on the Möbius strip. In order to respect the topology of the strip, we apply
a naive version of the transport padding operation. Since CNNs are agnostic to field types,
this is done by taking the orange strips of two pixels from Fig. 10.3 and padding them to the
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model field types ρi params test error (%)
trivial sign-flip regular shifted train digits centered train digits

CNN (channels) — 1501 k 1.97± 0.11 42.99± 2.65

CNN (params) — 832 k 2.08± 0.10 43.68± 2.85

gauge CNN (scalar) ✓ × × 902 k 1.60± 0.10 1.60± 0.09

gauge CNN (sign-flip) × ✓ × 820 k 4.27± 0.24 4.89± 0.36

gauge CNN (regular) × × ✓ 752 k 1.24± 0.08 1.23± 0.07

gauge CNN (irreps) ✓ ✓ × 752 k 1.65± 0.09 1.64± 0.12

gauge CNN (mixed) ✓ ✓ ✓ 752 k 1.43± 0.09 1.42± 0.10

Table 10.2: Test errors of the different network architectures, each averaged over 32 runs. The column
“shifted train digits” reports the performance for a setting where both the training and test samples are
placed at random locations on the strip. While not being RM -coordinate independent, the conventional
CNNs are able to learn to detect the digits as seen from their discontinuous frame field. Almost all
coordinate independent CNNs achieve significantly better results. The inferior performance of the
sign-flip model shows that coordinate independent CNNs might not work very well when bad choices
of field types or nonlinearities are made. The training digits in the column “centered train digits” are all
placed at the same position on the strip while the test digits remain randomly shifted. The coordinate
independent CNNs are able to generalize their inference between both situations which affirms their
isometry equivariance. In contrast, the performance of the conventional CNNs deteriorates, which
reflects their missing equivariance under isometries.

opposite side of the array after applying a reflection but without acting with the unspecified
group representation – formally, this corresponds to transporting the features according to
a trivial connection. Since the non-equivariant operations are less parameter efficient, we
consider two different versions: the first version uses the same number of channels like the
coordinate independent CNNs, and therefore requires approximately twice as many param-
eters. The number of channels of the second version is scaled down by a factor

√
2 such that

the number of parameters is approximately equivalent to that of the orientation independent
models.

All models are trained for 20 epochs with a batch size of 128 samples, a weight decay of
10−6 and using the Adam optimizer [151]. The initial learning rate of 5 · 10−3 is chosen
as high as possible without leading to a divergence of the training process. A fixed learning
rate decay schedule reduces the step size every 4 epochs by a factor of 2.

Table 10.2 shows the resulting test errors of all models, each averaged over 32 runs. The first
setting, reported in the column “shifted train digits”, uses randomly located digits both in the
training and test dataset. Both versions of the non-equivariant CNN achieve approximately
the same test error. In contrast, most coordinate independent CNNs achieve a significantly
better result. Only the model which is purely based on sign-flip fields performs worse –
this suggests that the utilized combination of sign-flip fields and nonlinearities is not a good
choice, despite being coordinate independent. Bad choices of feature fields and nonlineari-
ties are therefore seen to harm the model performance. The model achieving the best results
is based on regular feature fields. This observation is in alignment with previous findings, for
instance the systematic comparison of field types in [322]. Our interpretation of this result is
that the kernel constraints involving regular feature fields allow for essentially unconstrained
kernel channels, with the additional requirement of applying two reflected copies of them –
view this in contrast to the R-steerable kernels between irrep fields, which are required to be
symmetric within one kernel channel. The model based on scalar fields achieves an interme-
diate performance between the conventional CNNs and the regular field model. Both models
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which use mixed field types have performances lying between those of the field types of the
mix. We want to emphasize again that the regular model and the irrep model contain exactly
the same irrep field types but are expressed in a different basis. Since this change of basis
could be interpreted as part of the applied nonlinearities, this result implies that the used
nonlinearities have a major impact on the model performance. Despite being investigated
in [322], the landscape of equivariant nonlinearities is still largely unexplored territory.

The second training setting, reported in the column “centered train digits”, investigates the
capability of the models to generalize over all poses that are related by isometries. All models
are trained on digits which occur at the same location on the strip but test on randomly shifted
digits. As expected, the conventional CNNs’ performances degrade significantly in this set-
ting – this implies that they are indeed not equivariant under the isometries of the Möbius
strip. In contrast, the performance of most coordinate independent CNNs stays within the
standard deviation unchanged. Despite only being exactly equivariant (invariant) to the sub-
group of isometries which shifts by multiples of 4 pixels, the full isometry invariance of the
models therefore seems to hold very well. While the sign-flip model becomes significantly
worse in comparison to the first training setting, it is still approximately isometry equivariant
and therefore performs much better than the conventional CNNs.

In conclusion, the conducted experiments confirm the claimed properties of coordinate in-
dependent CNNs and show their superiority over coordinate dependent models.
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FIBER BUNDLE THEORY OF

COORDINATE INDEPENDENT CNNS
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Introduction & overview

The previous Part II introduced coordinate independent feature fields and network layers in
terms of their coordinate expressions relative to some choice of gauge on local neighbor-
hoods U ⊆ M . As the existence of global gauges is in general topologically obstructed,
global coordinate representations of feature fields do in general not exist. Part II addressed
this issue by assembling the global content of feature fields from their local coordinate ex-
pressions relative to an atlas of gauges that cover M . A more elegant alternative is to define
global feature fields and network layers in an abstract, coordinate free formalism in terms
of fiber bundles. Bundle trivializations allow to recover the local coordinate expressions of
feature fields and network layers.

This part develops a global, coordinate free description of the neural networks and feature
spaces from Part II. No new models or layers are introduced, but the theory of coordinate
independent CNNs is presented in a more formal language. A series of theorems justifies
so far unproven claims and presents new results, including the existence and smoothness of
kernel field transforms and GM -convolutions. The global bundle formulation allows specif-
ically for a much more thorough investigation of the networks’ equivariance under global
isometry actions. An interesting result in this regard is that isometry equivariant kernel field
transforms on homogeneous spaces are necessarily GM -convolutions. An overview of all
theorems and definitions is given in Appendix A.

Chapter 11 introduces the theory of fiber bundles in general and discusses the tangent bundle,
G-structures and G-associated feature vector bundles in particular. Neural network opera-
tions like kernel field transforms and GM -convolutions are defined in Chapter 12. Chap-
ter 13 investigates the isometry equivariance of these operations.





CHAPTER 11

Associated bundles and coordinate free feature fields

Fields of geometric quantities on manifolds are formalized as “sections” of fiber bundles
(Eq. (11.19)). Any smooth manifold is naturally endowed with its tangent bundle and frame
bundle. A choice of G-structure, which is a G-bundle of reference frames, allows to de-
fine G-associated feature vector bundles. The feature spaces of our coordinate independent
neural networks are spaces of feature fields, i.e. sections of these feature vector bundles.

Fiber bundles in general are reviewed in Section 11.1. Section 11.2 discusses the tangent
bundle TM and the frame bundle FM . G-structures GM , which are subsets of refer-
ence frames that are distinguished by the given geometric structure on the manifold, are
introduced in Section 11.3. Associated G-bundles, including the feature vector bundles A,
are constructed from the G-structure. Section 11.4 gives details on the local trivializations
(gauges) of TM , FM , GM and A, which reintroduces coordinates and recovers the formu-
lation in Part II. The mutual transformation of the trivialized feature fields with trivialized
tangent vector coefficients and reference frames follows thereby from the coordinate free
formulation via associated G-bundles. Section 11.5 discusses parallel transporters on the
associated bundles, in particular how they induce each other.

All concepts presented here are well established in differential geometry and can easily be
found in the literature [262, 221, 132, 283, 273, 202, 326, 284, 230, 59]. Our contribution is
to give a comprehensive exposition which bridges between the mathematical theory and its
application in geometric deep learning.

11.1 A brief introduction to fiber bundles

Intuitively, a fiber bundle can be thought of as a space which is constructed by taking a so-
called base space, in our case the manifold M , and attaching another space F , denoted as
typical fiber, to each of its points. A trivial example would be the direct product M × F .
However, the fibers can in general be connected in a twisted way such that the resulting
bundle is topologically different from a product. For instance, let the base space be the
circle M = S1 and let the fiber be the line segment F = [−1, 1]. Their direct product
S1 × [−1, 1] then forms a cylinder; see Fig. 11.1 (left). In contrast, if the fibers are attached
such that they are twisted "upside down" after one revolution around the circle, one obtains
the Möbius strip, a non-trivial fiber bundle which is topologically different from the cylinder;
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Figure 11.1: A cylinder and a Möbius
strip. Both bundles share the circle
S1 as base space and line segments
[−1, 1] as fibers, however, their topo-
logical structure differs by a twist in
the fibers. (Figure based on Jake’s code from
tex.stackexchange.com.)

see Fig. 11.1 (right).1,2 Note that the Möbius strip locally looks like a direct productU×F of
a line element U ⊊ S1 with the fiber F . As discussed below, fiber bundles can by definition
always be locally trivialized to direct products.

We are interested in fiber bundles since they allow for a global description of fields on mani-
folds. For instance, a wind field on the globeM = S2 is a tangent vector field which assigns
a tangent vector in TpM to each point p of M . The corresponding fiber bundle is the tan-
gent bundle TM which connects all the tangent spaces together and is therefore identified
as a fiber bundle with base space M = S2 and fiber Rd ∼= TpM . Similar to the fibers of
a Möbius strip, the tangent spaces of a curved manifold are in general not connected in a
canonical way but are inherently twisted relative to each other. The tangent bundle is there-
fore in general topologically distinct from a product, that is, TM ≇ M × Rd. In order to
define c-dimensional feature vector fields, we will later consider bundles with base space M
and feature vector spaces Rc as fibers.

11.1.1 Fiber bundles in general

Formally, a fiber bundle is a structure (E,M, π, F ) consisting of topological spaces E
(total space), M (base space) and F (typical fiber) and a continuous surjective projection
map π : E → M . A fiber bundle is locally trivializable, which means that for each point
p ∈ M there exists a local neighborhood U ⊆ M of p, restricted to which the bundle
looks like a direct product U × F . The local triviality is formalized by homeomorphisms3

Ψ : π−1(U)→ U × F satisfying the commutative diagram below

E ⊇ π−1(U) U × F

M ⊇ U

π

Ψ

proj1

, (11.1)

that is,

π = proj1 ◦Ψ , (11.2)

1To prevent confusion, we emphasize that this example considers the Möbius strip as a fiber bundle
with base space (manifold) M = S1. In contrast, all previous figures that contained the Möbius strip
considered it as the base space (manifold) M to convolve over, and to which fibers were attached.

2We furthermore need to mention that the arrows shown in the figure are just meant to emphasize
the twist in the Möbius strip. They do not imply a gluing direction as in gluing diagrams.

3A homeomorphism is a topological isomorphism, i.e. a continuous, invertible map between topo-
logical spaces with continuous inverse.

https://tex.stackexchange.com/questions/118563/moebius-strip-using-tikz
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where proj1 : U ×F → U denotes the natural projection on the first factor. A bundle which
is globally homeomorphic to the product M × F is called trivial. Bundles are often shortly
written E π−→M or just E with the typical fiber and base space left implicit. Since we are
considering smooth frame fields, we assume E, M and F to be smooth manifolds and π and
Ψ to be smooth maps (diffeomorphisms).

The local triviality of E π−→M implies that the preimage Ep := π−1(p) of any point p ∈M ,
called the fiber over p, is diffeomorphic to the typical fiber F . As in Chapter 7, we denote
the diffeomorphisms which identify the fibers over different points with the typical fiber by
ψp : Ep → F . The local trivializations are then in terms of these diffeomorphisms given by

Ψ : π−1(U)→ U × F, e 7→
(
π(e), ψπ(e)(e)

)
. (11.3)

If the typical fiber F and the fibersEp over p carry additional structure, the diffeomorphisms
ψp : Ep → F are required to respect this structure, i.e. to be isomorphisms.4 For instance,
if F and Ep carry a vector space structure, then ψp is required to be linear.

In general the specific choice of local trivializations (or diffeomorphisms) over U is not
canonically specified by the bundle. One therefore has to consider different choices (gauges)
and transition functions (gauge transformations) between them. To make this precise, con-
sider two overlapping trivializing neighborhoods UA and UB with local trivializations ΨA
and ΨB . From Eq. (11.3) it follows that the transition between both local trivializations is
on UAB := UA ∩ UB ̸= ∅ given by

ΨB◦
(
ΨA
)−1

: UAB × F → UAB × F, (11.4)

(p, f) 7→
(
p,
[
ψBp ◦

(
ψAp
)−1 ]

(f)
)
=:
(
p, gBAp ▶f

)
where we implicitly defined the smooth transition functions5

gBA : UAB → Aut(F ), p 7→ gBAp := ψBp ◦
(
ψAp
)−1

(11.5)

and their left action

▶ : Aut(F )× F → F,
(
gBAp , f

)
7→ gBAp ▶f :=

[
ψBp ◦

(
ψAp
)−1]

(f). (11.6)

on the typical fiber F ; cf. Eqs. (7.7) and (7.6). To see that the first factor in Eq. (11.4)
is indeed given by the identity, note that, for any p ∈ UAB and any f ∈ F , the repeated
application of Eq. (11.2) implies

[
proj1 ◦ΨB ◦

(
ΨA
)−1]

(p, f) =
[
π ◦

(
ΨA
)−1]

(p, f) =

proj1(p, f) = p . The transition between different trivializations is visualized by the fol-

4Alternatively, assume that F carries structure which is respected by the transition functions ψB
p ◦

(ψA
p )

−1 = gBA(p) ∈ Aut(F ) (see the next paragraph). Then the trivializations ψX
p : Ep → F

consistently induce the structure of F on Ep and are automatically isomorphisms.
5The automorphism group Aut(F ) of a space F consists of all invertible, structure preserving

maps (isomorphisms) from F to itself. For instance, if F = Rn is a vector space, the automorphism
group is the general linear group GL(n), which consists of all invertible n×n matrices.
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lowing (commuting) extension of the commutative diagram in Eq. (11.1):

UAB×F π−1(UAB) UAB×F

UAB

proj1

id× gBA▶

π

ΨA ΨB

proj1

(11.7)

Compare this diagram to that in Eq. (7.8), which applies to a single point p ∈ UAB only
(and considers specifically the tangent bundle). A graphical interpretation of the full local
trivialization diagram in Eq. (11.7) is given in Fig. 11.3.

By definition, the transition functions in Eq. (11.5) satisfy the following three conditions:6

i) gAAp = e ∀p ∈ UA (11.8)

ii) gBAp =
(
gABp

)−1 ∀p ∈ UA ∩ UB (11.9)

iii) gCBp gBAp = gCAp ∀p ∈ UA ∩ UB ∩ UC (cocycle condition) (11.10)
By the fiber bundle construction theorem, any fiber bundle can be fully specified globally in
terms of an atlas A =

{(
UX ,ΨX

) ∣∣X ∈ X
}

of local trivializations
(
UX ,ΨX

)
which

cover M and whose transition functions satisfy Eqs. (11.8), (11.9) and (11.10) (here X de-
notes some index set). The individual trivializations can be thought of as being “glued to-
gether” by the transition maps, which is visualized in Fig. 11.2. Note that this is similar to
the global description of a manifold in terms of an atlas of local charts.

11.1.2 Vector bundles

Several more specific notions of fiber bundles, carrying additional mathematical structure,
exist. An important example are vector bundles, which, as the name suggests, are bundles
consisting of vector spaces attached to a manifold. Formally, a (real) vector bundle of rank k
is a bundle (E,M, π,Rk) with typical fiber Rk and fibers Ep ∼= Rk over p such that the
local trivializations are fiber wise vector space isomorphisms (linear maps). The transition
functions ψBp ◦

(
ψAp
)−1 ∈ Aut(Rk) = GL(k) then take values in the general linear group.

Alternatively, given the fiber Rk and an atlas of local trivializations whose transition func-
tions take values in Aut(Rk) = GL(k), a vector space structure of Ep is induced by setting

αv + βw :=
(
ψAp
)−1(

αψAp (v) + βψAp (w)
)

∀ v, w ∈ Ep, α, β ∈ R (11.11)

for an arbitrary gauge ψAp : Ep → Rk from the GL(k)-atlas. That the vector space structure
is consistently defined is clear as(

ψBp
)−1(

αψBp (v) + βψBp (w)
)

=
(
ψAp
)−1((

gBAp )−1
(
αgBAp ψAp (v) + βgBAp ψAp (w)

))
=
(
ψAp
)−1(

αψAp (v) + βψAp (w)
)

(11.12)

6Conditions i) and ii) follow from the cocycle condition iii) but are often stated explicitly.
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Figure 11.2: Description of the cylinder and the Möbius strip in terms of G-atlases consisting of
two local trivializations each. Left: Since the cylinder is a trivial bundle, all transition functions can
be chosen to be identity maps such that the structure group is reduced to the trivial group G = {e}.
Differing from the visualized situation, it is possible to choose a single, global trivialization. Right: The
topology of the Möbius strip forces the transition functions at one of the overlaps to glue the fibers
together in an inverted way. The structure group can therefore not be reduced further than the group
G = R which models the reflection of fibers. Global trivializations of the Möbius strip do therefore
not exists. Note that the arrows on the Möbius strip should not be confused with the arrows in gluing
diagrams, that is, the twist glues the vectors at one of the cuts in opposite direction.

yields the same result. Note that the last step required the linearity of gBAp ∈ GL(d). The
gauges ψAp or ψBp are then automatically vector space isomorphisms.

The most relevant examples for us are the tangent bundle and feature vector bundles, which
are introduced in the following sections.

11.1.3 G-bundles

Depending on the topology of the bundle, it might be possible to define an atlas of local
trivializations AG =

{(
UX ,ΨX

) ∣∣X ∈ X
}

whose transition functions are restricted to a
subgroup G ≤ Aut(F ), that is, they satisfy

gBAp ∈ G for all A,B ∈ X and all p ∈ UA ∩ UB . (11.13)

Any such atlas is called G-atlas and G is denoted as structure group of the bundle. Two
different G-atlases are equivalent (or compatible), if their union is again a G-atlas. A bundle
equipped with an equivalence class of G-atlases is known as a G-bundle.7

The topology of a bundle determines how far its structure group can be reduced. For instance,
the cylinder in Fig. 11.2 (or any other trivial bundle) can be described by an {e}-atlas, con-
sisting of local trivializations with identity transition functions only. This corresponds to
a reduction to a trivial structure group G = {e}. In contrast, the twisted topology of the
Möbius strip requires any G-atlas to contain transition functions which glue the fibers to-
gether in an inverted orientation; see Fig 11.2 (right). The structure group of the Möbius
strip can therefore not be restricted further than the group G = R which models the re-
flection of fibers. On Riemannian manifolds the structure group of the tangent bundle TM ,
and thus the associated feature vector bundles, can in general not be reduced further than to

7The equivalence class ensures thereby that no single of the equivalent G-atlases is preferred.
Equivalently, one could take the maximal G-atlas, defined as the unique G-atlas in which any other
compatible G-atlas is contained. Note that an equivalence class of G-atlases is uniquely implied by a
single given G-atlas.
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an orthogonal structure group O(d) which motivated this work on coordinate independent
CNNs in the first place.

11.1.4 Associated G-bundles

Two G-bundles are said to be associated to each other if they share the same base space,
structure group and, most importantly, same transition functions. Associated bundles
(E,M, π, F ) and (Ẽ,M, π̃, F̃ ) with structure group G might differ in their typical fibers F
and F̃ and therefore also in their left actions ▶: G× F → F and ▶̃ : G× F̃ → F̃ of G on
the respective fiber. Given twoG-atlases

{(
UX ,ΨX

) ∣∣X ∈ X
}

and
{(
UX , Ψ̃X

) ∣∣X ∈ X
}

of the bundles over the same open cover of M , the requirement for the equivalence of the
transition functions (up to the different left actions) means:

ΨB ◦
(
ΨA
)−1

=
(
id× gBA ▶

)
⇐⇒ Ψ̃B ◦

(
Ψ̃A
)−1

=
(
id× gBA ▶̃

)
(11.14)

Intuitively, the typical fibers F and F̃ of E and Ẽ are “glued together” in the same way
over M .

An important example of bundles which are GL(d)-associated to each other are the tangent
bundle TM , the cotangent bundle T ∗M , any other tensor bundle T rsM and the tangent frame
bundle FM , (the first and the latter are introduced in Section 11.2). The associatedness of
these bundles is reflected in that their components relative to chosen bases transform accord-

ing to the same gauge transformation (e.g. Jacobian gBAµν =
∂xB

µ

∂xA
ν

, see Appendix C). The dif-
ferent actions of a gauge transformation on the respective fibers is in this example denoted as
being a contravariant transformation (TM ), covariant transformation (T ∗M ), r-times contra-
and s-times covariant transformation (T rsM ) and, again, covariant transformation (FM ), re-
spectively. We will later on introduce the G-structure GM , the tangent bundle TM and the
feature vector bundlesA as associatedG-bundles. The associatedness does in this case come
from the fact that changes of reference frames inGM lead to a simultaneous transformations
of the tangent vector coefficients and feature vector coefficients.

We want to mention that any associated bundles are additionally associated to a uniquely
specified principal G-bundle (defined in the next paragraph). In turn, any associated bundle
can be constructed from the respective associated principal bundle – we will make heavy use
of this construction to define feature vector bundles in Section 11.3.

11.1.5 Principal G-bundles

A fiber bundle (P,M, π,G) is called a (smooth) principal G-bundle (P,M, π,G,◁) if 1) its
typical fiber coincides with its structure group G and 2) it is endowed with a smooth right
G-action

◁ : P ×G→ G, (p, g) 7→ p ◁ g (11.15)

which preserves the fibers, that is,

π(p ◁ g) = π(p) ∀ p ∈ P, g ∈ G (11.16)
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and acts transitively and freely on them.8 The last two conditions (transitivity and freedom)
together require that the fibers of a principal G-bundle are G-torsors (or principal homo-
geneous G-spaces), which intuitively means that they “look like G” but come without any
specified origin or identity element.9 The local trivializations Ψ : π−1(U) → U × G are
required to respect the right G-action, that is, to be right G-equivariant

Ψ(p ◁ g) = Ψ(p)(id× ·g) ∀ p ∈ P, g ∈ G , (11.17)

or, expressed locally,

ψπ(p)(p ◁ g) = ψπ(p)(p) · g ∀ p ∈ P, g ∈ G ,
where ·g denotes the canonical right multiplication with group elements on the typical
fiber G. This extends the diagram in Eq. (11.1) to the diagram

π−1(U) U ×G

π−1(U) U ×G

U

Ψ

π

Ψ

◁g

proj1

(id× ·g)

, (11.18)

which is required to commute for any g ∈ G.

Principal G-bundles are of great relevance for the study of general G-bundles. In par-
ticular, any G-bundle (E,M, πE , F ) is associated to some (unique) principal G-bundle
(P,M, πP , G,◁) over M and any associated G-bundle can be constructed from P . In
the following sections we will present the frame bundle FM and G-structures GM as spe-
cific instances of principal bundles, which will make the claims made here less abstract and
uncover some consequences of them.

11.1.6 Sections and fields

Smooth F -valued fields over M are formalized as smooth sections σ of a bundle E π−→M
with fiber F . A smooth section is thereby defined as a smooth map σ : M → E that
assigns to each point p of the base space an element in the fiber Ep over p, that is, it satisfies
π ◦ σ = idM , which the following commutative diagram visualizes:

M E Mσ

idM

π (11.19)

8A (right) group action ϕ : X ×G → X, (x, g) 7→ x.g is called transitive if any point of X can
be mapped to any other point i.e. if for each x, y ∈ X there exists a g ∈ G such that y = x.g. It is
called (fixed point) free if for any x ∈ X the equation x = x.g implies that g = e, that is, if only the
action of the identity element leaves p invariant. Equivalent statements can be made for left actions;
see Defs. B.3.8 and B.3.10.

9Formally, a (right) G-torsor P satisfies P × G ∼= P ×M P where the isomorphism is given by
(p, g) 7→ (p, p.g). This condition implies that there is a unique group element connecting any two
points in the torsor. See also Def. B.3.13.



184 Chapter 11. Associated bundles and coordinate free feature fields

An important example are tangent vector fields, which are modeled as sections v : M →
TM that assign a tangent vector v(p) ∈ TpM to each point p in M . Note that the projection
map is, by its nature, non-invertible, such that σ ◦ π ̸= idE . The following diagram does
therefore in general not commute:

E M Eπ

idE

σ

⟲

(11.20)

In cases below where a diagram does not commute, which is mostly the case for sections,
we emphasize this visually by adding the symbol ⟲ . Smooth sections do not necessarily
exist globally but can always be defined on trivializing neighborhoods U ⊆ M . Via a
local trivialization, a local section can be identified with a function s : U → F by setting
s(p) = ψp(σ(p)) for p ∈ U . We denote the space of global sections by Γ(E) while the
space of local sections is written Γ(U,E).

11.1.7 Bundle morphisms

The morphisms (maps) in the category of fiber bundles are called bundle morphisms or bun-
dle maps. They differ from mere diffeomorphisms between the total spaces in that they are
additionally required to respect the bundle structure, i.e. to map fibers to fibers. In general, a
smooth bundle map between two smooth fiber bundles (E,M, π, F ) and (Ẽ, M̃ , π̃, F̃ ) is a
smooth map ϕ : E → Ẽ between the total spaces such that there exists a second smooth map
ϕ̂ : M → M̃ between the base spaces which satisfies π̃ ◦ ϕ = ϕ̂ ◦ π, that is, the following
diagram is required to commute:

E Ẽ

M M̃

ϕ

π π̃

ϕ̂

(11.21)

The map on the base space ensures that the bundle morphism maps fibers at p ∈ M to
fibers at ϕ̂(p) ∈ M̃ instead of “shearing them apart”. Obvious generalizations to bundle
isomorphisms and bundle automorphism exist. For instance, bundle isomorphisms require ϕ
and ϕ̃ to be invertible, i.e. diffeomorphisms (and to respect further structure if defined).

The specific kind of bundle map under consideration can be narrowed down further
by demanding additional requirements. A bundle M -morphism between two bundles
(E,M, π, F ) and (Ẽ, M̃ , π̃, F̃ ) over the same base space M is required to map fibers Ep
over any p ∈ M to fibers Ẽp over the same point p, that is, ϕ̂ = idM . In terms of a
commutative diagram this reads:

E Ẽ

M

ϕ

π π̃
(11.22)
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From this perspective, we identify the bundle trivialization in Diagram (11.1) as a bundle
U -morphism Ψ between the trivial bundles π−1(U) and U×F over U .

If the fibers carry additional structure, this structure is typically required to be preserved
by the bundle map. For instance, vector bundle morphisms ϕ between (E,M, π,Rk) and
(Ẽ,M, π̃,Rk̃) are demanded to respect the vector space structure on the fibers, and there-
fore to restrict to fiber wise linear maps ϕ|p : Ep → Ẽϕ(p). Similarly, principal bundle
morphisms are required to respect the property of the fibers to be right G-torsors, i.e. to be
right G-equivariant. Given two principal bundles (P,M, π,G,◁) and (P̃ , M̃ , π̃, G̃, ◁̃) and
some group homomorphism θ : G → G̃, a principal bundle morphism is required to make
the following diagram commute for any g ∈ G:

P P̃

P P̃

M M̃

ϕ

π

ϕ

◁g

π̃

◁̃ θ(g)

ϕ̂

(11.23)

The local trivialization of principal bundles in Diagram (11.18) is therefore identified as a
principal bundle U -morphism Ψ between π−1(U) and U×G, where the group homomor-
phism θ : G→ G, g 7→ g is given by the identity on G.

Bundle morphisms are of particular importance in Chapter 13, where they describe the trans-
formation of bundles and feature fields under the action of isometries. Coordinate indepen-
dent CNNs are proven to be equivariant w.r.t. these actions on bundles and their sections.

For more background on fiber bundles in general we refer to [262, 221, 132, 283, 273, 202,
326].

11.2 The tangent bundle TM and frame bundle FM

Any differentiable (and thus any Riemannian) manifold M is canonically equipped with its
tangent bundle TM and the (general) frame bundle FM , consisting of all local reference
frames of the tangent spaces. The two bundles are naturally associated to each other, with
their structure group a-priori given by Aut(Rd) = GL(d). This fact will be emphasized by
“reconstructing” TM from FM via an associated bundle construction which will later allow
us to define associated feature vector bundles. To clearly separate the concepts introduced
and assumptions made, we will describe TM and FM here as GL(d)-bundles. The follow-
ing Section 11.3 will additionally assume a G-structure imposed on TM and FM , which
will establish them as G-bundles. While bundles are locally trivializable by definition, we
will take the specific trivializations for now as granted and postpone their exact definition to
Section 11.4.
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Figure 11.3: The tangent bundle TM is the bundle formed by all tangent spaces of a smooth mani-
fold M . The tangent spaces are vector spaces isomorphic to Rd, which implies local trivializations of
the form ΨTM : π−1

TM
(U)→ U ×Rd. Transition maps ΨB

TM ◦
(
ΨA
TM

)−1
=: id× gBA can be viewed as

a field of local gauge transformations gBA
p ∈ GL(d), translating between different identifications of

the tangent spaces TpM with Rd. Trivializations of TM are canonically induced by coordinate charts;
see Appendix C for more details.

11.2.1 Tangent bundle TM

Any smooth manifold M comes with a set of tangent spaces TpM ∼= Rd. Their disjoint
union10

TM :=
∐
p∈M

TpM , (11.24)

together with a canonically given smooth structure and projection map, defines a smooth
fiber bundle known as the tangent bundle. The projection map π

TM
: TM →M is thereby

given by the obvious choice π
TM

(v) = p for v ∈ TpM .

Local trivializations ΨTM : π−1
TM

(U)→ U×Rd identify the tangent bundle over a trivializing
neighborhood U with a product U ×Rd; visualized in Fig. 11.3. As derived in Appendix C,
any coordinate chart x : U → V ⊆ Rd of the manifold induces a corresponding local
trivialization, denoted as coordinate basis. We can therefore take the trivializability of TM
for now as granted and postpone a detailed discussion to Section 11.4. A smooth structure
on TM is induced from the smooth structure of M via the above mentioned trivializations
from charts. We skip the technicalities on this construction and refer the interested reader
to [262, 221].

The thus defined tangent bundle is a vector bundle since its typical fiber Rd is a vector
space. Tangent vector fields, describing for instance a flow on M , are formalized as sections
σ : M → TM of the tangent bundle. Smooth global sections of vector bundles always
exist; a standard example is the zero section which assigns the zero vector of TpM to each
p ∈ M . We want to emphasize that the tangent spaces – and therefore the tangent bundle –

10The disjoint union
∐

p∈M TpM =
⋃

p∈M {(p, v) | v ∈ TpM} of tangent spaces can be thought
of as “remembering” from which particular tangent space TpM a certain vector v ∈ TM originates,
which is necessary for the definition of the projection map πTM .
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are defined without reference to coordinate frames, such that sections describe vector fields
in a coordinate free way.

After introducing the tangent frame bundle FM below, we will come back to the tangent
bundle and its explicit construction as associated GL(d)-bundle which emphasizes its co-
ordinate free nature. In Section 11.3 we will analogously construct TM as a associated
G-bundle to a G-structure GM .

11.2.2 Frame bundle FM

The space of local reference frames of all tangent spaces TpM forms the (tangent) frame
bundle. Consider the spaces of reference frames (ordered bases) of the individual tangent
spaces TpM :

FpM :=
{[
e1, . . . , ed

] ∣∣∣ {e1, . . . , ed} is a basis of TpM
}

(11.25)

The frame bundle is defined as their disjoint union FM :=
∐
p∈M FpM together with

the projection map π
FM

: FM → M which sends frames in FpM to p and a smooth
structure induced from TM . The typical fiber of the frame bundle is the general linear
group GL(d) ∼= FpM , i.e. the group of invertible d×d matrices whose linearly independent
columns can be thought of as defining a frame of Rd. As the frame bundle is constructed from
the tangent bundle, its local trivializations ΨFM : π−1

FM
(U) → U × GL(d) are immediately

induced from those of TM ; see Section 11.4. Fig. 11.4 shows a graphical interpretation of
the frame bundle.

Smooth local sections σ : U → π−1
FM

(U) ⊆ FM of the frame bundle map points p ∈ U to
frames in FpM . They define smooth local frame fields, that is, smoothly varying choices of
reference frames for TpM, p ∈ U ; visualized in Fig. 7.2. As argued in Eq. (7.4), a choice of
frame field on U is equivalent to a choice of gauge or local trivialization on U . This implies
that global frame fields exist only if FM – and thus TM – are trivial. We will discuss this
equivalence in more depth in Section 11.4.

A transitive and free right action on the individual fibers FpM ∼= GL(d) of the frame bundle
is naturally given by the change of frames defined in Eq. (7.10) [262]. The corresponding
action

◁ : FM ×GL(d) → FM, (11.26)(
[ei]

d
i=1, g

)
7→ [ei]

d
i=1◁ g :=

[∑
j
ej gji

]d
i=1

on FM as a whole makes the frame bundle to a principal GL(d)-bundle as defined in Sec-
tion 11.1.5. The lack of origin or preferred identity element of the fibers FpM as GL(d)-
torsors reflects the inherent ambiguity of reference frames.

11.2.3 TM as GL(d)-associated vector bundle (FM×Rd)/GL(d)

In Section 7.1 we expressed tangent vectors in TpM in terms of their coefficients in Rd rel-
ative to some reference frame. The particular choice of frames was thereby irrelevant since
the transformation of the coefficients in Eq. (7.9) cancels with the transformation of refer-
ence frames in Eq. (7.10) such that v =

∑
i v
A
i e

A
i =

∑
i v
B
i e

B
i are equivalent coordinate
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Figure 11.4: A graphical interpretation of the frame bundle FM over M and its trivializations. The
fiber FpM over p is defined as the space of all possible reference frames of TpM . All frames in FpM
are by the projection map πFM being mapped to that point p in M to which the fiber is attached. The
fibers FpM are isomorphic to GL(d), but come without an origin which would distinguish a preferred
choice of reference frame. Gauges ψA

FM,p : FpM → GL(d) or ψB
FM,p : FpM → GL(d), introduced

in Section 11.4 below, identify the fibers with GL(d), thereby specifying a preferred frame. Different
gauges are related by gauge transformations gBA

p ∈ GL(d). We need to warn the reader about two
potential misconceptions: Firstly, the frames in different fibers are a-priori not identified with each
other in a canonical way, which the redundant colors might suggest. Secondly, to minimize clutter, the
visualization shows only right-handed, orthonormal frames instead of all possible reference frames.
As we will discuss in the following Section 11.3, the shown orthonormal, right-handed frames would
correspond to aG-structureGM (a principalG-subbundle of FM ) for the structure groupG = SO(2).

representations of the same coordinate free vector v ∈ TpM . Following this idea, one can
construct the tangent bundle from the frame bundle by pairing reference frames with coeffi-
cient vectors and taking a quotient to collapse the resulting redundant descriptions of tangent
vectors relative to different frames to one unique element.

In order to construct the tangent bundle in this way, consider the product FM × Rd which
can be seen as a fiber bundle with base space M and a typical fiber GL(d) × Rd. This
bundle consists of pairs of (mutually unrelated) reference frames and coefficients. Motivated
by the equivalent expression of tangent vectors in different reference frames we define the
equivalence relation11(

[ei]
d
i=1, v

)
∼GL(d)

(
[ei]

d
i=1◁ g−1, g · v

)
∀ g ∈ GL(d) (11.27)

on FM × Rd. As an equivalence relation, it partitions FM × Rd into equivalence
classes

[
[ei]

d
i=1, v

]
. The space of these equivalence classes is the quotient space (FM ×

Rd)/GL(d). The projection map

π∼GL(d)
: (FM × Rd)/GL(d)→M,

[
[ei]

d
i=1, v

]
7→ π

FM

(
[ei]

d
i=1

)
, (11.28)

11An equivalence relation on a set X is a binary relation ∼ which is reflexive (x∼ x), symmetric
(x ∼ y ⇔ y ∼ x) and transitive (x ∼ y ∧ y ∼ z ⇒ x ∼ z). It defines a partitioning of X into
equivalence classes [x] := {y ∈ X|x ∼ y} of elements x ∈ X . The space of equivalence classes
X/∼ := {[x] |x ∈ X} is called the quotient set of X by ∼.
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which is induced from that of the frame bundle, turns (FM × Rd)/GL(d) into a fiber
bundle with base space M and typical fiber Rd. Note that the projection map in Eq. (11.28)
is well defined since it is independent of the representative of the equivalence class, i.e.
π∼GL(d)

([
[ei]

d
i=1 ◁ g−1, g · v

])
:= π

FM

(
[ei]

d
i=1◁ g−1

)
= π

FM

(
[ei]

d
i=1

)
, where we used

that the right action ◁ preserves the fibers of FM . The vector space structure of Rd makes
(FM×Rd)/GL(d) to a vector bundle with linear combinations within the same fiber being
defined by

α
[
[ei]

d
i=1, v

]
+ β

[
[ei]

d
i=1, w

]
:=

[
[ei]

d
i=1, αv + βw

]
, (11.29)

for arbitrary α, β ∈ R and v,w ∈ Rd. This definition is easily checked to be independent of
the choice of representative in both summands.

The thus defined bundle is isomorphic to the tangent bundle,

TM ∼= (FM × Rd)/GL(d) , (11.30)
with the vector bundle M -isomorphism given by the fiber wise linear map

χ : (FM × Rd)/GL(d) → TM,
[
[ei]

d
i=1, v

]
7→

d∑
i=1

viei (11.31)

which takes some representative tuple of frame and coefficient vector from the equivalence
class and maps them to the corresponding tangent vector. By the definition of the equiv-
alence relation ∼GL(d), this function is independent of the choice of representative, that
is, ∀g ∈ GL(d) : χ

((
[ei]

d
i=1 ◁ g−1, g · v

))
=
∑
i(g ·v)i

(
[ej ]

d
j=1◁ g−1

)
i
=
∑
i viei ;

cf. Eq. (7.12). As discussed in [262], the inverse is given by taking a tangent vector, project-
ing it on an arbitrary frame and taking the equivalence class.

The bundle (FM×Rd)/GL(d) is by construction associated to FM as GL(d)-bundle, that
is, it has the same transition functions in GL(d) as FM , as we will derive in Section 11.4.
The construction of TM as quotient (FM × Rd)/GL(d) emphasizes the coordinate free
nature of the tangent bundle in a very intuitive way: it considers all possible choices of coor-
dinatizations of the tangent spaces and treats them as being equivalent by taking a quotient.

11.3 G-structures GM and associated feature vector bundlesA

We will now introduce G-structures GM as distinguished subsets of frames in FM , which
encode additional geometric structure on M that is to be respected by coordinate indepen-
dent CNNs. The tangent bundle is via a similar associated bundle construction to that in
the last section reintroduced as an associated G-bundle. This approach can be generalized
to construct any other associated G-bundle, which we use to define the feature vector bun-
dles A. All such constructed bundles are associated to each other, that is, they differ only in
their fiber F but share the same base space M , structure group G and transition functions
gBA between trivializing neighborhoods. The local trivializations of the bundles and their
mutual gauge transformations are discussed in detail in the next Section 11.4.

11.3.1 G-structures GM

As discussed in Section 7.3 and Table 7.1, it is often possible to work with a distinguished
subset of reference frames which are related by the action of a reduced structure group
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G ≤ GL(d). This is best understood by discussing a few examples before coming to a
technical definition below. For instance, a restriction to orthonormal frames

OpM :=
{[
e1, . . . , ed

] ∣∣∣ {e1, . . . , ed} is an orthonormal basis of TpM w.r.t. η
}

∼= O(d) (11.32)

gives rise to a principal subbundle OM of FM with structure group O(d). Note that the
orthonormality of reference frames is judged by the metric η on M – different choices of
metrics on a manifold therefore correspond to different subsets of preferred reference frames
for the same structure group O(d). As a second example, consider a choice of orientation on
an orientable manifold, which allows to specify a preferred notion of frames12

GL+pM :=
{[
e1, . . . , ed

] ∣∣∣ {e1, . . . , ed} is a positively oriented basis of TpM
}

∼= GL+(d) (11.33)

and a corresponding principal subbundle GL+(d)M of FM with structure group GL+(d).
Again, the two different choices of orientations correspond to two different choices of sub-
bundles of accordingly oriented frames. Combining both requirements for the orthonormal-
ity and right-handedness of frames results in an SO(d)-structure with fibers

SOpM :=
{[
e1, . . . , ed

] ∣∣∣ {e1, . . . , ed} is a positively oriented, (11.34)
orthonormal basis of TpM

} ∼= SO(d) ,

Fig. 11.4 can be thought of as showing an SO(2)-structure since only right-handed, orthonor-
mal frames are shown (the typical fiber GL(d) should then be labeled SO(2)). Different
choices of SO(d)-structures correspond either to an opposite handedness of frames, sticking
to the same notion of orthonormality, or to a different choice of metric (or both). The exact
same pattern repeats for volume forms ω (on orientable manifolds M ): they allow to specify
a preferred notion of frames

SLpM :=
{[
e1, . . . , ed

] ∣∣∣ {e1, . . . , ed} is a basis of TpM with unit volume w.r.t. ω
}

∼= SL(d) (11.35)

and thus principal subbundles SLM of FM with structure group SL(d). The specific set of
frames which are preferred depends here on the specific choice of volume form. As a last
example, consider {e}-structures, corresponding to a trivial structure group G = {e} and
therefore consisting of one single frame at each point p. By definition, {e}-structures are
equivalent to global (smooth) frame fields σ ∈ Γ(FM):

{e}pM :=
{[
e1, . . . , ed

]
= σ(p)

} ∼= {e} (11.36)

They do therefore only exist on trivial manifolds. Figs. 13.3a and 13.3b visualize two differ-
ent choices of {e}-structures {e}M on M = R2.

All of these examples represent specific choices of G-structures GM on M . In general, a
G-structure on M is a principal G-subbundle of FM , that is, a “smoothly varying” choice
of subsets GpM ⊆ FpM which are right G-torsors w.r.t. ◁ for any p ∈M [284, 230, 59].13

The smoothness can hereby be formalized by requiring that around each frame [ei]
d
i=1 ∈

12Conversely, non-orientable manifolds do not allow for a reduction of structure group to GL+(d).
13 As FpM is a right GL(d)-torsor, any G-orbit GpM in FpM is automatically guaranteed to be a

right G-torsor.
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GpM there exists a neighborhood U of p on which a smooth section σ : U 7→ π−1
GM

(U) ⊆
GM with σ(p) = [ei]

d
i=1 exists. The projection

π
GM

:= π
FM

∣∣
GM

: GM →M (11.37)

of GM is hereby simply given by the restriction of the projection map of FM to GM .
Together with the restriction

◁ : GM ×G→ GM,
(
[ei]

d
i=1, g

)
7→ [ei]

d
i=1◁ g :=

[∑
j
ej gji

]d
i=1

(11.38)

of the right action of GL(d) on FM in Eq. (11.26) to an action of G ≤ GL(d) on

GM ⊆ FM , this makes the G-structure to a principal G-bundle GM
π
GM−−−→ M . How-

ever, it is important to note that there are multiple choices of such subbundles, corresponding
to different G-structures for the same structure group G; compare this claim with the exam-
ples above. As discussed earlier, the topology of a bundle might obstruct the reduction to a
structure group G, and thus the existence of a corresponding G-structure GM .

While the above definition of G-structures would be sufficient, it is instructive to briefly re-
view some alternative, equivalent definitions. The claim thatGM is a principalG-subbundle
of FM is made precise by defining it as a tuple (P,E) consisting of a choice of an (also
non-unique) principal G-bundle P over M together with a smooth, right G-equivariant em-
bedding E : P → FM (over M ).14 This is visualized by the following diagram, which is
required to commute for any g ∈ G:

P FM

P FM

M

E

E

◁
P
g

πP

◁g

πFM

(11.39)

Different subsets of preferred frames correspond in this viewpoint to different choices
of embeddings GM = E(P ) of P in FM . G-structures are furthermore equivalent to
sections of the form s : M 7→ FM/G with GM = s(M), which emphasizes that
GpM = s(p) ∈ FpM/G is indeed a choice of G-orbit in FpM as stated in footnote 13.
Yet another definition ofG-structures is in terms of (equivalence classes of)G-atlases [326].
As this is the viewpoint which might be taken in an implementation of GM -convolutions,
we discuss it in more detail in the following Section 11.4. For the interested reader we want
to mention that G-structures are a specific case of the more general concept of a reduction
(or lift) of structure groups [284, 230, 59].

G-structures are of pivotal importance for the theory of GM -convolutions. The particu-
lar choice of G-structure determines the specific set of reference frames over which the
G-steerable template kernel is shared. By the gauge equivariance of the kernels, GM -
convolutions are guaranteed to respect the G-structure, i.e. to be GM -coordinate indepen-
dent. As derived in Chapter 13, the isometries with respect to which a GM -convolution is
equivariant are exactly those which preserve the G-structure (i.e. those which induce auto-
morphisms of GM ).

14The embedding is a principal G-bundle M -morphism as introduced in Section 11.1.7, with the
group homomorphism θ : G → GL(d) being the canonical inclusion of the subgroup G ≤ GL(d)
into GL(d).
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11.3.2 TM as G-associated vector bundle (GM×Rd)/G

Given a G-structure GM , one can adapt the associated GL(d)-bundle construction of TM
from FM in Section 11.2 to a similar associated G-bundle construction of TM based on
GM . Instead of expressing tangent vectors relative to general frames in FM , they will
thereby be expressed relative to the distinguished frames in GM and the quotient is taken
w.r.t. the reduced structure group G instead of GL(d). The resulting bundle is by design
associated to GM (or to FM with a G-atlas, which is equivalent as explained in the next
section) and therefore has transition functions which take values in G. The restriction of χ
in Eq. (11.31) to (GM × Rd)/G yields a vector bundle isomorphism

TM ∼= (GM × Rd)/G . (11.40)

While all three bundles TM , (FM × Rd)/GL(d) and (GM × Rd)/G are thus isomorphic
as vector bundles, they are only isomorphic as associated G-bundles if TM and (FM ×
Rd)/GL(d) are endowed with a G-structure (or G-atlas), which is a-priori not the case.
In contrast, the bundle (GM × Rd)/G comes with a G-structure by design. For a precise
definition of associated G-bundle isomorphisms we refer to [262].

11.3.3 Associated feature vector bundlesA

The associated G-bundle construction (GM × Rd)/G can be generalized to attach other
fibers with other group actions to the G-structure GM . Indeed, any bundle associated to
GM can be constructed in this way. Important examples in differential geometry are the
cotangent bundle T ∗M with its typical fiber being the dual Rd∗ of Rd, acted on by the dual
action, or the (r, s) tensor bundles T rsM with fibers

(
Rd
)⊗r⊗(Rd∗)⊗s being acted on by

the corresponding tensor product representation of G.

In the following we consider associated feature vector bundles with feature vector coeffi-
cients Rc as typical fibers. Under gauge transformations, these fibers are acted on from the
left by a multiplication with a group representation ρ : G → GL(c), that is, Eq. (11.6)
is instantiated with ▶ρ: G× Rc → Rc, (g, f) 7→ ρ(g)f. Similar to before, feature vector
bundles are then constructed as a quotient

A := (GM × Rc)/∼ρ (11.41)

with the equivalence relation ∼ρ here given by(
[ei]

d
i=1, f

)
∼ρ

(
[ei]

d
i=1◁ g−1, ρ(g)f

)
∀g ∈ G. (11.42)

The elements of A are the equivalence classes
[
[ei]

d
i=1, f

]
of feature vector coefficients

relative to reference frames and are therefore coordinate free. A (well defined) projection
map is again induced from the projection of the G-structure:

πA : A →M,
[
[ei]

d
i=1, f

]
7→ π

GM

(
[ei]

d
i=1

)
(11.43)

Linear combinations on the fibers are defined in analogy to Eq. (11.29). Since such defined
feature vector bundles are associated toGM , their structure group isG ≤ GL(d), as we will
explicitly derive in the next Section 11.4.15 Note that this definition includes tangent vector

15The transition functions are actually taking values in ρ(G) ≤ GL(c) instead of G ≤ GL(d),
however, the transitions are still “G-valued” in that they are defined via a G-action, as required in
Section 11.1.4.
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fields and scalar fields, which can of course be processed as feature fields, for ρ(g) = g and
ρ(g) = 1, respectively.

The construction of A as an associated G-bundle models GM -coordinate independent fea-
ture vectors on M – features fp ∈ A are equivalently expressed relative to arbitrary frames
in GM , with feature coefficients in different coordinatizations being related via Eq. (11.42).
Such features do, however, not have a well defined coordinate expression relative to other
frames that are not contained in GM . From an engineering viewpoint, the G-bundle con-
struction is reflected in the G-steerability of convolution kernels, which ensures that mea-
surements of features are performed relative to arbitrary frames in GM , but allows to dis-
criminate between patterns whose poses are not related by a G-valued gauge transformation
in an absolute sense.

11.3.4 Associated feature vector field and feature spaces

Smooth, coordinate free feature fields are defined as smooth global sections f ∈ Γ(A) of the
feature vector bundles, that is, as smooth maps f :M → A satisfying πA◦f = idM . As dis-
cussed before, such feature fields are guaranteed to exist since vector bundles always admit
smooth global sections. In the following Section 11.4 we show how a local bundle trivializa-
tion over UA allows to represent f by a field fA : UA → Rc of feature vector coefficients.
A different trivialization over UB will lead to a different coefficient field fB : UB → Rc
representing f locally. From the transition maps between bundle trivializations it will follow
that both coefficient fields are on the overlap UAB = UA ∩ UB of their domains related
by fB(p) = ρ

(
gBAp

)
fA(p). The commutative diagram in Fig. 11.7 visualizes the relations

between feature vector fields and their local trivializations.

The feature spaces of coordinate independent CNNs usually consist of multiple independent
feature fields over the same base space. The bundle describing a feature space as a whole is
the Whitney sum

⊕
iAi of the feature vector bundles Ai

πAi−−→ M underlying its individual
fields. As such it has the same base space M , a typical fiber

⊕
i Rci ∼= R

∑
ici defined as

direct sum of the individual fields’ fibers and is equipped with the obvious projection map.
It is associated to TM , FM , GM and the Ai as G-bundles and can therefore equivalently
be defined as ⊕

iAi ∼=
(
GM × R

∑
ici
)/
∼⊕iρi (11.44)

Note that the direct sum
⊕

i ρi of representations ρi defining Ai guarantees that the transi-
tion maps of

⊕
iAi transform each individual field independently. The feature spaces are

then defined as the spaces Γ(
⊕

iAi) of global sections of the Whitney sum bundle.

11.4 Local bundle trivializations of TM, FM, GM andA

While the global theory of coordinate independent CNNs is elegantly formalized in terms
of coordinate free fiber bundles, a numerical implementation requires coordinate free fea-
ture vectors f(p) ∈ Ap to be expressed by coefficient vectors fA(p) := ψAA,p

(
f(p)

)
∈ Rc

relative to some choice of reference frame
[
eAi
]d
i=1
∈ GpM as described in Section 8.1. In

the language of fiber bundles, this corresponds to a choice of local trivializations or gauges
ΨAGM , ΨATM , ΨAFM and ΨAA , all of which transform simultaneously ifGM , TM , FM andA are
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taken to be G-associated to each other. Recall that a local description and thus implemen-
tation via a G-atlas, consisting of local trivializations which cover M and satisfy the three
conditions (11.8), (11.9) and (11.10), is fully equivalent to the global, coordinate free theory.

In this section we work out the associated trivializations of TM , FM , GM and A and
their synchronous gauge transformations. We start out by assuming trivializations of TM
to be given and discuss how they induce trivializations of FM and corresponding local
frame fields. If a G-atlas is chosen for TM and thus FM , it gives rise to a G-structure
GM whose G-atlas agrees with that of FM . The local trivializations of any associated G-
bundle, in particular those of the feature vector bundlesA, follow from those of GM . These
trivializations recover the transformation law of feature fields from Section 8.1.

11.4.1 Trivializations of TM

As the tangent bundle has Rd as typical fiber, its local trivializations are given by maps of
the form

ΨTM : π−1
TM

(U)→ U × Rd , (11.45)
which are visualized in Fig. 11.3. These trivializations correspond to the (spatially smoothly
varying) pointwise gauges

ψTM,p : TpM → Rd (11.46)
from Eq. (7.1) by identifying ΨTM(v) = (π

TM
(v), ψTM,p(v)) for p = π

TM
(v). In order to

respect the vector space structures of the fiber Rd and the tangent spaces TpM , the trivial-
izations ΨTM are defined as vector bundle isomorphisms between π−1

TM
(U) and U × Rd, that

is, the maps ψTM,p are required to be linear and invertible (i.e. vector space isomorphisms).
The transition maps between different trivializations of TM will in general take values in
the general linear group GL(d), the (linear) automorphism group of Rd.

If further structure is specified on the tangent bundle, the trivializations are required to re-
spect this structure. For instance, if a metric is defined on M and thus TM , the maps ψTM,p

are required to be isometric, i.e. to map vectors in TpM in such a way to vectors in Rd
that norms and angles are preserved. As the trivializations are then only allowed to differ in
their direction and orientation, different trivializations are guaranteed to be related by a re-
duced structure group O(d), corresponding to the metric as O(d)-structure. More generally,
a G-structure on TM requires – or is implied by – a choice of G-atlas

{(
UX ,ΨXTM

)}
X∈X .

Two different trivializations ΨATM and ΨBTM of such a G-atlas are on UA ∩ UB related by
ΨBTM ◦

(
ΨATM

)−1
as defined in Eq. (11.4) with G-valued transition functions

gBA : UA ∩UB → G, p 7→ ψBTM,p ◦
(
ψATM,p

)−1
, (11.47)

which define the left action ▶ : G × Rd → Rd, (g, v) 7→ g · v on the typical fiber. For a
graphical intuition on the pointwise action of the transition functions on individual fibers we
refer back to Fig. 7.1. A diagrammatic visualization of local trivializations of TM and their
transitions is given in Fig. 11.5a.

11.4.2 Induced trivializations of FM and frame fields

Any atlas
{(
UX ,ΨXTM

)}
X∈X of the tangent bundle is in one-to-one correspondence to an

atlas
{(
UX ,ΨXFM

)}
X∈X of the frame bundle. Specifically, given a local trivialization ΨATM
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U × Rd

π−1
TM

(U) U × Rd

U

πTM

ΨA
TM

ΨB
TM

(id× gBA·)

proj1

(a) Trivializations of TM πTM−−−→M .

U×GL(d)

π−1
FM

(U) U×GL(d)

U

πFM

ΨA
FM

ΨB
FM

(id× gBA·)

proj1

(b) Trivializations of FM πFM−−−→M .

U ×G

π−1
GM

(U) U ×G

U

πGM

ΨA
GM

ΨB
GM

(id× gBA·)

proj1

(c) Trivializations of GM πGM−−−→M .

U × Rc

π−1
A

(U) U × Rc

U

πA

ΨA
A

ΨB
A

(id× ρ
(
gBA

)
·)

proj1

(d) Trivializations of A πA−−→M .

Figure 11.5: Visualization of the local trivializations of the associated G-bundles TM , FM , GM and
A in terms of commutative diagrams where we abbreviate U := UA ∩ UB . A G-atlas

{
UX ,ΨX

TM

}
of the tangent bundle with transition maps gBA : U → G implies a G-structure GM and induces
G-atlases for FM , GM and A with compatible transition functions. More detailed commutative
diagrams which show sections σ : U → π−1

FM (U) and the right action ◁ on the frame bundle are given
in Figs. 11.6a and 11.6b. Feature fields, modeled as sections f : M → A of the associated feature
vector bundle A, and their local trivializations fA : UA → Rc are shown in Fig. 11.7. Graphical
interpretations of the commutative diagram for TM are given in Figs. 7.1 and 11.3.

of TM , a corresponding local trivialization

ΨAFM : π−1
FM

(
UA
)
→ UA ×GL(d), [ei]

d
i=1 7→

(
p, ψAFM,p

(
[ei]

d
i=1

))
, (11.48)

of FM , where we abbreviated p = π
FM

(
[ei]

d
i=1

)
, is induced by defining

ψAFM,p : FpM → GL(d), [ei]
d
i=1 7→ ψAFM,p

(
[ei]

d
i=1

)
:=
(
ψATM,p(ei)

)d
i=1

(11.49)

as a map from tangent frames to invertible d×d matrices whose i-th column is given by the
trivialization ψATM,p(ei) ∈ Rd of the i-th frame axis ei ∈ TpM . As required for associated
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bundles, the trivializations of TM and FM share the same transition functions,

ψBFM,p

(
[ei]

d
i=1

)
=
(
ψBTM,p(ei)

)d
i=1

=
(
gBAp ψATM,p(ei)

)d
i=1

= gBAp
(
ψATM,p(ei)

)d
i=1

= gBAp ψAFM,p

(
[ei]

d
i=1

)
, (11.50)

since the action of gBA on the individual trivialized frame axes in the second line agrees
with its action on the trivialized frame matrix in the third line. Furthermore, as claimed for
principal bundles in Eq. (11.17), the trivializations of the frame bundle are right GL(d)-
equivariant, that is, for any h ∈ GL(d) one has:

ψAFM,p

(
[ei]

d
i=1 ◁ h

)
= ψAFM,p

((∑
j
ej hji

)d
i=1

)
=
(
ψATM,p

(∑
j
ej hji

))d
i=1

=
(∑

j
ψATM,p (ej)hji

)d
i=1

=
(
ψATM,p (ei)

)d
i=1
· h

= ψAFM,p

(
[ei]

d
i=1

)
· h (11.51)

Here we used the linearity of ψATM,p in the third step and identified the index expression as a
right matrix multiplication in the fourth step. Fig. 11.6a summarizes the left action on the
trivialization via transition functions ΨBFM ◦

(
ΨAFM

)−1
= (id×gBA·) as derived in Eq. (11.50)

and the right equivariance ΨAFM ◦ (◁h) = (id× ·h) ◦ΨAFM of the trivializations as derived in
Eq. (11.51).

As indicated in Eq. (7.4) and visualized in Figs. 7.1 and 7.2, a smooth local trivialization
ΨATM on UA of the tangent bundle induces a frame field on UA. It is formalized as a smooth
local section

σA : UA → π−1
FM

(
UA
)
, p 7→

[(
ψATM,p

)−1
(ϵi)
]d
i=1

(11.52)

of the frame bundle, defined by mapping the standard frame vectors ϵi of Rd back to the
tangent spaces in π−1

TM

(
UA
)
⊆ TM . Following Eq. (7.10), a gauge transformation from

ΨATM to ΨBTM = (id× gBA·)ΨATM corresponds to a transformation

σB(p) = σA(p)◁
(
gBAp

)−1
(11.53)

of sections on UAB . Being defined in terms of ΨATM , the trivializations ΨAFM of FM have
the nice property that they map the corresponding sections σA to the identity frame e ∈
GL(d) ⊂ Rd×d of Rd, which can be seen by inserting both definitions:

ψAFM,p ◦ σA(p) = ψAFM,p

([(
ψATM,p

)−1
(ϵi)
]d
i=1

)
(11.54)

=
(
ψATM,p ◦

(
ψATM,p

)−1
(ϵi)
)d
i=1

= (ϵi)
d
i=1 = e
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U×GL(d)

π−1
FM

(U) U×GL(d)

U×GL(d)

π−1
FM

(U) U×GL(d)

U

ΨA
FM

ΨB
FM

(id× gBA·)

(id× ·h)

πFM

ΨA
FM

ΨB
FM

◁h

(id× gBA·)

proj1

(id× ·h)

(a) The trivializations of the frame bundle are right equivariant, i.e. they satisfy
ΨFM ◦◁h = (id× ·h) ◦ΨFM for any h ∈ GL(d).

π−1
FM

(U) U×GL(d)

π−1
FM

(U) U×GL(d)

U

ΨA
FM

πFM

ΨA
FM

ΨB
FM

◁ gBA (id× gBA·)
=(id× · gBA)

proj1
σB

σA

⟲

(b) If identity sections σA and σB are added to the diagram, the left and right
actions agree with each other sinceψA

FM,p◦σA(p) = e and g·e = e·g ∀g ∈ GL(d).

Figure 11.6: Extended diagrams of the frame bundle trivializations which capture the interplay of the
transition functions gBA·, the right actions ◁h and ·h and the identity sections σA and σB . As before,
we abbreviate U = UAB = UA ∩ UB . Except for σA ◦ πFM ̸= idFM and σB ◦ πFM ̸= idFM , the
diagrams commute. If the trivializations are part of some G-atlas, similar diagrams, with FM and
GL(d) being replaced by GM and G, apply to the corresponding G-structure.
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This property is often used to define sections of FM given trivializations ΨAFM as

σA : UA → π−1
FM

(
UA
)
, p 7→

(
ΨAFM

)−1
(p, e) =

(
ψAFM,p

)−1
(e) , (11.55)

which ultimately coincides with our definition in Eq. (11.52). Since σA and ΨAFM constructed
this way imply each other they are sometimes called identity sections and canonical local
trivializations. Extending the diagram in Fig. 11.6a with identity sections σA and σB , related
by Eq. (11.53), fixes h = gBA and thus leads to the commutative diagram in Fig. 11.6b. The
left and right multiplications with gBA on the typical fiber GL(d) coincide hereby only since
ψAFM,p ◦ σA = ψBFM,p ◦ σB = e for which gBA · e = gBA = e · gBA. Compare Fig. 11.6b to

Fig. 11.4, which shows the left gauge action gBAp · on GL(d) and the right action ◁
(
gBAp

)−1
of the inverse group element which transforms between the corresponding identity section
frames.

11.4.3 G-atlas induced G-structure GM

The agreement of the transition functions of the tangent bundle and the frame bundle in
Eq. (11.50) implies that a G-atlas of TM induces a G-atlas for FM . As we will derive
in the following, such G-atlases fix a corresponding G-structure GM , i.e. a principal G-
subbundle of FM , consisting of preferred frames.

To motivate the definition of GM in terms of a given G-atlas
{(
UX ,ΨXFM

)}
X∈X of FM ,

consider two of its local trivializations ΨAFM and ΨBFM with overlapping domains and let
p ∈ UA∩UB . The trivializations define reference frames σA(p) and σB(p) in FpM , which
are according to Eq. (11.53) related by the right action of some element gBAp of the reduced
structure group G ≤ GL(d). Any such defined frame is therefore seen to be an element of
a G-orbit GpM ∼= G in FpM ∼= GL(d). Specifically, expressing the identity sections via
Eq. (11.55) as σA(p) =

(
ψAFM,p

)−1
(e) and σB(p) =

(
ψBFM,p

)−1
(e) =

(
gBAp ψAFM,p

)−1
(e) =(

ψAFM,p

)−1((
gBAp

)−1)
suggests the pointwise definition of the G-structure in terms of in-

verse images of G by (arbitrary) gauge maps:

GpM :=
{(
ψAFM,p

)−1
(g)

∣∣∣ g ∈ G } =
(
ψAFM,p

)−1
(G) (11.56)

The independence from the chosen gauge of the G-atlas is clear as any other choice(
ψBFM,p

)−1
(G) =

(
ψAFM,p

)−1((
gBAp

)−1
G
)
=
(
ψAFM,p

)−1
(G) would yield the same result.

As one can easily check,GpM is indeed a rightG-torsor sinceG is a rightG-torsor andψAFM,p

is by Eq. (11.51) a right GL(d)-equivariant – and thus in particular rightG-equivariant – iso-
morphism. The required smoothness of GM =

∐
p∈M GpM follows from the smoothness

of the trivializations ΨAFM .

A G-atlas of local trivializations of GM is given by restricting the trivializations in the G-
atlas of FM to frames in GM , that is,

ΨAGM := ΨAFM
∣∣
π−1

GM
(UA)

: π−1
GM

(
UA
)
→ UA ×G , (11.57)

or, locally,

ψAGM,p := ψAFM,p

∣∣
GpM

: GpM → G . (11.58)
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It follows immediately that the G-valued transition functions agree with those of TM and
FM , that is,

ψBGM,p

(
[ei]

d
i=1

)
= gBAp ψAGM,p

(
[ei]

d
i=1

)
, (11.59)

and that the trivializations are right G-equivariant:

ψAGM,p

(
[ei]

d
i=1 ◁ h

)
= ψAGM,p

(
[ei]

d
i=1

)
· h ∀h ∈ G (11.60)

The frame fields are also given by an equivalent expression

σA(p) =
(
ψAGM,p

)−1
(e) (11.61)

to that in Eq. (11.55). The commutative diagrams in Figs. 11.6a and 11.6b hold as well when
replacing FM with GM and GL(d) with G.

11.4.4 Induced trivializations of associated bundlesA

AG-atlas
{(
UX ,ΨXA

)}
X∈X consisting of local trivializations ΨXA : π−1

A

(
UX
)
→ UX×Rc

of the associated feature vector bundles A = (GM × Rc)/∼ρ is induced from the corre-
sponding trivializations ΨXGM of the G-structure. In order to construct these trivializations,
recall that A is defined in terms of equivalence classes

[
[ei]

d
i=1, f

]
consisting of pairs of

reference frames and feature coefficient vectors which are related by the equivalence rela-
tion ∼ρ defined in Eq. (11.42). A natural idea is thus to trivialize

[
[ei]

d
i=1, f

]
∈ Ap by

picking one representative of its equivalent coefficient vectors in Rc. A preferred choice
of representative is hereby given by that coefficient vector belonging to the identity section
frame σA(p) corresponding to ΨAGM .

Let [ei]di=1 := σA(p)◁h ∈ GpM be some frame that is defined by an offset h ∈ G relative
to section σA. This offset can be recovered by the trivialization of the G-structure:

ψAGM,p

(
[ei]

d
i=1

)
= ψAGM,p

(
σA(p)◁ h

)
= ψAGM,p

(
σA(p)

)
· h = h (11.62)

Here we used the right G-equivariance of ψAGM,p and that σA is defined as identity section;
see Eqs. (11.60) and (11.54), the latter adapted to ψAGM,p. We can therefore rewrite any frame
via its offset as:

[ei]
d
i=1 = σA(p)◁ ψAGM,p

(
[ei]

d
i=1

)
(11.63)

Similarly, we can rewrite any feature vector
[
[ei]

d
i=1, f

]
∈ Ap by different representatives

of the equivalence class:[
[ei]

d
i=1, f

]
=
[
σA(p)◁ ψAGM,p

(
[ei]

d
i=1

)
, f
]
=
[
σA(p), ρ

(
ψAGM,p

(
[ei]

d
i=1

))
f
]

(11.64)

Based on these insights we define induced trivializations of A by setting

ΨAA : π−1
A

(
UA
)
→ UA × Rc, (11.65)[

[ei]
d
i=1, f

]
7→
(
π
GM

(
[ei]

d
i=1

)
, ψAA,p

([
[ei]

d
i=1, f

]))
,
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U × Rc Rc

π−1
A

(U) U × Rc Rc

U

proj2

πA

ΨA
A

ΨB
A (

id× ρ
(
gBA

)
·
)

proj1

proj2

ρ
(
gBA

)
·

f

fA

fB

⟲

Figure 11.7: Coordinate free feature fields are defined as global sections f ∈ Γ(A). On local neigh-
borhoods UA and UB they trivialize to fields of feature coefficient vectors fA : UA 7→ Rc and
fB : UB 7→ Rc which are on U = UA ∩ UB related by fB(p) = ρ

(
gBA
p

)
fA(p). Except for

f ◦ πA ̸= idA, the diagram commutes.

with

ψAA,p : Ap → Rc, (11.66)[
[ei]

d
i=1, f

]
=
[
σA(p), ρ

(
ψAGM,p

(
[ei]

d
i=1

))
f
]
7→ ρ

(
ψAGM,p

(
[ei]

d
i=1

))
f ,

which picks that specific representative coefficient vector fA = ρ
(
ψAGM,p

(
[ei]

d
i=1

))
f ∈ Rc

that is distinguished by the frame σA(p) corresponding to the chosen gauge. For later con-
venience we note that this implies in particular that the inverse of Eq. (11.66) is given by(

ψAA,p
)−1

: Rc → Ap : f 7→
[
σA(p), f

]
. (11.67)

The such defined trivialization is independent of the chosen representative since for any
k ∈ G we have:

ψAA,p
([
[ei]

d
i=1◁ k−1, ρ(k)f

])
= ρ

(
ψAGM,p

(
[ei]

d
i=1◁ k−1

))
ρ(k)f

= ρ
(
ψAGM,p

(
[ei]

d
i=1

)
· k−1

)
ρ(k)f

= ρ
(
ψAGM,p

(
[ei]

d
i=1

))
f

= ψAA,p
([
[ei]

d
i=1, f

])
(11.68)

By construction, the transition functions are given by ρ
(
gBAp

)
:

ψBA,p
([
[ei]

d
i=1, f

])
= ρ

(
ψBGM,p

(
[ei]

d
i=1

))
f

= ρ
(
gBAp ψAGM,p

(
[ei]

d
i=1

))
f

= ρ
(
gBAp

)
ρ
(
ψAGM,p

(
[ei]

d
i=1

))
f

= ρ
(
gBAp

)
ψAA,p

([
[ei]

d
i=1, f

])
(11.69)

If the tangent bundle is taken as a G-associated vector bundle TM ∼= (GM × Rd)/G, its
trivializations are recovered from Eq. (11.65) for the specific choice ρ(g) = g.
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Assume a coordinate free feature field f ∈ Γ(A) to be given. Relative to gauge ΨAA , it can
be locally represented as a coefficient vector field fA : UA → Rc by defining

fA := proj2 ◦ΨAA ◦ f (11.70)

which is equivalent to the pointwise definition

fA(p) = ψAA,p ◦ f(p) . (11.71)

As apparent from the commutative diagram in Fig. 11.7, the transition functions in
Eq. (11.69) carry over to the local coefficient fields such that we get

fB(p) = ρ
(
gBAp

)
fA(p) (11.72)

for p ∈ UA ∩UB . This agrees with and justifies our definition of the gauge transformations
of feature coefficient vectors in Part II, Eq. (8.3).

11.4.5 Summarizing remarks

The here defined local trivializations and transition functions formalize and justify the defi-
nitions of gauges and gauge transformations from Section 8.1. Local trivializations of TM
and FM were shown to induce each other. If aG-atlas is chosen for either of both, it defines
a G-structure GM , whose G-atlas essentially coincides with that of FM . It furthermore
induces a G-atlas for any other associated bundle, including A. As visualized in Fig. 11.5,
the transition functions of all G-atlases for TM , FM , GM and A agree, making the bun-
dles G-associated to each other. Specifically, when switching from gauge A to gauge B, the
trivializations of TM , FM and GM transform according to a left multiplication with gBA
while the feature vector bundle trivializations transform according to a left multiplication
with ρ

(
gBA

)
; see Eqs. (11.47), (11.50), (11.59) and (Eq. (11.69)). At the same time, frame

fields transform according to the right action ◁
(
gBA

)−1
(Eq. (11.53)).

11.5 Parallel transporters on associated bundles

Section 8.2 gave an intuitive introduction to the parallel transport of tangent vectors and
feature vectors along a path γ from q ∈ M to p ∈ M . Here we briefly discuss how coor-
dinate free parallel transporters on the fiber bundles induce each other and derive coordinate
expressions relative to given trivializations for them. We start by assuming coordinate free
transporters

P
TM,γ : TqM → TpM (11.73)

on the tangent bundle TM to be given and explain how they induce transporters

P
FM,γ : FqM → FpM (11.74)

on the frame bundle FM . If these transporters are G-compatible with the chosen G-
structure, as discussed below, they further induce transporters

P
GM,γ : GqM → GpM (11.75)

PA,γ : Aq → Ap (11.76)
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on the associated G-bundles GM and A. In practice, most convolutional networks assume
either transporters that are based on the Levi-Civita connection or some trivial connection.
Chapter 14 gives an overview of the transporters occurring in the applications in Part IV.

A more formal definition of bundle transporters might take a different route, starting by intro-
ducing a so-called principal Ehresmann connection on the principal G-bundle GM (which
would by definition be G-compatible). Such an Ehresmann connection can either be de-
fined by a choice of horizontal subbundle HGM of the tangent bundle TGM of GM or,
equivalently, by a Lie algebra-valued connection 1-form ω : TGM → g on GM . The
transport on GM would subsequently be defined via the horizontal lift γ↑ : [0, 1] → GM
of curves γ : [0, 1] → M on the base space such that the tangent vectors of the lift in
GM are horizontal, i.e. γ̇↑ ∈ HGM . All transporters on TM , FM and A as associ-
ated G-bundles would then be induced from the transporters on the G-structure. Instead of
following this formal approach, which would be rather technical and can be found in the lit-
erature [262, 326, 132, 221, 202, 273], we focus on how the different transporters interrelate
by inducing each other.

11.5.1 Transport on TM

To this end, we take a shortcut by assuming the coordinate free transporters P
TM,γ on TM

to be given. Recall that, given gauges ΨÃTM on a neighborhood U Ã of q and ΨATM on a
neighborhood UA of p, the tangent vector transporter is coordinatized according to Eq. (8.6),
that is,

gAÃγ := ψATM,p ◦ PTM,γ ◦
(
ψÃTM,q

)−1
∈ GL(d) , (11.77)

and that its coordinatizations transform under gauge transformations at q and p according to
Eq. (8.8):

gBB̃γ = gBAp gAÃγ

(
gB̃Ãq

)−1
(11.78)

We refer back to Eq. (8.7) for a visualization of these definitions in terms of a commutative
diagram.

11.5.2 Transport on FM

Given the transporter on the tangent bundle, the transporter on the frame bundle follows
immediately from the transport of individual frame axes. In equations, let [ei]di=1 ∈ FqM be
a frame at q, then the individual axes ei for i = 1, . . . , d are tangent vectors in TqM which
can be transported via P

TM,γ . We thus define the transporter on the frame bundle as:16

P
FM,γ : FqM → FpM, [ei]

d
i=1 7→ PFM,γ

(
[ei]

d
i=1

)
:=
[
P
TM,γ(ei)

]d
i=1

(11.79)

16The transport of a frame along γ describes a curve γ↑ (horizontal lift) in FM . The space spanned
by all tangent vectors γ̇↑ in TFM along such curves is the horizontal subbundle HFM of TFM ,
mentioned above.
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In order to derive the explicit form of its coordinatization ψAFM,p◦PFM,γ◦
(
ψÃFM,q

)−1∈ GL(d),
consider its action on a group element h ∈ GL(d), representing a trivialized frame of Rd
which is spanned by the matrix columns h:,i ∈ Rd, i = 1, . . . , d :[

ψAFM,p ◦ PFM,γ ◦
(
ψÃFM,q

)−1]
(h) (11.80)

=
[
ψAFM,p ◦ PFM,γ

]([(
ψÃTM,q

)−1
(h:,i)

]d
i=1

) (
def. of ψÃ

FM,p, Eq. (11.49)
)

= ψAFM,p

([
P
TM,γ ◦

(
ψÃTM,q

)−1
(h:,i)

]d
i=1

) (
def. of PFM,γ , Eq. (11.79)

)
=
(
ψATM,p ◦ PTM,γ ◦

(
ψÃTM,q

)−1
(h:,i)

)d
i=1

(
def. of ψÃ

FM,p, Eq. (11.49)
)

=
(
gAÃγ (h:,i)

)d
i=1

(
triv. of PTM,γ , Eq. (11.77)

)
= gAÃγ h

The coordinatizations of the frame transporters are therefore equivalent to those of the tan-
gent vector transporters in Eq. (11.77) but act on trivialized frames in GL(d) instead of
acting on coefficient vectors in Rd. Their gauge transformations are from the commutative
diagram

GL(d) GL(d)

FqM FpM

GL(d) GL(d)

gB̃Ã
q ·

gAÃ
γ ·

gBA
p ·

ψÃ
FM,q

ψB̃
FM,q

PFM,γ

ψA
FM,p

ψB
FM,p

gBB̃
γ ·

(11.81)

seen to coincide with those of the coordinatized transporters on TM in Eq. (11.78).

11.5.3 Compatibility of connections and G-structures

Not any choice of connection or definition of transporters on the GL(d)-bundles TM and
FM is compatible with any G-structure. Specifically, a G-structure might not be closed
under the transport of frames, that is, while a frame in GqM ⊆ FqM will by P

FM,γ be
transported to some frame in FpM , this frame is not necessarily contained in GpM .17 Rel-
ative to trivializations of GM , such an incompatibility would reflect in coordinatized trans-
porters gAÃγ /∈ G, whose left multiplication is well defined on the fibers Rd and GL(d) of
the GL(d)-bundles TM and FM , but not on the fiberG ofGM . If the subbundleGM is not

17In terms of a principal Ehresmann connection on FM , this is the case if the horizontal subbundle
HFM ⊆ TFM is not contained in TGM ⊆ TFM . An immediate definition of parallel transport in
terms of a choice of horizontal subbundle HGM on the G-structure will always (by definition) lead to
a well defined transport on GM .
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closed under the parallel transport on FM , this means that no well defined corresponding
transport on GM – and thus on any associated G-bundles A – exists.

As an example, consider the Levi-Civita connection on Euclidean spaces, whose transporters
keep tangent vectors and frames parallel in the usual sense on Ed. The {e}-structure (frame
field) in Fig. 13.3a is closed under this transport, and therefore compatible. The {e}-structure
in Fig. 13.3b, on the other hand, is not closed under the transport, and thus incompatible with
the Levi-Civita connection. Similarly, the SO(2)-structure on S2 in Fig. 17.2a is compatible
with the Levi-Civita connection on the sphere, while the {e}-structure in Fig. 17.2b is not.

The reader might wonder which general statements about the compatibility of connections
(or transporters) and G-structures can be made. In general, the Levi-Civita connection, or
any other metric connection, are compatible with the O(d)-structure OM that corresponds
to the metric.18 If the manifold is orientable, the Levi-Civita connection is furthermore com-
patible with any SO(d)-structure that corresponds to the metric. An example is the SO(2)-
structure on S2 in Fig. 17.2a. A necessary (but not sufficient) condition for a G-structure
to be compatible with a given connection is that the holonomy group of the connection is a
subgroup of the structure group G.

An important special case is that of {e}-structures, since they imply a unique trivial connec-
tion.19,20 The corresponding transporters move frames in such a way that the stay parallel
with the frames of the {e}-structure. Trivial connections might not seem to be of particular
importance for the theory of GM -convolutions, however, they are actually utilized by many
convolutional networks. Specifically, any network that relies on an {e}-structure is implicitly
assuming a trivial connection. This includes all of the models in Table 14.1 with G = {e},
specifically those which are reviewed in Sections 17.3 and 18.3.21 Note that these models
assume the trivial connection only for their feature vector transport but compute geodesics
for the transporter pullback, Eq. (9.21), based on the original Levi-Civita connection.

11.5.4 Transport on GM

Assuming that GM is compatible with (i.e. closed under) the transport on FM , a well
defined transporter is given by restricting the frame bundle transporter to the G-structure:

P
GM,γ := P

FM,γ

∣∣
GM

: GqM → GpM (11.82)

The transition functions between different coordinatizations of P
GM,γ do then agree with

those of P
FM,γ and thus also P

TM,γ . We obtain the following commutative diagram, which
visualizes the restriction of the diagram in Eq. (11.81) from FqM , FpM and GL(d) toGqM ,

18This statement holds by definition since metric connections preserve angles and lengths between
vectors and thus the orthonormality of frames. One can furthermore define metric connections as
principal Ehresmann connections on OM .

19A connection is trivial if its holonomy group, i.e. its parallel transport around any closed loop, is
trivial [62].

20Only one principal Ehresmann connection H{e}M = T {e}M can be chosen on {e}M since the
vertical subbundle V {e}M is the zero-section of T {e}M .

21These models are implicitly assuming a trivial connection by not modeling non-trivial transporters
of feature vectors: they accumulate feature vector coefficients without transforming them.
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GpM and G:

G G

GqM GpM

G G

gB̃Ã
q ·

gAÃ
γ ·

gBA
p ·

ψÃ
GM,q

ψB̃
GM,q

PGM,γ

ψA
GM,p

ψB
GM,p

gBB̃
γ ·

(11.83)

We will in the remainder of this work assume that the transport on GM is well defined.

11.5.5 Transport onA

If the transporters of a connection are well defined on GM , they induce transporters on
any associated G-bundle, including the feature vector bundles A = (GM × Rc)/∼ρ. Let
fq :=

[
[ei]

d
i=1, f

]
be a coordinate free feature vector inAq . Its parallel transport is given by

that equivalence class defined by keeping some representative coefficients f ∈ Rc fixed and
transporting the corresponding frame [ei]di=1:

PA,γ : Aq → Ap, fq 7→ PA,γ(fq) :=
[
P
GM,γ

(
[ei]

d
i=1), f

]
(11.84)

In Section 8.2 we claimed that the transporter of numerical feature vector coefficients is
given by ρ

(
gAÃγ

)
provided that gAÃγ ∈ G, which is the case if the transport on GM is

well defined. This coordinate expression of PA,γ can be derived by evaluating the action of

ψAA,p ◦PA,γ ◦
(
ψÃA,q

)−1 ∈ ρ(G) ≤ GL(c) on a feature coefficient vector f ∈ Rc step by step:

[
ψAA,p ◦ PA,γ ◦

(
ψÃA,q

)−1]
(f) (11.85)

=
[
ψAA,p ◦ PA,γ

]([
σÃ(q), f

]) (
def. of

(
ψÃ
A,p

)−1, Eq. (11.67)
)

= ψAA,p

([
P
GM,γ

(
σÃ(q)

)
, f
]) (

def. of PA,γ , Eq. (11.84)
)

= ρ
(
ψAGM,p ◦ PGM,γ ◦ σ

Ã(q)
)
· f

(
def. of ψA

A,p, Eq. (11.66)
)

= ρ
(
ψAGM,p ◦ PGM,γ ◦

(
ψÃGM,q

)−1
(e)
)
· f

(
def. of identity section σÃ, Eq. (11.55)

)
= ρ

(
gAÃγ

)
·f

(
PGM,γ in coordinates Eq. (11.83)

)



206 Chapter 11. Associated bundles and coordinate free feature fields

The commutative diagram

Rc Rc

Aq Ap

Rc Rc

ρ
(
gB̃Ã
q

)

ρ
(
gAÃ
γ

)

ρ
(
gBA
p

)ψÃ
A,q

ψB̃
A,q

PA,γ
ψA
A,p

ψB
A,p

ρ
(
gBB̃
γ

)

(11.86)

implies that the gauge transformations of the coordinatized feature vector transporters read:

ρ
(
gBB̃γ

)
= ρ

(
gBAp

)
ρ
(
gAÃγ

)
ρ
(
gB̃Ãq

)−1
(11.87)

Note that this transformation law is in agreement with that in Eq. (11.78).



CHAPTER 12

Coordinate free formulation of
kernel field transforms and GM-convolutions

The associated G-bundles introduced in Chapter 11 allow to describe feature fields – and
therefore convolutional networks – on a global level. Given a sequence

A0
πA0−−→M, . . . , AN

πAN−−→M (12.1)

of G-associated feature vector bundles over M , we describe coordinate free convolutional
networks as sequences

Γ(A0)
L1−−−→ Γ(A1)

L2−−−→ . . .
LN−−−−→ Γ(AN ) (12.2)

of parameterized layers L1, . . . , LN which map between the corresponding feature spaces
Γ(A0), . . . ,Γ(AN ), i.e. between feature fields. While the field types (or transformation
laws) ρi : G→ GL(ci) of the intermediate bundles Ai := (GM × Rci)/ ∼ρi for i =
1, . . . , N − 1 have to be specified by the user as a hyperparameter, the field types ρ0 : G→
GL(c0) and ρN : G → GL(cN ) of the network input and output are typically determined
by the learning task. The modular construction of neural networks allows to restrict attention
to individual layers, mapping between feature spaces Γ(Ain) and Γ(Aout) of dimensionality
cin and cout and type ρin and ρout.

The main goal of this chapter is to introduce the coordinate free formulation of GM -
convolutions, which are the central building blocks of GM -coordinate independent net-
works on Riemannian manifolds. To get started, and to introduce concepts that are required
later on, we will in Section 12.1 first focus on the simpler case of 1×1 GM -convolutions,
which apply point-like kernels. Section 12.2 shifts the focus to GM -convolutions and ker-
nel field transforms with spatially extended kernels. They are parameterized in terms of
smooth, global kernel fields, which are introduced in Section 12.2.1. GM -convolutional
kernel fields are required to share weights between different spatial positions. In order for
this weight sharing to be GM -coordinate independent, the template kernels that parameter-
ize GM -convolutional kernel fields are required to be G-steerable (Eq. (12.28)). The actual
kernel field transforms and GM -convolutions are introduced in Section 12.2.2. Their global
definition is guided by replacing the local coordinate expressions from Section 9.2 with their
global, coordinate free counterparts. As shown in Section 12.2.3, these coordinate free defi-
nitions reduce in local trivializations to the coordinate expressions from Chapter 9 in Part II.
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12.1 1×1 GM-convolutions

1×1 GM -convolutions map input feature fields fin ∈ Γ(Ain) to output feature fields fout ∈
Γ(Aout) by linearly mapping each individual input feature vector fin(p) ∈ Ain,p

∼= Rcin to
an output feature vector fout(p) ∈ Aout,p

∼= Rcout at the same location p ∈ M . The convo-
lutional character is implemented by sharing the linear map from Ain,p to Aout,p between
different spatial locations. However, while the feature spaces Ain,p and Ain,q as well as
Aout,p and Aout,q are for different p, q ∈ M isomorphic to each other, there is no canoni-
cal isomorphism between them given if the considered structure group G is non-trivial. It
is therefore not obvious how the linear map could be shared between different locations.
As already suggested in the introduction of this chapter, this issue is resolved by consid-
ering G-equivariant kernels which are indifferent to the specific choice of isomorphism or
gauge. The arbitrariness of the trivialization which is chosen from the G-atlas reflects the
GM -coordinate independence of 1×1 GM -convolutions.

Mathematically, 1×1 GM -convolutions can be formulated either as specific vector bundle
M -morphisms or via the corresponding sections of (associated) homomorphism bundles
Hom(Ain,Aout). Since we require both concepts later on, we will introduce both viewpoints
in the following Sections 12.1.1 and 12.1.2.

12.1.1 1×1 GM-convolutions as vector bundle M-morphisms

1×1 GM -convolutions can be formalized in terms of specific smooth vector bundle M -
morphisms which share weights over spatial positions. Ignoring the requirement for shared
weights for now, such a vector bundleM -morphism C is a smooth bundle map satisfying the
following commutative diagram:

Ain Aout

M

πAin

C

πAout

(12.3)

The commutativity πAin
= πAout

◦ C ensures that each fiberAin,p is mapped to the fiberAout,p

over the same point p ∈ M (which gives rise to the “M” in the term M -morphism). As
a vector bundle morphism, the restriction C |p : Ain,p → Aout,p to a single fiber is further
defined to be linear. Relative to a local trivialization ΨA

Ain
of Ain and ΨA

Aout
of Aout, the bundle

map is therefore at each point p ∈ UA represented by a matrix

CA|p := ψAAout,p
◦ C |p ◦

(
ψAAin,p

)−1 ∈ Rcout×cin . (12.4)

Its relationship to a second coordinatization CB is at p ∈ UA ∩ UB given by

CB|p = ρout

(
gBAp

)
CA|p ρin

(
gBAp

)−1
, (12.5)
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which is evident from the commutative diagram below:

Rcin Rcout

Ain,p Aout,p

Rcin Rcout

ρin

(
gBA
p

)

CA|p

ρout

(
gBA
p

)C|p
ψA

Ain,p

ψB

Ain,p

ψA

Aout,p

ψB

Aout,p

CB|p
(12.6)

The bundle map C acts on input feature fields fin ∈ Γ(Ain) to produce output feature fields

fout = C ◦ fin ∈ Γ(Aout) . (12.7)

In terms of a commutative diagram, this mapping is visualized as:

Ain Aout

M

C

fin fout

, (12.8)

In order for a vector bundle M -morphism CK1×1
to represent a 1×1 GM -convolution, it

needs to be parameterized in terms of a 1×1 GM -convolution kernel template K1×1 ∈
Rcout×cin which is shared with coordinatizations at all spatial positions. As argued before
in Section 9.1.1, no particular gauge must thereby be preferred in order to ensure GM -
coordinate independence. It is therefore necessary to share the weights with all trivializa-
tions X ∈ X of the G-atlas AG simultaneously, that is, to require:

CXK1×1

∣∣
p
= K1×1 for any gauge X ∈ X with p ∈ UX . (12.9)

From the transformation behavior between different coordinatizations in Eq. (12.5) it follows
that the kernel template has to satisfy the linear constraint

ρout(g)K1×1 ρin(g)
−1 = K1×1 ∀g ∈ G, (12.10)

that is, it has to be an intertwiner (an equivariant linear map, Def. B.5.7). The vector space

HomG(ρin, ρout) :=
{
K1×1 ∈ Rcout×cin

∣∣∣K1×1ρin(g) = ρout(g)K1×1 ∀g ∈ G
}

(12.11)

of intertwining maps characterizes the space of GM -coordinate independent
1×1-convolution kernels fully. As already mentioned in Section 9.1.1, Schur’s
Lemma B.5.10 implies that the requirement on K1×1 to be an intertwiner prevents a
mapping between fields which transform under non-isomorphic irreducible representations
via 1×1 GM -convolutions. The more general GM -convolutions with spatially extended
kernels, defined in Section 12.2, will resolve this issue.
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With these preparations we are ready to give a concise definition of 1×1 GM -convolutions:

Definition 12.1.1 (1×1GM -convolution). A 1×1 GM -convolution is a map

K1×1⃝⋆ : Γ(Ain)→ Γ(Aout), fin 7→ K1×1 ⃝⋆ fin := CK1×1 ◦ fin (12.12)

which is parameterized by an intertwining 1×1 GM -convolution kernel K1×1 ∈
HomG(ρin, ρout). Here CK1×1 is the unique smooth vector bundle M -morphism between
Ain and Aout which is in arbitrary gauges ψAin,p

and ψAout,p
from the considered G-atlas

pointwise defined by

CK1×1
|p := ψ−1

Aout,p
◦K1×1 ◦ ψAin,p

. (12.13)

The independence of the chosen gauges (GM -coordinate independence) is guaranteed
by K1×1 being an intertwiner.

To show the independence of the chosen gauge explicitly, consider any G-related trivializa-
tions ρin(g)ψAin,p

and ρout(g)ψAout,p
for an arbitrary structure group element g ∈ G, which

leave the construction of

CK1×1

∣∣
p
=
(
ρout(g)ψAout,p

)−1 ◦K1×1 ◦
(
ρin(g)ψAin,p

)
= ψ−1

Aout,p
◦
(
ρout(g)

−1K1×1 ρin(g)
)
◦ ψAin,p

= ψ−1
Aout,p

◦K1×1 ◦ ψAin,p
(12.14)

invariant. That such defined 1×1 GM -convolutions are indeed mapping to sections in
Γ(Aout) follows from CK1×1 being a bundle map. An overview of local coordinatizations
of 1×1 GM -convolutions is given in Fig. 12.1.

12.1.2 1×1 GM-convolutions as homomorphism bundle sections

While the vector bundle M -morphism with gauge independent coordinatizations from
Def. 12.1.1 and Fig. 12.1 fully specifies a 1×1 GM -convolution, we will now adopt an al-
ternative viewpoint which describes 1×1 GM -convolutions in terms of the homomorphism

bundle Hom(Ain,Aout)
πHom−−−→ M . To this end, recall that the vector bundle morphism C

in Eq. (12.3) restricts to linear maps C|p : Ain,p → Aout,p over each p ∈ M . The set of
such linear maps (or vector space homomorphisms) between Ain,p and Aout,p is denoted as
Hom(Ain,p,Aout,p). Since it is closed under linear combinations, it forms itself a vector
space. It can be shown that the disjoint union

Hom(Ain,Aout) :=
∐
p∈M

Hom(Ain,p,Aout,p) (12.15)

of these homomorphism spaces forms a vector bundle, the homomorphism bundle between
Ain and Aout, when being equipped with the projection map πHom : Hom(Ain,Aout) → M
which sends elements in Hom(Ain,p,Aout,p) to p and a smooth structure induced from that
of Ain and Aout [74]. The fibers over p satisfy Hom(Ain,p,Aout,p) ∼= Hom(Rcin ,Rcout) ∼=
Rcout×cin such that we can take the typical fiber to be the vector space of real-valued cout×cin
matrices.
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U × Rcin U × Rcout

U × Rcin π−1
Ain

(U) π−1
Aout

(U) U × Rcout

U

CBK1×1
:= (id×K1×1)

proj1

id×ρin

(
gBA

)

CAK1×1
:= (id×K1×1)

πAin

ΨA

Ain

ΨB

Ain

CK1×1

πAout

ΨA

Aout

ΨB

Aout

id×ρout

(
gBA

)

proj1

fin K1×1⃝⋆fin

⟲ ⟲

Figure 12.1: Coordinatization of an 1×1 GM -convolution K1×1⃝⋆ : Γ(Ain) → Γ(Aout) and its corre-
sponding vector bundleM -morphism CK1×1 . The convolutional character is encoded into the morphism
by sharing a kernel matrix K1×1 ∈ Rcout×cin over different spatial positions p ∈ M . Since no gauge
is to be preferred, the kernel is furthermore shared over different trivializations CAK1×1

and CBK1×1
. The

commutativity of the diagram for any choices ΨA
Ain

, ΨA
Aout and ΨB

Ain
, ΨB

Aout therefore enforces the con-
straint ρout(g)K1×1ρin(g)

−1 = K1×1 ∀g∈ G which restricts the kernel matrix to be an intertwiner (an
equivariant linear map), that is, K1×1 ∈ HomG(ρin, ρout) ⊆ Rcout×cin . Except for fin ◦ πAin

̸= idAin and[
K1×1⃝⋆fin

]
◦ πAout

̸= idAout , the diagram commutes.

The trivializations
ΨHom : π−1

Hom
(U)→ U× Rcout×cin , H 7→

(
p, ψHom,p(H)

)
, (12.16)

where we abbreviated p = πHom(H), are induced from the trivializations of Ain and Aout by
defining

ψHom,p : Hom(Ain,p,Aout,p)→ Rcout×cin , H 7→ ψAout,p
◦H ◦

(
ψAin,p

)−1
(12.17)

in analogy to Eqs. (12.4) and (7.18). This implies transition maps

HB = ψBAout,p
◦H ◦

(
ψBAin,p

)−1
= ψBAout,p

◦
(
ψAAout,p

)−1
HA ψAAin,p

◦
(
ψBAin,p

)−1
= ρout

(
gBA

)
HA ρin

(
gBA

)−1
=: ρHom

(
gBA

)
HA (12.18)

between gauges ΨAHom and ΨBHom onUA∩UB , where we introduced the homomorphism group
representation ρHom : G → GL(Rcout×cin) as left and right multiplication with ρout and ρin

for notational convenience.1 The homomorphism bundle Hom(Ain,Aout) is by construction
1In general, a homomorphism bundle between two non-associated vector bundles with structure

groups G1 and G2 would have a structure group G1 × G2. Since Ain and Aout are associated, they
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associated to TM ,GM ,Ain andAout, that is, its trivializations transform synchronously with
those of the other bundles. As aG-associated vector bundle, it can be identified with (GM×
Rcout×cin)/∼ρHom

. Fig. 12.2a gives an overview of the local trivializations of Hom(Ain,Aout).
Note the similarity to the trivializations of the other associated G-bundles in Fig. 11.5.

From the viewpoint of homomorphism bundles, unconstrained bundle maps as in Eq. (12.3)
correspond to the action of unconstrained smooth homomorphism bundle sections

σHom :M 7→ Hom(Ain,Aout) such that πHom ◦ σHom = idM , (12.19)

which can be interpreted as 1×1 kernel fields that do not share weights. Their global ex-
istence is guaranteed by Hom(Ain,Aout) being a vector bundle. Sections corresponding
to 1×1 GM -convolutions require in addition that the linear transformations σHom(p) ∈
Hom(Ain,p,Aout,p) are determined by a template kernel K1×1 ∈ Rcout×cin which is shared
over different positions p ∈ M and any choice of gauge. They can therefore for any p ∈M
be defined as

σK1×1(p) := ψ−1Hom,p

(
K1×1

)
, K1×1 ∈ HomG(ρin, ρout) , (12.20)

where the chosen trivialization ΨHom is arbitrary if (and only if) K1×1 satisfies the intertwiner
constraint

ρHom(g)K1×1 = K1×1 ∀g ∈ G , (12.21)

which is equivalent to Eq. (12.10).2 The gauge irrelevance of such sections is visualized in
the commutative diagram in Fig. 12.2b (compare this to the equivalent bundle map trivial-
ization in Fig. 12.1).

Summarizing remarks: A smooth 1×1 GM -convolution layer K1×1⃝⋆ : Γ(Ain) →
Γ(Aout), fin 7→ fout can equivalently be defined via a smooth bundle map as fout(p) :=
CK1×1

◦ fin(p) or via a smooth homomorphism bundle section as fout(p) := σK1×1
(p)◦ fin(p).

By definition, both trivialize in an arbitrarily chosen gauge ΨAHom to fAout(p) = K1×1f
A
in (p).

The GM -coordinate independence of this definition is guaranteed by the intertwining prop-
erty of the kernel in Eq. (12.10) or, equivalently, Eq. (12.21). This can be seen by considering
a different trivialization via ΨBHom:

K1×1f
B
in (p) = K1×1

(
ρin

(
gBAp

)
fAin (p)

)
= ρout

(
gBAp

)
K1×1f

A
in (p)

= ρout

(
gBAp

)
fAout(p)

= fBout(p) (12.22)

transform synchronously under the same structure groupG1 = G2 = G such that their transition maps
take values in the diagonal subgroup G of G×G.

2The required smoothness of the section follows from the smoothness of the local trivializations.
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U × Rcout×cin

π−1
Hom

(U) U × Rcout×cin

U

πHom

ΨA
Hom

ΨB
Hom (

id× ρHom

(
gBA

)
·
)

proj1

(a) Trivialization of Hom(Ain,Aout). Being associated to TM , GM , Ain and Aout,
the transition maps of the homomorphism bundle are determined by the same group
element gBA of the shared structure group G (compare this to Fig. 11.5). The ho-
momorphism representation ρHom is defined in Eq. (12.18). Unconstrained vector
bundle M -morphisms as shown in Eq. (12.3) correspond to unconstrained smooth
sections of Hom(Ain,Aout).

π−1
Hom

(U) U×HomG(ρin, ρout)︸ ︷︷ ︸
⊆ Rcout×cin

U

πHom

ΨA
Hom

ΨB
Hom

(
id× ρHom

(
gBA

)
·
)

proj1

σK1×1 ⟲

(b) The sections σK1×1 : M → Hom(Ain,Aout) of the homomorphism bundle
which correspond to 1×1 GM -convolutions are exactly those which trivialize to the
same (intertwining) matrix K1×1 ∈ HomG(ρin, ρout) ⊆ Rcout×cin in all gauges. Such
sections correspond to bundle maps which trivialize as specified in Fig. 12.1.

Figure 12.2: Local trivializations of the homomorphism bundle Hom(Ain,Aout), which is the vector
bundle of linear maps between the spaces Ain,p and Aout,p for any p ∈ M . As usual we abbreviate
U = UA ∩ UB . Except for σK1×1 ◦ πHom ̸= idHom(Ain,Aout) the diagrams commute.
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12.2 Kernel field transforms and GM-convolutions

We now turn to kernel field transforms and GM -convolutions with spatially extended ker-
nels. Section 12.2.1 introduces general, unconstrained kernel fields and more specific GM -
convolutional kernel fields, the latter defined in terms of a shared, G-steerable template ker-
nel. General kernel field transforms and GM -convolutions are introduced in Section 12.2.2.
As both are defined globally, their formulation is necessarily coordinate free. Section 12.2.3
expresses both operations relative to local trivializations, recovering our local definitions
from Section 9.2.

12.2.1 Coordinate free kernels fields and G-steerable kernels

To detect spatial pattens in feature fields, convolutional networks apply spatially extended
kernels which linearly accumulate features from a local neighborhood around each point. In
Eq. (9.24) we defined (unconstrained) template kernels for a d-dimensional manifold and
cin- and cout-dimensional input and output feature fields as maps K : Rd → Rcout×cin which
assign a cout× cin matrix to each point of their domain. The definition of convolution kernels
as maps with domain Rd ∼= TpM and codomain Rcout×cin ∼= Hom(Ain,p,Aout,p) suggests a
coordinate free definition of kernels as maps between the tangent spaces and the correspond-
ing homomorphism spaces:
Definition 12.2.1 (Kernel field). We define (unconstrained) kernel fields of type ρin, ρout on

a manifold M as smooth bundle M -morphisms between the tangent bundle TM and
the feature vector homomorphism bundle Hom(Ain,Aout). By its definition as an M -
morphism, a kernel field K lets the following diagram commute:

TM Hom(Ain,Aout)

M

πTM

K

πHom

(12.23)

Despite smoothly mapping between two vector bundles,K is not assumed to be a vector
bundle morphism, that is, the restrictions Kp : TpM → Hom(Ain,p,Aout,p) are not
assumed to be linear.3

The name kernel field is motivated by the fact that such defined bundle maps K assign a
(potentially different) coordinate free kernelKp : TpM → Hom(Ain,p,Aout,p) to each point
p of the manifold.4 In practice, kernels Kp are often designed to detect local patterns around
p and are therefore assumed to be compactly supported around the origin of TpM .

A coordinate free kernelKp at p is relative to gauges ψATM,p and ψAHom,p of the G-atlases given
by the map

KAp : Rd → Rcout×cin , KAp := ψAHom,p ◦ Kp ◦
(
ψATM,p

)−1
. (12.24)

3This reflects that convolution kernels are in general not linear as maps K : Rd → Rcout×cin . Note
that this does not interfere with the linearity of K(v) ∈ Rcout×cin (as map Rcin → Rcout ) for any v ∈ Rd

or, here, the linearity of Kp(v) ∈ Hom(Ain,p,Aout,p) (as map Ain,p → Aout,p) for any v ∈ TpM .
4We expect that it is possible to work out a well defined notion of kernel bundles whose sections

are in one-to-one correspondence to our definition of kernel fields as bundle maps (this reformulation
would mirror the transition from Eq. (12.3) to Eq. (12.19)).
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Fig. 9.2 visualizes a coordinate free kernel on TpM and its coordinatizations on Rd relative
to different gauges. From the commutative diagram

Rd Rcout×cin

TpM Hom
(
Ain|p,Aout|p

)

Rd Rcout×cin

KA
p

gBA
p · ρHom

(
gBA
p

)Kp

ψA
TM,p

ψB
TM,p

ψA
Hom,p

ψB
Hom,p

KB
p

(12.25)

it follows that different kernel coordinatizations are related by

KBp = ρHom

(
gBAp

)
◦ KAp ◦

(
gBAp

)−1
. (12.26)

Note that this relation only implies GM -coordinate independence but does not constrain the
coordinate free kernel in any way. As before, the situation changes when sharing weights
over spatial positions.

In order for a kernel fieldKK to correspond to a convolution, it needs to be fully specified by
a single template kernel K : Rd → Rcout×cin which is shared over all spatial positions. We
are again forced to share weights with all gauges X ∈ X simultaneously in order to preserve
their equivalence and thus GM -coordinate independence. As argued in Section 9.2.3, the
appropriate way of sharing K with kernel coordinatizations KXK,p involves a normalization

by the reference frame volume
√
|ηXp | and is defined by

KXK,p =
K√
|ηXp |

for any gauge X ∈ X with p ∈ UX . (12.27)

The reason for the frame normalization factor is that convolutions will later be defined in
terms of integrals over the tangent spaces. We are therefore actually required to share the
integral operator itself in different coordinatizations, which is equivalent to identifying the
matrix-valued integration measures KXK,p(v)

√
|ηXp | dv for any gauge X ∈ X at p ∈ M

with a template measure K(v) dv. The form of the kernel sharing in Eq. (12.27) follows by
equating both expressions.

Together with the relation
√
|ηAp | =

∣∣det(gBAp )
∣∣√|ηBp | between different frame volumes,

the kernel transformation law in Eq. (12.26) and the weight sharing in Eq. (12.27) imply the
G-steerability kernel constraint

1

|det g | ρHom(g) ◦K ◦ g
−1 = K ∀ g ∈ G . (12.28)

Valid template kernels are thus given by the invariants under the simultaneous gauge
action of |det g |−1, ρHom(g) and g−1. Writing out the representation ρHom, acting on
Rcout×cin via multiplication with ρout and ρ−1

in
from the left and right, respectively, the

constraint in Eq. (12.28) is seen to be equivalent to that in Eq. (9.37), i.e. K(gv) =
|det g |−1ρout(g)K(v) ρin(g)

−1 ∀ g ∈ G, v ∈ Rd.
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We cast these insights into definitions:

Definition 12.2.2 (G-steerable kernel). G-steerable kernels are characterized by their in-
variance under the gauge action. The vector space of smooth G-steerable kernels that
map between field types ρin and ρout is defined by

KG
ρin,ρout

:=
{
K : Rd → Rcout×cin smooth

∣∣∣ 1

|det g | ρHom(g) ◦K ◦ g
−1 = K ∀g ∈ G

}
(12.29)

=
{
K : Rd → Rcout×cin smooth

∣∣∣ 1

|det g | ρout(g)K(g−1v)ρin(g)
−1 = K(v)

∀ g ∈ G, v ∈ Rd
}
, (12.30)

where ρHom(g)H := ρout(g)Hρin(g)
−1 for any H ∈ Rcout×cin and G ≤ GL(d). The

gauge invariance ofG-steerable kernels allows forGM -coordinate independent weight
sharing.

G-steerable kernels were in [53] introduced to equivariant deep learning, where finite groups
were assumed. The current formulation in Def. 12.2.2 was proposed in [323]. A complete
solution for the G-steerable kernel spaces for arbitrary representations ρin and ρout of struc-
ture groups G ≤ O(2) has been derived in [322], an implementation is publicly available
at [38]. Mathematically, steerable kernel are equivalent to representation operators like for
instance the spherical tensor operators from quantum mechanics. A generalization of the
Wigner-Eckart theorem describes G-steerable kernels as being composed from harmonic
basis functions, Clebsch-Gordan coefficients and endomorphisms of irreducible represen-
tations [173]. An implementation of this algorithm was described in [40] and is available
at [39]. More details on steerable kernels are found in Chapter 5.

Definition 12.2.3 (GM -convolutional kernel field). A GM -convolutional kernel fieldKK
of type ρin, ρout is a kernel field which is determined by a shared, G-steerable template
kernel K ∈ KG

ρin,ρout
. It is in arbitrary gauges ψXTM,p and ψXHom,p from the considered

G-atlas pointwise defined by:

KK,p :=
(
ψXHom,p

)−1 ◦ K√
|ηXp |

◦ ψXTM,p (12.31)

The smoothness of KK follows from the smoothness of the gauges, the metric and the
template kernel.

As in the case of 1×1 GM -convolutions, the arbitrariness of the particular choice of gauge
in Eq. (12.31) – and therefore the GM -coordinate independence of the definition – is guar-
anteed by the G-steerability of K ∈ KG

ρin,ρout
. To show this explicitly, one may define the

kernel field relative to some gauge B and then apply a transformation to any other gauge A,
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U × Rd U × Rcout×cin

U × Rd π−1
TM

(U) π−1
Hom

(U) U × Rcout×cin

U

KB
K =

(
id×K/

√
|ηB |

)

(
id×gBA·

)

proj1

KA
K =

(
id×K/

√
|ηA|

)

πTM

KK

ΨB
TM

ΨA
TM

πHom

ΨA
Hom

ΨB
Hom (

id×ρHom

(
gBA

)
·
)

proj1

Figure 12.3: Commutative diagram showing local coordinatizations of a GM -convolutional kernel
field KK as defined in Def. 12.2.3. Convolutional weight sharing requires the coordinate expression
of the kernel field KK at any point p ∈ M and any gauge X at p to be determined by the shared
template kernel K : Rd → Rcout×cin as KX

K,p = K/
√
|ηXp |. The commutativity of the diagram then

implies the G-steerability constraint |det g |−1ρHom(g) ◦K ◦ g
−1 = K ∀g ∈ G on the space KG

ρ
in
,ρout

of template kernels. We want to emphasize that, despite looking similar to the diagram in Fig. 12.1,
the diagram in the current figure should be seen as analog to that in Fig. 12.2b. The difference between
the current diagram and that in Fig. 12.2b is that the linear maps in the homomorphism bundle are via
KK : TM → Hom(Ain,Aout) determined by an element of the tangent bundle TM instead of the
section σK1×1 :M → Hom(Ain,Aout).

which cancels out and therefore leads to an equivalent expression:

KK,p =
(
ψBHom,p

)−1 ◦ K√
|ηB|

◦ ψBTM,p

=
(
ρHom

(
gBAp

)
ψAHom,p

)−1 ◦ K√
|ηA| / |det(gBAp )|

◦
(
gBAp · ψATM,p

)
=
(
ψAHom,p

)−1 ◦ ∣∣det(gBAp )
∣∣ ρHom

(
gBAp

)−1 ◦K ◦ gBAp√
|ηA|

◦ ψATM,p

=
(
ψAHom,p

)−1 ◦ K√
|ηA|

◦ ψATM,p (12.32)

Fig. 12.3 gives an overview of the local trivializations of GM -convolutional kernel fields in
terms of a commutative diagram.

Note that the G-steerability constraint in Eq. (12.30) or (12.29) reduces to the constraint on
1×1 GM -convolution kernels in Eq. (12.10) or (12.21) when being evaluated at the ori-
gin v = 0 of Rd, which is invariant under the action of any g ∈ G. The results on
1×1 GM -convolutions, derived in the previous section, are therefore seen to be a special
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case for the choice of point-like kernels.5 We further want to mention that the constraint
on spatially extended kernels does in general not require their codomain to be restricted to
HomG(ρin, ρout), i.e. the space of intertwiners. In contrast to 1×1 GM -convolutions, this al-
lows GM -convolutions with spatially extended kernels to map between fields that transform
according to non-isomorphic irreducible representations.

12.2.2 Kernel field transforms and GM-convolutions

Having defined both feature fields and kernel fields, we are ready to introduce kernel field
transforms and GM -convolutions. They are pointwise defined in terms of integral operators
which compute output feature vectors fout(p) at points p ∈ M by matching the kernel Kp
at p with the feature field fin “as seen from p”.

The local representation of an input field “as seen from p” is formally given by its transporter
pullback, which is visualized in Fig. 9.1. It is defined as the usual pullback from M to TM
via the Riemannian exponential map6 with the additional application of a parallel transporter
(Eq. (11.84)), which is necessary in order to express the pulled back features in Ain,exp(v)
as features in Ain,p. Denoting this parallel transporter along the geodesic path γv(t) :=
exp((1− t) v) between γ(0) = exp(v) and γ(1) = π(v) =: p by

PA, p←exp(v)
: Aexp(v) → Ap , (12.33)

we thus define the pulled back feature field representations on the tangent spaces as follows:
Definition 12.2.4 (Transporter pullback of feature field to TM). Given a feature field

f ∈ Γ(A), we define its (redundant) representation on the tangent bundle as

Exp∗f : TM → A, v 7→ PA,π
TM

(v)←exp(v)
◦ f ◦ exp(v) . (12.34)

The Riemannian exponential map exp corresponds hereby to the Levi-Civita connec-
tion, while the transporter PA,π

TM
(v)←exp(v)

relies on some G-compatible connection;
see Sections 8.2 and 11.5.

From the construction it is clear that Exp∗f(v) ∈ Ap for any v ∈ TpM , that is, Exp∗f
is a bundle M -morphism, satisfying the following commutative diagram:

TM A

M

πTM

Exp∗f

πA
(12.35)

Despite smoothly mapping between two vector bundles, Exp∗f is not assumed to be a
vector bundle morphism, that is, the restrictions Exp∗pf : TpM → Ap are usually not
linear.

5To make this statement precise, one would have to generalize Def. 12.2.2 to operator-valued
distributions and define 1×1 GM -convolution kernels as operator-valued Dirac deltas.

6We define the exponential map on the full tangent bundle as exp : TM → M, v 7→
expπTM(v)

(v). Recall that we assumed the manifold to be geodesically complete, such that the expo-
nential map is well defined on the whole tangent bundle (and resort to zero-padding if this assumption
fails to hold).
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The restriction Exp∗pf := Exp∗f
∣∣
TpM

of the transporter pullback’s domain to TpM cap-
tures the feature field from the perspective of an observer at p as shown in Fig. 9.1. Note
that this definition resembles a local representation of the feature field in terms of geodesic
normal coordinates, with the difference that it is not restricted to the injectivity radius of
the exponential map.7 We furthermore want to mention that the transporter may be replaced
with any other isomorphism between Aexp(v) and Ap, as done for instance in [280].

As stated before, kernel field transforms and GM -convolutions are defined as matching the
local feature field representations on the tangent spaces with kernels. Working towards these
definitions, note that the bundle M -morphisms of kernels K : TM → Hom(Ain,Aout) and
local field representations Exp∗fin : TM → Ain, can be combined to yet another (nonlinear)
M -morphism from TM to Aout,

TM Hom(Ain,Aout)×Ain Aout

M

πTM

K×Exp∗fin ev

πAout

, (12.36)

where ev :
(
K(v), Exp∗fin(v)

)
7→ K(v) Exp∗fin(v) is the evaluation map on

Hom(Ain,Aout)×Ain. Kernel field transforms compute output feature vectors at p by inte-
grating this product of kernels and input fields over the respective tangent space TpM :

Definition 12.2.5 (Kernel field transform). LetK be any smooth kernel field (Def. 12.2.1).
The corresponding kernel field transform is a smooth integral transform

TK : Γ(Ain)→ Γ(Aout) (12.37)

which is pointwise defined by8

[
TK(fin)

]
(p) :=

∫
TpM

K(v) Exp∗fin(v) dv (12.38)

=

∫
TpM

K(v) PAin,p←exppv
fin(exppv) dv .

In order to be well defined, the integral needs to exist and the resulting output field
TK(f) needs to be smooth. This requires K to be chosen suitably, e.g. by assuming it
to decay rapidly or to be compactly supported.

Note that general kernel field transforms do not necessarily model convolutions as they do
not assume synapse weights (kernels) to be shared between spatial positions. Such general
kernel field transforms will become handy in the following Chapter 13, where we derive a
requirement for spatial weight sharing from the requirement for isometry equivariance.

7Any feature vector f(q) might therefore be represented multiple times on the same tangent space
TpM , once for each v ∈ TpM with exp(v) = q. If this is not desired, one may restrict the kernel sup-
port to the injectivity radius of the exponential map, such that only the geodesically nearest occurrence
will be measured.

8The integration over TpM via the Riemannian volume density dv is discussed in Appendix D.
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Appendix I discusses the existence and smoothness of kernel field transforms. A sufficient
condition for kernel field transforms to be well defined is the restriction of kernel supports
to balls of a fixed radius R > 0:

Theorem 12.2.6 (Kernel field transform existence for compactly supported kernels).
Let K be a kernel field whose individual kernels Kp at any p ∈ M are (at most)
supported on a closed ball of radius R > 0 around the origin of TpM , that is,

supp
(
Kp
)
⊆
{
v ∈ TpM

∣∣ ∥v∥ ≤ R} ∀p ∈M . (12.39)

The corresponding kernel field transform TK is then guaranteed to be well defined, i.e.
the integral in Eq. (12.38) exists and the output field TK(f) ∈ Γ(Aout) is smooth for
any smooth input field f ∈ Γ(Ain).

Proof: See Appendices I and I. □

The requirement to restrict the kernel support to a closed ball of certain radius is common
practice in deep learning. Note, however, that a compactly supported kernel is at odds
with scale equivariant convolutions, which, by the corresponding G-steerability kernel con-
straints, require infinitely far extending kernels. Current implementations of scale equiv-
ariant convolutions usually approximate scale equivariant kernel spaces by restricting their
support [197, 334, 107, 359, 10, 281, 220] and are therefore covered by Theorem 12.2.6.

Based on general kernel field transforms, we define coordinate free GM -convolutions by
adding the assumption of spatial weight sharing, i.e. by assuming GM -convolutional kernel
fields:

Definition 12.2.7 (GM -convolution). Let Ain and Aout be G-associated feature vector
bundles with types ρin and ρout , respectively. We define the GM -convolution with a
G-steerable kernel K ∈ KG

ρin,ρout
as the kernel field transform with the corresponding

GM -convolutional kernel field KK (Def. 12.2.3):

K ⋆ : Γ(Ain) → Γ(Aout),

fin 7→K ⋆ fin := TKK
(fin) =

∫
TpM

KK(v) Exp∗fin(v) dv (12.40)

As GM -convolutions do not prefer any reference frame in the G-structure, they are guaran-
teed to generalize their inference over all poses of patterns which are related by the action of
the structure group G; see Eq. (9.42) and Fig. 9.2.

12.2.3 Kernel field transforms and GM-convolutions in local coordinates

What is left to show is that the coordinate free definitions of transporter pullbacks, kernel
field transforms and GM -convolutions introduced in this section reduce to the coordinate
expressions from Part II when being expressed relative to some local trivialization.

The local coordinate expression of the transporter pullback Exp∗f of a feature field f is, as
usual, defined by pre- and post-composing it with local trivializations of the corresponding
bundles, that is:
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[
Exp∗f

]A
: U × Rd → U × Rc, (12.41)

(p, v) 7→ ΨAA ◦ Exp
∗f ◦

(
ΨATM

)−1
(p, v)

=
(
p, ψAA,p ◦ Exp

∗
pf ◦

(
ψATM,p

)−1
(v)
)

Local gauge transformations at p ∈M are from this definition seen to be given by[
Exp∗pf

]B
= ρ

(
gBAp

)
◦
[
Exp∗pf

]A ◦ (gBAp )−1
. (12.42)

We visualize these coordinate expressions in terms of a commutative diagram, which is very
similar to that for the local trivializations of kernel fields in Fig. 12.3:

U × Rd U × Rc

U × Rd π−1
TM

(U) π−1
A

(U) U × Rc

U

[
Exp∗f

]B

(
id× gBA·

)

proj1

[
Exp∗f

]A

πTM

Exp∗f

ΨB
TM

ΨA
TM

πA

ΨA
A

ΨB
A (

id× ρ
(
gBA

)
·
)

proj1

(12.43)

For an implementation it is useful to further resolve the coordinate expression of the trans-
porter pullback into those of its individual components, i.e. of the transporter PA, p←exp(v)

,
the feature field f and the exponential map exp. This is achieved by expanding it with an
identity of the form idAexp(v)

=
(
ψÃ
A,exp(v)

)−1 ◦ ψÃ
A,exp(v)

, where the choice of gauge Ã at

exp(v) is irrelevant as it ultimately drops out:[
Exp∗pf

]A
(v) =

[
ψAA,p ◦ Exp

∗
pf ◦

(
ψATM,p

)−1]
(v) (12.44)

= ψAA,p ◦ PA, p←exp(v)
◦ f
(
exp ◦

(
ψATM,p

)−1
(v)
)

= ψAA,p ◦ PA, p←exp(v)
◦
(
ψÃv

A,exp(v)

)−1 ◦ ψÃv

A,exp(v)
◦ f
(
exp ◦

(
ψATM,p

)−1
(v)
)

= ρ
(
gAÃp←exp ◦(ψA

TM,p)
−1(v)

)
· f Ã

(
exp ◦

(
ψATM,p

)−1
(v)
)

As expected, we recover our definition from Eq. (9.21) in Section 9.2.1, which approves that
Def. 12.2.4 is indeed its coordinate free counterpart.
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The coordinate expression of a kernel field transform, which coincides with Eq. (9.30) in
Section 9.2.1, is given by the following theorem:
Theorem 12.2.8 (Kernel field transform in coordinates). Relative to some gauge A at

p ∈ UA, the kernel field transform is given by the coordinate expression[
TK(fin)

]A
(p) =

∫
Rd

KAp (vA)
[
Exp∗pfin

]A
(vA)

√
|ηAp | dvA (12.45)

=

∫
Rd

KAp (vA) ρ
(
gAÃp←exp ◦(ψA

TM,p)
−1(vA)

)
·f Ãin

(
exp ◦

(
ψATM,p

)−1
(vA)

)√
|ηAp | dvA,

where the gauges Ã at exp(v) are chosen arbitrarily as they cancel out.9

Proof: The first expression is derived by a simple calculation which translates all involved
quantities into their corresponding coordinate expressions:[

TK(fin)
]A

(p) (12.46)

(1)
= ψAAout,p

[
TK(fin)

]
(p)

(2)
= ψAAout,p

∫
TpM

Kp(v)
[
Exp∗pfin

]
(v) dv

(3)
= ψAAout,p

∫
Rd

Kp
((
ψATM,p

)−1
(vA)

) [
Exp∗pfin

]((
ψATM,p

)−1
(vA)

) √
|ηAp | dvA

(4)
=

∫
Rd

[
ψAAout,p

◦ Kp
((
ψATM,p

)−1
(vA)

)
◦
(
ψAAin,p

)−1][
ψAAin,p

◦
[
Exp∗pfin

]
◦
(
ψATM,p

)−1]
(vA)

√
|ηAp | dvA

(5)
=

∫
Rd

[
ψAHom,p◦Kp◦

(
ψATM,p

)−1]
(vA)

[
ψAAin,p

◦
[
Exp∗pfin

]
◦
(
ψATM,p

)−1]
(vA)

√
|ηAp | dvA

(6)
=

∫
Rd

KAp (vA)
[
Exp∗pfin

]A
(vA)

√
|ηAp | dvA

Step (1) expresses the output feature vector at p explicitly in terms of gauge ψA
Aout,p

,
acting on the coordinate free kernel field transform. This coordinate free expression is
in step (2) expanded as defined in Def. 12.2.5. Step (3) pulls the integral over TpM via
the chosen gauge back to Rd, which is in more detail described in Appendix D. Step (4)
inserts an identity map of the form id =

(
ψA
Ain,p

)−1 ◦ ψA
Ain,p

and pulls ψA
Aout,p

into the

integral while step (5) identifies the definition of ψAHom,p from Eq. (12.17). Lastly, we
identify the coordinate expressions of Kp and Exp∗pfin from Eqs. (12.24) and (12.41).

The second expression follows from the first one by expanding the coordinate expres-
sion of the transporter pullback according to Eq. (12.44). □

9Note that the gauges at exp(v) might differ for different v ∈ TpM and should more correctly be
labeled by Ãv . We suppress this dependency for brevity.
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The coordinate expression for the coordinate free GM -convolutions follows immediately:
Theorem 12.2.9 (GM -convolutions in coordinates). A coordinate free GM -convolution

K⋆ : Γ(Ain) → Γ(Aout) with a G-steerable kernel K ∈ KG
ρin,ρout

is relative to some

gauge A at p ∈ UA given by[
K ⋆ f

]A
(p) =

[
TKK

(f)
]A

(p) =

∫
Rd

K(vA)
[
Exp∗pf

]A
(vA) dvA , (12.47)

that is, by the coordinate expression that was introduced in Eq. (9.39). This expression
may be written out further as done for general kernel field transforms in Eq. (12.45).

Proof: The result follows from Theorem 12.2.8 by observing that the coordinate free
GM -convolution K⋆ is just a kernel field transform with the corresponding GM -
convolutional kernel field KK ; see Def. 12.2.7. Specifically, the coordinate expres-
sion of a GM -convolutional kernel field KK is according to Def. 12.2.3 given by the
frame volume normalized G-steerable kernel K, that is, KAK,p = K/

√
|ηAp |. Insert-

ing this identity in Eq. (12.45) leads to the claimed coordinate expression for GM -
convolutions. □

This result assures that a global, coordinate free GM -convolution can be implemented in
terms of its local coordinate expressions relative to some G-atlas of local trivializations that
cover M .





CHAPTER 13

Isometry equivariance

A main characteristic of the convolution operation and its various generalizations is their
equivariance w.r.t. symmetries of the underlying manifold. For instance, the conventional
convolution on Euclidean spaces is translation equivariant while spherical convolutions are
rotation equivariant. More generally, any locally compact group and their homogeneous
spaces admit group convolutions [114, 165, 48, 102], which were recently picked up by the
deep learning community to generalize convolutional networks to such spaces [52, 162, 56,
10]. However, as these approaches rely fundamentally on the global, transitive symmetries
of the homogeneous space, they do not immediately apply to general Riemannian manifolds.

GM -convolutions on the other hand shift the focus from global symmetries of the space
itself to local symmetries in the coordinatization of the space. As it turns out, the lo-
cal gauge equivariance of GM -convolutions, together with convolutional weight sharing,
induces their equivariance under the action of global symmetries. Stated more precisely,
GM -convolutions are equivariant under the action of G-structure preserving isometries
(Def. 13.1.1), which form a subgroup IsomGM ≤ Isom(M) of the full isometry group. The
requirement on the symmetry to be an isometry (i.e. to preserve the metric) comes hereby
from the use of exponential maps, which rely on the Levi-Civita connection and thus Rie-
mannian metric. The additional requirement on these isometries to preserve the G-structure
is a consequence of the definition of feature vector bundles as associated G-bundles, whose
elements have a well defined meaning only relative to those reference frames that are con-
tained in GM . Note that the latter is not really a restriction, as one may always choose
structure groups G ≥ O(d), for which any isometry respects the corresponding G-structure.
On the contrary, this design allows for a precise control of the level of isometry equivari-
ance. For instance, the conventional convolution on Euclidean vector spaces relies on the
canonical {e}-structure of Rd, visualized in Fig. 13.3a, and is therefore solely translation
equivariant. An SO(d)-structure on Rd, visualized in Fig. 13.4a, is additionally preserved
by rotations, and thus corresponds to SE(d)-equivariant convolutions. Equivariance under
the full isometry group E(d) of Rd is implied when choosing an O(d)-structure on Rd.

The goal of this chapter is to derive theorems which formally characterize the isometry
equivariance of GM -convolutions and kernel field transforms. Section 13.1 lays the foun-
dations of this investigation by introducing isometry groups of Riemannian manifolds and
discussing a range of well-known relations and constructions which they induce. Specifi-
cally, Section 13.1.1 introduces isometries and isometry groups while Section 13.1.2 defines
their induced action (“pushforwards”) on the associated bundles in a coordinate free setting.
In Section 13.1.3 we express these actions on bundles relative to local trivializations and
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discuss their passive interpretation as isometry induced gauge transformations, visualized in
Fig. 8.5. Section 13.1.4 briefly states how the quantities involved in kernel field transforms
behave under the action of isometries.

Based on these properties, we study the isometry equivariance of kernel field transforms and
GM -convolutions in Section 13.2. After defining the term “isometry equivariance” formally,
Section 13.2.1 proves a central result, which asserts that the demand for isometry equivari-
ance requires the invariance of the kernel field under isometries; see Fig. 13.6. Section 13.2.2
considers the more specific GM -convolutions and proves that they are by design equivari-
ant under any isometry that preserves the G-structure. This result implies in particular, that
OM -convolutions are equivariant w.r.t. any isometry.

The invariance constraint on kernel fields enforces that they share weights over the orbits of
the isometry group. This suggests that invariant kernel fields can equivalently be described
by representative kernels on orbit representatives, which we formalize in Section 13.3. Sec-
tion 13.3.1 discussed isometry induced quotient spaces and their representatives. In Sec-
tion 13.3.2 we use these mathematical definitions to prove that the space of isometry invariant
kernel fields is indeed isomorphic to kernel fields on quotient representatives. This implies
in particular that isometry equivariant kernel field transforms on homogeneous spaces are
necessarily convolutions, which closes the loop to prior work.

13.1 Isometries and their action on manifolds, bundles and fields

This section introduces most of the mathematical concepts required for our study of the isom-
etry equivariance of kernel field transforms andGM -convolutions. After defining isometries
in Section 13.1.1, we discuss in Section 13.1.2 how they induce natural actions on tangent
vectors and reference frames. For structure groups G < O(d), not any isometry is compati-
ble with any G-structure. We define the subgroup IsomGM ≤ Isom(M) of those isometries
which do act on (induce automorphisms of) a G-structure GM and their G-associated fea-
ture bundles. While these constructions are kept coordinate free, Section 13.1.3 expresses
the action of isometries on fiber bundles relative to local bundle trivializations. In preparation
for our investigation of isometry equivariant kernel field transforms later on, Section 13.1.4
discusses how isometries commute with exponential maps and parallel transporters, which
allows to derive how they act on transporter pullbacks Exp∗pf of feature fields f . While
mostly staying mathematical, we draw connections to the application wherever possible.

13.1.1 Isometry groups

A (global) isometry ϕ : M → M̂ is a diffeomorphism between Riemannian manifolds
(M,η) and (M̂, η̂), which preserves the metric. In terms of the pushforward (differential)
ϕ∗,TM : TM → TM̂ of tangent vectors, which we introduce in Appendix C.2 and in Sec-
tion 13.1.2 below, this statement is made precise by requiring that isometries satisfy

ηp(v, w) = η̂ϕ(p)(ϕ∗,TMv, ϕ∗,TMw) ∀ p ∈M, v,w ∈ TpM , (13.1)

i.e. that they preserve distances and angles between tangent vectors. Intuitively, an isometry
is thought of as a distance preserving map between manifolds. Note that the inverse of an
isometry is necessarily an isometry as well. Since isometries (and their inverses) respect the
metric, they constitute the isomorphisms in the category of Riemannian manifolds.
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(a) Action of different subgroups of the isometry group on fields. (b) Orbits of the isometry group.

Figure 13.1: Visualizations of the isometry group Isom(M) ∼= O(2) of an egg M , which we will
use throughout this chapter to exemplify different concepts and constructions relating to isometries.
Fig. 13.1a shows the action of the isometry group on (tangent or feature) vector fields. It can be
thought of as consisting of the subgroups of rotations in SO(2) and reflections in R. The action of the
isometry group partitions the egg into orbits Isom(M).p =

{
ϕ(p)

∣∣ϕ ∈ Isom(M)
}

of points p ∈M ,
shown in Fig. 13.1b in different colors. Note that not all orbits are homeomorphic to each other –
the orbits at the poles are single points while any other orbit traces out a circle around the egg. The
isometry group of the egg acts non-transitively on it, that is, not every point can be reached from any
other point. A kernel field transform is isometry equivariant if it commutes with the isometry action
on feature fields. We show that isometry equivariance is guaranteed if and only if the kernel field is
invariant under the action of isometries. This implies in particular that isometry equivariance require
weight sharing along the isometry orbits; see Fig. 13.6.

The set of all isometries ϕ : M → M from a Riemannian manifold to itself, equipped with
the usual function composition ◦ : (ϕ1, ϕ2) 7→ ϕ1 ◦ ϕ2, defines a group, known as isometry
group Isom(M) of M . This group is the automorphism group of a Riemannian manifold,
which contains all of its (metric) “symmetries”. It is a subgroup of the diffeomorphism group
Diff(M) of M . The full isometry group might have non-trivial subgroups, which we will in
the following denote by I ≤ Isom(M). An example is given in Fig. 13.1a, which visualizes
the isometry group Isom(M) ∼= O(2) of an egg. The full isometry group splits (for instance)
into the subgroups of rotations in I1 ∼= SO(2) and reflections in I2 ∼= R.

In general, the isometry group of a manifold is non-transitive (Def. B.3.8), that is, not every
point of M can be reached from any other point by its action. The manifold is then parti-
tioned into disjoint orbits (Def. B.3.3), visualized for the example of M being an (Easter)
egg in Fig. 13.1b. The isometry group of a manifoldM might be trivial, given thatM is suf-
ficiently asymmetric. In this case there might still exist non-trivial isometries between open
subsets U Ã and UA of M , restricted to which Eq. (13.1) holds. Fig. 13.2 shows an exam-
ple of a manifold which is globally asymmetric but has non-trivial isometries between local
subsets of itself. We will in the following only consider global isometries ofM , however, all
concepts of the current Section 13.1 generalize in an obvious way to isometries between lo-
cal subsets. Without proof, we claim that the same holds for the isometry equivariance of any
neural network operation which acts pointwise, for instance 1×1-convolutions, nonlineari-
ties or bias summation. The equivariance of kernel field transforms with spatially extended
kernels holds up to boundary effects.
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Figure 13.2: An asymmetric manifold, whose
global isometry group is trivial. Since the asym-
metry is limited to the ears and the mouth of
“Suzanne”, the monkey, there are non-trivial lo-
calized symmetries left. For instance, the smooth
map ϕ : U Ã → UA between the red and green high-
lighted subsets preserves the metric locally. All
concepts developed in Section 13.1 as well as the
isometry equivariance of point-wise operations like
1×1-convolutions generalize immediately to such
isometries between local subsets. The isometry
equivariance of kernel field transforms with spatially
extended kernels generalizes up to boundary effects.

13.1.2 Isometry action on fiber bundles

Isometries act naturally on tangent vectors in TM and reference frames in FM by “carrying
them along” with the group action as visualized in Fig. 13.1a. If an isometry is in addi-
tion compatible with the G-structure, that is, if it gives rise to an automorphism of GM ,
it furthermore acts on any associated G-bundle, in particular the feature vector bundles A.
We discuss these actions of isometries on the associated bundles and on feature fields in the
following.

Isometry action on the tangent bundle TM: Any isometry ϕ ∈ Isom(M) gives rise to a
pushforward

ϕ∗,TM : TM → TM , ϕ ∈ Isom(M) (13.2)

on the tangent bundle, which is just the differential of ϕ as introduced in Appendix C.2. It
can at each point p ∈ M be thought of as a linear approximation of ϕ, which maps vectors
v ∈ TpM to ϕ∗,TM(v) ∈ Tϕ(p)M , that is, it satisfies

π
TM
◦ ϕ∗,TM = ϕ ◦ π

TM
. (13.3)

As argued in Appendix C.2, the pushforward is invertible with (ϕ∗,TM)
−1 = (ϕ−1)∗,TM ,

for which we will unambiguously write ϕ−1∗,TM .1 The pushforward of an element ϕ of the
isometry group is therefore seen to be an (isometric) vector bundle automorphism of TM
over ϕ, satisfying the following commutative diagram:

TM TM

M M

ϕ∗,TM

πTM πTM

ϕ−1

∗,TM

ϕ

ϕ−1

(13.4)

By the definition of isometries, their pushforward preserves distances and angles, that is,

ηϕ(p)
(
ϕ∗,TMv, ϕ∗,TMw

)
= ηp(v, w) ∀ p ∈M, v,w ∈ TpM, ϕ ∈ Isom(M).

(13.5)

1The invertibility does not hold for pushforwards in general but only for those of diffeomorphisms
and thus isometries, which are themselves invertible.

https://en.wikipedia.org/wiki/Blender_(software)#Suzanne
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More details about pushforwards between tangent bundles are easily found in the literature,
for instance in [262].

Isometry action on the frame bundle FM: The pushforward on TM immediately in-
duces a corresponding principal bundle automorphism ϕ∗,FM on FM by pushing forward the
individual frame vectors:

ϕ∗,FM : FM → FM, [ei]
d
i=1 7→ ϕ∗,FM

(
[ei]

d
i=1

)
:=
[
ϕ∗,TM(ei)

]d
i=1

, ϕ ∈ Isom(M)
(13.6)

It maps frames in FpM for arbitrary p ∈ M to frames at Fϕ(p)M , that is, it satisfies
π
FM
◦ ϕ∗,FM = ϕ ◦ π

FM
. To see this, let [ep]di=1 ∈ FpM , then ϕ ◦ π

FM

(
[ei]

d
i=1

)
= ϕ(p) and

π
FM
◦ ϕ∗,FM

(
[ei]

d
i=1

)
= π

FM

([
ϕ∗,TM(ei)

]d
i=1

)
= π

TM
◦ ϕ∗,TM(ej) = ϕ ◦ π

TM
(ej) = ϕ(p)

for any j = 1, . . . , d. It can further be checked to be invertible with (ϕ∗,FM)
−1 = (ϕ−1)∗,FM ,

again abbreviated by ϕ−1∗,FM . The left action of the ϕ∗,FM on the frame bundle commutes with
the right action ◁ on its fibers, that is, for arbitrary g ∈ GL(d) and ϕ ∈ Isom(M) we have
that:(

ϕ∗,FM
(
[ei]

d
i=1

))
◁ g =

[
ϕ∗,TM(ei)

]d
i=1

◁ g
(

def. of ϕ∗,FM , Eq. (13.6)
)

=
[∑

j
ϕ∗,TM(ej) gji

]d
i=1

(
def. of ◁, Eq. (11.26)

)
=
[
ϕ∗,TM

(∑
j
ejgji

)]d
i=1

(
linearity of ϕ∗,TM

)
= ϕ∗,FM

([∑
j
ejgji

])d
i=1

(
def. of ϕ∗,FM , Eq. (13.6)

)
= ϕ∗,FM

(
[ei]

d
i=1 ◁ g

) (
def. of ◁, Eq. (11.26)

)
(13.7)

A gauge transformation of a frame at p ∈ M by g ∈ GL(d), followed by a pushforward to
ϕ(p), is therefore equal to a pushforward of the untransformed frame, followed by a gauge
transformation by the same group element g but at ϕ(p). Different frames in the fiber FpM
are hence mapped in such a way to frames at Fϕ(p)M that their relative offset is preserved.
The derived properties of ϕ∗,FM are summarized by the statement that the diagram

FM FM

FM FM

M M

ϕ∗,FM

ϕ∗,FM

πFM

◁g

πFM

◁g

ϕ

(13.8)

commutes for any ϕ ∈ Isom(M) and any g ∈ GL(d). Satisfying the commutativity of
this diagram, the pushforward ϕ∗,FM on the frame bundle is identified as a principal bundle
automorphism2 over ϕ.

2I.e. a principal bundle isomorphism from the frame bundle to itself; cf. Eq. (11.23).
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(a) Canonical {e}-structure of R2 (b) An alternative {e}-structure on R2

Figure 13.3: Two specific choices of {e}-structures (global frame fields) {e}M on M = R2, which
we use to visualize the concept of G-structure preserving isometries. The full isometry group of M is
the Euclidean group Isom(M) = E(2), consisting of translations, rotations and reflections. Fig. 13.3a
shows the canonical {e}-structure of R2, which is invariant under translations but not under rotations or
reflections. More abstractly stated, translations make up the subgroup Isom{e}M = (R2,+) of isome-
tries that induce automorphisms of {e}M . In contrast, rotations or reflections map frames in {e}pM
to frames in Fϕ(p)M but fail to send them to {e}ϕ(p)M . They do therefore not induce automorphisms
of the {e}-structure and are not part of Isom{e}M . Group actions of such isometries on {e}M or any
of its {e}-associated bundles are not defined. Fig. 13.3b shows an alternative choice of {e}-structure
on M = R2 (or M = E2), which is only invariant under translations in the “up-down” direction, i.e.
Isom{e}M ∼= (R,+). The examples in Figs. 13.3a and 13.3b exemplify that the G-structure automor-
phisms do not only depend on the structure group G but on the particular choice of G-structure GM .
The general case for G being non-trivial is harder to visualize since GpM will then not be a single
frame but a set of frames; see e.g. Fig. 13.4.

Note that the inverses, which are shown explicitly in the diagram (13.4), are omitted to
reduce clutter.

Isometry action on G-structures GM: As G-structures are principal subbundles of the
frame bundle, one can consider the restriction of the domain of the pushforward on FM
to GM , that is,

ϕ∗,FM
∣∣
GM

: GM → FM , ϕ ∈ Isom(M) . (13.9)

It is hereby necessary to keep the full frame bundle FM as codomain since there is in gen-
eral no guarantee that frames in GpM are mapped to frames of Gϕ(p)M but only to Fϕ(p)M .
Since G-structures are in general not closed under the action of isometries on FM , it might
be impossible to define a group action of the full isometry group onGM or any other associ-
ated G-bundle. To remedy this shortcoming, we will in the following consider the subgroup
of those isometries that respect the G-structure, i.e. which map preferred frames in GM to
frames in GM .

Definition 13.1.1 (G-structure preserving isometries). Given a G-structure GM , we de-
fine the corresponding subgroup of G-structure preserving isometries IsomGM as

IsomGM :=
{
ϕ ∈ Isom(M)

∣∣ϕ∗,FM(GpM) = Gϕ(p)M ∀p ∈M
}
≤ Isom(M) .

(13.10)

For such isometries, we define the induced action on GM as

ϕ∗,GM := ϕ∗,FM
∣∣
GM

: GM → GM , ϕ ∈ IsomGM . (13.11)
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(a) SE(2)-invariant SO(2)-structure on R2. (b) SO(3)-invariant SO(2)-structure on S2.

Figure 13.4: Two examples of SO(2)-structures SOM over the plane M = R2 and the sphere
M = S2. For M = R2, shown in Fig. 13.4a, the SO(2)-structure is invariant under translations
and rotations. As it consists only of right-handed frames (mind the arrow tips on the first and the cir-
cle tips on the second frame axes) it is not invariant under reflections. The isometries which preserve
SOM therefore form the group IsomSOM = SE(2), which is a subgroup of the full isometry group
Isom(M) = E(2). In the case ofM = S2, shown in Fig. 13.4b, the SO(2)-structure is invariant under
rotations but not under reflections. The SO(2)-structure automorphisms are here IsomSOM = SO(3)
while the full isometry group is Isom(M) = O(3).

Such defined actions for ϕ ∈ IsomGM are G-structure automorphisms, that is, they make
the following diagram commute for any g ∈ G (which follows by restricting Eq (13.8) from
FM to GM and GL(d) to G):

GM GM

GM GM

M M

ϕ∗,GM

ϕ∗,GM

πGM

◁g

πGM

◁g

ϕ

(13.12)

Fig. 13.3 shows two examples of {e}-structures on M = R2, i.e. global frame fields. From
these examples it is apparent that the subgroups IsomGM do really depend on the particular
choice of G-structure GM , not only on the structure group G. In Fig. 13.4a we visualize an
SO(2)-structure on M = R2. Its isometry group IsomSOM = SE(2) is larger than those of
the {e}-structures in Fig. 13.3. An SO(2)-structure on the sphere S2, which is preserved by
all rotations IsomSOM = SO(3), is shown in Fig. 13.4a.

For specific choices of structure groups G it is possible to make more general statements
about which isometries are contained in the subgroup IsomGM . Most importantly, for or-
thonormal structure groups G = O(d) (which are compatible with η) any isometry will
induce an automorphism of OM , that is, one always has IsomOM = Isom(M) . To prove
this claim, let [ei]di=1 ∈ OpM ⊂ FpM be an orthonormal frame, which is by an arbitrary
isometry ϕ ∈ Isom(M) being sent to ϕ∗,FM

∣∣
OM

[ei]
d
i=1 =

[
ϕ∗,TMei

]d
i=1

; see Eq. (13.6). Ap-
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plying Eq. (13.5) to the individual axes of the pushforward frame yields

η
(
ϕ∗,TMei, ϕ∗,TMej

)
= η(ei, ej) = δij ∀ i, j ∈ 1, . . . , d , (13.13)

which implies the orthonormality of of the pushforward frame ϕ∗,FM
∣∣
OM

[ei]
d
i=1 ∈ Oϕ(p)M

and therefore allows to define ϕ∗,OM := ϕ∗,FM
∣∣
OM

for any ϕ ∈ Isom(M). More generally,
this result implies:

IsomGM = Isom(M) ∀ G ≥ O(d) (13.14)

It is similarly possible to show

IsomSOM = Isom+(M) , (13.15)

that is, that any orientation preserving isometry in Isom+(M) induces an automorphism
of an SO(d)-structure SOM . Note that these statements all depend only on the structure
group G but are independent from the specific choice of G-structure. This is ultimately a
result of only considering isometries, which are adapted to O(d)-structures by definition,
instead of considering more general diffeomorphisms. As mentioned before, the subgroup
IsomGM does in general depend on the specific choice of G-structure GM , not only the
structure group G.

Isometry action on associated vector bundlesA: From the pushforward of isometries in
IsomGM on GM one can construct a pushforward ϕ∗,A on any G-associated vector bundle
A = (GM × Rc)/∼ρ by defining

ϕ∗,A : A → A,
[
[ei]

d
i=1, f

]
7→ ϕ∗,A

([
[ei]

d
i=1, f

])
:=
[
ϕ∗,GM

(
[ei]

d
i=1

)
, f
]
, ϕ ∈ IsomGM .

(13.16)

This action is well defined since the construction is by the right G-equivariance of ϕ∗,GM in
Eq. (13.12) independent from the chosen representative of the equivalence class. Similar to
before, one has πA ◦ ϕ∗,A = ϕ ◦ πA, that is, ϕ∗,A maps feature vectors atAp to feature vectors
at Aϕ(p), which can be checked by acting on a feature vector and using the corresponding
property of ϕ∗,GM . Since ϕ∗,A is defined by the action of ϕ∗,GM on the first factor in (GM ×
Rc)/∼ρ , it does not interfere with linear combinations, which act on the second factor as
defined in Eq. (11.29). This implies that the pushforward on associated bundles maps linearly
between their fibers. The invertibility of ϕ∗,A follows from the invertibility of ϕ∗,GM such that
one gets again (ϕ∗,A )

−1 = (ϕ−1)∗,A, which we write as ϕ−1∗,A . These properties, together with
the fact that ϕ∗,GM ∈ Aut(GM) is in particular a principal bundle automorphism, identify
ϕ∗,A as an associated vector bundle automorphism, satisfying the following commutative
diagram:

A A

M M

ϕ∗,A

πA πA

ϕ

(13.17)

The associated bundle resulting from the specific choices of ρ(g) = g as group representa-
tion and Rd as typical fiber is via the bundle morphism χ : (GM × Rd)/∼ → TM from
Eq. (11.31) isomorphic to the tangent bundle TM (as G-bundle). Our definition of pushfor-
wards on associatedG-bundles is consistent with this identification since χ◦ϕ∗,A = ϕ∗,TM◦χ.
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To see this, let
[
[ei]

d
i=1, v

]
∈ (GM × Rd)/∼ be an element of the isomorphic associated

bundle that is mapped to χ
([
[ei]

d
i=1, v

])
=
∑
i eivi. Then we have χ ◦ ϕ∗,A

([
[ei]

d
i=1, v

])
=

χ
([
[ϕ∗,TM(ei)]

d
i=1, v

])
=
∑
i ϕ∗,TM(ei)vi = ϕ∗,TM

(∑
i eivi

)
= ϕ∗,TM ◦ χ

([
[ei]

d
i=1, v

])
,

which shows the consistency of the definitions.

As an associated bundle, the pushforward ϕ∗,Hom on the homomorphism bundle
Hom(Ain,Aout) ∼= (GM × Rcout×cin)/∼ρHom

is specified by Eq. (13.16) as well. How-
ever, we will later on require an expression of ϕ∗,Hom in terms of the pushforwards ϕ∗,Ain

and
ϕ∗,Aout

of Ain and Aout, respectively, which we will shortly derive here. For that purpose, let
H ∈ Hom(Ain|p,Aout|p) be a homomorphism at p and fp ∈ Ain,p be a feature vector at p.
Then H(fp) is by definition a feature vector in Aout,p. In order to be consistently defined,
the pushforward of the input feature vector fp, being acted on by the pushforward of the
homomorphism H , needs to agree with the pushforward of the output feature vector H(fp).
This implies

ϕ∗,Aout

[
H(fp)

]
=
[
ϕ∗,Aout

H ϕ−1∗,Ain

](
ϕ∗,Ain

fp
)
=:

[
ϕ∗,HomH

](
ϕ∗,Ain

fp
)
, (13.18)

where we defined the pushforward on the homomorphism bundle as:
ϕ∗,Hom : Hom(Ain,Aout)→ Hom(Ain,Aout), H 7→ ϕ∗,Aout

H ϕ−1∗,Ain
, ϕ ∈ IsomGM

(13.19)
Note that the composition of an element H ∈ Hom(Ain,Aout) with ϕ∗,Aout

on the left and
with ϕ−1∗,Ain

on the right mirrors the style of Eq. (12.17).

Isometry action on feature fields: The actions of isometries in IsomGM on the associated
bundles give rise to actions on their sections, in particular on feature fields. This pushforward
of sections is defined as follows:
Definition 13.1.2 (Isometry pushforward of feature field:). Let f ∈ Γ(A) be a feature

field and let ϕ ∈ IsomGM be a G-structure preserving isometry. The isometry acts on
the feature field via the pushforward3

▷ : IsomGM×Γ(A)→ Γ(A), (ϕ, f) 7→ ϕ▷f := ϕ∗,A ◦ f ◦ ϕ−1 . (13.20)
In terms of a commutative diagram, this definition is visualized as:

A A

M M

ϕ∗,A

ϕ

f ϕ▷f := ϕ∗,A ◦f ◦ ϕ
−1 (13.21)

Intuitively, this definition states that the pushforward section ϕ ▷f , evaluated at p ∈ M ,
returns the feature vector of f from ϕ−1(p), pushed forward to p via ϕ∗,A . Note that such
pushforwards do indeed yield well defined sections which satisfy

πA ◦ (ϕ▷f) = πA ◦ ϕ∗,A ◦ f ◦ ϕ
−1

= ϕ ◦ πA ◦ f ◦ ϕ
−1

= ϕ ◦ idM ◦ ϕ−1

= idM (13.22)
3Note the similarity of this definition to that of the induced representation action on Euclidean

feature fields in Def. 4.2.1, which can be viewed as coordinate expression of the pushforward.
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as required by Eq. (11.19). Fig. 13.1a visualizes the action of isometries on fields. The action
of isometries on the transporter pullback Exp∗pf of a fields f is derived in Section 13.1.4
below.

13.1.3 Isometry action in local coordinates

Most of the derivations on the isometry equivariance of kernel field transforms in Sec-
tions 13.2 and 13.3 will be kept in a coordinate free setting. However, since GM -
convolutions are defined relative to a choice of G-atlases of the associated bundles, the
investigation of their isometry equivariance will require us to study coordinate expressions
of the isometry pushforwards ϕ∗,TM , ϕ∗,FM , ϕ∗,GM and ϕ∗,A relative to local bundle trivializa-
tions. Coordinate expressions of the isometry action are furthermore useful in numerical
implementations, which are necessarily encoding feature fields relative to fields of reference
frames.

In the following, we assume gauges ΨÃTM and ΨATM on neighborhoods U Ã of p and UA of
ϕ(p) to be given. For convenience, let UA = ϕ

(
U Ã
)

coincide with the image of U Ã under
the isometry, which is always possible without losing generality.

Pushforward on TM in coordinates: Recall that the pushforward on the tangent bundle
is a linear map from vectors v ∈ TpM to vectors ϕ∗,TMv ∈ Tϕ(p)M . Relative to the given
gauges, the pushforward is therefore coordinatized by a field of matrices4

gAÃϕ : U Ã → GL(d), p 7→ gAÃϕ (p) := ψATM,ϕ(p) ◦ ϕ∗,TM ◦
(
ψÃTM,p

)−1
, ϕ ∈ Isom(M) ,

(13.23)

which transforms between the corresponding numerical coefficients ψÃTM,p(v) of v at p and

ψA
TM,ϕ(p)(ϕ∗,TMv) = gAÃϕ (p)ψÃTM,p(v) of ϕ∗,TMv at ϕ(p). More precisely, gAÃϕ takes values in

the subgroup ⟨G ∪ O(d) ⟩ of GL(d), which is generated by the elements of O(d) (due to
ϕ∗,TM preserving the metric) andG (since the transition functions might form a supergroup of
O(d)). The definition of the pushforward in local coordinates is visualized by the following
commutative diagram:

Rd TpM Tϕ(p)M Rd

gAÃ
ϕ (p) ·

ψÃ
TM,p ϕ∗,TM ψA

TM,ϕ(p)
(13.24)

Fig. 8.5 gives a graphical interpretation of the pushforward in coordinates.

Pushforward on FM in coordinates: The coordinatization of the pushforward on the
frame bundle is defined in analogy to Eq. (13.23). It turns out to be given by the left action

4Given charts xÃ : U Ã → xÃ
(
U Ã

)
⊆ Rd and xA : UA → xA

(
UA

)
⊆ Rd of M , an isometry

ϕ can be locally represented by a map xA ◦ ϕ ◦
(
xÃ

)−1
: xÃ

(
U Ã

)
→ xA

(
UA

)
between coordinates.

For the special case that the gauges at p and ϕ(p) correspond to the coordinate bases of those charts,
gAÃ
ϕ is simply given by the Jacobian of xA ◦ ϕ ◦

(
xÃ

)−1.
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of the same group element gAÃϕ on trivialized frames as shown in the commutative diagram
below:

GL(d) FpM Fϕ(p)M GL(d)

gAÃ
ϕ (p) ·

ψÃ
FM,p ϕ∗,FM ψA

FM,ϕ(p)
(13.25)

To prove this claim, we compute the action on a trivialized frame, given by a matrix h ∈
GL(d) whose i-th column h:,i represents the i-th frame vector:[

ψAFM,ϕ(p) ◦ ϕ∗,FM ◦
(
ψÃFM,p

)−1]
(h)

=
[
ψAFM,ϕ(p) ◦ ϕ∗,FM

](((
ψÃTM,p

)−1
(h:,i)

)d
i=1

) (
def. of ψÃ

FM,p, Eq. (11.49)
)

= ψAFM,ϕ(p)

((
ϕ∗,TM ◦

(
ψÃTM,p

)−1
(h:,i)

)d
i=1

) (
def. of ϕ∗,FM , Eq. (13.6)

)
=
((
ψATM,ϕ(p) ◦ ϕ∗,TM ◦

(
ψÃTM,p

)−1
(h:,i)

)d
i=1

) (
def. of ψA

FM,ϕ(p), Eq. (11.49)
)

=
(
gAÃϕ (p) · h:,i

)d
i=1

(
def. of gAÃ

ϕ , Eq. (13.23)
)

= gAÃϕ (p) · h (13.26)

The action of the pushforward on local trivializations can be thought of as inducing a gauge
transformation. A graphical intuition for this statement was given in Fig. 8.5 where the
initial gauges at p and ϕ(p) are visualized by choices of reference frames. A pushforward of
the frame at p to ϕ(p) (red) does in general not agree with the original frame at ϕ(p) (green).
The transition between these two frames is the induced gauge transformation by at ϕ(p). We
will in the following construct this transformation; first in terms of local trivializations, then
in terms of the corresponding frame fields.

From the commutative diagram in Eq. (13.25) it is clear that the gauge ψÃFM,p : FpM →
GL(d) at p can via ϕ−1∗,FM be pulled back to a gauge at ϕ(p), which is given by

ψÃFM,p ◦ ϕ−1∗,FM =
(
gAÃϕ (p)

)−1
ψAFM,ϕ(p) : Fϕ(p)M → GL(d) . (13.27)

The corresponding extension of the commutative diagram in Eq. (13.25) visualizes the equiv-
alence of both expressions and makes an algebraic proof superfluous:

GL(d) FpM Fϕ(p)M GL(d)

gAÃ
ϕ (p) ·

ψÃ
FM,p ϕ∗,FM ψA

FM,ϕ(p)

ψÃ
FM,p ϕ

−1

∗,FM =
(
gAÃ
ϕ (p)

)−1 · ψA
FM,ϕ(p)

(13.28)
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The transition map (gauge transformation) between the isometry induced gauge ψÃFM,p ϕ
−1
∗,FM

and the original gauge ψA
FM,ϕ(p) at ϕ(p) is read off to be given by the inverse5 group element(

ψÃFM,p ϕ
−1
∗,FM

)
◦
(
ψAFM,ϕ(p)

)−1
=
(
gAÃϕ (p)

)−1 ∈ ⟨G ∪O(d) ⟩ ≤ GL(d) . (13.29)

Note that this group element does for G ≤ O(d) not necessarily lie in the structure group,
that is, the isometry induced gauge might not be G-compatible (it can not be added to an
existing G-atlas of FM ). In the next paragraph on G-structures we will show that this
happens exactly when ϕ /∈ IsomGM , i.e. for isometries which do not respect theG-structure.

To derive the isometry action on frame fields, consider the identity sections σÃ : U Ã →
π−1
FM

(
U Ã
)

over U Ã and σA : UA → π−1
FM

(
UA
)

over UA. These sections model the original
frame fields from Fig. 8.5. The new frame field is then given by the pushforward section

ϕ ▷ σÃ := ϕ∗,FM ◦ σÃ ◦ ϕ−1 : UA → π−1
FM

(
UA
)
, (13.30)

which is equivalently defined to that in Eq. (13.20). An alternative expression for the push-
forward frame field in terms of the right action of gAÃϕ is found by applying ψA

FM,ϕ(p):

ψAFM,ϕ(p)

([
ϕ▷ σÃ

]
(ϕ(p))

)
(13.31)

= ψAFM,ϕ(p) ϕ∗,FM σ
Ã(p)

(
def. of ϕ▷ σÃ, Eq. (13.30)

)
= gAÃϕ (p)ψÃFM,p σ

Ã(p)
(

equivalent expressions in Eq. (13.27)
)

= gAÃϕ (p)
(

identity section σÃ, Eq. (11.54)
)

= ψAFM,ϕ(p)

(
σA
(
ϕ(p)

))
gAÃϕ (p)

(
identity section σA, Eq. (11.54)

)
= ψAFM,ϕ(p)

(
σA
(
ϕ(p)

)
◁ gAÃϕ (p)

) (
right GL(d) equivariance, Eq. (11.51)

)
Since ψA

FM,ϕ(p) is an isomorphism, it follows that(
ϕ▷ σÃ

)(
ϕ(p)

)
= ϕ∗,FMσ

Ã(p) = σA
(
ϕ(p)

)
◁ gAÃϕ (p) , (13.32)

that is, gAÃϕ (p) does as expected describe the transformation between identity sections. This
isometry induced transformation between reference frames is in Fig. 8.5 visualized by the
blue arrow between the (translucent) red and green frame.

The isometry transformed gauge ψÃFM,p ϕ
−1
∗,FM and the pushforward section ϕ▷σÃ correspond

to each other in so far that the latter is the identity section of the former:

ψÃFM,p ϕ
−1
∗,FM

[
ϕ▷ σÃ

](
ϕ(p)

)
= ψÃFM,p ϕ

−1
∗,FMϕ∗,FMσ

Ã(p) = ψÃFM,pσ
Ã(p) = e (13.33)

Pushforward on GM in coordinates: As argued in the previous Section 13.1.2, the push-
forward on GM is only well defined for isometries ϕ in a subgroup IsomGM . Not surpris-
ingly, the corresponding isometry induced gauge transformations take values in the structure
group G:

5The inverse is a matter of convention. It arises here since we defined gAÃ
ϕ as coordinate expression

of the covariant pushforward of frames while gauges transform contravariantly.
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Theorem 13.1.3 (IsomGM in local trivializations). Let ϕ ∈ Isom(M) be any isometry of
M . Then the following three statements are equivalent:

1. ϕ is G-structure preserving, that is, ϕ ∈ IsomGM .

2. The isometry pullback ψÃFM,p ϕ
−1
∗,FM of any gauge ψÃFM,p of theG-atlas of FM that

defines GM is G-compatible with that G-atlas.

3. The coordinate expression of ϕ∗,FM relative to any gauges ψÃFM,p and ψA
FM,ϕ(p)

from theG-atlas of FM takes values in the structure group, that is, gAÃϕ (p) ∈ G
for any p in M .

Proof: The defining property of a G-structure preserving isometry ϕ ∈ IsomGM is that
it satisfies ϕ∗,FM(GpM) = Gϕ(p)M for any p ∈ M ; see Eq. (13.10). In terms of
a given G-atlas of FM , Eq. (11.56) defined the G-structure at p ∈ M as GpM :=(
ψÃFM,p

)−1
(G) where ψÃFM,p is an arbitrary gauge of the G-atlas. With this expression

we expand the left-hand side of the defining property of IsomGM :

ϕ∗,FM(GpM) = ϕ∗,FM
(
ψÃFM,p

)−1
(G)

=
(
ψÃFM,pϕ

−1
∗,FM

)−1
(G) (13.34)

Relative to any gauge ψA
FM,ϕ(p) of the G-atlas at ϕ(p), this can be further manipulated to

ϕ∗,FM(GpM) =
((
gAÃϕ (p)

)−1
ψAFM,ϕ(p)

)−1
(G)

=
(
ψAFM,ϕ(p)

)−1(
gAÃϕ (p)G

)
. (13.35)

The right-hand side of the defining property of IsomGM is in terms of ψA
FM,ϕ(p) given

by

Gϕ(p)M =
(
ψAFM,ϕ(p)

)−1
(G). (13.36)

Setting both sides equal and using that ψA
FM,ϕ(p) is an isomorphism implies gAÃϕ (p)G =

G which leads to the claimed equivalence

ϕ∗,FM(GpM) = Gϕ(p)M ⇐⇒ gAÃϕ (p) ∈ G (13.37)

of statements 1. and 3. To prove the equivalence to statement 2., recall that gAÃϕ (p) is

by Eq. (13.29) equal to the gauge transformation from ψÃFM,p ϕ
−1
∗,FM to ψA

FM,ϕ(p). As G-
atlases have by definition transition functions in the structure group G, the implications
(2.↔3.) follow, such that all three statements are seen to be equivalent. □

These results are of central importance for our later study of the isometry equivariance of
GM -convolutions. We will be able to show that such convolutions are equivariant under the
action of ϕ ∈ IsomGM on feature fields, which relies on the fact that theG-steerability of the
convolution kernels accounts for the isometry induced gauge transformations gAÃϕ (p) ∈ G.
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For G-structure automorphism inducing isometries ϕ ∈ IsomGM , we can adapt the commu-
tative diagram for FM in Eq. (13.28) to its cousin for GM :

G GpM Gϕ(p)M G

gAÃ
ϕ (p) ·

ψÃ
GM,p ϕ∗,GM ψA

GM,ϕ(p)

ψÃ
GM,p ϕ

−1

∗,GM =
(
gAÃ
ϕ (p)

)−1 · ψA
GM,ϕ(p)

(13.38)

Pushforward on A in coordinates: The pushforward of ϕ ∈ IsomGM on associated G-
bundles is similarly coordinatized as those of the other bundles. In terms of a commutative
diagram we get, not surprisingly,

Rc Ap Aϕ(p) Rc

ρ
(
gAÃ
ϕ (p)

)
ψÃ
A,p ϕ∗,A ψA

A,ϕ(p)
, (13.39)

which follows when acting on feature vector coefficients f ∈ Rc:

[
ψAA,ϕ(p) ◦ ϕ∗,A ◦

(
ψÃA,p

)−1]
(f)

=
[
ψAA,ϕ(p) ◦ ϕ∗,A

]([
σÃ(p), f

]) (
def. of

(
ψA
A,p

)−1, Eq. (11.67)
)

= ψAA,ϕ(p)

([
ϕ∗,FM

(
σÃ(p)

)
, f
]) (

def. of ϕ∗,A , Eq. (13.16)
)

= ψAA,ϕ(p)

([
σA
(
ϕ(p)

)
◁ gAÃϕ (p), f

]) (
induced gauge transformation, Eq. (13.32)

)
= ψAA,ϕ(p)

([
σA
(
ϕ(p)

)
, ρ
(
gAÃϕ (p)

)
f
]) (

def. of ∼ρ, Eq. (11.42)
)

= ρ
(
gAÃϕ (p)

)
· f

(
def. of ψA,p, Eq. (11.66)

)
(13.40)

Note that the expression ρ
(
gAÃϕ (p)

)
requires gAÃϕ (p) to be a structure group element since

ρ is a G-representation. This shows once again from another perspective that pushforwards
on A can only be defined for isometries in IsomGM .

For completeness, we give the following local trivialization of the commutative diagram
from Eq. (13.21), which might be useful when implementing coordinate independent CNNs



13.1. Isometries and their action on manifolds, bundles and fields 239

and testing their IsomGM -equivariance:

U Ã × Rc π−1
A

(
U Ã
)

π−1
A

(
UA
)

UA × Rc

U Ã UA

proj1

ϕ× ρ
(
gAÃ
ϕ

)
·

ϕ∗,A

πA

ΨÃ
A

πA

ΨA
A

proj1

ϕ

f ϕ▷f⟲ ⟲

(13.41)

13.1.4 Commutativity of isometry actions with the exponential map and
transporters

In the following section we will need an expression for the action of isometries on transporter
pullbacks Exp∗pf of feature fields f , which we derive here. For this purpose, we discuss the
behavior of the exponential map and parallel transporters under the action of isometries.

Isometries and the exponential map: As proven in [100], isometries map geodesics to
geodesics and do therefore in particular commute with the exponential map.6 More specifi-
cally, the identity

expϕ(p) ◦ϕ∗,TM(v) = ϕ ◦ expp(v) ∀ v ∈ TpM, ϕ ∈ Isom(M) , (13.42)

holds for any isometry and any tangent vector at p (still assuming a geodesically complete
manifold). It states that the result of the exponential map at p, evaluated with some vector
v and then being mapped through the isometry, equals the exponential map at ϕ(p) when
being evaluated with the pushforward of v as visualized in Fig. 13.5 (left). This statement
is diagrammatically expressed by the commutativity of (the upper square of) the following
diagram:

M M

TM TM

M M

ϕ

ϕ∗,TM

πTM

exp

πTM

exp

ϕ

(13.43)

6 The proof relies on the fact that the Levi-Civita connection ∇ : Γ(TM) × Γ(TM) →
Γ(TM), (X,Y ) 7→ ∇XY , on which the Riemannian exponential map is based, commutes with
isometries: ϕ▷

(
∇XY

)
= ∇ϕ▷X

(
ϕ▷Y

)
; see [100]
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Figure 13.5: Left: Isometries commute with the exponential map, that is, expϕ(p) ◦ϕ∗,TM(v) = ϕ ◦
expp(v) for any vector v ∈ TpM and isometry ϕ ∈ Isom(M). Right: Isometries also commute with
the Levi-Civita transport of tangent vectors and feature vectors, that is, ϕ∗,A ◦ PA,γ = PA,ϕ◦γ ◦ ϕ∗,A
for arbitrary paths γ : [0, 1] → M and isometries ϕ ∈ Isom(M). If an alternative, G-compatible
connection is used, we demand that the same commutativity property holds for them. The isometry-
invariance of exponential maps and transporters allows GM -convolutions to be equivariant under the
action of isometries.

Isometries and parallel transporters: The pushforward on the tangent bundle was
in [100] further argued to commute with the corresponding Levi-Civita transporters, as visu-
alized in Fig. 13.5 (right). If an alternative, G-compatible connection is chosen to transport
feature vectors, we demand that it commutes with the action of isometries as well. Since the
transporters and the pushforwards on FM , GM and A are induced from those on TM , one
can easily show that this property translates to them. Specifically for the associated feature
vector bundles this means that for arbitrary isometries ϕ ∈ IsomGM and paths γ we assume
the relation

ϕ∗,A ◦ PA,γ = PA,ϕ◦γ◦ ϕ∗,A (13.44)

to hold, such that the following diagram commutes:

Aγ(0) Aϕ◦γ(0)

Aγ(1) Aϕ◦γ(1)

ϕ∗,A

PA,γ PA,ϕ◦γ

ϕ∗,A

(13.45)

Isometries and transporter pullbacks of feature fields: Knowing the transformation
laws of exponential maps and transporters under the action of isometries, we have everything
at hand that is required to derive the transformation law of transporter pullbacks Exp∗pf of
feature fields f :
Theorem 13.1.4 (Isometry action on transporter pullbacks of feature fields). Let f ∈

Γ(A) be any feature field and let ϕ ∈ IsomGM be anyG-structure preserving isometry.
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Assume the feature vector transporters to commute with the action of IsomGM , that is,
that Eq. (13.44) holds (which is automatically guaranteed for the Levi-Civita connec-
tion). The transporter pullback (Def. 12.2.4) of the pushforward field ϕ▷f (Def. 13.1.2)
is then given by:

Exp∗p(ϕ▷ f) = ϕ∗,Aout
◦
[
Exp∗ϕ−1(p)f

]
◦ ϕ−1∗,TM (13.46)

Proof: We start by letting the right-hand side act on an arbitrary vector v ∈ TpM and work
progressively to the left-hand side by using the properties derived in this section:

ϕ∗,Aout

[
Exp∗ϕ−1(p)f

]
ϕ−1∗,TM(v) (13.47)

=ϕ∗,Aout
P
Ain,ϕ

−1(p)← expϕ−1(p)◦ϕ−1∗,TM(v)
◦ f ◦ expϕ−1(p)◦ϕ−1∗,TM(v) (Def. 12.2.4 )

=ϕ∗,Aout
P
Ain,ϕ

−1(p)← ϕ−1◦ expp(v)
◦ f ◦ ϕ−1 ◦ expp(v) (isom. action on exp, Eq. (13.42))

=PAin,p← expp(v)
◦ ϕ∗,Ain

◦ f ◦ ϕ−1 ◦ expp(v) (isometry action on PAin
, Eq. (13.44))

=PAin,p← expp(v)
◦ (ϕ▷ f) ◦ expp(v) (pushforward of fields, Eq. (13.20))

=
[
Exp∗p(ϕ▷ f)

]
(v) (transporter pullback, Def. 12.2.4 )

□
Intuitively, this result just states that the transporter pullback of a pushforward field equals
the pushforward of the original field’s transporter pullback. Relative to local trivializations,
this pushforward can be interpreted as an isometry induced gauge transformation, which
was stated in Eq. (9.46). We will in the following assume that the G-compatible connection
which is chosen to transport feature vectors will always be IsomGM -invariant, and thus that
Eq. (13.46) holds.

That the transporter pullback and the isometry pushforward commute is a consequence of
the commutativity of the exponential map and parallel transporter, in terms of which the
transporter pullback is defined. Note that general diffeomorphisms do not preserve the metric
and thus the exponential map and the transporter pullback of feature fields. Being based
on these constructions, kernel field transforms and GM -convolutions can only be isometry
equivariant but not fully diffeomorphism equivariant.

13.2 Isometry equivariance of kernel field transforms and
GM-convolutions

We now turn to investigate under which conditions kernel field transforms and GM -
convolutions are equivariant w.r.t. the action of isometries on feature fields. As the action
on the G-associated feature vector bundles is only defined for G-structure preserving isome-
tries, we will formulate all statements for the subgroup IsomGM ≤ Isom(M) or subgroups
I ≤ IsomGM thereof. One can of course always consider structure groups G ≥ O(d), for
which IsomGM = Isom(M).

The equivariance of a kernel field transform, and thus GM -convolutions, is defined as fol-
lows:
Definition 13.2.1 (Isometry equivariant kernel field transform).

Let TK : Γ(Ain)→ Γ(Aout) be a kernel field transform. Then TK is said to be equivari-
ant w.r.t the action of isometries in a subgroup I ≤ IsomGM if it commutes with this
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action, that is, if the following property holds:

TK
(
ϕ▷f

)
= ϕ▷

(
TK(f)

)
∀ f ∈ Γ(Ain), ϕ ∈ I (13.48)

In terms of a diagram, TK is equivariant w.r.t isometries in I if

Γ(Ain) Γ(Aout)

Γ(Ain) Γ(Aout)

TK

ϕ▷ ϕ▷

TK

(13.49)

commutes for all ϕ ∈ I .

A visualization of this definition is given in Fig. 9.3. In the following Section 13.2.1 we will
derive a constraint on kernel fields in order for the corresponding kernel field transform to
be isometry equivariant. The geometrically intuitive result which we obtain is that the kernel
field itself is required to be invariant under the action of isometries, which implies a form of
weight sharing over the isometry orbits; see Fig. 13.6. Section 13.2.2 applies these insights
to the more specific case of GM -convolutions and GM -convolutional kernel fields. It turns
out that GM -convolutions are by the G-steerability of their template kernel automatically
equivariant with respect to any isometry in IsomGM .

13.2.1 Isometry equivariance of general kernel field transforms

The main result of this section, Theorem 13.2.4, states that a kernel field transform TK is
isometry equivariant if and only if its underlying kernel fieldK is invariant under isometries.
To make sense of this statement we start by defining the transformation behavior of kernel
fields when being acted on by isometries.
Definition 13.2.2 (Isometry action on kernel fields). Let K : TM → Hom(Ain,Aout) be

a kernel field as defined in Def. 12.2.1. An isometry ϕ ∈ IsomGM acts on K via the
kernel field pushforward

ϕ∗,KK := ϕ∗,Hom ◦ K ◦ ϕ−1∗,TM . (13.50)

Intuitively, this pushforward of kernel fields can be thought of as moving the individual
kernels Kp at points p ∈M along the orbits of the isometry group to ϕ(p).

Since kernel fields are defined to be bundle M -morphisms, that is, to satisfy πHomK =
π
TM

, their pushforward is only well defined if it preserves this property. This is guaranteed
since the pushforward on the tangent bundle and homomorphism bundle are bundle maps,
satisfying π

TM
◦ ϕ∗,TM = ϕ ◦ π

TM
(Eq. (13.4)) and πHom ◦ ϕ∗,Hom = ϕ ◦ πHom (Eq. (13.17)),

respectively:

πHom ϕ∗,KK = πHom ϕ∗,HomK ϕ−1∗,TM
= ϕπHomK ϕ

−1
∗,TM

= ϕπ
TM
ϕ−1∗,TM

= ϕϕ−1π
TM

= π
TM

(13.51)
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We visualize the definition of the isometry action on kernel fields by a commutative diagram:

M

TM Hom(Ain,Aout)

TM Hom(Ain,Aout)

M

πTM

ϕ∗,KK

πHom

πTM

K

ϕ∗,TM

πHom

ϕ∗,Homϕ (13.52)

The bottom part of this diagram shows the coordinate free kernel field K from the diagram
in Eq. (12.23) while the upper part shows its pushforward ϕ∗,KK = ϕ∗,Hom ◦ K ◦ ϕ−1∗,TM by
ϕ ∈ IsomGM . The commutativity of the leftmost arrow, which asserts that ϕ∗,K moves
kernels from p to ϕ(p), follows from ϕ∗,TM and ϕ∗,Hom both being bundle maps over ϕ.

We proceed by defining isometry invariant kernels fields – a visualization is found in
Fig. 13.6.

Definition 13.2.3 (Isometry invariant kernel fields). A kernel field K is said to be invari-
ant7 under isometries in I ≤ IsomGM if it satisfies the constraint ϕ∗,KK = K for all
ϕ ∈ I . We denote the space of isometry invariant kernel fields by

KIinvar :=
{
K : TM → Hom(Ain,Aout) smooth

∣∣∣ πHom◦ K = π
TM
, (13.53)

ϕ∗,KK = K ∀ϕ ∈ I
}
.

By writing out ϕ∗,K , the invariance constraint reads

ϕ∗,Hom ◦ K ◦ ϕ−1∗,TM = K ∀ϕ ∈ I , (13.54)

which, after further expanding ϕ∗,Hom as defined in Eq. (13.19), becomes:

ϕ∗,Aout
K
(
ϕ−1∗,TMv

)
ϕ−1∗,Ain

= K(v) ∀ v ∈ TM, ∀ϕ ∈ I (13.55)

Note the similarity of these kernel field constraints in Eqs. (13.54) and (13.55) with the G-
steerability constraint on template kernels in Eqs. (12.29) and (12.30), respectively. Indeed,
both constraints are closely related and imply each other to a certain extent as we will show
in the following Section 13.2.2 on isometry equivariant GM -convolutions.

The following theorem proves that kernel fields which are invariant under isometries do
indeed correspond to isometry equivariant kernel field transforms:

7Instead of saying that K is invariant, one could call it equivariant since it satisfies ϕ∗,Hom ◦ K =
K ◦ ϕ∗,TM ∀ϕ ∈ I. This claim holds more generally, see Eq. (B.28) in Appendix B.4.
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Figure 13.6: Visualization of an invariant kernel field K
for the case of an isometry (sub)group I = SO(2). The
invariance constraint requires ϕ∗,KK := ϕ∗,HomKϕ−1

∗,TM =

K for any ϕ in I. It enforces kernels to be shared over
the orbits I.p := {ϕ(p) |ϕ ∈ I} of the action but allows
for different kernels on different orbits. Theorem 13.2.4
proves that invariant kernel fields and equivariant ker-
nel field transforms imply each other. This is intuitively
clear since a specific pattern in the feature field at p ∈M
will evoke the same response when being transported to
ϕ(p) if and only if the kernels at both points coincide.
For the choice of I = O(2) as isometry group, the ker-
nels would additionally have to satisfy a reflectional con-
straint; see Fig. 13.7.

Theorem 13.2.4 (Equivariant kernel field transform⇔ invariant kernel field).
A kernel field transform TK : Γ(Ain) → Γ(Aout) (Def. 12.2.5) is equivariant w.r.t.
isometries in I ≤ IsomGM according to Def. 13.2.1 if and only if the underlying kernel
field K is invariant under isometries according to Def. 13.2.3, that is,

TK(ϕ▷ f) = ϕ▷TK(f) ⇐⇒ ϕ∗,KK = K (13.56)

for any ϕ ∈ I and any f ∈ Γ(Ain).

Proof: To prove this theorem, we write out the kernel field transforms and feature field
pushforwards on both sides of the isometry equivariance condition in Eq. (13.48). The
statement follows from a comparison of both sides after a few algebraic manipulations.

We start with the right-hand side of Eq. (13.48):[
ϕ▷TK(f)

]
(p)

(1)
= ϕ∗,Aout

[
TK(f)

](
ϕ−1(p)

)
(2)
= ϕ∗,Aout

∫
Tϕ−1(p)M

K(v)
[
Exp∗ϕ−1(p)f

]
(v) dv

(3)
= ϕ∗,Aout

∫
Tϕ−1(p)M

K(v) ϕ−1∗,Ain

[
Exp∗p

(
ϕ▷ f

)](
ϕ∗,TM(v)

)
dv

(4)
=

∫
TpM

ϕ∗,Aout
K
(
ϕ−1∗,TM ṽ

)
ϕ−1∗,Ain

[
Exp∗p

(
ϕ▷ f

)]
(ṽ) dṽ

(5)
=

∫
TpM

[
ϕ∗,HomK ϕ−1∗,TM

]
(ṽ)
[
Exp∗p

(
ϕ▷ f

)]
(ṽ) dṽ

(6)
=

∫
TpM

[
ϕ∗,KK

]
(ṽ)
[
Exp∗p

(
ϕ▷ f

)]
(ṽ) dṽ (13.57)

Steps (1) and (2) expand the isometry action ▷ on feature fields (Def.13.1.2) and
the kernel field transform (Def. 12.2.5). The transformation law of the field’s trans-
porter pullback in Theorem 13.1.4, which relies on the IsomGM -invariance of the G-
compatible connection, justifies step (3). Step (4) substitutes v with ṽ = ϕ∗,TMv. Since
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ϕ is an isometry, the change of volume equates to 1. Steps (5) and (6) identify the action
of the kernel pushforward ϕ∗,K , Def. 13.2.2. The resulting statement is quite intuitive:
A transformation of the kernel field transform’s output corresponds to a simultaneous
transformation of its input and kernel field.

Writing out the left-hand side yields[
TK
(
ϕ▷ f

)]
(p) =

∫
TpM

K(v)
[
Exp∗p

(
ϕ▷ f

)]
(v) dv , (13.58)

which is equivalent to the right-hand side up to the transformation of the kernel field.

Isometry equivariance requires both expressions to agree for arbitrary fields f ∈
Γ(Ain), points p ∈M and isometries ϕ ∈ I . This is the case if and only if ϕ∗,KK = K
holds for any ϕ ∈ I, i.e. if the kernel field is invariant under the action of isometries.□

Note that this proof would have been very cumbersome to work out in (a G-atlas of) local
trivializations. The global, coordinate free description of kernel field transforms allows for
a simple proof without having to worry that the isometries move features between different
local trivializations.

At this point we could proceed with a further investigation of isometry invariant kernel fields:
since the invariance constraint implies kernels to be shared over orbits of the isometry group,
a description of the entire kernel field on the full manifold is redundant. It is therefore
possible to reduce the description of such kernel fields to kernel fields on quotient spaces.
As this analysis is not required to prove the isometry equivariance of GM -convolutions and
requires some technical definitions, we postpone it to Section 13.3

13.2.2 Isometry equivariance of GM-convolutions

Recall that GM -convolutions (Def. 12.2.7) were defined as specific kernel field transforms
withGM -convolutional kernel fields (Def. 12.2.3). The results on the isometry equivariance
of kernel field transforms therefore immediately apply to GM -convolutions as well. How-
ever, in addition to the isometry invariance constraint in Eq. (13.54), GM -convolutional ker-
nel fields need to satisfy theG-steerability constraint on the template kernel from Eq. (12.29)
and share weights over the G-structure according to Eq. (12.31). In order for the GM -
convolution to be isometry equivariant, all of these constraints have to be satisfied simul-
taneously. Intuitively, this implies that the convolutional weight sharing needs to agree
with the isometry induced weight sharing over orbits. Luckily it turns out that this is au-
tomatically the case for the isometries under consideration: GM -convolutions share weights
over the G-structure and the isometries in IsomGM preserve the G-structure such that GM -
convolutional kernel fields are guaranteed to be IsomGM invariant. In coordinates, this re-
flects in the IsomGM -induced gauge transformations gAÃϕ (p) taking values in the structure
group G, such that they are explained away by the G-steerability of the template kernels.

To make these arguments more rigorous, consider a GM -convolution K⋆ : Γ(Ain) →
Γ(Aout) with some G-steerable kernel K ∈KG

ρin,ρout
, which is by Def. 12.2.7 just the kernel

field transform TKK
with the GM -convolutional kernel field KK . By Theorem 13.2.4, the

GM -convolution is therefore exactly then IsomGM -equivariant if KK is IsomGM -invariant,
i.e. when it satisfies ϕ∗,KKK = ϕ∗,Hom ◦ KK ◦ ϕ−1∗,TM = KK for any ϕ ∈ IsomGM . This
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constraint on the full kernel field is equivalently expressed by a set of constraints on the
individual convolution kernels that make up the field:

ϕ∗,Hom ◦ KK,p ◦ ϕ−1∗,TM = KK,ϕ(p) ∀ p ∈M, ϕ ∈ IsomGM (13.59)

Considering a specific point p ∈ M , we choose arbitrary gauges Ã at p and A at ϕ(p) from
the G-atlas. The GM -convolutional kernel field is by Def. 12.2.3 at p and ϕ(p) given by

KK,p :=
(
ψÃHom,p

)−1 ◦ K√
|ηÃp |

◦ ψÃTM,p (13.60)

and KK,ϕ(p) :=
(
ψAHom,ϕ(p)

)−1 ◦ K√
|ηAϕ(p)|

◦ ψATM,ϕ(p) . (13.61)

Plugging these expressions into the constraint in Eq. (13.59) for the fixed p and identifying
ϕ∗,Hom

(
ψÃHom,p

)−1
with

(
ψÃHom,p ϕ

−1
∗,Hom

)−1
yields, for any ϕ ∈ IsomGM :

(
ψÃHom,p ϕ

−1
∗,Hom

)−1◦ K√
|ηÃp |

◦ ψÃTM,p ϕ
−1
∗,TM =

(
ψAHom,ϕ(p)

)−1◦ K√
|ηAϕ(p)|

◦ ψATM,ϕ(p) (13.62)

The isometry equivariance will therefore hold if the weight sharing via the isometry induced
gauges ψÃ(·),pϕ∗,(·) agrees with the weight sharing via the original gauges ψA

(·),ϕ(p) from ϕ(p).
Recall that the isometry induced gauges are by Theorem 13.1.3 for isometries in IsomGM

guaranteed to be compatible with the G-atlases (of the corresponding bundle). As shown in
Eq. (12.32), the particular choice of gauge, relative to which the G-steerable template kernel
is oriented, is irrelevant, as long as the gauges are G-compatible. Since all derivations were
independent from the chosen point p and the particular choice of gauges, this implies that
GM -convolutions are by design guaranteed to be IsomGM -equivariant.

To gain a better intuition for this result it is worth to make the induced, G-valued gauge
transformations gAÃϕ (p) explicit. To this end, note that the commutativity of the dia-

grams in Eqs. (13.39) and (13.24) implies ψÃHom,p ϕ
−1
∗,Hom

= ρHom

(
gAÃϕ (p)

)−1
ψAHom,ϕ(p) and

ψÃTM,p ϕ
−1
∗,TM =

(
gAÃϕ (p)

)−1
ψA
TM,ϕ(p). Inserting these coordinate expressions into the con-

straint in Eq. (13.62) leads to the requirement that(
ρHom

(
gAÃϕ (p)

)−1
ψAHom,ϕ(p)

)−1
◦ K√
|ηÃp |

◦
(
gAÃϕ (p)

)−1
ψATM,ϕ(p) (13.63)

=
(
ψAHom,ϕ(p)

)−1◦ K√
|ηAϕ(p)|

◦ ψATM,ϕ(p)

needs to hold for any isometry ϕ in IsomGM . By expanding the inverse on the left-hand side,

using that
√
|ηÃp | =

√
|ηAϕ(p)| ·

∣∣det gAÃϕ (p)
∣∣ and dropping the gauges, which is possible

since they are isomorphisms, we end up with the constraint

1∣∣det gAÃ
ϕ (p)

∣∣ ρHom

(
gAÃϕ (p)

)
◦K ◦

(
gAÃϕ (p)

)−1
= K ∀ ϕ ∈ IsomGM , (13.64)
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which looks exactly like the G-steerability kernel constraint on K from Def. 12.2.2. Recall
that the isometry induced gauge transformations gAÃϕ (p) are by Theorem 13.1.3 guaranteed
to be G-valued if ϕ is an element of IsomGM . The constraint in Eq. (13.64) is therefore
always satisfied by the G-steerability of K.

The derived results on the IsomGM -invariance of GM -convolutional kernel fields KK are
concisely summarized by the statement that the following diagram is guaranteed to be com-
mutative if K is G-steerable and if ϕ ∈ IsomGM is G-structure preserving:

UA

UA×Rd π−1
TM

(
UA
)

π−1
Hom

(
UA
)

UA×Rcout×cin

U Ã×Rd π−1
TM

(
U Ã
)

π−1
Hom

(
U Ã
)

U Ã×Rcout×cin

U Ã

id×
(
ρHom

(
g′AÃ
ϕ

)
◦K

/√
|ηA| ◦

(
g′AÃ
ϕ

)−1
)

πTM

ϕ∗,KKK

ΨA
TM

πHom

ΨA
Hom

ϕ× gAÃ
ϕ ·

id×K
/√
|ηÃ|

πTM

KK

ϕ∗,TM

ΨÃ
TM

πHom

ϕ∗,Hom

ΨÃ
Hom

ϕ× ρHom

(
gAÃ
ϕ

)

Here we defined the pullback g′AÃϕ := gAÃϕ ◦ ϕ−1 : UA → G of the isometry pushforward

coordinatization from U Ã to UA for notational convenience.

Together with Theorem 13.2.4, the IsomGM -invariance of GM -convolutional kernel fields
implies the IsomGM -equivariance of GM -convolutions:
Theorem 13.2.5 (Isometry equivariance of GM -convolutions). A GM -convolution

K⋆ : Γ(Ain) → Γ(Aout) with a G-steerable kernel K ∈ KG
ρin,ρout

is equivariant with
respect to all G-structure preserving isometries ϕ ∈ IsomGM , that is,

K ⋆
(
ϕ▷ f

)
= ϕ▷

(
K ⋆ f

)
∀ f ∈ Γ(Ain), ϕ ∈ IsomGM . (13.65)

The following diagram commutes therefore for every ϕ ∈ IsomGM :

Γ(Ain) Γ(Aout)

Γ(Ain) Γ(Aout)

K⋆

ϕ▷ ϕ▷

K⋆

(13.66)

Proof: The proof was given in the discussion prior to the theorem. □

Having this general result on GM -convolutions derived, we will now discuss some special
cases for specific choices of structure groups G. Firstly, for orthogonal structure groups
G = O(d) (or supergroups of it), the convolution will commute with any isometry:
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Theorem 13.2.6 (Full isometry equivariance of OM -convolutions). OM -convolutions
are equivariant w.r.t. the action of any isometry ϕ ∈ Isom(M) on feature fields. More
generally, any GM -convolution for G-structures with structure groups G ≥ O(d) is
fully isometry equivariant.

Proof: The statement follows from Theorem (13.2.5) by observing that IsomGM =
Isom(M) is guaranteed for structure groups G ≥ O(d). The latter was discussed
in Eq. (13.14). □

This result relies essentially on the fact that isometries are defined as that subgroup of dif-
feomorphisms on M which induce O(d)-structure automorphisms. Less abstractly stated,
Isom(M) is by definition that subgroup of diffeomorphisms which respect the Riemannian
metric η of M and the corresponding O(d)-structure OM is equivalent information to the
metric.

On orientable Riemannian manifolds one can furthermore pick an orientation (frame hand-
edness), which together with the metric defines an SO(d)-structure SOM . The correspond-
ing isometries which lift to SO(d) structure automorphisms are the orientation preserving
isometries in Isom+(M).
Theorem 13.2.7 (Isom+(M) equivariance of SOM -convolutions). SOM -

convolutions are equivariant w.r.t. the action of orientation preserving isometries
ϕ ∈ Isom+(M) on feature fields.

Proof: This result follows from Theorem (13.2.5) by observing that IsomSOM =
Isom+(M). □

For instance, an SOM -convolution for M = R2, corresponding to Fig 13.4a, is equivari-
ant w.r.t. the action of the special Euclidean group Isom+(R2) = SE(2). Similarly, an
SOM -convolution for M = S2, corresponding to Fig 13.4b, is rotation equivariant with
Isom+(S

2) = SO(3).

Note that the results of Theorems 13.2.6 and 13.2.7 depend only on the structure group
G but not on the particular choice of G-structure. For subgroups G of O(d) (or SO(d))
things become more complicated. In these cases the subgroups IsomGM of Isom(M) de-
pend on the specific embedding of the G-structure GM into FM . This was for G = {e}
visualized in Fig. 13.3. Specifically, Fig. 13.3a shows the canonical {e}-structure of R2,
which is fully translation equivariant, that is, Isom{e}M = (R2,+). In contrast, Fig. 13.3b
shows an {e}-structure of R2 which is only translation equivariant along one axis such that
Isom{e}M

∼= (R1,+). From the viewpoint of convolutional networks this result is very
intuitive: The {e}-steerable kernels in these examples are unconstrained, i.e. conventional
convolution kernels. They do therefore in general not carry any information about their
responses when being applied relative to gauge transformed reference frames. Since the
frames, and therefore kernels, in Fig. 13.3b are differently rotated along the “left-right” direc-
tion, the kernel responses change unpredictably when translating a signal in that direction. If
the template kernels would, however be SO(2)-steerable, they could account for the rotation
of frames. This case corresponds to the situation in Fig 13.4a, i.e. an SOM -convolution.

13.3 Quotient kernel fields

Theorem 13.2.4 showed that the isometry equivariance of a kernel field transform requires
the invariance of the corresponding kernel field. Since the invariance constraint implies ker-
nels to be shared over orbits as visualized in Fig. 13.6, the mathematical description of such
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invariant kernel fields is redundant: a single kernel at one orbit representative is sufficient
to reconstruct the kernel field on the whole orbit. In Section 13.3.2 we derive equivalent,
reduced descriptions of invariant kernel fields in terms of kernels on orbit representatives.
These representative kernels are themselves constrained by the action of the stabilizer sub-
group of the orbit representative. We propose a (unique) lifting from representative kernels
to invariant kernel fields, which establishes an isomorphism between both descriptions. This
lifting isomorphism suggest a way of parameterizing and constructing isometry equivariant
kernel field transforms in an implementation. Before deriving these results in Section 13.3.2,
the following Section 13.3.1 sets up the mathematical framework.

The derivations and results of this section are close in spirit to the theory of steerable CNNs
on homogeneous spaces [55, 56], however, we generalize their results from homogeneous
spaces to general manifolds. When sticking to homogeneous spaces M , we prove that isom-
etry equivariant kernel field transforms are equivalent to GM -convolutions.

13.3.1 Isometry induced quotient spaces

The action of a symmetry group on a space partitions it into orbits, defined as the sets of
all points which are connected by the group action. The space of such orbits is the quotient
space w.r.t. this group action. In the following we will discuss the quotient spaces arising
from the actions of some isometry group I ≤ IsomGM both on the manifold and on the
fiber bundles. These definitions will later allow us to share weights over orbits by acting
with isometries on kernels.

Manifold quotients: Any point p ∈M traces out an orbit (Def. B.3.3)

I.p :=
{
ϕ(p)

∣∣ ϕ ∈ I } ⊆ M , (13.67)

which is defined as the set of all points reached by acting on p with any isometry in I ≤
Isom(M). One can easily check that the relation “p and q are elements of the same orbit”
is an equivalence relation (see footnote 11) and thus partitions the manifold as visualized in
Fig. 13.7a. The quotient space (Def. B.3.4)

I\M :=
{
I.p

∣∣ p ∈M} (13.68)

with respect to this equivalence relation is the space of all orbits, that is, each element of
I\M corresponds to a full orbit in M .8 The corresponding quotient map

Q
M
:M → I\M, p 7→ I.p (13.69)

identifies a point p ∈M with its orbit I.p ∈ I\M . For each orbit one can select an arbitrary
orbit representative (Def. B.3.5), formally determined by a section

r
M
: I\M →M such that Q

M
◦ r

M
= idI\M , (13.70)

where the last condition ensures that the representative r
M
(I.p) is indeed an element of the

orbit I.p. One is often interested in continuous (or smooth) sections, however, these do in
general not exist. We will therefore in the following not demand the orbit representatives to
be chosen continuously and make up for this shortcoming post-hoc if necessary. As usual
for sections, they are in general only right inverses of the quotient map but not left inverses,

8We write I\M as a left quotient since I acts on M from the left.
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that is, r
M
◦Q

M
̸= idM . This is visualized by a commutative diagram

I\M M I\M
rM

idI\M

QM (13.71)

similar to that in Eq. (11.19) and a non-commutative diagram

M I\M M
QM

idM

rM

⟲

(13.72)

similar to that in Eq. (11.20). The individual fibers preimQ
M
(I.p) = I.p ⊆ M of the quo-

tient map Q
M

are given by the orbits themselves. Note that M
Q
M−−→ I\M is in general

not a fiber bundle since the orbits are not necessarily homeomorphic to each other and can
therefore not be locally trivialized with a shared typical fiber F , as required by the commu-
tative diagram in Eq. (11.1). Each orbit therefore has an own type which is in close relation
to the stabilizer subgroups of the points on that particular orbit. The stabilizer subgroup
(Def. B.3.6)

Stabp :=
{
ξ ∈ I

∣∣ ξ(p) = p
}
≤ I (13.73)

of a point p ∈ M is thereby defined as that subgroup of the isometry group which leaves p
fixed. In terms of the stabilizer subgroup, it holds that the orbit of a point is identified with

I.p ∼= I/Stabp , (13.74)

which is known as orbit-stabilizer theorem B.3.7. To see this claim, let fp : I → I.p, ϕ 7→
ϕ(p) for some p ∈ M and observe that fp(ϕ ◦ ξ) = ϕ ◦ ξ(p) = ϕ(p) = fp(ϕ) for any
ξ ∈ Stabp. It can easily be shown that indeed preimfp

(
ϕ(p)

)
= ϕ.Stabp is a coset of

the stabilizer subgroup of p and thus that fp establishes the claimed isomorphism I.p ∼=
I/ Stabp.

To make these constructions more intuitive, consider the example in Fig. 13.7a with I ∼=
O(2). The orbits I.n = {n} and I.s = {s} of the north and south pole are just points,
which are fixed by I . This agrees with, for instance, I.n ∼= I/ Stabn = I/I ∼= {n} since
Stabn = I coincides with the full isometry group. For any other point p ∈ M , the orbits
I.p are circles. We have reflections Stabp ∼= R (flipping over p) as stabilizer subgroup
and thus indeed get the circle I/Stabp ∼= O(2)/R ∼= S1 as orbit type. The quotient map
Q
M

: M → I\M sends points q ∈ M to their orbits Q
M
(q) = I.q in the quotient space

I\M , shown on the right. Since the orbits can be traversed from the north to the south pole,
the quotient space I\M has the topology of a line segment. The section r

M
: I\M → M

picks one representative point r
M
(o) ∈ M for any orbit o ∈ I\M . In general, this orbit

representative does not recover a projected point. For instance, we have that r
M
Q
M
(p) ̸= p.

One can interpret the section as embedding the quotient space I\M into the manifold, shown
as the black line r

M
(I\M) from the north to the south pole.

Bundle quotients: Since the isometry group acts not only on the manifold itself but via
pushforwards also on the associated bundles, these bundles are in a similar manner par-
titioned into orbits. To keep the discussion general, we are in the following considering
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(a) Quotient map and orbit representatives forM . (b) Quotient map and orbit representatives for TM .

Figure 13.7: Quotient mapsQM andQTM and orbit representatives (sections) rM and rTM for the actions
of the isometry group I = O(2) on the manifold M in Fig. 13.7a and on the tangent bundle TM in
Fig. 13.7b. A detailed description of both visualizations is given in the main text.

a generic associated bundle E πE−−→ M , which could stand for TM , FM , GM , A or
Hom(Ain,Aout). We denote elements of the total space as e ∈ E and let ϕ∗,E be the push-
forward of ϕ on E as introduced in Section 13.1.2. The orbit of an element of the bundle is
then in analogy to Eq. (13.67) given by

I.e =
{
ϕ∗,E(e)

∣∣ϕ ∈ I} (13.75)

while the quotient space, consisting of bundle orbits, is analogously to Eq. (13.68) defined
as

I\E =
{
I.e
∣∣ e ∈ E} . (13.76)

Similar to before, the (canonical) quotient map sends bundle elements to their orbit:

Q
E
: E 7→ I\E, e 7→ I.e (13.77)

We define a (uniquely determined) projection map

πI\E : I\E → I\M, Q
E
(e) 7→ Q

M
◦ π

E
(e) (13.78)

between the bundle quotients and manifold quotient as visualized in the following commu-
tative diagram:

I\E E

I\M M

πI\E

QE

πE

QM

(13.79)

Note that the definition in Eq. (13.78) does not depend on the particular choice of orbit
representative since for any other ϕ∗,E(e) ∈ Q

E
(e) we obtain the same result: Q

M
◦ π

E
◦

ϕ∗,E(e) = Q
M
◦ ϕ ◦ π

E
(e) = Q

M
◦ π

E
(e). Orbit representatives are formally determined by

a choice of section

r
E
: I\E → E such that Q

E
◦ r

E
= idI\E , (13.80)



252 Chapter 13. Isometry equivariance

which we again do not demand to be continuous. However, for convenience we demand the
representatives of bundle orbits to lie above the representatives r

M
(I\M) in the base space,

that is, to satisfy

π
E
◦ r

E
= r

M
◦ πI\E (13.81)

as shown in the commutative diagram below:

I\E E

I\M M

πI\E

rE

πE

rM

(13.82)

The stabilizer subgroup of a bundle element e ∈ E is defined as

Stabe :=
{
ξ ∈ I

∣∣ ξ∗,E e = e
}
≤ Stabπ

E
(e) ≤ I . (13.83)

It is necessarily a subgroup of the stabilizer subgroup Stabπ
E
(e) of the point π

E
(e) in the

base space, which is easily seen by ξ ∈ Stabe ⇔ ξ∗,E e = e ⇒ π
E
(ξ∗,E e) = ξ π

E
(e) =

π
E
(e) ⇔ ξ ∈ Stabπ

E
(e) . As before, the relation I.e ∼= I/ Stabe holds.

We extend our example from Fig. 13.7a by considering the action of I ∼= O(2) on the
tangent bundle TM of the egg M in Fig. 13.7b. The orbit (violet) of a non-zero vector
0 ̸= w ∈ TnM (red) at the north pole n describes a circle in TnM . This is consistent
with I.w ∼= I/Stabw ∼= O(2)/R ∼= S1 since such a vector is stabilized by reflections
Stabw ∼= R along its axis. The orbit of 0 ∈ TnM is a single point in TM , which is
stabilized by any isometry. Any other vector v ∈ TpM (red), living in a tangent space
at a point p ∈ M different from the poles, is by the action of the isometry group rotated
and reflected to other tangent spaces Tϕ(p)M on the orbit I.p of p. The orbit I.v (orange)
of any such vector, if not pointing exactly to the north or south, is given by an eastward
and a westward pointing copy of the vector in each of the tangent spaces over I.p. We
have Stabv = {e} for such vectors and indeed the orbit I.v ∼= I/ Stabv ∼= O(2)/{e} is
homeomorphic to O(2) (or two circles). Vectors v′ ∈ TpM which do point exactly north- or
southwards are stabilized by reflections over the axis which they define, that is, Stabv′ ∼= R.
Their orbit is homeomorphic to a circle I.v′ ∼= I/ Stabv′ ∼= O(2)/R ∼= S1.

The quotient map Q
TM

: TM → I\TM projects the tangent bundle to the bundle quotient
I\TM , shown in the right half of Fig. 13.7b. To understand its structure, we consider all
qualitatively different cases: Firstly, note that the orbits of vectors at the poles correspond
to circles of a certain radius, such that the set of such orbits forms a line π−1

I\E
(I.n) ∼= R≥0

(pink ray under the black arrow). Similarly, the orbits of vectors at any other point p ∈ M
intersect all tangent spaces Tϕ(p)M over I.p in two reflections and therefore form a half
plane π−1

I\E
(I.p) ∼= R× R≥0 (orange). The section r

TM
: I\TM → TM sends each bundle

quotient element to some representative in TM . By the requirement in Eq. (13.81), these
representatives are required to lie in the same fiber over the representatives r

M
(I\M) of the

manifold quotient I\M , shown as the black line. For instance, v ∈ TpM (red) is by the quo-
tient map sent to Q

TM
(v) ∈ I\TM (black). The section represents Q

TM
(v) by r

TM
Q
TM

(v)
(also black), which is an element of Tr

M
Q
M
(p)M and does in general differ from v.
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13.3.2 Quotient representative kernel fields and stabilizer constraints

To motivate the construction of quotient representative kernel fields and stabilizer con-
straints, consider the more explicit formulation

ϕ∗,Hom ◦ Kp ◦ ϕ−1∗,TM = Kϕ(p) ∀ p ∈M, ϕ ∈ I . (13.84)

of the isometry invariance constraint from Def. 13.2.3, which follows by writing out
Eq. (13.54) for any point p ∈M individually. This formulation emphasizes that the con-
straint leads to shared weights along the manifold orbits I.p ∈ I\M as visualized in
Figs. 13.6 and 13.7. It implies that the kernel Kr at an arbitrary representative point
r = r

M
(o) of any orbit o = I.r fully specifies the kernel field on the rest of the orbit,

i.e. at all points ϕ(r) where ϕ ∈ I . The kernel Kr at the representative point r is itself
constrained by the stabilizer subgroup of r:

ξ∗,Hom ◦ Kr ◦ ξ−1∗,TM = Kr ∀ ξ ∈ Stabr . (13.85)

This implies that any isometry invariant kernel field can be parameterized in terms of a field
of kernels on manifold orbit representatives r ∈ r

M
(I\M) which satisfy Eq. (13.85).

In case that the stabilizer subgroup at r happens to be non-trivial, the stabilizer constraint
in Eq. (13.85) implies further symmetries of the kernel Kr at r itself. For instance, in the
example in Fig. 13.7 one has the stabilizer subgroup Stabr ∼= R on the highlighted orbit,
enforcing a reflectional symmetry of the kernels. Such stabilizer symmetries allows to com-
press the description of isometry invariant kernel fields further: it turns out to be sufficient
to know the values K(w) of the kernel field on the tangent bundle quotient representatives
w ∈ r

TM
(I\TM) ⊆ TM only. In Fig. 13.7 this corresponds to knowing the kernel values on

the orange highlighted half space, from which the full field on the orbit can be reconstructed
by the reflectional and rotational symmetries in I ∼= O(2).

Theorem 13.3.1 below makes the latter claim precise by proving that the space KIinvar of
isometry invariant kernel fields is isomorphic to a space KIquot of kernel fields on tangent
bundle orbit representatives r

TM
(I\TM). KIquot is characterized by maximally reduced con-

straints and thus encodes the kernel fields in KIinvar in a non-redundant way. It can therefore
be viewed as the distilled degrees of freedom contained in KIinvar. In Theorem 13.3.2 we
formulate a third isomorphic space KIquot

̂ , which equivalently describes isometry invariant
kernel fields in terms of the stabilizer subgroup constrained kernels Kr from Eq. (13.85).
While the formulation of isometry invariant kernel fields in terms of KIquot

̂ involves stronger
constraints than that in terms of KIquot, it might be more convenient for implementations,
since it describes kernels on full tangent spaces instead of kernels on quotients of tangent
spaces.

Reconstruction isometries: In order to reconstruct full invariant kernel fields in KIinvar
from single kernels on orbit representatives, the representative kernels need to be redis-
tributed over the full manifold by applying the kernel pushforward in Eq. (13.84) with
p = r fixed to the chosen representative points. For the kernel reconstruction at some
point q ∈M , this requires some isometry ϕ which maps the orbit representative r

M
Q
M
(q) ∈

r
M
(I\M) ⊆ M back to q ∈ M , that is, which satisfies ϕ

(
r
M
Q
M
(q)
)
= q. To make this

more precise, recall that kernel fields K : TM → Hom(Ain,Aout) are defined as maps
with domain TM , encoding the kernel alignments in addition to their position. We therefore
need to consider more specific isometries which push tangent bundle orbit representatives
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Figure 13.7: Visualization of an isometry in-
variant kernel field, Def. 13.2.3, and its full
reconstruction from kernels on quotient rep-
resentatives only. In contrast to Fig 13.6, we
assume here an isometry group I = O(2) in-
stead of SO(2). The visualized kernels there-
fore have a reflectional symmetry, which is
enforced by the stabilizer subgroups Stabp

∼=
R of points on the orbit I.πTM (v). Due
to its symmetry, the full kernel field K :
TM → Hom(Ain,Aout) can be reconstructed
from its restriction to the bundle quotient rep-
resentative rTM (I\TM) ⊆ TM ; see Theo-
rem 13.3.1. For instance, the shown kernels
are fully determined by the partial kernel on
the orange half space. The reconstruction at
v ∈ TM is done by evaluating the quo-
tient representative kernel at rTMQTM (v) ∈
rTM (I\TM) and pushing the kernel via the

reconstruction isometry Φr
TM
(v) ∈ I, defined in Eq. (13.86), back to v. We want to mention that

the visualized antisymmetric kernels would result when mapping between feature fields of even and
odd parity, while kernels between feature fields of the same parity would be symmetric.

r
TM
Q
TM

(v) ∈ r
TM

(I\TM) ⊆ TM back to vectors v ∈ TM . These reconstruction isome-
tries are defined by:9

Φr
TM
: TM → I such that Φr

TM
(v)∗,TM rTMQTM

(v) = v ∀ v ∈ TM (13.86)

We recommend to consult Fig. 13.7 to get an intuition for the reconstruction isometries:
graphically, Φr

TM
(v) is defined as any isometry which pushes the black vector r

TM
Q
TM

(v)
on the orange orbit I.v back to the red vector v on the same orbit. Note that Φr

TM

is only unique up to the stabilizer subgroups of the orbit representatives since for any
ξ ∈ Stabr

TM
Q
TM

(v) it follows that Φr
TM
(v)ξ satisfies the defining constraint in Eq. (13.86)

as well:10
[
Φr

TM
(v) ξ

]
∗,TM rTMQTM

(v) = Φr
TM
(v)∗,TM rTMQTM

(v) = v. All of the following
constructions are shown to be independent from this ambiguity. The action of reconstruction
isometries on the base space M follows by applying the tangent bundle projection to both
sides of the defining constraint in Eq. (13.86):

π
TM

(v) = π
TM

Φr
TM
(v)∗,TM rTM QTM

(v)
(

Def. of Φr
TM

, Eq. (13.86)
)

= Φr
TM
(v)π

TM
r
TM
Q
TM

(v)
(

Pushforward is a bundle map, Eq. (13.3)
)

= Φr
TM
(v) r

M
πI\TM QTM

(v)
(

Def. of bundle sections, Eq. (13.81)
)

= Φr
TM
(v) r

M
Q
M
π
TM

(v)
(

Def. of πI\E , Eq. (13.79)
)

(13.87)

9Since the sections rTM are in general not continuous, Φr
TM

can in general not be demanded to be
continuous either.

10:Furthermore, the defining constraint on Φr
TM

is fulfilled when left multiplying Φr
TM
(v) with any

ζ ∈ Stabv . This does, however, not add any new degrees of freedom since Stabv
∼= Stabr

TM
Q
TM

(v)

and ζ Φr
TM
(v) = Φr

TM
(v)

[
Φr

TM
(v)−1ζΦr

TM
(v)

]
=: Φr

TM
(v)ζ̃ with ζ̃ ∈ Stabr

TM
Q
TM

(v).
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A visual summary of the properties of Φr
TM

, that is, its actions on TM and M , is given in the
following commutative diagram

TM I × r
TM

(I\TM) TM

M I × r
M
(I\M) M

πTM

Φr
TM
× rTM ◦QTM

idTM

ev

idI × πTM πTM

idM

ev

(13.88)

where the evaluation maps ev are, overloading the notation, given by ev : I × M →
M, (ϕ, p) 7→ ϕ(p) and ev : I × TM → TM, (ϕ, v) 7→ ϕ∗,TM(v), respectively.

Quotient representative kernel fields: As argued above, the symmetries which are
present in an isometry invariant feature field K ∈ KIinvar should allow for its full recon-
struction from its restrictionK|r

TM
(I\TM) : rTM(I\TM)→ r

Hom
(I\Hom) to tangent bundle

orbit representatives r
TM

(I\TM) ⊆ TM .11 To construct a (unique) lift Λ which recovers
K = Λ(K|r

TM
(I\TM)) from K|r

TM
(I\TM), we expand tangent vectors v in the domain of

K via the reconstruction isometry Φr
TM

from Eq. (13.86) and make use of the invariance
(equivariance) of the kernel field in Eq. (13.54). This leads to:

K(v) = K Φr
TM
(v)∗,TM r

TM
Q
TM

(v)

= Φr
TM
(v)∗,HomK rTM QTM

(v)

= Φr
TM
(v)∗,HomK|rTM(I\TM) rTM QTM

(v)

=:
[
Λ
(
K|r

TM
(I\TM)

)]
(v) (13.89)

Note that this construction is well defined despite the ambiguity of Φr
TM

w.r.t. the right
multiplication with elements in Stabr

TM
Q
TM

(v). This is easily seen by observing that for any
w ∈ TM , any ξ ∈ Stabw and any K ∈ KIinvar one has ξ∗,HomK(w) = K(ξ∗,TMw) = K(w),
which implies that StabK(w) ≥ Stabw, and thus that the final result does not depend on the
particular choice of the ambiguous Φr

TM
.

Since the lift Λ recovers invariant kernel fields from their restriction to tangent bundle orbit
representatives, it can be viewed as the inverse map of the restriction (of invariant kernel
fields). This viewpoint implies that the lift establishes an isomorphism Λ : KIquot → KIinvar

between the image of the restriction KIquot, which we still need to characterize, and KIinvar:

KIquot KIinvar

Λ

Λ−1 = ( · )|r
TM

(I\TM)

(13.90)

11In the following we might abbreviate Hom(Ain,Aout) and I\Hom(Ain,Aout) with Hom and
I\Hom, respectively.
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In order to characterize the space KIquot which makes Λ to an isomorphism, it is sufficient to
list the properties of restricted fieldsQ := K|r

TM
(I\TM) ∈KIquot for K ∈KIinvar:

First of all, since Λ−1 is given by the restriction of the domain to r
TM

(I\TM), it is clear
that any Q ∈KIquot is required to be of the form Q : r

TM
(I\TM)→ r

Hom
(I\Hom).

Secondly, the property of kernel fields to be bundle M -morphisms translates under the
restriction Λ−1 to the requirement on Q to satisfy πHom ◦ Q(w) = π

TM
(w) for any

w ∈ r
TM

(I\TM)

Thirdly, Q is required to satisfy the (vector) stabilizer constraint ξ∗,HomQ(w) = Q(w)
for any representative vector w ∈ r

TM
(I\TM) and any ξ ∈ Stabw. This requirement is

a residual from the invariance constraint in Eq. (13.54), surviving the restriction.
It can be deduced by considering the full constraint ϕ∗,HomQϕ−1∗,TM(w) = Q(w) for
any w ∈ r

TM
(I\TM) and any isometry ϕ ∈ I which additionally satisfies that

ϕ∗,TM(w) ∈ rTM(I\TM), i.e. that the pushforward ϕ∗,TM(w) stays within the restricted
domain of Q. Note that ϕ∗,TM(w) ∈ I.w and that r

TM
(I\TM) intersects each orbit

exactly once. This implies that I.w ∩ r
TM

(I\TM) = {w} such that ϕ ∈ I is required
to satisfy ϕ∗,TM(w) = w, that is, ϕ ∈ Stabw. The claimed (vector) stabilizer constraint
follows from these considerations.
For an intuition we refer back to Fig. 13.7 where the black representative vector
w = r

TM
Q
TM

(v) is stabilized only by the trivial isometry ξ = {e}, implying that the
corresponding value of Q is unconstrained. Vectors w′ ∈ r

TM
(I\TM) which point ex-

actly north- or southwards, i.e. which lie on the dashed reflection axis, are stabilized by
reflections in Stabw′ ∼= R, implying a constraint on the corresponding kernel values.12

As a last requirement, Q needs to lift to a smooth kernel field, that is, Λ(Q) is required
to be smooth. Unfortunately, the smoothness (or even continuity) of Λ(Q) does not
automatically follow from the smoothness (continuity) of Q since Λ is defined in terms
of r

TM
and Φr

TM
, which can in general not be demanded to be smooth (continuous).

Before summarizing and proving these claims rigorously in Theorem 13.3.1 below, we give a
visual overview of the relation betweenQ = K|r

TM
(I\TM) ∈KIquot and its lift K = Λ(Q) ∈

KIinvar in terms of commutative diagrams

TM I × r
Hom

(I\Hom) Hom
Φr

TM
× Q◦rTM ◦QTM

K = Λ(Q)

ev (13.91)

12The exact constraint depends on the action ξ∗,Hom on Hom(Ain,Aout), which depends on ρHom and
thus on ρin and ρout. The visualized kernel in Fig. (13.7) would correspond to ρHom being the sign-
flip (odd parity) representation of the reflection group, which enforces antisymmetric kernels. The
antisymmetry requiresQ to be constrained toQ(w′) = −Q(w′) = 0 for w′ on the reflection axis; cf.
Table 5.1
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and

TM Hom

r
TM

(I\TM) r
Hom

(I\Hom)

r
M
(I\M)

M

rTM ◦QTM

πTM

K = Λ(Q)

rHom ◦QHom

πHom

Q

πTM πHom

rM ◦QM

(13.92)
In the last diagram, the commutativity of the top square follows by inserting the definition of
the lift, which yields r

Hom
Q

Hom
Λ(Q) = r

Hom
Q

Hom
Φr

TM
(v)∗,HomQ rTMQTM

= Q r
TM
Q
TM

. The
commutative of the bottom left and right squares follows from Eqs. 13.81 and 13.78.
Theorem 13.3.1 (Tangent quotient representative kernel fields). The space of isometry

invariant kernel fields KIinvar from Def. 13.2.3 is isomorphic to the space KIquot of (vec-
tor) stabilizer subgroup constrained kernel fields on tangent bundle quotient represen-
tatives, defined as:13

KIquot :=
{
Q : r

TM
(I\TM)→ r

Hom
(I\Hom)

∣∣∣ πHom◦Q = π
TM
, Λ(Q) smooth,

ξ∗,HomQ(w) = Q(w) ∀ w∈ rTM(I\TM), ξ ∈ Stabw
}

(13.93)

The (unique) lifting isomorphism Λ : KIquot → KIinvar between both spaces is hereby
given by

Λ(Q) : TM → Hom(Ain,Aout), (13.94)

v 7→
[
Λ(Q)

]
(v) := Φr

TM
(v)∗,HomQ r

TM
Q
TM

(v) .

Its inverse Λ−1 : KIinvar → KIquot is given by the restriction of invariant kernel fields to
the bundle quotient representatives r

TM
(I\TM) ⊆ TM :

Λ−1(K) : r
TM

(I\TM)→ r
Hom

(I\Hom), (13.95)

w 7→
[
Λ−1(K)

]
(w) := K|r

TM
(I\TM)(w)

13This definition of KI
quot is in cyclic dependency with that of Λ in Eq. (13.94). This could be

avoided on the expense of 1) having to define spaces K̃I
quot and K̃I

invar without smoothness requirements,

in terms of which 2) Λ̃ : K̃I
quot → K̃I

invar could be defined, which would 3) allow to demand the
smoothness requirements in KI

quot in terms of Λ̃.
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Proof: In order to prove that Λ : KIquot → KIinvar is an isomorphism, we need to show that
1) Λ−1 is indeed an inverse of Λ, that 2) the defining properties of KIinvar and KIquot
are satisfied after lifting and restricting and that 3) the constructions do not depend on
arbitrary choices. In order to not overload this section, we outsource the full proof to
Appendix K.1. The individual steps of the proof are listed below:

1a) Λ ◦ Λ−1 = idKI
invar

, that is, Λ−1 is a right inverse of Λ

1b) Λ−1 ◦ Λ = idKI
quot

, that is, Λ−1 is a left inverse of Λ

2a) πHom◦Λ(Q) = π
TM

for any Q ∈ KIquot, that is, the lift Λ(Q) is a bundle
M -morphism

2b) πHom◦Λ−1(K) = π
TM

for any K ∈KIinvar

2c) ϕ∗,Hom Λ(Q)ϕ−1∗,TM = Λ(Q) ∀ϕ ∈ I , that is, Λ(Q) satisfies the full isometry
invariance (equivariance) constraint

2d) ξ∗,Hom

[
Λ−1(K)

]
(w) =

[
Λ−1(K)

]
(w) ∀ w ∈ r

TM
(I\TM), ξ ∈ Stabw, that

is, Λ−1(K) satisfies the stabilizer constraint

3) All constructions and proofs are independent from the particular choice of Φr
TM

The smoothness of lifted quotient representative kernel fields holds by definition. □

The arbitrariness in the choice of section r
TM

allows for different, isomorphic quotient kernel
fields, expressed on different bundle quotient representatives.

Instead of maximally restricting the kernel field to bundle orbit representatives in r
TM

(I\M),
one could choose to restrict the description to π−1

TM

(
r
M
(I\M)

)
only, i.e. to complete tangent

spaces TrM for any r ∈ r
M
(I\M). In Fig. (13.7), this would correspond to modeling the

(reflection symmetric) kernel on the full tangent space shown in the front instead of only
one half. The requirements on such restricted kernels can be derived by following the same
rationale as before and results in the constraint in Eq. (13.85). We obtain a similar theorem
to Theorem (13.3.1):

Theorem 13.3.2 (Manifold quotient representative kernel fields). The space of isometry
invariant kernel fields KIinvar from Def. 13.2.3 is isomorphic to the space KIquot

̂ of (man-
ifold) stabilizer subgroup constrained kernel fields on the tangent spaces over manifold
quotient representatives r

M
(I\M), defined as:

KIquot
̂ :=

{
Q̂ : π−1

TM

(
r
M
(I\M)

)
→ π−1

Hom

(
r
M
(I\M)

) ∣∣∣ πHom◦ Q̂ = π
TM
, Λ̂(Q̂) smooth,

ξ∗,Hom Q̂|r ξ−1∗,TM = Q̂|r ∀ r∈ r
M
(I\M), ξ ∈ Stabr

}
(13.96)

The lifting isomorphism Λ̂ : KIquot
̂ → KIinvar is in terms of Λ and a restriction defined

as

Λ̂ := Λ ◦ ( · )
∣∣
r
TM

(I\TM)
(13.97)
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and therefore essentially agrees with Λ:

Λ̂(Q̂) : TM → Hom(Ain,Aout), (13.98)

v 7→
[
Λ̂(Q̂)

]
(v) := Φr

TM
(v)∗,HomQ̂ r

TM
Q
TM

(v)

Its inverse Λ̂−1 : KIinvar → KIquot
̂ is given by the restriction of invariant kernel fields to

the tangent spaces over manifold quotient representatives: π−1
TM

(
r
M
(I\M)

)
⊆ TM :

Λ̂−1(K) : π−1
TM

(
r
M
(I\M)

)
→ π−1

Hom

(
r
M
(I\M)

)
, (13.99)

ŵ 7→
[
Λ̂−1(K)

]
(ŵ) := K

∣∣
π−1

TM
(r
M
(I\M))

(ŵ)

Proof: The proof is essentially analogous to that of Theorem 13.3.1 with the slight difference
that the stronger constraint ξ∗,Hom Q̂|r ξ−1∗,TM = Q̂|r ∀ r ∈ r

M
(I\M), ξ ∈ Stabr is

required. Since it would not add much in addition to what is presented in Appendix K.1,
we omit the proof. □

The following commutative diagram shows the isomorphisms between the three equivalent
descriptions of invariant kernel fields:

KIquot KIquot
̂ KIinvar

Ω

Λ

Λ̂

Ω−1 = ( · )
∣∣
r
TM

(I\TM) Λ̂−1 = ( · )
∣∣
π−1

TM
(r
M

(I\M))

Λ−1 = ( · )
∣∣
r
TM

(I\TM)

(13.100)

Relation to GM-convolutions: The difference between IsomGM -equivariant GM -
convolutions and general IsomGM -equivariant kernel field transforms via IsomGM -invariant
kernel fields is that the former share G-steerable kernels over the whole manifold while
the latter are only required to share Stabp-steerable kernels over orbits IsomGM .p ∈
IsomGM\M . The requirement to share weights over the whole manifold is not strictly nec-
essary but is – supported by Occam’s razor – likely to be a good inductive bias in practice. It
can be viewed as an analog to the assumption that the same physical laws apply throughout
the whole universe.

Assume now that M is a homogeneous space (Def. B.3.11) with respect to the action of
some isometry group I ≤ IsomGM , that is, for any two points p, q ∈ M there is at least
one isometry ϕ ∈ I that connects both points, i.e. q = ϕ(p). In this case there is only
one single orbit I.p, which is just M itself, and the stabilizers Stabp of all points p ∈ M
coincide up to isomorphism. The quotient space I\M is a singleton which is represented
by a single representative point r = r

M
(I\M) in M . By Theorem 13.3.2, the space of

I-invariant kernel fields is equivalently expressed by a kernel field on orbit representatives.
Since we have only a single representative point r for homogeneous spaces, the full isometry
invariant kernel field is in this case equivalent to a single kernel on TrM . This representative
kernel is required to satisfy the stabilizer subgroup constraint in Eq. (13.96). Via the lifting
isomorphism Λ̂ in Eq. (13.98), the representative kernel is shared over the whole manifold.
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This sounds very similar to the definition of GM -convolutions, which share a single, G-
steerability constrained kernel over the whole manifold. Theorem 13.3.3 below asserts that
there is indeed an equivalence between convolutions and equivariant kernel field transforms
on homogeneous spaces. The coordinate free Stabr-steerability from the stabilizer con-
straint thereby translates (non-canonically) to the H-steerability of template kernels, where
H ∼= Stabr with H ≤ G is an isomorphic representation of Stabr relative to some coordi-
natization. One can view the isometry (sub)group I ≤ IsomGM as a principal Stabr-bundle
over M , whose (non-canonical) embedding into GM gives rise to a H-(sub)structure HM
ofGM . The sharing of a Stabr-steerable kernel via the lifting isomorphism, which operates
per action of I , then corresponds exactly to the sharing of an H-steerable kernel over HM .
This implies that I-equivariant kernel fields transforms on homogeneous spaces do indeed
correspond to some HM -convolution.
Theorem 13.3.3 (Equivariance on homogeneous M implies convolution). Let M be a

manifold equipped with a G-structure GM . Assume that there is an isometry group
I ≤ IsomGM which acts transitively on M , making it a homogeneous space. Let
r ∈M be an arbitrary representative point of M and Stabr ≤ I its stabilizer. Then

1) There exists a H-(sub)structure HM ⊆ GM on M with:

– H ∼= Stabr ≤ I is a subgroup of G ∩O(d)

– HM is an embedding of I (as principal Stabr-bundle I → I/Stabr)
into GM , which is preserved by I , that is, IsomHM = I

2) Any I-equivariant kernel field transform shares a single H-steerable kernel
over the whole space M and is equivalent to a HM -convolution with that
kernel.

The specific choice of H-structure depends on the chosen isomorphism H ∼= Stabr but
is irrelevant since I-equivariant kernel field transforms can be equivalently expressed
in any such choice.

Proof: The proof is found in Appendix K.2. □

Our definition of isometry equivariant kernel field transforms is on homogeneous spaces
essentially equivalent to the steerable convolutions on homogeneous spaces as proposed
by Cohen et al. [55][56], with Aff(G)-equivariant Euclidean steerable CNNs from Part I as
a special case. The proven equivalence between isometry equivariant kernel field transforms
and HM -convolutions on homogeneous spaces therefore asserts that HM -convolutions and
steerable convolutions are essentially similar in this case. However, while steerable convo-
lutions are only defined on homogeneous spaces, HM -convolutions generalize to general
Riemannian manifolds. More details on convolutions on homogeneous spaces are discussed
in the related work Appendix F.
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Introduction & overview

The formulation of coordinate independent CNNs in terms of associatedG-bundles over Rie-
mannian manifolds is quite general and covers a wide range of possible model instantiations.
To substantiate this claim, we review a large body of convolutional models from the literature
and explain them from the unifying viewpoint of coordinate independent CNNs. Most of the
papers in the literature do not explicitly formulate their models in terms of G-structures and
associated G-bundles. The implicitly assumed G-structures and group representations are
therefore deduced from the models’ weight sharing patterns, kernel symmetries and equiv-
ariance properties; see for instance Fig. 16.4. Table 14.1 on page 273 summarizes the result-
ing taxonomy of coordinate independent CNNs. The following chapters discuss the covered
models and their properties in detail.

Chapter 15 starts with a general discussion of the design choices and implementation aspects
of coordinate independent CNNs and provides an overview of the models covered in the
following chapters. Chapter 15 revisits the Aff(G)-equivariant (steerable) convolutions on
Euclidean spaces Ed from Part I in the differential geometric formulation. These models
rely on Aff(G)-invariant G-structures as shown in Fig. 15.3. Chapter 16 covers models
that operate on punctured Euclidean spaces Ed\{0}; see Figs. 16.1, 16.3 or 16.4. They are
equivariant w.r.t. rotations around the chosen origin {0} but are not translation equivariant.
Spherical and icosahedral CNNs are discussed in Chapter 17. Most of these models assume
the G-structures that are visualized in Figs. 17.2a and 17.2b and are therefore SO(3) or
SO(2)-equivariant, respectively. Chapter 18 reviews GM -convolutions on general surfaces,
which are mostly discretized as meshes.





CHAPTER 14

Design choices and overview

A coordinate independent CNN is in theory fully specified by

1) a choice of Riemannian manifold (M,η)

2) its G-structure GM ,
3) a G-compatible connection which specifies feature transporters PA,γ ,

4) the field types or G-representations ρ of each feature space, and
5) a choice of G-equivariant nonlinearities.

The geodesics, exponential and logarithmic maps follow from the canonical Levi-Civita con-
nection onM .1 The isometry group IsomGM w.r.t. which the network is equivariant follows
from the metric η and the G-structure GM . All kernel spaces KG

ρin,ρout
are determined by

the group representations of the feature spaces between which they map. Weight sharing is
performed by placing aG-steerable template kernel relative to an arbitraryG-frame inGpM
for each point p ∈M .

In practice, the user is faced with additional design questions, for instance concerning the
discretization of the geometry, the encoding of feature fields, numerical algorithms for com-
puting geodesics and transporters, etc. This chapter gives a high level overview of all relevant
design choices. More specific details are found in the following Chapters 15, 16, 17 and 18.

Discretizations of manifolds and feature fields: The implementations differ in their rep-
resentation of the manifolds and sampling of the feature fields.

Euclidean spaces Ed admit regular pixels grids, for instance Zd or the hexagonal grid [125].
More generally, locally regular grids are suitable for locally flat manifolds like the Möbius
strip and the icosahedron; see Figs. 10.3 and 17.7. Feature fields on Euclidean spaces may
furthermore be sampled on a non-regular point cloud. This is for instance useful when
processing atomic environments, where the atom positions serve as sampling locations [301].

An important difference between the two approaches is that regular pixel grids are not equiv-
ariant w.r.t. continuous translations in (Rd,+), but only w.r.t. the subgroup of discrete

1It might seem strange to compute geodesics and feature transporters based on potentially differ-
ent connections. When the transporter connection differs from Levi-Civita, this is usually due to the
Levi-Civita connection not being G-compatible with the chosen G-structure when G < O(d). Some
examples are given in the paragraph on G-compatible connections below.
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translations which preserves the grid, for instance (Zd,+). CNNs on regular grids are fur-
thermore usually applying spatial pooling operations which reduce the models’ equivariance
even further. Specifically, given that the pooling operation has a stride of n pixels, it is equiv-
ariant w.r.t. translations in (nZd,+). After L pooling layers in a convolutional network, this
implies that the model as a whole is only equivariant w.r.t. translations in (nLZd,+) – this
issue was empirically investigated in [6]. Zhang [348] propose to remedy this issue by re-
placing stride n pooling layers with stride 1 pooling layers (with the same pooling window
size), a low-pass filtering, and an n-pixel subsampling. The additional low-pass filtering
between the pooling and subsampling operations prevents aliasing effects, which is shown
to make the networks sufficiently more stable under translations which are not elements of
(nZd,+).

Curved spaces like the 2-sphere S2 do in general not admit regular sampling grids. A seem-
ingly obvious discretization is in terms of a regular sampling grid in spherical coordinates
(Eq. (17.7) and Fig. 17.3), however, as these coordinates are non-isometric, they oversample
the signal towards the poles [351, 295]. Approximately uniform sampling grids on S2 are
the “generalized spiral set” [58] or the icospherical grid [139, 148]. Alternatively, feature
fields may be discretized in the spectral domain. For the sphere, this is done via an expansion
in terms of spherical harmonics for scalar fields, spin-weighted spherical harmonics for irrep
fields or Wigner D-matrices for general feature fields [83, 86, 54, 163].

General surfaces are most commonly represented by triangle meshes; see Section 18.1.2.
Feature fields can then be sampled on the mesh vertices, edges or faces [65]. A higher
resolution of the feature fields can be achieved by encoding them via texture maps [180, 131].
Alternatively, surfaces may be represented as point clouds [294, 141].

G-structures GM and structure groups G: The specific choice of G-structure to be re-
spected by the network depends on the learning task and the topology of M (if continuity or
smoothness of the convolution is demanded). In general, M comes equipped with an O(d)-
structure, i.e. a bundle of orthonormal reference frames with respect to the given Riemannian
metric. A lift to structure groups G with O(d) < G ≤ GL(d) is uniquely determined by G-
valued gauge transformations of orthonormal frames. Reductions of the structure group to
G < O(d) are, in contrast, not necessarily unique, and encode additional geometric informa-
tion. For instance, a reduction to G = SO(d) requires an orientation on the manifold.2 The
following chapters discuss further (mostly implicitly made) choices of G-structures found
in the literature; see for instance Figs. 15.3, 16.1, 16.2, 16.3, 16.4 17.2, or 17.6. They are
either determined by a demand for the equivariance under the isometry group IsomGM ,
canonically given on the manifold or, specifically for {e}-structures, algorithmically fixed
via some heuristic. Recall that {e}-structures are on non-parallelizable manifolds (by defi-
nition) necessarily discontinuous.

The most commonly encountered structure groups in the literature are the following:

trivial group {e}, corresponding to non-coordinate independent CNNs with uncon-
strained kernels

reflection group R ∼= Z/2Z, flipping the first frame axis

special orthogonal groups SO(d) (continuous rotations)
2For a single, connected manifold, this choice is arbitrary as long as the kernel initialization is sym-

metric w.r.t. both orientations. In this case the network will simply learn reflected kernels for different
orientations. When considering a dataset consisting of multiple manifolds, their relative orientation is
relevant for a correct generalization.
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orthogonal groups O(d) (continuous rotations and reflections)

scaling group S ∼= (R≥0, ∗),

Since the last three groups are continuous Lie groups, they are in numerical implementa-
tions sometimes approximated by finite subgroups. For instance, SO(2) and O(2) are often
modeled by cyclic groups CN or dihedral groups DN , while three-dimensional rotations and
reflections in O(3) can be approximated by polyhedral groups (symmetry groups of Platonic
solids, e.g. the icosahedron). To reduce the complexity of the classification of models in
Table 14.1 we chose to not distinguish between the continuous symmetries and their approx-
imations by finite subgroups. We will, however, state such approximations in our detailed
discussion of the models in the following chapters.

G-compatible connections: All of the models consider either the canonical Levi-Civita
connection on M or the unique trivial connection which is induced by an {e}-structure.
The choice of connection becomes irrelevant (thus unspecified) for networks which operate
solely on scalar fields, whose transport is always trivial.

More specifically, all Euclidean CNNs from Chapter 15 use Levi-Civita transporters, which
transport vectors such that they remain parallel in the usual sense on Euclidean spaces Ed;
see Fig. 8.4a. This is possible since the Levi-Civita connection is G-compatible with the
models’ G-structures (defined in Eq. (15.1) and visualized in Fig. 15.3).3

The models on the punctured Euclidean spaces Ed\{0} from Chapter 16 are either based on
{e}-structures and/or consider scalar fields. They utilize therefore trivial connections which
differ from the canonical Levi-Civita connection on Ed\{0}.
All spherical CNNs that rely on the SO(2)-structure in Fig. 17.2a (reviewed in Section 17.2)
transport features according to the Levi-Civita connection on S2 (Fig. 8.4b). Those which
operate on the {e}-structure in Fig. 17.2b (reviewed in Section 17.3) are again considering a
trivial connection since the spherical Levi-Civita connection is incompatible with this {e}-
structure. The icosahedral CNN with C6-structure, Fig. 17.6c, transports features according
to the C6-compatible icosahedral Levi-Civita connection.4

All CNNs on general surfaces that are listed in rows (41-43) of Table 14.1 assume oriented
surfaces that are equipped with an SO(2)-structure. They transport features with the SO(2)-
compatible Levi-Civita connection of the surfaces. The other surface CNNs are based on
{e}-structures and/or operate on scalar fields – their feature transport is therefore trivial.

Our Möbius strip convolutions transport features via the Levi-Civita connection, which is
compatible with the assumed R-structure.

Recall that the Levi-Civita connection is uniquely determined by the metric, and is therefore
generally isometry invariant; cf. footnote 6 in Section 13.1.4. As trivial {e}-compatible
connections are uniquely specified by the {e}-structure they share its symmetries, that is,
they are invariant under the action of Isom{e}M . This implies by Theorem 13.2.5 that the
GM -convolutions, which are based on these connections, are IsomGM -equivariant.

Transporter pullbacks and alternative projections to TpM : The transporter pullback
Exp∗pf , defined in Def. 12.2.4 and Eq. (9.21), represents a feature field f in a geodesic
parametrization on the tangent space TpM . The transportation part of the operation

3In contrast, the Euclidean {e}-structure in Fig. 13.3b would be incompatible with the Levi-Civita
connection on E2.

4Discrete Levi-Civita connections on meshes are discussed in Section 18.1.2 and [60, 62].
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is determined by the G-compatible connection. Geodesics – and therefore exponential
maps expp : TpM →M – have closed form expressions on Euclidean spaces Ed and the
sphere S2. Specifically, the exponential maps on Ed reduce in Cartesian coordinates to the
vector summation in Eq. (15.31), such that Euclidean GM -convolutions reduce to conven-
tional convolutions on Rd; see Theorem 15.2.1. Geodesics on S2 are well known to be
given by the great circles of the sphere. If the sphere is viewed as being embedded in R3,
the exponential map is explicitly given by Eq. (17.10). The geodesics on general surface
meshes are not described by closed form solutions but are computed numerically; see Sec-
tion 18.1.2. In contrast to the smooth setting, one needs to distinguishes between “shortest”
and “straightest” geodesics on meshes [231].

The pullback of feature fields into geodesic normal coordinates is not the only way of repre-
senting feature fields on the tangent spaces. In the literature on spherical CNNs it is rather
common to use gnomonic projections, which are visualized in Fig. 17.2. Theorem 17.3.1
shows that this projection can be viewed as a special case of our more general geodesic
parameterization after applying a radial warp to the kernels. The corresponding models
are therefore exactly identified as GM -convolutions. Surfaces which are embedded in an
ambient space like R3 might furthermore rely on various projections in the embedding
space; see for instance the last three models that are discussed in Section 18.3. Note that
these approaches are truly different from ours, i.e. these three models are not exactly GM -
convolutions.

G-representations and nonlinearities: Almost all models consider either of the trivial
representation, irreducible representations or regular representations as field types. Ex-
ceptions are quotient representations, more general induced representations, tensor product
representations and, specifically for G = SO(3), the quaternion representation. Infinite-
dimensional representations, in particular regular and quotient representations of Lie groups,
are in implementations discretized. This can either happen via Monte Carlo sampling or by
falling back to the corresponding representations of finite subgroups as discussed above.

The nonlinearities are required to be equivariant w.r.t. the action of the chosen G-
representations. Since scalar fields are G-invariant, they are acted on by usual nonlinear-
ities like ReLU. Feature fields that transform according to permutation representations, most
importantly regular representations, are acted on channel-wise. All other field types require
custom-tailored nonlinearities – we refer back to Section 6.5 and [322] for a more detailed
discussion of specific choices.

G-steerable kernel spaces: GM -convolutions map input fields of type ρin to output fields
of type ρout by convolving them with G-steerable kernels K ∈ KG

ρin,ρout
. Since the space

KG
ρin,ρout

of G-steerable kernels, Def. 12.2.2, is a vector space, it is usually parameterized

in terms of a basis {K1, . . . , KN} of KG
ρin,ρout

. Before computing the convolution, the

learned kernel K =
∑N
i=1 wiKi is expanded in this basis, where {w1, . . . , wN} are real-

valued weights to be optimized. Provably complete kernel spaces for the groups G ≤ O(2)
were implemented in [322, 38] and for G ≤ O(3) in [40, 39]. A generalization of the
Wigner-Eckart theorem characterizes the kernel space bases for general compact structure
groups G [173]. We refer the reader for more details on steerable kernels back to Chapter 5.

In practice, the majority of authors does not use a representation theoretic formulation of
feature fields and steerable kernels, but formulate them based on intuition. Specifically, most
authors assume a given input field type and propose various convolution operations which
are engineered such that the resulting output field transforms in an equivariant (or coordinate
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independent) manner.5 While these approaches propose certainG-steerable kernels that map
between ρin-fields and ρout-fields, these kernels do sometimes not span the complete space
of possible kernels. This applies for instance to the MDGCNNs and PFCNNs, which are
discussed in Section 18.2.

5This is opposed to our approach, which fixes the input and output fields and subsequently asks for
the resulting constraint on convolution kernels.



manifold structure group global symmetry representation citation
M G AffGM or IsomGM ρ

1 Ed {e} (Rd,+) trivial conventional CNNs [175, 348]
2 S (R1,+)⋊ S regular [248]
3 regular [193]
4

E1
R (R1,+)⋊R

irreps [193]
5 R (R2,+)⋊R regular [322]
6 irreps [335, 322]

7 regular
[71, 52, 358, 53, 324, 12, 125, 258, 275, 27, 70, 76]
[322, 110, 170, 279, 317, 247, 215, 276, 277, 37, 23]
[270, 10, 91, 306, 113, 216, 311, 122, 223, 43, 116]

8 quotients [53, 322]

9 regular
pool−−→trivial [52, 195, 322]

10

SO(2) SE(2)

regular
pool−−→vector [196, 322]

11 trivial [144, 322]
12 irreps [322]

13 regular [71, 52, 125, 53, 322]
[216, 110, 270, 23]

14 quotients [53]

15 regular
pool−−→trivial [322]

16

O(2) E(2)

induced SO(2)-irreps [322]
17

E2

regular [334, 281, 10, 359]

18
S (R2,+)⋊ S

regular
pool−−→trivial [107]

19 SO(2)×S (R2,+)⋊(SO(2)×S) regular [349]
20 irreps [323, 301, 211, 161, 3, 184]
21 quaternion [345]
22 regular [91, 329, 333]

23

SO(3) SE(3)

regular
pool−−→trivial [4]

24 irreps [8]
25

E3

O(3) E(3)
regular [329]



26 quotient O(3)/O(2) [136]
27

O(3) E(3)
irrep norm−−→trivial [233]

28 C4 (R3,+)⋊ C4 regular [289]
29

E3

D4 (R3,+)⋊D4 regular [289]
30 Ed−1,1 SO(d−1, 1) (Rd,+)⋊ SO(d−1, 1) irreps [274]
31 SO(2) [47, 91]
32

E2\{0} {e}
SO(2)× S

trivial
[84, 91]

33 O(2) O(3) trivial [238]
34

E3\{0} {e} {e} trivial [20]
35 irreps [163, 86]
36

SO(2) SO(3)
regular [54, 148]

37

S2

O(2) O(3) trivial [83, 228, 338]
38 S2 \ poles {e} SO(2) trivial [58, 295, 351, 203, 139, 287, 288, 77, 178]
39 icosahedron C6 I (≈ SO(3)) regular [57]
40 ico \ poles {e} C5 (≈ SO(2)) trivial [346, 187]
41 irreps [327]
42 regular [232, 293, 339, 67]

43

SO(2) Isom+(M)

regular
pool−−→trivial [204, 205, 217, 293]

44

surface (d=2)

D4 IsomD4M trivial [131]
45

(e.g. meshes)

{e} Isom{e}M trivial [217, 259, 140, 294, 180]
46 irreps
47

Möbius strip R SO(2)
regular

Chapter 10

Table 14.1: Classification of convolutional networks in the literature from the viewpoint of coordinate independent CNNs. Bold lines separate different ge-
ometries. The affine group equivariant convolutions on Euclidean spaces Ed (rows 1-30) are reviewed in Chapter 15. Chapter 16 discussesGM -convolutions
on punctured Euclidean spaces Ed\{0} ∼= Sd−1×R>0 (rows 31-34). Details on spherical CNNs (rows 35-40) are found in Chapter 17. The models in rows
(41-45) operate on general surfaces, mostly represented by triangle meshes; see Chapter 18. The last two lines list our Möbius convolutions from Chapter 10.
(Rd,+), R and S denote the translation, reflection and scaling group, respectively, while CN and DN are cyclic and dihedral groups. Infinite-dimensional
representations are in implementations discretized or sampled. For instance, the regular representations of SO(2) or O(2) are typically approximated by the
regular representations of cyclic or dihedral groups CN or DN .





CHAPTER 15

Euclidean coordinate independent CNNs

This chapter considers equivariant convolutions on Euclidean spaces, which are undoubt-
edly of greatest practical relevance [166]. Convolutional networks on Euclidean spaces are
applied for analyzing planar and volumetric images, audio signals, videos, physical events
in (pseudo-Euclidean) Minkowski spacetime or planar environments in reinforcement learn-
ing. The prototypical convolutional model architecture – both on Euclidean spaces and in
general – is the conventional translation equivariant CNN by LeCun et al. [175], which was
covered in Chapter 3. These models were in Chapter 4 generalized to Euclidean steerable
CNNs, which are equivariant under actions of affine symmetry groups. The current chap-
ter demonstrates that both conventional and steerable CNNs are special cases of coordinate
independent CNNs on Euclidean spaces, equipped with Aff(G)-invariant G-structures as
visualized in Fig. 15.3.

A major difference in the formulation of steerable and coordinate independent CNNs is that
they focus on global affine group actions and local gauge transformations, respectively.
That steerable CNNs can be described as coordinate independent CNNs implies that they
are actually also locally gauge equivariant, despite not deliberately being designed for it.
That this is the case was intuitively clear since steerable kernels are G-equivariant w.r.t.
transformations of their field of view, as shown in Fig. 4.6, but could not be proven in the
non-gauge theoretic framework of steerable CNNs.

The equivariance of coordinate independent CNNs under global isometries, visualized for
Euclidean spaces in Fig. 15.1, was proven in Theorem 13.2.5. Theorem 15.2.2 in Sec-
tion 15.2 below asserts that the stronger statement of affine group equivariance can be made
on Euclidean spaces. The underlying reason for this result is that the geodesics and Levi-
Civita transporters are on Euclidean spaces not only preserved by isometries, but also by
general affine transformations.

Convolutions on Euclidean spaces are classically formulated in coordinates (Fig. 15.2, left
and right), that is, considering Euclidean vector spaces Rd instead of more general (coor-
dinate free) Euclidean affine spaces Ed (Fig. 15.2, middle). An advantage of formulating
convolutions this way is that Rd comes with all mathematical structure that is required for
the definitions. However, Rd is equipped with an excess of structure, for instance a choice
of origin or its canonical {e}-structure. By designing neural networks to be equivariant,
their inference is post-hoc made independent from this structure. Specifically, translation
equivariance equalizes the particular choice of origin, while G-steerability guarantees that
the frames of the canonical {e}-structure are just a specific choice of gauge fixing among
structurally equivalent G-transformed frames. Steerable CNNs could therefore be viewed as
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Figure 15.1: Visualization of the full isometry group Isom(Ed) = E(d) = (Rd,+) ⋊ O(d) of Eu-
clidean spaces Ed for d = 2. It contains subgroups of translations (Rd,+), rotations SO(d) and re-
flections R. Rotations and reflections form the orthogonal group O(d)=SO(d)⋊R while translations
and rotations form the special Euclidean group SE(d) = (Rd,+)⋊SO(d). The models in this chapter
are not only isometry equivariant, but more generally under affine groups Aff(G) = (Rd,+)⋊G.

operating on G-structures that are (canonical) G-lifts

GM = {e}M ◁G :=
{
[ei]

d
i=1 ◁ g

∣∣∣ [ei]di=1 ∈ {e}M, g ∈ G
}

(15.1)

of the canonical {e}-structure {e}M of M = Rd. Intuitively, these lifted G-structures are
defined by augmenting every canonical reference frame in {e}M with any other G-related
frame (its right G-orbit in FM ); see Fig. 15.3.

An alternative and more clean approach is to not include the undesired excess structure of
Rd in the first place, but to model convolutions directly on Euclidean affine spaces Ed. These
come naturally with an affine and metric structure – if more geometric structure is desired, it
can be added by specifying an atlas of affine charts xA : Ed → Rd, from which aG-structure
is induced. This viewpoint implies that steerable convolutions on Rd are just the coordinate
representations of (affine group equivariant) GM -convolutions on Ed, which is formally
proven in Theorem 15.2.1. The particular choice of chart corresponds in an implementation
on the (arbitrary) choice of pixel grid.

The main objective of this chapter is to recover the Euclidean steerable CNNs from Chapter 4
from the differential geometric formulation of coordinate independent CNNs. Section 15.1
discusses thereby the affine geometry of Ed and explains how atlases of affine charts with
transition maps in Aff(G) (Fig. 15.2) induce Aff(G)-invariantG-structures (Fig. 15.3). Sec-
tion 15.2 considersGM -convolutions on theseG-structures and proves their global Aff(G)-
equivariance. Specific instantiations of such models in the literature, listed in rows (1-30) of
Table 14.1, are discussed in Section 15.3.

15.1 Affine geometry of Euclidean spaces EEEEEd

Before discussing coordinate free convolutions on Euclidean spaces, we need to understand
the underlying geometry. Euclidean spaces Ed are by definition affine spaces, that is, they
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Figure 15.2: Visualization of affine charts xX : Ed → Rd, which assign global coordinates to Eu-
clidean spaces. Both Ed and Rd are affine spaces, such that one can demand the charts to be affine
maps, which preserve collinearity and ratios of distances. We define an Aff(G)-atlas AAff(G)

Ed
as con-

sisting of charts that are related by transition functions tBAgBA := xB ◦ (xA)−1 that are elements
in Aff(G). Charts in an Aff(G)-atlas differ at most in their choice of origin (xX)−1(0) and a G-
transformation. A choice of an Aff(G)-atlas, consisting of charts xX , induces aG-atlas AG of gauges
d̂xX . The corresponding G-structure GM , which is in Fig. 15.3 exemplified for different groups G,
is invariant under the action of Aff(G). Theorem 15.2.2 proves that GM -convolutions on such G-
structures are Aff(G)-equivariant.
(Lizards adapted under the Creative Commons Attribution 4.0 International license by courtesy of Twitter.)

come with an associated vector space of dimension d, which defines translations on Ed.
In addition to being affine spaces, Euclidean spaces are endowed with an Euclidean metric
(distance function). This distance function corresponds to a Riemannian metric η, i.e. an
O(d)-structure OM on the (Riemannian) manifold M = Ed. This metric has the property
that its curvature vanishes everywhere, that is, Ed is globally flat.

A standard example for Euclidean spaces are the vector spaces Rd, however, general Eu-
clidean spaces consider less structure. In particular, they do not come with a vector space
structure and do thus not have a preferred origin. Furthermore, they are in general not
equipped with Cartesian coordinates. We will therefore start with bare Euclidean spaces
Ed and discuss how the relevant geometric structure is added to them. One could in princi-
ple consider any G-structure, however, we are specifically interested in those G-structures
that recover the classical steerable CNNs from the Chapter 4, which explain all models in
rows (1-30) of Table 14.1. Such Aff(G)-invariant G-structures are induced from Aff(G)-
atlases, consisting of charts of Ed whose transition functions take values in Aff(G); see
Fig. 15.2. More infos about the relation between coordinate charts and gauges can be found
in Appendix C.

15.1.1 Affine charts and Aff(G)-atlases

A Euclidean space Ed of dimension d is homeomorphic to Rd, and admits therefore global
charts

xA : Ed → Rd . (15.2)

In the following we will always require these charts to be affine maps, i.e. isomorphisms of
affine spaces, which preserve collinearity (i.e. they map straight lines to straight lines) and

https://github.com/twitter/twemoji/blob/gh-pages/LICENSE-GRAPHICS
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ratios of distances. Since compositions of affine maps are affine maps, it follows that the
chart transition functions

xB ◦
(
xA
)−1

: Rd → Rd (15.3)

are affine transformations of Rd, i.e. elements in Aff(GL(d)). The transition functions
decompose therefore uniquely into a translation tBA ∈ (Rd,+) and an element gBA ∈
GL(d):

tBAgBA := xB ◦
(
xA
)−1

(15.4)

The notation gBA is hereby not accidental as these group elements agree with the gauge
transformations that are induced by chart transitions, which is proven in Theorem 15.1.2
below.

Given a choice of affine group Aff(G), we define Aff(G)-atlases of Ed as those atlases of
global charts from Ed to Rd, whose chart transition functions take values in Aff(G):

Definition 15.1.1 (Aff(G)-atlas of Euclidean space). Let X be an index set labeling
charts and, for any X ∈ X, let xX : Ed → Rd be a global affine chart of Ed. The
atlas

A
Aff(G)
Ed

=
{(

Ed, xX
) ∣∣∣X ∈ X

}
(15.5)

is said to be an Aff(G)-atlas if all of its chart transition functions take values in Aff(G),
that is, if

xB◦
(
xA
)−1∈ Aff(G) ∀ A,B ∈ X . (15.6)

Fig. 15.2 visualizes affine charts and the Aff(G)-valued chart transition maps between them.

15.1.2 Induced G-atlases and G-structures

Any global coordinate chart xA : Ed → Rd induces a global gauge, which is pointwise
given by the chart gradients

ψATM,p := d̂xAp : TpM → Rd , (15.7)

see Eq. (C.30) in Appendix C.3 and Table C.1. An atlas of charts corresponds therefore to
an atlas of gauges. In particular, given that the charts form an Aff(G)-atlas, it is guaranteed
that the gauge transformations are G-valued, that is, that the induced gauges form a G-atlas:

Theorem 15.1.2 (Aff(G)-atlases of charts induce G-atlases of gauges).
Let AAff(G)

Ed
=
{
(Ed, xX)

∣∣X ∈X} be an Aff(G)-atlas of charts. The induced atlas of
gauges

AG =
{(

Ed, d̂xX
) ∣∣∣X ∈ X

}
(15.8)

is then guaranteed to be a G-atlas. In particular, if the chart transition maps are given
by xB ◦ (xA)−1 = tBAgBA, the transition maps between gauges are at any point
p ∈ Ed given by gBAp = gBA ∈ G.
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(a) Aff({e})-atlas induced {e}-structure. (b) Aff(SO(2))-atlas induced SO(2)-structure.

(c) Aff(R)-atlas induced R-structure. (d) Aff(S)-atlas induced S-structure.

Figure 15.3: Visualization of different G-structures GM on Euclidean spaces M = E2 which are
induced by an Aff(G)-atlas of charts (Def. 15.1.1). Fig. 15.3a shows the translation invariant {e}-
structure {e}M that corresponds to conventional Euclidean convolutions. The other three G-structures
correspond to non-trivial G-steerable CNNs as defined in Chapter 4. They generalize locally over
all poses that are related by the specific set of reference frames in GpM . As the G-structures are
Aff(G)-invariant (implied by Theorem 15.1.6), the G-steerable convolutions are globally equivariant
w.r.t. Aff(G) (Theorem 15.2.2). Instead of defining the G-structures via an Aff(G)-atlas of charts,
one could define them via aG-liftGM := {e}M◁G of the canonical {e}-structure of Rd (Eq. (15.1)),
which augments the frames in the {e}-structure with all G-related frames.

Proof: The transition functions between chart induced gauges coincide by Eq. (C.45) with
the Jacobian of the chart transition maps, that is,

gBAp = d̂xBp ◦
(
d̂xAp

)−1
=

∂xB

∂xA

∣∣∣
xA(p)

. (15.9)

The last expression is the usual abuse of notation for Jacobians of chart transition maps,
which was in Eq. (C.39) in components defined as

∂xBµ
∂xAν

∣∣∣∣
xA(p)

:= ∂ν
(
xBµ ◦

(
xA
)−1)∣∣∣

xA(p)
. (15.10)

Using that the chart transition maps are given by xB ◦
(
xA
)−1

= tBAgBA, this implies(
gBAp

)
µν

= ∂ν
(
xBµ ◦

(
xA
)−1)

(x)
∣∣
xA(p)

= ∂ν
(
gBAx + tBA

)
µ

∣∣
xA(p)

= gBAµν ,

(15.11)

that is, that the induced gauge transformations gBAp are G-valued and agree with gBA
(which justifies the notation). As this argument holds for any p ∈ Ed and any charts
A,B ∈ X, this implies that the induced atlas of gauges is a G-atlas. □
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As discussed in Section 11.4, any G-atlas of gauges implies a G-structure GM . According
to Eq. (11.56), GM is pointwise determined by

GpM :=
(
ψAFM,p

)−1
(G) , (15.12)

where the particular choice of gauge A ∈ X is arbitrary. The frames in GpM are the co-
ordinate bases

[
∂
∂xA

µ

∣∣
p

]d
µ=1

=
[(
d̂xAp

)−1
(ϵµ)

]d
µ=1

and all G-transformations of them. As

the maximal Aff(G)-atlas is by definition Aff(G)-invariant, the same holds for the induced
G-structure (with the action defined via any chart, as clarified and proven below). Fig. 15.3
shows such G-structures for different affine groups. In the next section we prove that the
corresponding GM -convolutions are equivariant under the action of Aff(G).

As it turns out, GM
π
GM−−−→ Ed is (non-canonically) isomorphic to Aff(G)

q−→ Aff(G)/G ∼=
Rd as a principal bundle, where

q : Aff(G)→ Rd, tg 7→ t (15.13)

is the canonical quotient map of the affine group (after identifying cosets tG with trans-
lations t).1 Non-surprisingly, this principal bundle isomorphism depends on the choice of
chart.
Theorem 15.1.3 (Principal bundle isomorphism between Aff(G) and GM). Let GM be

an Aff(G)-atlas inducedG-structure on Ed. ThenGM is isomorphic to Aff(G)
q−→ Rd

as a principal bundle, i.e. there are isomorphisms

αA : Aff(G)→ GM, tg 7→
(
ψGM,(xA)−1(t)

)−1
(g) (15.14)

and (
xA
)−1

: Rd → Ed (15.15)

such that the following diagram commutes:

Aff(G)×G GM ×G

Aff(G) GM

Rd Ed

αA × idG

· ◁

αA

q πGM

(xA)−1

(15.16)

The inverse of αA is hereby given by

(
αA
)−1

: GM → Aff(G), [ei]
d
i=1 7→ tg where

{
t = xA ◦ π

GM

(
[ei]

d
i=1

)
g = ψA

GM,π
GM

([ei]
d
i=1)

(
[ei]

d
i=1

)
(15.17)

Note that the isomorphisms are in one-to-one correspondence to the Aff(G)-compatible
charts of the considered atlas.

1We implicitly employ a canonical isomorphism Aff(G)/G
∼−→ Rd, tG 7→ t, where t denotes a

translation group element in (Rd,+) on the left-hand side and a vector in Rd on the right-hand side.
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Proof: To prove the statement, we need to show that αA and (αA)−1 are indeed inverse to
each other, that αA is a bundle map over (xA)−1 and that αA is right G-equivariant.
That (αA)−1 is both a well defined left and right inverse of αA is easily checked by
the reader. That αA is a bundle map over (xA)−1 means that the bottom square of
the diagram commutes. This is seen by observing that (xA)−1 ◦ q(tg) = (xA)−1(t)

and π
GM
◦ αA(tg) = π

GM
◦
(
ψGM,(xA)−1(t)

)−1
(g) = (xA)−1(t) agree for any tg ∈

Aff(G). The commutativity of the upper square in the diagram, i.e. the right G-
equivariance of αA, follows from the fact that αA(tg · g̃) =

(
ψGM,(xA)−1(t)

)−1
(gg̃) =(

ψGM,(xA)−1(t)

)−1
(g)◁ g̃ = αA(tg)◁ g̃ holds for any tg ∈ Aff(G) and any g̃ ∈ G. The

second step made use of the fact that ψGM,(xA)−1(t) is right G-equivariant (Eq. (11.60)),
which implies the equivariance of its inverse. Together, these properties show that αA
is a principal bundle isomorphism. □

15.1.3 Coordinate free affine transformations

As we want to prove the equivariance of GM -convolutions under affine transformations in a
coordinate free setting, we need to introduce groups of affine transformations of Ed, instead
of Rd as above. The charts will relate these coordinate free affine groups to the affine groups
Aff(G) of Rd.

We start with the full group

Aff(Ed) :=
{
ϕ : Ed → Ed

∣∣ϕ is an affine transformation of Ed
}

(15.18)

of affine transformations of a Euclidean space Ed. It is easy to prove that Aff(Ed) is isomor-
phic to Aff(GL(d)), with isomorphisms given by ϕ 7→ xAϕ (xA)−1 for an arbitrary choice
of chart xA. This statement is proven in a more general setting in Theorem 15.1.6 below.

As in the case of isometries, we define subgroups AffGM ≤ Aff(Ed) ofG-structure preserv-
ing affine transformations:

Definition 15.1.4 (G-structure preserving affine transformations). Let GM be any G-
structure on Ed. We define the corresponding subgroup ofG-structure preserving affine
transformations as

AffGM :=
{
ϕ ∈ Aff(Ed)

∣∣ϕ∗,FMGpM = Gϕ(p)M ∀p ∈ Ed
}
≤ Aff(Ed) .

(15.19)

Compare this definition to that of IsomGM in Def. 13.1.1. As in the case of IsomGM , the
gauge transformations that are induced by affine transformations in AffGM are guaranteed
to be G-valued. This statement is formalized by the following theorem, which is essentially
analogous to Theorem 13.1.3:

Theorem 15.1.5 (AffGM in local trivializations). Let ϕ ∈ Aff(Ed) be any isometry of
M = Ed. Then the following three statements are equivalent:

1. ϕ is G-structure preserving, that is, ϕ ∈ AffGM .

2. The affine transformation pullback ψÃFM,p ϕ
−1
∗,FM of any gauge ψÃFM,p of the G-

atlas of FM that defines GM is G-compatible with that G-atlas.
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3. The coordinate expression of ϕ∗,FM relative to any gauges ψÃFM,p and ψA
FM,ϕ(p)

from the G-atlas of FM takes values in the structure group, that is,
gAÃϕ (p) := ψA

FM,ϕ(p) ϕ∗,FM
(
ψÃFM,p

)−1
= d̂xAϕ(p) ϕ∗,TM

(
d̂xÃp

)−1
is G-valued.

Proof: The proof is analogous to that of Theorem 13.1.3. More generally, the statement
holds for arbitrary G-structure preserving diffeomorphisms. □

Affine group action induced gauge transformations describe the transformation of the coordi-
nate expressions of bundle elements, e.g. tangent or feature vector coefficients. The action of
the affine transformation ϕ on the manifold Ed itself can also be described in coordinates Rd.
This is achieved by a left and right multiplication of ϕ with any (affine) chart, which we can
w.l.o.g. take to be equal at the source and target location since we are only considering global
charts. The resulting coordinate expression tAAϕ gAAϕ , defined by the following commutative
diagram,

Rd Ed Ed Rc

tAA
ϕ gAA

ϕ

xA ϕ xA

(15.20)

is guaranteed to take values in Aff(G) if ϕ preserves the G-structure.

Theorem 15.1.6 (AffGM in global affine charts). Let GM be the G-structure induced by
some Aff(G)-atlas and let xA : Ed → Rd be a chart of this atlas. The coordinate
expression of an element ϕ ∈ AffGM relative to xA is then given by

xAϕ
(
xA)−1 =: tAAϕ gAAϕ ∈ Aff(G) , (15.21)

where

tAAϕ := xA ϕ
(
xA
)−1

(0) ∈ (Rd,+) (15.22)

and gAAϕ := d̂xAϕ(p) ϕ∗,TM
(
d̂xAp

)−1 ∈ G (15.23)

The element gAAϕ ∈ G in the coordinate expression coincides hereby with the induced
gauge transformation gAAϕ (p) ∈ G from Theorem 15.1.5 at any point p ∈ Ed.

Furthermore, the coordinatization map

AffGM → Aff(G), ϕ 7→ xA ϕ
(
xA
)−1

, (15.24)

is a group isomorphism.

Proof: Since xA and ϕ are affine maps, xA ϕ
(
xA)−1 : Rd → Rd is an affine transformation

of Rd, i.e. an element of Aff(GL(d)) (or some subgroup of it). This implies that a first
order Taylor expansion of the expression is exact. The application of the coordinate
expression to an arbitrary element x ∈ Rd can therefore be written in terms of the
following Taylor expansion around the origin 0 of Rd:[

xA ϕ
(
xA)−1

]
(x) =

[
xA ϕ

(
xA)−1

]
(0) +

∂

∂x′
[
xA ϕ

(
xA)−1

]
x′=0
· x

= tAAϕ + gAAϕ · x
=
(
tAAϕ gAAϕ

)
x (15.25)
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Here we implicitly defined the translation tAAϕ ∈ Rd and the Jacobian gAAϕ ∈ Rd×d and
identified them with group elements, which is possible since all involved morphisms are
invertible.

That the Jacobian gAAϕ agrees with the induced gauge transformation gAAϕ (p) at an
arbitrary point p ∈M is shown by rewriting it via Eq. (C.21) in terms of differentials:

gAAϕ =
∂

∂x′
[
xA ϕ

(
xA)−1

]
x′=xA(p)

= ιRd d
[
xA ϕ

(
xA)−1

]
xA(p)

(
ιRd

)−1
= ιRd dxAϕ(p) dϕp

(
dxAp )

−1 (ιRd

)−1
= d̂xAϕ(p) ϕ∗,TM

(
d̂xAp )

−1

= gAAϕ (p) (15.26)
In the penultimate step we identified the differential dϕ as an alternative notation for
the pushforward ϕ∗,TM and identified the chart gradients d̂xA := ιRd dxA as defined in
Eq. (C.30). The index p is dropped in the notation gAAϕ = gAAϕ (p) due to its arbitrari-
ness.

That tAAϕ gAAϕ is not only an element element of Aff(GL(d)) but of its subgroup Aff(G)

is clear since Theorem 15.1.5 states that gAAϕ (p) ∈ G for any ϕ ∈ AffGM .

To prove that the coordinatization map CA : AffGM → Aff(G), ϕ 7→ xA ϕ (xA)−1

is indeed a group isomorphism, we need to show that it is 1) a group homomorphism,
2) injective and 3) surjective. That CA is a group homomorphism follows immediately
from its definition since
CA(ϕ ϕ̃) = xA ϕ ϕ̃

(
xA
)−1

= xA ϕ
(
xA
)−1

xA ϕ̃
(
xA
)−1

= CA(ϕ)CA(ϕ̃)
(15.27)

holds for any ϕ, ϕ̃ ∈ AffGM . The injectivity of CA requires that, for any ϕ, ϕ̃ ∈
AffGM , the equality CA(ϕ) = CA(ϕ̃) implies ϕ = ϕ̃. That this is the case is clear
since CA(ϕ) = CA(ϕ̃) is equivalent to xA ϕ

(
xA
)−1

= xA ϕ̃
(
xA
)−1

, which implies
the equality of ϕ and ϕ̃ since xA is an isomorphism. Lastly, CA is surjective if and
only if for any tg ∈ Aff(G) there exists some ϕ ∈ AffGM , such that CA(ϕ) = tg.
As an ansatz, let ϕ =

(
xA
)−1

tg xA, such that CA(ϕ) = tg. What remains to be
shown is that this construction of ϕ is indeed an element of AffGM . As one can easily
check, gAAϕ = g ∈ G, such that ϕ ∈ AffGM follows from Theorem 15.1.5, with
which surjectivity holds. Overall, this proves that CA : AffGM → Aff(G) is a group
isomorphism if AffGM is induced by an Aff(G)-atlas. □

The isomorphism between AffGM and Aff(G) is not unique, as it depends on the particular
chart considered. Different choices are related by the inner automorphisms of Aff(G) since

CB(ϕ) = xB ϕ (xB)−1 (15.28)

= xB(xA)−1xA ϕ (xA)−1xA(xB)−1

= (tBAgBA)CA(ϕ) (tBAgBA)−1 .

This concludes our analysis of the Euclidean geometry and Aff(G)-invariant G-structures
that are required for the definition of coordinate free Euclidean convolutions in the next
section.
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15.2 Affine group equivariant CNNs on Euclidean spaces EEEEEd

We now turn to investigate Euclidean GM -convolutions on the Aff(G)-atlas induced
G-structures. Section 15.2.1 shows hereby that these GM -convolutions boil down to classi-
cal G-steerable convolutions on Rd when being expressed in a chart. The coordinate chart
independence is thereby guaranteed by the steerable convolutions’ Aff(G)-equivariance,
which is demonstrated in Section 15.2.2. Section 15.2.3 proves the GM -convolutions’
AffGM -equivariance in the coordinate free setting.

15.2.1 Recovering steerable convolutions on RdRdRd

GM -convolutions rely crucially on the transporter pullback Exp∗pf of feature fields, which
in turn depends on parallel transporters and the exponential map. On Euclidean spaces, these
operations take a particularly simple form, which we discuss first.

As stated before, Levi-Civita transporters move tangent vectors such over Euclidean spaces
that they remain parallel in the usual sense on Euclidean spaces; see Fig. 8.4a. Let xA :
Ed → Rd be any global chart of an Aff(G)-atlas. As the induced frame field is “parallel”,
the transporters along any path γ become trivial when being expressed relative to the induced
gauges d̂xAp :

gAAγ = e for any path γ (15.29)

This implies in particular that the feature vector transporters are in this gauge given by iden-
tity maps, i.e.

ρ
(
gAAγ

)
= idRc for any path γ . (15.30)

When expressing the exponential map in a chart, it reduces to a summation of the point and
vector coordinate expressions in Rd:

xA
(
expp v

)
= xA(p) + d̂xAp (v) (15.31)

We furthermore need to express feature fields in coordinates, that is, we pull them via the
inverse global chart back from Ed to Rd,

FA := fA ◦
(
xA
)−1

: Rd → Rc , (15.32)

which is visualized by the following commutative diagram:

Rd Ed Rc

FA

xA fA
(15.33)

With these ingredients at hand, the transporter pullback, Eq. (9.21), of feature fields on
Euclidean spaces can in coordinates be expressed as[

Exp∗pf
]A

(v) = ρ
(
gAA
p← expp(d̂x

A
p )91(vA)

)
fA expp

((
d̂xAp

)−1
(v)
)

= fA
(
xA
)−1

xA expp
((
d̂xAp

)−1
(v)
)

= FA
(
xA(p) + v

)
. (15.34)
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Expressing the GM -convolution on Ed relative to a chart on Rd, we find that it reduces to a
steerable correlation. This correlation is furthermore equivalent to a steerable convolution
with a point-inverted kernel. Note that the terms “convolution” and “correlation” are in deep
learning commonly used interchangeably, and that CNNs are usually implemented using
correlations instead of convolutions. As the kernels are learned, and their G-steerability is
unaffected by point inversion, convolutions and correlations are in practice equivalent.

Theorem 15.2.1 (Euclidean GM -convolutions in coordinates).
Let GM be a G-structure induced by an Aff(G)-atlas of charts as defined in Sec-
tion 15.1. When being expressed relative to any global chart xA : Ed → Rd of this
Aff(G)-atlas, the GM -convolution takes the form of a steerable correlation ⋆

Rd
on Rd:

FAout(x) =
[
K ⋆

Rd
FAin
]
(x) :=

∫
Rd

K(v)FAin (x + v) dv (15.35)

Let
←→
K denote a flipped kernel, defined by

←→
K (v) := K(−v), which isG-steerable iffK

is. The GM -convolutions with a kernel K is then furthermore equivalent to a steerable
convolution ∗ with

←→
K on Rd:

FAout(x) =
[←→
K ∗ FAin

]
(x) :=

∫
Rd

←→
K (x − y)FAin (y) dv (15.36)

Proof: The Euclidean correlation is derived by expressing the GM -convolution ⋆
GM

in co-
ordinates, Eq. (9.39), and inserting the transporter pullback’s coordinate expression,
Eq. (15.34):

FAout(x) = fAout

(
(xA)−1(x)

)
=
[
K ⋆

GM
fin
]A(

(xA)−1(x)
)

(15.37)

=

∫
Rd

K(v)
[
Exp∗(xA)−1(x) fin

]A
(v) dv

=

∫
Rd

K(v)FAin
(
x + v

)
dv

That the steerability of K and
←→
K imply each other is clear since the G-steerability

constraint, Eq. (5.1), needs to hold for any v ∈ Rd, in particular also −v, and thus
point-inverted kernels.

The equivalence of correlations and convolutions up to a kernel reflection is well known
and quickly shown:

[
K ⋆

Rd
Fin
]
(x) =

∫
Rd

K(v)Fin(x + v) dv =

∫
Rd

K(y− x)Fin(y) dy

=

∫
Rd

←→
K (x − y)Fin(y) dy =

[←→
K ∗ Fin

]
(x) ,

The second step substituted y = x+ v. □

That correlations with G-steerable kernels are Aff(G)-equivariant follows directly from the
corresponding steerable convolution’s equivariance. The following calculation asserts this
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claim for completeness explicitly:[
K ⋆

Rd
(tg ▷ρin

Fin)
]
(x) =

[
K ⋆

Rd
(
ρin(g)Fin (tg)

−1)](x) (15.38)

=

∫
Rd

K(v) ρin(g)Fin
(
(tg)−1(x + v)

)
dv

=

∫
Rd

K(v) ρin(g)Fin
(
g−1(x + v − t)

)
dv

=

∫
Rd

K(gṽ) ρin(g)Fin
(
g−1(x − t) + ṽ

)
|det g | dṽ

=

∫
Rd

ρout(g)K(ṽ) Fin
(
g−1(x − t) + ṽ

)
dṽ

= ρout(g)
[
K ⋆

Rd
Fin
](
g−1(x − t)

)
= tg ▷ρout

[
K ⋆

Rd
Fin
]
(x)

▷ρin
and ▷ρout

denote hereby the induced Aff(G)-representation actions on feature fields as
defined in Eq. (4.5).

15.2.2 Affine chart independence

Before proceeding to our proof of the Euclidean GM -convolutions’ AffGM -equivariance in
a coordinate free setting, we consider its Aff(G)−chart independence – as we will see, both
notions are closely related.

The transformation law of the feature field pullbacks to Rd when switching between charts
follows directly from the transition functions and can from the commutativity of the diagram

Rd Rc

Ed

Rd Rc

FA

tBAgBA ρ
(
gBA

)xA

xB

fA

fB

FB

(15.39)

be read off to be given by

FB = ρ
(
gBA

)
FA

(
tBAgBA

)−1
=
(
tBAgBA

)
▷ρ F

A , (15.40)

that is, by the induced representation action, Eq. (4.5), of the chart transition maps tBAgBA.

Coordinate chart independence means then that the GM -convolution’s coordinate expres-
sions in different affine charts xA and xB imply each other, i.e.

K ⋆
Rd
FBin = K ⋆

Rd
(
tBAgBA ▷ρin

FAin
)
= tBAgBA ▷ρout

(
K ⋆

Rd
FAin
)

(15.41)

= tBAgBA ▷ρout
FAout = FBout ,
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where we leveraged the Aff(G)-equivariance of the steerable correlation (Eq. (15.38)). The
active Aff(G)-equivariance of classical G-steerable correlations or convolutions on Rd is
therefore seen to imply the passive Aff(G) coordinate independence of Euclidean GM -
convolutions and vice versa. The two are two sides of the same coin. In addition, one can
prove the AffGM -equivariance of the GM -convolution in the coordinate free setting, which
we will do next.

15.2.3 Affine group equivariance

To prove the AffGM -equivariance of Euclidean GM -convolutions, we first define the trans-
formation law of coordinate free feature fields f ∈ Γ(A) under affine transformations
ϕ ∈ AffGM , denoted as pushforward, as:2,3

ϕ ▷ f = ϕ∗,A f ϕ
−1 . (15.42)

The (Levi-Civita) transporter pullback of an affine transformed feature field ϕ▷f is relative
to an affine chart xA given by:[

Exp∗p(ϕ▷f)
]A

(v)

(1)
=
[
Exp∗p(ϕ∗,A f ϕ

−1)
]A

(v)

(2)
= ρ

(
gAA
p← expp(d̂x

A
p )−1(v)

)
︸ ︷︷ ︸

= idRc

ψAA,p (ϕ∗,A f ϕ
−1) expp

((
d̂xAp

)−1
(v)
)

(3)
= ψAA,p ϕ∗,A

[(
ψAA,ϕ−1(p)

)−1
ψAA,ϕ−1(p)

]
f
[(
xA
)−1

xA
]
ϕ−1

[(
xA
)−1

xA
]
expp

((
d̂xAp

)−1
(v)
)

(4)
=
[
ψAA,p ϕ∗,A

(
ψAA,ϕ−1(p)

)−1][
ψAA,ϕ−1(p) f

(
xA
)−1][

xA ϕ−1
(
xA
)−1][

xA expp
((
d̂xAp

)−1
(v)
)]

(5)
= ρ

(
gAAϕ

)
FA

(
tAAϕ gAAϕ

)−1(
xA(p) + v

)
(6)
=
[(
tAAϕ gAAϕ

)
▷ρ F

A
] (
xA(p) + v

)
(15.43)

It relates to the transporter pullback of the untransformed field via the induced representa-
tion ▷ρ, acting with the coordinate expression tAAϕ gAAϕ of ϕ (Eq. (15.21)). The first two
steps make use of Eq. (15.42) and the definition of the transporter pullback in coordinates,
where (ϕ∗,A f ϕ

−1)A := ψAA,p(ϕ∗,A f ϕ
−1). To translate all morphisms into the correspond-

ing coordinate expressions, step three inserts identities idRc =
(
ψAA,ϕ−1(p)

)−1
ψAA,ϕ−1(p) and

idRd =
(
xA
)−1

xA, which are in step four rebracketed to clarify which combinations re-
sult in the coordinate expressions after step five. Recall for step 5 that, by Theorem 15.1.6,
gAAϕ (p) = gAAϕ for any p in Ed. As stated above, the last step identifies the resulting trans-
formation law in coordinates as the action of the induced representation.

With this result we can prove the AffGM -equivariance of Euclidean convolutions in the co-
ordinate free setting. This generalizes Theorem 13.2.5, proving the isometry equivariance of
GM -convolutions for the specific case of Euclidean spaces.

2This is the same definition of pushforwards as for isometries; see Def. 13.1.2.
3Since the feature vector bundle is defined as a G-bundle, i.e. associated to GM , pushforwards

can only be defined for the G-structure preserving affine transformations in AffGM .
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Theorem 15.2.2 (Affine equivariance of Euclidean GM -convolutions). LetGM be aG-
structure that is induced by some Aff(G)-atlas of the Euclidean spaceM = Ed and as-
sume feature vectors to be transported according to the Levi-Civita connection on Ed.
The corresponding GM -convolutions is then guaranteed to be equivariant under the
action of G-structure preserving affine transformations AffGM ∼= Aff(G). In equa-
tions, we have for arbitrary feature fields fin ∈ Γ(Ain) and G-steerable kernels
K ∈KG

ρin,ρout
that[
K ⋆ (ϕ▷ fin)

]
= ϕ▷

[
K ⋆ fin

]
∀ϕ ∈ AffGM , (15.44)

i.e. that the following diagram commutes for any ϕ in AffGM :

Γ(Ain) Γ(Ain)

Γ(Aout) Γ(Aout)

ϕ▷

K⋆ K⋆

ϕ▷

(15.45)

Proof: Let xA : Ed → Rd be any global chart of the considered Aff(G)-atlas and let
p ∈ Ed. Our proof of the AffGM -equivariance is then performed by expressing the
convolution relative to these coordinates and making use of the Aff(G)-equivariance of
G-steerable correlations (and convolutions) on Rd from Eq. (15.38):

ψAAout,p

[
K ⋆ (ϕ▷ fin)

]
(p) (15.46)

=

∫
Rd

K(v)
[
Exp∗p(ϕ▷ fin)

]A
(v) dv (GM -conv. in coords., Eq. (9.39))

=

∫
Rd

K(v)
[(
tAAϕ gAAϕ

)
▷ρin

FAin
] (
xA(p) + v

)
dv (transformed pullback, Eq. (15.43))

=
[
K ⋆

Rd
(
tAAϕ gAAϕ ▷ρin

FAin
)](
xA(p)

)
(identified correlation ⋆

Rd on Rd )

=
[
tAAϕ gAAϕ ▷ρout

(
K ⋆

Rd
FAin
)](
xA(p)

)
(Aff(G)-equivariance of ⋆

Rd , Eq. (15.38))

= ρout

(
gAAϕ

)(
K ⋆

Rd
FAin
)((

tAAϕ gAAϕ
)−1

xA(p)
)

(induced representation ▷ρout
, Eq. (4.5))

= ρout

(
gAAϕ

)(
K ⋆

Rd
FAin
)(
xA(ϕ−1(p))

)
(coordinate expression of ϕ, Eq. (15.21))

= ρout

(
gAAϕ

) ∫
Rd

K(v) FAin
(
xA
(
ϕ−1(p)

)
+ v
)
dv (expanded correlation ⋆

Rd on Rd )

= ρout

(
gAAϕ

) ∫
Rd

K(v)
[
Exp∗ϕ−1(p)fin

]A
(v) dv (Euclidean pullback, Eq. (15.34))

= ρout

(
gAAϕ

)
ψA
Aout,ϕ−1(p)

[
K ⋆ fin

]
ϕ−1(p) (GM -conv. in coords., Eq. (9.39))

= ψAAout,p
ϕ∗,Aout

[
K ⋆ fin

]
ϕ−1(p) (pushforward in coordinates, Eq. (13.39))

= ψAAout,p

[
ϕ▷

[
K ⋆ fin

]]
(p) (AffGM action on fields, Eq. (15.42))

The statement follows since ψA
Aout,p

is an isomorphism. □
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In summary, Euclidean GM -convolutions with Aff(G)-atlas induced G-structures have the
following two properties:

Aff(G)-coordinate independence: They are guaranteed to produce equivalent results in any
chart of the Aff(G)-atlas AAff(G)

Ed
. This property was shown in Eq. (15.41) and is

in Fig. 15.2 visualized as the transformation between charts.
AffGM -equivariance: As proven in Theorem 15.2.2 they are equivariant under active trans-

formations of feature fields by AffGM ∼= Aff(G). In Fig. 15.2, this would cor-
respond to a transformation of the signal on Ed, which would reflect in an active
transformation on its representation relative to the same chart.

The proofs of both properties rely ultimately on the active Aff(G)-equivariance of classical
G-steerable convolutions and correlations on Rd.

15.3 Euclidean CNNs in the literature

All of the models in rows (1-30) of Table 14.1 are Aff(G)-equivariant GM -convolutions (or
steerable convolutions) on Euclidean spaces Ed, as discussed in this chapter (or Chapter 4).
They differ in the dimensionality d of the Euclidean space, the structure group G and thus
global symmetry group Aff(G), the group representations or field types ρ and choices of dis-
cretizations. This section discusses the models briefly by grouping them by their field types
into irrep models, regular representation models (corresponding to group convolutions) and
variations of them, quotient representation models and others. As these models are essen-
tially steerable CNNs, some of them were already explained in the benchmark experiment
Section 6.5. In contrast to Section 6.5, the models here are not restricted to d = 2 di-
mensions and cover non-compact structure groups, including scaling and the Lorentz group.
The differential geometric formulation allows furthermore to interpret group and quotient
convolutions from a different viewpoint, which generalizes to arbitrary manifolds.

Row (1) of Table 14.1 lists Euclidean GM -convolutions on translation invariant {e}-
structures as visualized in Fig. 15.3a. Due to the triviality of the structure groupG = {e}, no
(non-trivial) gauge transformations exist and the only possible choice of group representation
is the trivial representation. TheG-steerability constraint becomes therefore trivial, such that
the space of admissible convolution kernels remains unrestricted. When being pulled back
to Rd via a chart, the GM -convolution becomes by Theorem 15.2.1 a conventional convolu-
tion (or correlation). Theorem 15.2.2 asserts its translational equivariance. The models are
therefore seen to correspond to the conventional Euclidean CNNs by LeCun et al. [175].

All of the other Euclidean models in rows (2-30) consider non-trivial structure groups. They
can be thought of as conventional convolutions on Rd with the additional constraint on the
kernels to be G-steerable, which guarantees their Aff(G)-equivariance.

Irrep features: The networks in rows (4, 6, 11, 12, 20, 24, 27) and (30) operate on feature
fields that transform according to irreducible representations (irreps) of G. For G = SO(2),
listed in row (6) and already covered in Table 6.6, this leads to so-called harmonic net-
works [335, 322]. This name is motivated by the fact that SO(2)-irrep steerable convolution
kernels are circular harmonics. The additional reflectional constraint forG = O(2), listed in
row (14), adds parity selection rules that fix the phase of the circular harmonics, suppressing
half of the degrees of freedom as compared to theG = SO(2) case. Both kernel spaces were
derived in Section 5.3.4; see in particular Tables 5.2 and 5.3.
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The models by [323, 301, 211, 161, 3, 184] in row (20) consider irreps of G = SO(3)
and can therefore be seen as the analog to the models in row (6) in three dimensions. The
space of valid kernels to map between fields that transform according to irreps (Wigner D-
matrices) of orders l and J is here spanned by all spherical harmonics of the 2(min(l, J)+1)
orders j with |l− J | ≤ j ≤ l+ J ; Fig. 5.4 visualizes these selection rules. Irrep models for
G = O(3), listed in row (24), are again adding parity selection rules, which enforce here that
convolutions between fields of the same parity require even parity spherical harmonics, while
transitions between field parities require odd parity kernels. A variation of this approach is
listed in row (27) [233]. A convolution of an input scalar field, i.e. l = 0, with spherical
harmonics of order j yields irrep fields of the corresponding order J = j. However, instead
of processing these irrep features further via convolutions, the authors compute their norm.
This results in scalar fields, which are in the next layer processed in the same manner.

The model from [274] in row (30) does not assume the standard Euclidean metric but the
Minkowski metric. Its structure group is the Lorentz groupG = SO(d−1, 1) and the global
symmetry group is the Poincaré group. In addition to building the equivariant network, the
authors propose an algorithm to compute the irreps of Lie groups from the structure constants
of their Lie algebra.

A special case of irreps are trivial representations (row 11), which describe G-invariant
feature vectors (scalars). Due to their invariance, such features can not encode differences
between any patterns in G-related poses. The constraint on kernels that map between scalar
fields becomes K(gv) = 1

|det g|K(v) for any v ∈ Rd and any g ∈ G, enforcing kernels
that are (in every channel individually) invariant under the action of G. The first column of
Fig. 5.2, the first row of Fig. 5.3 and the upper left entry of Table 5.1 show such kernels for
G = O(2), G = O(3) and G = R, respectively. Interpreting the pixel grid of an image as
a graph and applying a standard graph convolution to it corresponds to a trivially steerable
convolution with O(2)-invariant kernels since standard graph convolutions apply isotropic
kernels [144].

An advantage of irrep features from a practical viewpoint is their low dimensionality and
thus memory consumption per feature field. However, empirical results show that irrep field
based steerable convolutions usually achieve a lower performance than other field types, for
instance those based on regular representations. This statement is reflected in our evaluation
of Möbius convolutions in Section 10.5 and the benchmark of isometry equivariant Euclidean
steerable CNNs in Table 6.6.

Regular features and group convolutions: The probably most prominent class of field
types for equivariant CNNs are regular representations of the structure groups. As defined
in Def. B.5.18, regular representations operate on functions 𭟋 : G→ R, which assign a fea-
ture response to every G-pose of a kernel. The regular representation acts thereby by G-
translating these functions, that is,

[
ρreg(g̃)𭟋

]
(g) = 𭟋

(
g̃−1g

)
. Specifically for finite groups

this implies feature fields with the number of channels c = |G| given by the order of the
group; see Remark B.5.19. As non-finite groups imply non-finite regular representations,
the corresponding features are in practice discretized, which can for instance be done by
considering a finite subgroup of the structure group or by Monte Carlo sampling. Since
regular feature fields f ∈ Γ(A) assign a function fA(p) : G → R to each point p ∈ M
(when being expressed relative to any gauge A at p), they are equivalent to real-valued func-
tions f̃ : GM → R on the G-structure GM .4 For the case of GM being induced by an

4Theorem J.0.1 in Appendix J proves this isomorphism C∞(GM) ∼= Γ(Aρreg) for the practically
relevant case of G being a finite group.
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Aff(G)-atlas, this is furthermore equivalent to real-valued functions
≈
f : Aff(G) → R on

Aff(G) ∼= GM (along the isomorphism in Eq. (15.14)). Equivariant linear maps between
functions on the group Aff(G) are group convolutions, which means that affine group con-
volution based CNNs are covered by our framework – this relation was in the context of
steerable CNNs already proven in Section 4.5 above. Regular representation based GM -
convolutions are in this regard best thought of as generalizations of group convolutions to
the differential geometric setting.

Aff(G)-group convolutions are in Table 14.1 listed in rows (2,3,5,7,13,17,19,22,25,28) and
(29). As these models typically process scalar field inputs, like grayscale images, they apply
an initial convolution from scalar fields to regular fields, followed by group convolutions,
i.e. convolutions from regular to regular fields. As regular representations are permutation
representations, they typically apply pointwise nonlinearities like ReLUs to each of the field
channels individually.

The reflection equivariant CNN on E2 from [322] in row (5) applies R-steerable kernels as
derived in Section 5.2 and visualized in the bottom right entry of Table 5.1. Since the reflec-
tion group is finite with order |R| = 2, the regular feature fields have two channels, each
of which is associated to one of the two frame orientations of the R-structure in Fig. 15.3c.
The resulting model is globally (R2,+)⋊R = Aff(R) equivariant.

To construct SE(2) = Aff(SO(2)) equivariant group convolutions one would in theory have
to consider the SO(2)-structure in Fig. 15.3b with feature fields transforming according to
the regular representation of SO(2). In practice, most of the models in row (7) of Table 14.1
approximate this via regular representations of the finite cyclic subgroups CN ≤ SO(2),
consisting of discrete rotations by multiples of 2π/N , as described in Chapter 6. As the order
of these groups is |CN | = N , the corresponding feature fields are N -dimensional. While
the model performance is initially significantly increasing with N , it is empirically found
to saturate at approximately 8 to 12 sampled directions; see Fig. 6.4 or [324, 322, 10]. For
an intuition on the spaces of CN -steerable kernels we refer to the visualizations in Fig. 18.3
or [324, 12, 10].

The E(2) = Aff(O(2)) equivariant group convolutions in row (13) are similarly approx-
imated via dihedral subgroups DN ≤ O(2), which consist of N rotations, each in two
reflections. The feature fields are in this case |DN | = 2N -dimensional.

Simultaneous equivariance under translations and scaling is achieved by the (Rd,+)⋊S =
Aff(S) group convolutions in rows (2) and (17). The scaling group is hereby commonly dis-
cretized. As this would still lead to a (countably) infinite group order, the implementations
introduce cutoffs, i.e. minimal and maximal scales as shown by the frames in Fig. 15.3d.
Note that this leads to similar boundary effects as for conventional convolutions at the bor-
der of an image. The model in row (19) combines rotation and scaling equivariance, i.e.
G = SO(2) × S. As the steerability constraints for G = SO(2) and G = S affect only
the kernels’ angular and radial parts, respectively, G = (SO(2)× S)-steerable kernels are
easily constructed from these solutions.

The models in rows (22) and (25) are equivariant w.r.t. translations, rotations and, for the
latter, reflections of three-dimensional Euclidean spaces E3. While Finzi et al. [91] choose
a Monte-Carlo discretization of the regular representation, the models in [40, 333, 329] are
based on different discrete subgroups of SO(3) or O(3). A current limitation of group
convolution based rotation and reflection equivariant models in three dimensions is their
high memory and compute requirement. For instance, the symmetry group of the cube,
which has still a quite coarse resolution of rotations by π/2, already consists of |G| = 48
group elements, implying 48-dimensional feature fields in three-dimensional space. On the
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other hand, the large number of symmetries reflects the greatly enhanced data efficiency
of such models: the authors of [329] report the same performance of an equivariant model
in comparison to a non-equivariant ({e}-steerable) network despite training on a 10 times
smaller dataset.

The models in rows (28) and (29) convolve on E3, however, they consider cyclic and dihedral
structure groups C4 and D4, i.e. planar rotations and reflections around the (thus defined)
z-axis. Their steerable kernels are therefore similar to those of the models from rows (7) and
(13) but extend additionally in a new z-direction.

Regular to scalar and vector pooling: A variation of group convolutional networks are

the models in rows (9,10,15,18) and (23), which are labeled by regular
pool−−→trivial and

regular
pool−−→vector. After applying a convolution to regular feature fields, they perform a

max-pooling operation over G-responses (Eq. (6.2), which results in scalar (trivial) fields
[52, 195, 322, 107, 4], or a max-pooling together with an argmax, from which vector fields
can be computed [196, 322]. Subsequent convolutions map from the resulting scalar or vec-
tor fields back to regular feature fields. As the pooling operations reduce the number of
channels significantly from |G| to 1 or d, respectively, the models become more memory
and compute efficient than conventional group convolutions. On the downside, the pooling
is accompanied with a loss of information, which is empirically found to decrease the model
performance [322].

Quotient features: Rows (8,14) and (26) list models whose feature fields transform ac-
cording to quotient representations of the structure group, which are permutation representa-
tions that are similar to regular representations. Given a subgroup Ĝ ofG, the corresponding
quotient representation acts on scalar functions 𭟋 : G/Ĝ→ R on the quotient space G/Ĝ

via translation, that is,
[
ρ
G/Ĝ
quot (g̃)𭟋

]
(gĜ) = 𭟋(g̃−1g Ĝ); see Def. B.5.20. The dimension-

ality of the feature fields is therefore given by the index |G : Ĝ| of Ĝ in G, which is for
finite groups equal to |G|/|Ĝ|. Feature fields that transform under quotient representations
can be seen as symmetry-constrained regular feature fields that are forced to take the same
value on all group elements in the same coset gĜ of Ĝ in G. In the differential geometric
setting, these models can be viewed as assigning kernel responses to equivalence classes of
Ĝ-related frames – and therefore to different choices of Ĝ-substructures ĜM in GM .

A specific example are the representations in row (26), which are associated with the quo-
tient O(3)/O(2) ∼= S2. Instead of allowing for arbitrary convolution kernels, the kernel
constraint leads here to kernels which are invariant under rotations around the z-axis; see
the visualizations in [136]. More details and a graphical intuition on quotient representation
based feature fields can be found in Appendix C of [322]. The theory proposed in [162]
covers quotient fields from an alternative viewpoint of group convolutions on right quotient
spaces.

Induced representations: A generalization of regular and quotient representations are in-
duced representations like the induced SO(2)-irreps in row (16) of Table 14.1. Given any
SO(2)-irrep ρ : SO(2)→ GL(n), the induced representation Ind

O(2)
SO(2) ρ : O(2)→ GL(c)

of O(2) with c = n · |O(2) : SO(2)| = 2n acts in the following way: reflections per-
mute two n-dimensional, orthogonal subspaces of R2n which correspond to the two cosets
in O(2)/ SO(2) while rotations act on the individual subspaces via ρ. For ρ being the triv-
ial representation of SO(2) this recovers quotient representations as discussed above. In
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comparison to O(2)-irrep feature fields, the induced SO(2)-irrep fields show a significantly
improved performance. A more detailed description and empirical evaluation of these field
types can be found in [322].

Quaternion representation: The last type of representation listed in Table 14.1 is the
quaternion representation of three-dimensional rotations in row (21) [345]. It makes use of
the usual representation of rotations via quaternions, which relies the identification of unit
quaternions with SU(2) and the existence of a surjective group homomorphism from SU(2)
to SO(3). Note that the quaternion representation is actually a projective representation of
SO(3).

Discretization: While our theory is formulated on continuous Euclidean spaces, imple-
mentations sample feature fields usually on discrete subsets. The most common discretiza-
tion of Ed is in terms of the pixel grid Zd. An alternative are hexagonal planar grids on E2

as investigated by Hoogeboom et al. [125]. If such regular pixel grids are chosen, a basis
of G-steerable kernels can be precomputed and sampled on this grid. Data like events in
spacetime [274] or molecules in R3 [301, 161, 3, 211] are instead usually represented by
irregular point clouds. In this case the kernels need to be given analytically, which allows
their online sampling during the forward pass.

Finally, we want to mention that there exist globally Aff(G)-equivariant models which
are not locally G-equivariant. An example is TI-pooling (transformation-invariant pool-
ing) [174], which feeds a set of globally transformed feature fields through a conventional
Euclidean CNN and finally pools the resulting features over these transformations, which
results in an invariant descriptor. While this model is not an Aff(G)-equivariant GM -
convolution as described in this Chapter, it is nonetheless constructed from an Aff({e}) =
(Rd,+)-equivariant (conventional) {e}M -convolution.





CHAPTER 16

Rotation equivariant CNNs on punctured Euclidean spaces

The models in rows (31-34) of Table 14.1 provide an interesting alternative for rotation
equivariant convolutions on punctured Euclidean spaces Ed\{0}. They rely on G-structures
that are invariant under rotations around the chosen origin {0}, as visualized for instance in
Fig. 16.1. By specifying a preferred origin, these models lose the property to be translation
equivariant.1 However, if theG-structure is additionally invariant under scaling, which is for
instance the case when it is induced by hyperspherical coordinates with a logarithmic radial
component as shown in Fig. 16.3, the models become equivariant w.r.t. the direct product
SO(d)×S of the rotation and scaling group. Similarly, rotation and reflection invariant G-
structures, visualized in Fig. 16.2, imply the O(d)-equivariance of the corresponding GM -
convolutions.

The models relate to spherical CNNs, discussed in Chapter 17 below, in two ways. Firstly,
they assume rotationally invariant G-structures on Ed\{0} ∼= Sd−1× R>0, which can
be seen as being composed of multiple rotationally invariant G-structures on (d−1)-
dimensional spherical shells Sd−1 at different radii. The models can therefore be thought

1This issue can be resolved by combining the network with a translation invariant origin predictor
network [84]. Note that the rotation equivariance of the combined model is only preserved if this origin
predictor is SE(d)-equivariant.

(a) SO(2)-invariant {e}-structure as im-
plicitly assumed by Finzi et al. [91].

(b) C8-invariant {e}-structure as implic-
itly assumed by Chidester et al. [47].

Figure 16.1: Two examples of {e}-structures on the punctured plane E2\{0} which 1) are invariant
under rotations around the origin {0} and 2) consist of orthonormal frames relative to the standard
Euclidean metric. The corresponding GM -convolutions are rotation equivariant but not translation
equivariant (in fact, E2\{0} does not even admit translations).
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of as (hyper)spherical CNNs with an additional radial dimension R>0 [238], which is in
Fig. 16.4 visualized for the case of d = 3 dimensions. Secondly, the polar coordinate sys-
tems of [84, 91, 47] (Figs. 16.1 and 16.3) induce G-structures that exhibit the same type of
singularity at their origin like those of the punctured spherical CNNs in Fig. 17.2b at the
poles. Note that the punctured Euclidean plane E2\{0} and the punctured sphere S2\{n, s}
(with north and south poles {n, s} removed) are both topologically equivalent to a cylinder
S1 × R>0

∼= S1 × R and that the cylindrical {e}-structures visualized in Figs. 16.1a, 16.3
(left) and 17.2b are diffeomorphic.

A major difference in comparison to the SE(d)-equivariant networks from the previous chap-
ter is that the models of the current chapter are only globally SO(d)-equivariant around the
origin instead of locally SO(d)-equivariant (SO(d)-steerable). While the globally equivari-
ant models do not require SO(d)-steerable kernels, they still require at least SO(d − 1)-
steerable kernels. This is the case since SO(d) is a SO(d − 1)-bundle over the spherical
shells Sd−1 ∼= SO(d)/SO(d − 1) on which the G-structure is required to be SO(d) rota-
tion equivariant. For d = 2 this allows for {e}-structures and non-steerable kernels since
SO(d − 1) = SO(1) = {e}; see Fig. 16.1 or 16.3. For d = 3 this requires at least a
SO(d − 1) = SO(2)-structure on the individual spherical shells, which is visualized in
Fig. 17.2a.

After these general remarks we will in the following briefly review the individual models
on Ed\{0} found in the literature from the viewpoint of coordinate independent CNNs. We
start with the models in row (31) of Table 14.1, which are equivariant w.r.t. SO(2) rotations
around a chosen origin of E2 and proceed with the models in row (32), which are additionally
scale equivariant. The network listed in row (33), which we discuss last, is globally O(3)-
equivariant around the origin of E3.

16.1 Global rotation equivariance on EEEEE2\\\\\{0}

We start with the conceptually simplest models, which are globally rotation equivariant net-
works that rely on solely rotation invariant {e}-structures on E2\{0} [91, 47]. These models
assume the standard Euclidean metric on E2\{0}, relative to which the frames are orthonor-
mal. Together, these two requirements imply {e}-structures as shown in Fig. 16.1.

In addition to the considered G-structures, the networks depend on the specific implemen-
tation of the transporter pullback and thus on the geodesics and parallel transporters. The
geodesics are in both models assumed to be the standard geodesics on Euclidean spaces
(i.e. straight lines), corresponding to the Levi-Civita connection of the Euclidean metric. As
E2\{0} is not geodesically complete, zero-padding has to be used for exponential maps that
would end at the origin. Note that this does not have an impact on the final result as the lost
geodesics are of measure zero.

The parallel transport of feature vectors, on the other hand, does not correspond to the Levi-
Civita connection since the Levi-Civita connection is not compatible with the {e}-structures.
Instead, the models assume the unique {e}-compatible trivial connections which are implied
by the respective {e}-structures.2 According to the trivial connections, the numerical coeffi-
cients of feature vectors do not transform when being transported, despite the frames being
rotated relative to the usual notion of parallelism on Euclidean spaces. In practice, this just

2 An animation of the {e}-compatible transport corresponding to Fig. 16.1a can be found on
Wikipedia.

https://en.wikipedia.org/wiki/Levi-Civita_connection#Parallel_transport
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Figure 16.2: An O(2)-invariant R-structure
on E2\{0}, which is constructed by adding a
reflected versions to each frame of the {e}-
structure in Fig. 16.1a. The corresponding
GM -convolution is simultaneously equivari-
ant w.r.t. global rotations and reflections in
IsomRM = O(2) around the origin.

means that the transporters ρ(gAÃγ ) = idRc can be ignored in the implementation – which is
the reason that they are not being discussed in the original papers [91, 47].

As rotations leave the considered {e}-structures invariant and are at the same time isome-
tries, we have Isom{e}M = SO(2) for the model by Finzi et al. [91] (Fig. 16.1a) and
Isom{e}M = C8 for the model by Chidester et al. [47] (Fig. 16.1b). Theorem 13.2.5 as-
serts then that the corresponding GM -convolutions are Isom{e}M -equivariant, which is in
agreement with the statements made by the authors.

Before going on we want to mention that the C8-invariant {e}-structure in Fig. 16.1b is
not continuous and does therefore not guarantee a continuous (or smooth) inference. An
advantage of this {e}-structure from an engineering viewpoint is that it is locally isomet-
ric to the canonical {e}-structure of R2, which allows to run conventional Euclidean con-
volution routines on each octant. The authors discuss the generalization to CN -invariant
{e}-structures, which become in the limit N → ∞ equivalent to the SO(2)-invariant {e}-
structure in Fig. 16.1a.

It is furthermore possible to make the models globally O(2)-equivariant by using reflection
steerable kernels instead of unconstrained kernels. From a theoretic viewpoint this corre-
sponds to the IsomRM = O(2)-invariant R-structure RM on E2\{0} shown in Fig. 16.2.
Note that RM is a R-bundle over E2\{0}, whose restriction to circles of constant radius is
as a principal bundle isomorphic to O(2), interpreted as R-bundle over the quotient space
O(2)/R ∼= S1.

16.2 Global rotation and scale equivariance on EEEEE2\\\\\{0}
via log-polar coordinates

By making the rotation invariant G-structures from the last section additionally scale invari-
ant, the corresponding GM -convolutions become equivariant w.r.t. the direct product group
SO(2)×S. Such G-structures are induced by log-polar coordinates, shown in Fig. 16.3,
which allow for a convenient implementation of the GM -convolution in terms of conven-
tional Euclidean convolutions on the coordinate representation R2. The translation equiv-
ariance of convolutions on R2 corresponds then to the SO(2)×S-equivariance on E2\{0}.
For clarity, we start by describing the model in terms of log-polar coordinates as proposed
by Esteves et al. [84].3 Subsequently, we investigate how this model and its properties are
explained in our framework.

3The idea to implement rotation invariant correlations via log-polar transforms appeared already in
the 80’s [255, 34].
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Figure 16.3: Log-polar coordinates χ : R2 → R2\{0} : (φ, ξ) 7→
(
eξ cos(φ), eξ sin(φ)

)
map angles

φ ∈ R and log-radii ξ = log∥p∥ ∈ R to points p in R2\{0}. After choosing Cartesian coordinates
of E2\{0} ∼= R2\{0}, this yields a coordinatization of E2\{0} by R2. The log-polar coordinates
imply an {e}-structure on E2\{0}, consisting of reference frames

[
∂
∂φ
, ∂

∂ξ

]
that are aligned with

the coordinate grid. They furthermore induce a Riemannian metric, which differs from the usual
Euclidean metric and relative to which the induced frames are orthonormal. GM -convolutions on the
{e}-structure correspond to conventional Euclidean convolutions in the coordinates R2. Translations
(∆φ, ∆ξ) ∈ (R2,+) on R2 correspond via χ to rotations and rescalings of E2\{0}, where the rotation
angles and rescaling factors are given by ∆φ and e∆ξ, respectively. The translation equivariance of the
convolution in coordinates R2 implies therefore the SO(2)×S-equivariance of the GM -convolution
on E2\{0}. This result is in agreement with the isometry equivariance of the GM -convolution since
the transformations in IsomGM = SO(2)×S are isometries relative to the induced metric. Esteves
et al. [84] implement such GM -convolutions in terms of conventional convolutions on R2.

Log-polar coordinates of the punctured Euclidean vector space R2\{0} are defined in terms
of the smooth surjection

χ : R2 → R2\{0} , (φ, ξ) 7→
(
eξ cos(φ), eξ sin(φ)

)
, (16.1)

which assigns points p = χ(φ, ξ) in R2\{0} to a given polar angle φ ∈ R and log-radius
ξ = log∥p∥ ∈ R. This map is 2π-periodic in the angular coordinate (note the repetition of
the blue stripe on the right-hand side of Fig. 16.3) and is therefore in particular non-injective.
A restriction to [0, 2π)×R would be bijective and continuous, however, not homeomorphic
– this will require us below to consider at least two charts to cover the punctured plane.
Cartesian coordinates identify R2\{0} with E2\{0}, and therefore allow to assign log-polar
coordinates to the latter. As different (right-handed) Cartesian coordinate systems that are
centered in the origin of E2\{0} differ only by rotations, the assignment of log-polar coor-
dinates is ambiguous by a shift in the angular component.

Given a feature map f : R2\{0} → Rc (an {e}M -associated feature field, as clarified below),
Esteves et al. [84] consider its pullback f̃ := f ◦ χ : R2 → Rc via log-polar coordinates,
defined by the commutativity of the following diagram:

R2 R2\{0} Rc
χ

f̃

f
(16.2)

A rotation and scaling equivariant group convolution of the feature field f on R2\{0} is then
defined by 1) pulling it via χ back to coordinates R2 2) applying a conventional Euclidean
convolution there and 3) mapping the result back to R2\{0}. This procedure is well defined
since χ is smooth, such that smooth feature maps (feature fields) f result in smooth and
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periodic pullbacks f̃ . Since convolutions are position-independent, their output feature map
will still be periodic and smooth, and corresponds therefore uniquely to a smooth feature
map on R2\{0}.4

The rotation and scaling equivariance of the implied group convolution on R2\{0} follows
from the translation equivariance of the coordinate function χ.5 Let (φ, ξ) be any coordinates
in R2 and let (∆φ,∆ξ) be any translation in (R2,+). The point of R2\{0} that corresponds
to translated coordinates (φ+∆φ, ξ+∆ξ) relates then to the point corresponding to non-
translated coordinates (φ, ξ) via a scaling by the factor e∆ξ and rotation by the angle ∆φ:

χ
(
φ+∆φ, ξ +∆ξ

)
= eξ+∆ξ

(
cos(φ+∆φ)
sin(φ+∆φ)

)
= e∆ξ

(
cos(∆φ) − sin(∆φ)
sin(∆φ) cos(∆φ)

)
eξ
(
cos(φ)
sin(φ)

)
= e∆ξ

(
cos(∆φ) − sin(∆φ)
sin(∆φ) cos(∆φ)

)
χ(φ, ξ)

=: (∆φ, ∆ξ) ▷ χ(φ, ξ) (16.3)

In terms of a diagram, this means that

R2 R2

R2\{0} R2\{0}

(∆φ,∆ξ)+

χ χ

(∆φ,∆ξ)▷

(16.4)

commutes for arbitrary translations. Together with the translation equivariance of con-
ventional convolutions on R2, this implies that rotated and scaled input feature maps on
R2\{0} will lead to rotated and scaled output feature maps on R2\{0}, i.e. the SO(2)×S-
equivariance of the convolution on R2\{0}. More details on this viewpoint are found in [84]
and [15].

We will now revisit this convolution operation and its properties from the viewpoint of co-
ordinate free GM -convolutions. To do so, we consider an atlas of charts that are consistent
with the log-polar coordinates, and discuss the induced {e}-structure, gauges, Riemannian
metric, geodesics and parallel transport that it implies. The claimed SO(2)×S-equivariance
follows immediately from the Isom{e}M -equivariance of GM -convolutions. For notational
convenience, we will again identify E2\{0} via some choice of Cartesian coordinates with
R2\{0}.
As the restriction χ̃ : [0, 2π)×R→ R2\{0} of the log-polar coordinates χ to non-redundant
angles is bijective and continuous, one might be tempted to take its inverse as a coordinate

4To see this, note that χ is a quotient map (since its angular part is a quotient map R → S1 ∼=
R/2πZ). For continuous (instead of smooth) feature maps the statement follows from the universal
property of quotient spaces; see e.g. Wikipedia. As the smoothness of a function is defined as its
continuous differentiability, the universal property can be applied recursively to show that the statement
holds for smooth feature maps as well.

5That this is possible relies on the fact that there is a group homomorphism (R2,+) → SO(2)×
S, (∆φ, ∆ξ) 7→ (R∆φ, e

∆ξ), defined by the group isomorphism exp : (R1,+)→ S on the second
factor and the group homomorphism (quotient map) R : (R1,+) → SO(2) ∼= (R1,+)/2πZ on the
second factor, where R∆φ denotes the rotation matrix by an angle of ∆φ.

https://en.wikipedia.org/wiki/Quotient_space_(topology)#Properties
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chart. This is, however, not possible, since χ̃ is not a homeomorphism, as required for charts.
Instead, we consider an atlas consisting of two charts that are defined in terms of restrictions
of χ and that cover R2\{0}. One particular choice is to define chart codomains as open sets
V A = (0, 2π)× R and V B = (−ϵ, ϵ)× R for some 0 < ϵ < π and, for X = A,B, define
charts on UX = χ(V X) as xX :=

(
χ
∣∣
V X

)−1
: UX → V X . Intuitively, this atlas achieves

the same as the naive attempt to define charts as the inverse χ̃. The important difference is,
however, that the charts are diffeomorphic, which is necessary to assure the smoothness of
all operations.

As usual, these charts induce local frame fields and bundle trivializations on UA and UB ,
respectively. It is easy to see that the transition maps gBAp = ∂xB

∂xA |xA(p) on UA ∩ UB are
trivial, which implies that the union of the frame fields defines a smooth {e}-structure {e}M
on R2\{0}. These coordinate bases, which are in the literature often denoted as

[
∂
∂φ ,

∂
∂ξ

]
,

are shown in Fig. 16.3 (left). Our calculation in Eq. (16.3) above implies that the induced
{e}-structure is SO(2)×S-invariant.

The charts induce furthermore a Riemannian metric, which differs from the usual Euclidean
metric on R2\{0}. It is defined as the pullback of the Euclidean metric ⟨·, ·⟩R2 in the charts’
codomains, and is therefore pointwise given by

ηp(v, w) :=
〈
d̂xXp (v) , d̂xXp (w)

〉
R2 , (16.5)

where v, w ∈ TpM and X denotes either chart with p ∈ UX . The chart induced {e}-
structure consists by construction of frames that are orthonormal w.r.t. this chart induced
metric, even though these frames grow with the radius when measured relative to the stan-
dard Euclidean metric. The Levi-Civita connection of the induced metric differs from the
usual Euclidean connection and implies therefore alternative geodesics and parallel trans-
porters. As the metric is pulled back via the charts, the geodesics correspond to straight lines
in the charts’ codomains – an example are the coordinate lines on R2\{0} in Fig. 16.3. The
parallel transport corresponds to the usual transport in the charts’ codomains as well, which
implies that it keeps transported vectors in a fixed angle to the coordinate lines on R2\{0};
cf. footnote 2. Note that this is the same transport as already discussed above in the models
corresponding to Figs. 16.1, where it was not the transport corresponding to the Levi-Civita
connection since these models assumed the standard metric on R2\{0} instead of the chart
induced metric.

The {e}-structure preserving isometries Isom{e}M
∼= SO(2)×S relative to the chart in-

duced metric are given by rotations and rescaling of the {e}-structure relative to the usual
Euclidean metric. Theorem 13.2.5 implies the SO(2)×S-equivariance of the corresponding
GM -convolution – which recovers the statement made by Esteves et al. [84] in our theory.
As stated above, the fact that the metric is induced via the charts means that all operations
reduce to the usual Euclidean operations when being expressed in the chart. The GM -
convolution is therefore best implemented via a conventional convolution on the chart, as
proposed by Esteves et al. [84].

Note that the SO(2)×S-equivariance of the GM -convolution is easily extended to
O(2)×S-equivariance, which includes reflections. This is implemented by performing a
reflection equivariant convolution in the chart, which corresponds to the R-structure shown
in Fig. 15.3c. On R2\{0}, this implies a R-structure that looks similar to that in Fig. 16.2
above, with the difference that the R-structure is additionally invariant under a global rescal-
ing.
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16.3 Global rotation equivariance on EEEEE3\\\\\{0}

The ideas presented above can be generalized to the three-dimensional setting, i.e. to the
punctured Euclidean space E3\{0}. Globally rotation equivariant GM -convolutions corre-
spond here to G-structures that are invariant under SO(3) rotations around the origin. While
the radial dependency of such G-structures is left unconstrained, the demand for rotational
invariance imposes a constraint on their form over spherical shells at fixed radii, which are
the orbits of the action of SO(3) on E3\{0}. The fact that the sphere S2 = SO(3)/SO(2)
is a homogeneous space of SO(3) with stabilizer subgroups isomorphic to SO(2) implies
that the structure group of an SO(3)-invariant G-structure can not be reduced further than
G = SO(2); see Fig. 17.2a. We are therefore essentially considering spherical CNNs with
an additional radial dimension. For a review on spherical CNNs we refer the reader forward
to Chapter 17.

Ramasinghe et al. [238] identified this situation and designed SO(3)-equivariant convolu-
tions on E3\{0}. Before coming to our classification as GM -convolution, listed in row (33)
of Table 14.1, we briefly review the authors’ formulation and implementation. Their imple-
mentation is based on spherical CNNs with the addition that 1) kernels extend in the radial
direction and 2) are shared over shells at different radii; see Fig. 16.4 (left). As commonly
done for spherical CNNs, the angular dependency of the kernels is encoded via their Fourier
spectrum on S2, that is, in terms of spherical harmonics expansion coefficients. The sharing
of these expansion coefficients implies that the shared kernels cover the same solid angle for
all radii, implying that the kernels dilate in angular direction linearly with the radius.6 In
the discretized implementation, the spherical shells are located at equidistant radii – which
implies that the kernels do not dilate in radial direction. From these insights we infer the
specific G-structure that the model assumes below. The kernels themselves are constrained
such that they are invariant under SO(2) rotations around the radial axis through their cen-
ter, which is often referred to as zonal kernels; see Fig. 16.5 and [83]. As proven in [83]
and [238], the convolution with such kernels is SO(3)-equivariant. That this is the case is
intuitively clear since rotations of the spherical shells have SO(2) as stabilizer subgroup,
w.r.t. which the zonal kernels are invariant. As we will argue below, the model is actually
O(3)-equivariant, that is, additionally equivariant under reflections.

Figure 16.5: A zonal
(isotropic) kernel is
simultaneously SO(2)-
and O(2)-steerable; cf.
Eqs. (16.6) and (16.7).

To recover this model from the viewpoint ofGM -convolutions, we
need to determine the correspondingG-structure onM = E3\{0}.
As stated above, the SO(3)-equivariance of the model requires the
G-structure to be invariant under the action of SO(3) but does not
constrain their radial variation. To infer this radial dependency of
the G-structure, recall that we defined convolutional weight shar-
ing at p ∈ M as aligning the template kernel K : R3 → Rcout×cin

relative to some (arbitrary) frame in GpM of the tangent spaces
TpM . The kernel sharing considered by Ramasinghe et al. [238]
lets us therefore draw conclusions about the implicitly considered
G-structure. The authors share kernels such that their area tan-
gent to the spherical shells extends with growing distance from the
origin (they cover the same solid angle at each radius) while their
radial thickness remains constant. Fig. 16.4 (left) shows this radial variation of the shared
kernels while Fig. 16.4 (middle) shows the corresponding scaling of exemplary reference
frames. Together with the required SO(3)-invariance of the G-structure, this implies (at
least) an SO(2)-structure, whose restriction to one spherical shell is visualized in Fig. 16.4

6The dilation is here measured relative to the standard Euclidean metric of E3\{0}.
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Figure 16.4: The G-structure that was implicitly assumed by Ramasinghe et al. [238] can be de-
duced from the weight sharing scheme. Left: Weight sharing of (isotropic) convolution kernels over
E3\{0} ∼= S2 × R>0 as proposed in [238]. The kernels are defined to cover the same solid angle,
independent of the distance from the origin, such that their diameter grows linearly with this distance.
The kernels’ extent in radial direction is independent from the distance from the origin.. Middle: In
our theory, kernels are shared relative to reference frames of the G-structure. To recover the proposed
weight sharing scheme, GM needs to consist of frames whose axes in angular direction grow linearly
with the radial distance from the origin, while the axes in radial directions need to keep their size fixed
(both relative to the standard Euclidean metric). Such frames imply an alternative Riemannian metric
on E3\{0}. Right: As the resulting GM -convolution should be SO(3)-equivariant, the G-structure is
required to be invariant under rotations around the origin. This requires (at least) an SO(2)-structure,
whose restriction to one spherical shell is shown in the right part of the figure. Compare this to the
SO(3)-invariant SO(2)-structure of spherical CNNs in Fig. 17.2a.

(right).7 The considered metric follows from this G-structure, since its frames define the
relevant notion of orthonormality. Note that this metric differs from the usual Euclidean
metric.

By construction, we have rotations IsomGM = SO(3) as G-structure preserving isome-
tries. GM -convolutions defined by this G-structure, which may differ in their input and
output field type, will therefore (by Theorem 13.2.5) be rotation equivariant. The specific
GM -convolution assumed by Ramasinghe et al. [238], i.e. the assumed field types, can be
deduced from the fact that the authors assume zonal kernels: such kernels arise naturally
when considering scalar fields, i.e. trivial field representations, since the kernel constraint,
Eq. (9.37), becomes in this case

K(gv) = K(v) ∀ v ∈ R3, g ∈ SO(2) , (16.6)

enforcing isotropic (zonal) kernels.8 These kernels are listed in the upper left entry of the
SO(2)-steerable kernel space solution Table 5.2.

As a variation of the model, one could consider the O(2)-structure that follows from the
SO(2)-structure by adding reflected reference frames (reflecting over an arbitrary axis within
the planes tangent to the spherical shells, keeping the radial frame vectors still pointing out-
wards).9 In this case one hasG-structure preserving isometries IsomGM = O(3) that consist

7The two-dimensional analog would look similar to the G-structure in Fig. 16.3 but with all frame
vectors in radial direction having unit norm (relative to the Euclidean metric).

8Kernels which map between “scalar fields”, i.e. fields that transform according to the trivial
representation of G, are always G-invariant. For G = SO(2), this implies isotropic (zonal) kernels,
while G = R implies the reflection invariant kernels in the upper left entry of Table 5.1.

9This O(2)-structure is the analog of the O(1)=R-structure in Fig. 16.2 for d=3 instead of d=2.



16.3. Global rotation equivariance on E3\{0} 303

of global rotations and reflections around the origin, and therefore O(3)-equivariant GM -
convolutions. An interesting special case in the current context is that of GM -convolutions
that map between scalar fields, for which the kernel constraint reads

K(gv) = K(v) ∀ v ∈ R3, g ∈ O(2) . (16.7)

This seems like a stronger constraint than that in Eq. (16.6) above: instead of only demanding
kernels to be rotationally invariant, it requires them additionally to be invariant under reflec-
tions. However, since rotation invariant kernels are already invariant under reflections, this
leads again to zonal kernels, and therefore exactly the same kernel space as for SO(2).10 This
implies that the model by Ramasinghe et al. [238] is actually not only SO(3)-equivariant, as
claimed by the authors, but more generally O(3)-equivariant, which justifies our classifica-
tion in row (33) of Table 14.1, Note that this is a special case that applies only for scalar fields
– the spaces of SO(2)- and O(2)-steerable kernels differ for general group representations;
cf. the kernel space solution Tables 5.2 and 5.3.

How does the model by Ramasinghe et al. [238] relate to that of Esteves et al. [84],
which relies on the G-structure shown in Fig. 16.3? A key difference between the two ap-
proaches is that the G-structure in Fig. 16.3 consists of frames whose outward pointing axes
grow with the radial distance from the origin, which is not the case for the G-structure in
Fig. 16.4. If we modify the latter to consist of frames whose radial axes grow linearly with
the frames’ distance from the origin, one would have IsomGM = SO(3)× S (instead of
IsomGM = SO(3)). The corresponding GM -convolution would therefore additionally be
scale equivariant. In an implementation, this could easily be realized by spacing the discrete
spherical shells considered by Ramasinghe et al. [238] exponentially instead of uniformly
(corresponding to a uniform spacing of the logarithmized radius).

Lastly, we briefly discuss the convolution by Boomsma and Frellsen [20] that is listed in row
(34) of Table 14.1. It relies on a radial projection of the signal on spherical shells to a cir-
cumscribing cube. To define a convolution on the cube, the authors cut it open at some of its
edges and flatten it out; see Fig. 2 in their work. Subsequently, they perform a conventional
two-dimensional convolution on the flattened cube faces. Extending this operation with a
third, radial dimension, defines a convolution on E3\{0}. As the radial shells are in the
discretized implementation again spaced equidistantly, this operation corresponds to a GM -
convolution on an {e}-structure that varies radially as shown in Fig. 16.4. The projection
from the spherical shells to the cube implies a distortion of the frames on each of the cubes
faces, and thus to a distortion of the metric on the spherical shells. The {e}-structure is dis-
continuous at most of the cuts and does therefore not allow the convolution to preserve the
continuity of feature fields. Since S2 is not parallelizable, this issue can not be resolved with-
out assuming a non-trivial structure group G. The {e}-structure as a whole is not preserved
by any isometries, implying that the model’s global equivariance group Isom{e}M = {e}
is trivial. However, as the restriction of the {e}-structure to the four “vertical” faces of
the cube is invariant under rotations by multiples of π/2, the model is in practice partially
equivariant w.r.t. global C4-rotations around the vertical axis. For datasets whose samples
are centered around the origin {0} and are rotationally symmetric in distribution, this prop-
erty is empirically shown to lead to an improved performance in comparison to conventional
convolutions on E3. The authors are furthermore investigating the effect of different weight
sharing schemes over the radial dimension, finding that full weight sharing works best in
practice.

10More formally, we are searching for kernels that satisfy K(gv) = K(v) ∀g ∈ G, that is,
which are invariant on the orbits G.v = {gv | g ∈ G} ∈ G\Rd of points v in Rd. As the orbits
O(2).v = SO(2).v agree for any v ∈ R3, the resulting kernel spaces are the same.





CHAPTER 17

Spherical coordinate independent CNNs

Beyond convolutions on Euclidean spaces, convolutions on the 2-sphere S2 are of great
practical relevance. Applications include omnidirectional vision tasks, global weather fore-
casting, or the analysis of the cosmic microwave background. Instead of being translation
equivariant, spherical convolutions are typically required to be rotation equivariant. The
isometry group Isom(S2) = O(3) of the sphere and its decomposition in the most relevant
subgroups is visualized in Fig. 17.1.

A major difference between Euclidean spaces Ed and the sphere S2 is that the latter is not
parallelizable, i.e. does not allow for a global, continuous frame field. Reductions of the
structure group beyondG = SO(2) are topologically obstructed, which means that spherical
convolutions require at least SO(2)-steerable kernels if they should preserve the continuity of
feature fields. The corresponding SO(2)-structure, which is fully determined by the sphere’s
metric and orientation, is shown in Fig. 17.2a. GM -convolutions on this globally rotation
invariant G-structure are guaranteed to be IsomSOM = SO(3)-equivariant.

Despite the unavoidable topological obstruction, many authors proposed spherical CNNs
that do not apply SO(2)-steerable kernels. The most prevalent choice of {e}-structure cor-
responding to such convolutions is the frame field shown in Fig. 17.2b, whose orthonormal
reference frames (Eq. (17.6)) are aligned with the coordinate grid of spherical coordinates.
Note that this frame field comes with singularities at the poles, where the convolutions be-
comes discontinuous. To reconcile such models with our theory, in particular the smoothness
assumption of the G-structures, they need to be described as convolutions on a topological
cylinder with sphere-like metric. The isometry group of this punctured sphere S2\{n, s}
without poles n, s ∈ S2 is the subgroup O(2) (Fig. 17.1 (middle and right)) of the sphere’s
full isometry group O(3). The visualized {e}-structure is preserved by azimuthal rotations
in Isom{e}M = SO(2), i.e. rotations around the axis through the poles.

From an engineering perspective, both approaches have their justification: fully isotropic
applications like the analysis of the cosmic microwave background in Fig. 1.4a require fully
SO(3)-equivariant models on S2. Learning tasks that come with a preferred rotation axis,
which is for instance the case for the earth or panoramic images with a distinguished “up”
and “down” direction, might benefit from the additional geometric information encoded in
the {e}-structure. Our empirical results form Section 6.3 suggest that it is in such cases often
useful to work with a combination of both approaches: initial layers with fully equivariant
convolutions can exploit local symmetries in the data, while subsequent “group restricted”
layers with only azimuthal equivariance can learn to discriminate based on the preferred
axis; see Section 4.4 and [323].
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Figure 17.1: Visualization of the 2-sphere’s isometry group Isom(S2) = O(3) and its various sub-
groups. The isometry group can be thought of as being composed of the orientation preserving rotations
in Isom+(S

2) = SO(3) and reflections R via the direct product O(3) = SO(3)×R. SO(3), in turn,
is generated by SO(2) rotations around any two non-parallel axes, which is used in the Euler angle
parametrization. See the main text for more relevant subgroups and their relations.

We start by describing the sphere’s geometry in Section 17.1. Section 17.2 discusses fully
SO(3) and O(3)-equivariant spherical GM -convolutions, which rely on SO(2) or O(2)-
structures as shown in Fig. 17.2a. Globally SO(2) and O(2)-equivariant spherical CNNs,
corresponding to the {e}-structure in Fig. 17.2b or the corresponding R-structure, respec-
tively, are reviewed in Section 17.3. Section 17.4 focuses on icosahedral approximations of
spherical convolutions, which allow for compute-efficient implementations since the icosa-
hedron is piecewise flat and admits regular sampling grids; see Fig. 17.5. The SO(2)-
structure and {e}-structure in Figs. 17.2a and 17.2b are hereby approximated by the C6-
structure and the {e}-structures in Figs. 17.6c and 17.6a or 17.6b, respectively.

17.1 Geometry of the 2-sphere S2

As a basis for our discussion of spherical CNNs, this section discusses the differential ge-
ometry of the (unit) sphere M = S2. It is usually defined as the subset

S2 :=
{
p ∈ R3

∣∣ ∥p∥ = 1
}

(17.1)

of those points in R3 that have unit distance from the origin. As an embedded surface, it
inherits a Riemannian metric (first fundamental form) from the embedding space R3. When
interpreting the tangent spaces TpM literally as those two-dimensional subspaces of R3 that
contain all tangent vectors at p ∈ S2, then the metric, exponential maps, parallel trans-
porters, frames and gauges can all be expressed in terms of usual vector space operations in
R3. Before coming to these concrete expressions, which come handy when implementing
spherical CNNs, we discuss some properties of the sphere from a more abstract angle.

The isometry group of the sphere is given by

Isom(S2) = O(3) , (17.2)
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(a) SO(2)-structure SOM on the 2-sphereM =
S2, preserved by general three-dimensional
rotations in IsomSOM = SO(3).

(b) {e}-structure {e}M on a punctured 2-sphere
M = S2\{n, s}, preserved by azimuthal ro-
tations in Isom{e}M = SO(2).

Figure 17.2: Common G-structures underlying spherical CNNs. Topological obstructions prevent
a reduction of the 2-sphere’s structure group beyond G = SO(2). Fig. 17.2a shows the standard
SO(2)-structure on S2, which is in agreement with the embedding metric (Eq. (17.9)) induced from
the inner product of R3. It is invariant under rotations in IsomSOM = SO(3), implying the rotation
equivariance of the corresponding GM -convolution. Note that the fibers GpM and GqM at different
points p and q are isomorphic but not canonically so – frame colors in the visualization seem to suggest
such an isomorphism, however, they are randomly chosen and carry no meaning. Fig. 17.2b shows a
sphere that is punctured at two antipodal poles. This turns the sphere into a topological cylinder
S2\{n, s} ∼= S1×(−π

2
, π
2
) with sphere like metric – which allows for a complete reduction to a trivial

structure group. The figure shows the most prominent choice of {e}-structure, which corresponds to
orthonormal frames that are aligned with the coordinate grid of spherical coordinates; cf. Fig. 17.3.
As this {e}-structure is invariant under azimuthal rotations around the polar axis, the corresponding
GM -convolutions are Isom{e}M = SO(2)-equivariant. Note that the puncturing of the sphere is just a
means of hiding the models’ discontinuity at the poles.

i.e. three-dimensional rotations and reflections, which are visualized in Fig. 17.1. The action
of any isometry ϕ ∈ O(3) coincides with its usual action on R3 via matrix multiplication,
restricted to the embedded sphere S2 ⊂ R3. Note that this yields indeed a well defined
action on S2 since O(3) consists by definition of all distance and angle preserving linear
maps, and thus preserves the sphere. As the sphere is orientable, it comes with a subgroup
of orientation preserving isometries

Isom+(S
2) = SO(3) , (17.3)

consisting of all three-dimensional rotations. Further subgroups that are relevant in the deep
learning context are the following: any choice of rotation axis determines a subgroup of
two-dimensional rotations, isomorphic to SO(2), and all of these subgroups are conjugated
to each other. Similarly, any choice of two-dimensional subspace of R3 corresponds to a
subgroup of reflections over this plane, which is isomorphic to R. The subgroups of two-
dimensional rotations around two non-parallel rotation axes generate SO(3), which relates
to the Euler angle parametrization of SO(3). A choice of reflection plane and any rotation
axis within this plane generates the semidirect product subgroup O(2) = SO(2)⋊R. If the
rotation axis is instead chosen to be orthogonal to the reflection plane, the two-dimensional
rotations and reflections commute, and generate therefore subgroups isomorphic to the direct
product SO(2)×R. O(3) has furthermore discrete subgroups, the most practically relevant
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of which are the symmetry groups of the platonic solids, for instance of the icosahedron,
shown in Fig. 17.5.1

O(3) acts transitively (Def. B.3.8) on the sphere, that is, for any two points p and q of S2,
there exists at least one isometry ϕ ∈ O(3) such that q = ϕ(p). The actions of O(3) on
S2 are not fixed point free (Def. B.3.10): any point p ∈ S2 is stabilized (Def. B.3.6) by the
subgroup Stabp ∼= O(2) < O(3), consisting of rotations and reflections around the axis
spanned by p in R3. Together, these two properties imply that the sphere is a homogeneous
space (Def. B.3.11) of O(3) and is algebraically realized as the quotient space

O(3)/O(2) ∼= S2 , (17.4)

which consists of cosets of the form ϕ.O(2). A similar statement holds for SO(3), which
has stabilizer subgroups Stabp ∼= SO(2) < SO(3) and thus

SO(3)/SO(2) ∼= S2 . (17.5)

With these relations, Theorem 13.3.3 proves that any O(3) or SO(3)-equivariant kernel field
transform on S2 is equivalent to a GM -convolution with G being O(2) or SO(2), respec-
tively. This result is in line with the classical viewpoint of group equivariant CNNs on ho-
mogeneous spaces [56] – the precise relation between the two is clarified in Theorem 17.2.2
below. Recall that isometries preserve the Riemannian metric by definition. That O(3) acts
transitively on S2 with stabilizer O(2) implies therefore that the Riemannian geometry of
S2 “looks similar” at each point and in each direction and orientation – S2 is a maximally
symmetric space.

As a Riemannian manifold, S2 comes by design with an O(2)-structure. A restriction to
right-handed frames, which is possible since the sphere is orientable, yields the SO(2)-
structure in Fig. 17.2a, which is preserved by rotations in SO(3). One can show that these
two G-structures OM and SOM are as principal bundles isomorphic to O(3) and SO(3),
respectively. The specific isomorphism is hereby given by a choice of frame from the G-
structure, that is to be identified with the identity group element.

The hairy ball theorem states that no continuous vector field exists on S2, which implies in
particular that no (continuous) {e}-structure can exist. A reduction of the structure group
beyond SO(2) requires therefore a change in the topology of the manifold. For example,
puncturing the sphere at an arbitrary point p ∈ S yields a surface that is homeomorphic to
the Euclidean plane, and is therefore parallelizable.2 Puncturing the sphere at two arbitrarily
chosen antipodal points, as shown in Fig. 17.2b, turns the topology of the sphere into that of
a cylinder and thus allows for {e}-structures. The most common choice of {e}-structure on
the punctured sphere S2\{n, s} is the SO(2)-invariant {e}-structure in Figs. 17.2b and 17.3.
Its frames [

∂

∂θ
,

1

cos(θ)

∂

∂φ

]
(17.6)

are aligned with the usual spherical coordinates, which are in physics conventions (i.e. with
φ and θ denoting the azimuthal angle and inclination against the xy-plane, respectively)
given by the following surjective, 2π-periodic map:

χ :
(
−π2 ,

π
2

)
× R → S2\{n, s} , (θ, φ) 7→

(
cos(θ) cosφ
cos(θ) sinφ

sin(θ)

)
(17.7)

1An exhaustive list of all finite subgroups of SO(3) can be found at nLab.
2This process corresponds for instance to the stereographic projection of the sphere.

https://ncatlab.org/nlab/show/SO%283%29#finite_subgroups
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Some {e}-steerable CNNs are implemented by representing feature fields on S2\{n, s}
in spherical coordinates; see Section 17.3 below. As the coordinate map χ is not iso-
metric, these methods require an alternative metric (or {e}-structure) on the coordinates
(−π/2, π/2)× R ⊂ R2; see the stretched frames in Fig. 17.3 (right).

Since S2 is compact, it is geodesically complete. The geodesics are given by the great circles
of the sphere, i.e. those circles that correspond to the intersection of the sphere with a plane
through the origin of R3. The exponential maps expp(v) follow these great circles through p
in direction of v for a distance of ∥v∥. Logarithmic maps logp(q) are therefore for all points
q ∈ S2\−p, which are not antipodal to p, given by the unique vector in the shorter direction
along the great circle through p and q, with ∥logp(q)∥ given by the arc-length along this
path. Geodesics between antipodal points p and−p are not unique, such that the logarithmic
map does not exist.

Explicit geometry of S2 as embedded surface in R3

As stated above, the tangent spaces of S2 ⊂ R3 are in the classical differential geometry
of surfaces defined as two-dimensional subspaces of the embedding space R3. A specific
tangent space TpM at p ∈ S2 is in this interpretation given by

TpM =
{
v ∈ R3

∣∣ ⟨p, v⟩ = 0
}
⊂ R3 , (17.8)

i.e. the space of all vectors that are orthogonal to the surface normal at p, which coincides
for the sphere with p itself. Note that, despite being expressed relative to the standard frame
of R3, these tangent vectors are coordinate free object in the sense that they are not described
by 2-tuples of coefficients vA ∈ R2 relative to some gauge ψATM,p of TpM . The identification
of tangent spaces with subspaces of the embedding space allows to express many of the
abstract algebraic relations in terms of vector space operations on R3. In the remainder of
this section we will state such expressions for the metric, exponential and logarithmic maps,
frames, gauges, Levi-Civita transporters along geodesics and induced gauge transformations.

By definition, S2 inherits its Riemannian metric from the embedding space. This induced
metric is for any v, w ∈ TpM ⊂ R3 given by

ηp(v, w) := ⟨v, w⟩R3 , (17.9)

i.e. the standard inner product of R3, restricted to TpM . To reduce clutter, we drop the
subscript R3 in the notation ⟨·, ·⟩R3 in the remainder of this section.

The exponential map expp maps vectors v ∈ TpM to points q = expp(v) ∈ S2 at a
distance of ∥v∥ along the great circle in direction of v. Lying on the same great circle,
p and q relate via a rotation by an angle of α = ∥v∥/r = ∥v∥ around the rotation axis
a = p×v

∥p×v∥ = p×v
∥v∥ , where the equations simplify since the sphere has unit radius r =

∥p∥ = 1 and the vectors p and v are orthogonal in R3. Using Rodrigues’ rotation formula,
q = p cos(α) + (a × p) sin(α) + a⟨a, p⟩

(
1 − cos(α)

)
, together with the orthogonality

⟨a, p⟩ = 0 and a× p = 1
∥v∥ (p× v)× p = 1

∥v∥
(
⟨p, p⟩v + ⟨p, v⟩p

)
= v
∥v∥ , this leads to the

explicit expression

expp : R
3 ⊃ TpM → S2 ⊂ R3, v 7→ expp(v) = p cos

(
∥v∥
)
+

v

∥v∥
sin
(
∥v∥
)

(17.10)
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for the exponential map.

An explicit expression of the logarithmic map is found along the same line of reasoning: the
norm of logp(q), where q ∈ S2\−p, coincides with the rotation angle α = arccos

(
⟨p, q⟩

)
.

Its direction is given by the direction tangent to the great circle, which may be expressed in
terms of the normalized projection v

∥v∥ =
q−⟨p,q⟩p
∥q−⟨p,q⟩p∥ of q on TpM . Overall, the logarithmic

map is therefore instantiated as

logp : S
2\−p→ BTpM (0, π), q 7→ logp(q) = arccos

(
⟨p, q⟩

) q − ⟨p, q⟩p
∥q − ⟨p, q⟩p∥

, (17.11)

where BTpM (0, π) ⊂ TpM ⊂ R3 denotes the open ball of injectivity-radius π around the
origin of TpM .

Reference frames on S2 are by definition just 2-tuples of linearly independent tangent vec-
tors. When expressing the axes of a reference frame explicitly as vectors in the embedding
space R3, this frame can be identified with the 3× 2 rank 2 matrix

[
eA1 , e

A
2

]
=

 eA1,1 eA2,1
eA1,2 eA2,2
eA1,3 eA2,3

 =: EAp ∈ R3×2. (17.12)

It defines the vector space isomorphism

EAp =
[
eA1 , e

A
2

]
: R2 → TpM, vA 7→ EAp v

A = vA1 e
A
1 + vA2 e

A
2 (17.13)

from vector coefficients to coordinate free tangent vectors. The tangent spaces TpM are
therefore exactly the image of EAp .

The corresponding gauges ψATM,p : TpM → R2 are technically just the inverses of the frames,
when being interpreted as maps EAp : R2 → TpM . In contrast, when being interpreted as
3 × 2 matrices that map R2 non-surjectively to R3, EAp is non-invertible but only admits a
pseudo-inverse (

EAp
)+

:=
(
(EAp )

⊤EAp
)−1

(EAp )
⊤ ∈ R2×3. (17.14)

Geometrically, this matrix acts by 1) projecting vectors in R3 to the image of EAp , which is
just EAp (R2) = TpM ⊂ R3, and 2) applying the inverse of the isomorphism EAp : R2 →
TpM on this subspace. This means that the pseudo-inverse is indeed the inverse of EAp on
the tangent space, implying that the gauge map is given by

ψATM,p : TpM → R2, v 7→
(
EAp
)+
v . (17.15)

Written out, the gauge map acts according to

ψATM,p(v) =

(
⟨eA1 , eA1 ⟩ ⟨eA1 , eA2 ⟩
⟨eA2 , eA1 ⟩ ⟨eA2 , eA2 ⟩

)−1(
⟨eA1 , v⟩
⟨eA2 , v⟩

)
(17.16)

=
1

⟨eA1 , eA1 ⟩⟨eA2 , eA2 ⟩ − ⟨eA1 , eA2 ⟩⟨eA2 , eA1 ⟩

(
⟨eA2 , eA2 ⟩ −⟨eA1 , eA2 ⟩
−⟨eA2 , eA1 ⟩ ⟨eA1 , eA1 ⟩

)(
⟨eA1 , v⟩
⟨eA2 , v⟩

)
.

Note that, in general, ⟨eAi , v⟩ ≠ vAi . However, if (and only if) EAp is an orthonormal frame,
i.e. for G ≤ O(2), the gauge map is simply given by the projection of the tangent vector on
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the frame axes:

ψATM,p(v) =
(
EAp
)⊤
v =

(
⟨eA1 , v⟩
⟨eA2 , v⟩

)
for orthonormal frames, i.e. ⟨eAi , eAj ⟩ = δij

(17.17)

The explicit expression for the coordinate free Levi-Civita transporters along geodesics is
similar to that of the exponential map, with the difference that Rodrigues’ rotation formula
is not applied to rotate the source to the target point but tangent vectors between source and
target. Let γ be the shortest geodesic between p ∈ S2 and q ∈ S2\−p. The rotation from p
to q along this geodesic is then given by the axis a = p × q and angle α = arccos

(
⟨p, q⟩

)
.

In terms of these quantities, the Levi-Civita transport of an embedded tangent vector v ∈
TpM ⊂ R3 along the geodesic γ is given by the rotated vector

P
TM,γ(v) = v cos(α) + (a× v) sin(α) +

(
a⟨a, v⟩

)(
1− cos(α)

)
(17.18)

in TqM ⊂ R3. Relative to gauges ψATM,p and ψÃTM,q at the start point q and end point q of the
geodesic, this transporter is expressed by the group element

gAÃγ = ψATM,p ◦ PTM,γ ◦
(
ψÃTM,q

)−1
=
(
EAp
)+ ◦ P

TM,γ ◦ E
Ã
q . (17.19)

Isometry induced gauge transformations are relative to the explicit reference frames similarly
given by the following matrix multiplication:

gAÃϕ (p) = ψATM,ϕ(p) ◦ ϕ ◦
(
ψÃTM,p

)−1
=
(
EAϕ(p)

)+
ϕ EÃp (17.20)

17.2 Fully rotation equivariant spherical CNNs

This section discusses the fully SO(3) or O(3)-equivariant spherical convolutions that are
listed in rows (35-37) of Table 14.1. They can all be understood as specific instances of
GM -convolutions on either the SO(2)-structure in Fig. 17.2a or the corresponding O(2)-
structure, which is additionally closed under frame reflections.

Instead of organizing this discussion in terms of the considered structure groups and group
representations, we assort the models by the theoretical frameworks in which they are devel-
oped: Kicanaoglu et al. [148] define a pixel grid on the sphere and formulate the convolution
directly as GM -convolution, that is, in terms of gauges, steerable kernels and feature vec-
tor transporters. An alternative framework is that of graph convolutions on spherical pixel
meshes [228, 338]. Such graph convolutions correspond to GM -convolutions with isotropic
kernels. They map therefore between (directionally insensitive) scalar fields. Lastly, we
come to implementations that consider (steerable) convolution kernels on S2 instead of our
kernels on the tangent spaces [83, 54, 163, 86]. Theorem 17.2.1 proves that such spheri-
cal steerable kernels can be identified with G-steerable kernels on the tangent spaces, when
being expressed in geodesic normal coordinates. Based on this result, we prove in Theo-
rem 17.2.2 that convolutions with spherical kernels are equivalent to our GM -convolutions.
For completeness, we need to mention that such models are typically implemented in the
spectral domain. We do not focus on this viewpoint but refer the interested reader to the
review by Esteves [82].



312 Chapter 17. Spherical coordinate independent CNNs

Spherical GM-convolutions: We start with the spherical CNN by Kicanaoglu et al. [148]
since its formulation agrees precisely with our more general theory when being applied to the
spherical geometry. The authors assume the SO(2)-structure from Fig. 17.2a, and therefore
SO(2)-steerable feature fields and convolution kernels. Feature fields are discretized in terms
of feature vectors that are assigned to a sampling grid on the sphere. While the method
is in principle independent from the particular sampling scheme, the authors propose to
discretize the spherical geometry by an icosphere mesh. This mesh is constructed by taking
an embedded icosahedron, repeatedly subdividing its faces as shown in Fig. 17.5, and finally
projecting the grid vertices radially to the sphere, i.e. to unit norm. The sampled feature
fields are numerically represented by a set of coefficient vectors fA(p) ∈ Rc at the grid
vertices p, which are expressed relative to some arbitrarily chosen right-handed orthonormal
frames

[
eA1 , e

A
2

]
at the vertices.3 In practice, the frames are represented by a single tangent

vector of unit norm, from which the second frame vector follows uniquely since the frames
are right-handed.

To compute the coordinate independent convolution [K ⋆f ](p) from Eq. (9.39), Kicanaoglu
et al. [148] need to contract the SO(2)-steerable kernel K with the transporter pullback
[Exp∗pf ]

A of the feature field f , Eq. (9.21). As usual in deep learning, K is hereby assumed
to be compactly supported, such that it covers only a few vertices in a one-ring or two-ring
neighborhoodNp around a center vertex p. In the continuous theory, the transporter pullback
takes features from all points expp(ψ

A
TM,p)

−1(v) for v ∈ R2 and transports them back to p.
In practice, the feature fields are only sampled at the grid vertices q, which correspond to the
tangent vector coefficients vApq = ψATM,p logp(q) ∈ R2 relative to gauge A at vertex p.4 The
logarithmic maps logp(q) are thereby computed as defined in Eq. (17.11). The Levi-Civita

transporters ρ
(
gAÃp←q

)
along the geodesics from q to p are in principle given by Eq. (17.19).

Since the frames are all right-handed and orthonormal, and since the transport corresponds
to the Levi-Civita connection on S2, the group elements gAÃp←q are SO(2)-valued. They are

therefore fully determined by the angle between the transported first frame axis P
TM,γ

(
eÃ1
)

from q and the first frame axis eA1 at p. With these ingredients at hand, the authors propose
to approximate the continuous convolution integral by the discrete sum[

K ⋆ f
]A

(p) =

∫
R2

K(v)
[
Exp∗pf ]

A(v) dv ≈
∑
q∈Np

K
(
vApq
)
ρ
(
gAÃp←q

)
f Ã(q) (17.21)

over neighboring mesh nodes. The missing normalization factor can be thought of as being
absorbed in the learnable parameters wi ∈ R of the SO(2)-steerable convolution kernel
K =

∑
i wiKi. As an alternative to this naive approximation, the authors propose an

optimized quadrature integration scheme, which is empirically shown to improve the model’s
SO(3) isometry equivariance.

The model is in Table 14.1 listed as processing feature fields that transform according to the
regular representation of SO(2). In their implementation, Kicanaoglu et al. [148] consider
irrep fields of SO(2) in the convolutions. A change of basis before and after the convo-
lutions transforms these feature fields to regular feature fields, which are then acted on by
pointwise nonlinearities like e.g. ReLU. The infinite-dimensional regular representation of

3This corresponds to an independent choice of gauge ψAp
TM,p on any open neighborhood UAp of

each vertex p.
4If the exponential map is not restricted to the injectivity radius, each vertex q is represented by

multiple tangent vectors. This is in practice no issue since the kernel is assumed to be locally supported
within the injectivity radius.
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SO(2) is hereby approximated by regular representations of discrete cyclic subgroups CN ,
whose irreps are just the irreps of SO(2) up to a bandlimiting frequency of ⌊N/2⌋; see e.g.
Appendix F.2 of [322]. The change of basis between the representations is in this specific
case just the usual discrete Fourier transform.

Spherical graph convolutions: The spherical CNNs by Perraudin et al. [228] and Yang
et al. [338], which are listed in row (37) of Table 14.1, are based on conventional graph
convolutions [152]. Pixel meshes on the sphere are hereby interpreted as graphs. The graph
convolutional networks process signals on the sphere by multiplying them with degree κ
polynomials

∑κ
k=0 wkL

k of the graph’s Laplacian matrix L, where wk ∈ R are trainable
parameters. Since the Laplacian matrix has non-zero entries only for adjacent nodes, the k-th
order term affects only the k-hop neighborhood around each node. On a regular mesh with
unweighted graph edges, the contribution of a neighboring node q to the accumulated fea-
ture at p depends only on their graph distance (“radius”), but not on the particular neighbor
(“direction”). The graph convolution applies therefore in such cases isotropic kernels on the
graph. The considered pixel graph on the sphere satisfy these properties approximately. As
their embedding on the sphere is furthermore such, that the nodes are geodesically approxi-
mately equidistant, the topological isotropy of the graph convolution kernels corresponds to
their metric isotropy on the sphere.

The isometry group O(3) of the sphere induces O(2)-valued gauge transformation, that is, it
acts by moving patterns to a new location and in a new orientation. Due to the convolutional
weight sharing and the isotropy of the kernels, the graph convolutions are trivially isometry
equivariant. As already argued in Eq. (16.7), isotropic kernels are in our framework recov-
ered as O(2)-steerable kernels that map between scalar fields. The O(3)-equivariance of the
convolution is in our theory explained by the O(3)-invariance of the sphere’s O(2)-structure.

Spherical convolutions with kernels on S2: As a homogeneous space, the sphere admits
group (or quotient space) convolutions [162] and more general steerable convolutions on
homogeneous spaces [56].5 Instead of defining the convolution kernels on the tangent spaces
or on graph neighborhoods, these approaches define kernels immediately as matrix-valued
function on the sphere, that is, as

κ : S2 → Rcout×cin . (17.22)

Cohen et al. [56] showed that these kernels are required to satisfy a symmetry constraint in
order to guarantee the equivariance of the convolution. We argue in the following that such
kernels on S2 are equivalent to G-steerable kernels on the tangent spaces (Theorem 17.2.1),
which implies that the spherical CNNs covered in [56] and [162] can be viewed as GM -
convolutions (Theorem 17.2.2). The identification between the two kinds of kernels is hereby
made by pulling the spherical kernels via the exponential map back to the tangent spaces.
Before explaining this operation, we briefly discuss the models proposed in [54, 83, 86, 163]
as specific instances of spherical convolutions with spherical kernels. For a more details on
these models, specifically on their formulation in Fourier space, we refer the reader to the
comprehensive review by Esteves [82].

We start our discussion with the group convolutional spherical CNN by Cohen et al. [54],
listed in row (36) of Table 14.1. This model processes stacks of cin scalar fields

f : S2 → Rcin (17.23)

5A more general review of convolutions on homogeneous spaces is found in Appendix F.
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on the sphere by matching them with spherical kernels, Eq. (17.22), in any SO(3) trans-
formed pose. In equations, this operation is defined as[

κ ⋆S2 f
]
(ϕ) :=

∫
S2

κ(ϕ−1(p)) f(p) dp ϕ ∈ SO(3) . (17.24)

Note that the resulting feature map is viewed as a stack of cout scalar functions on the symme-
try group SO(3). Such feature maps of the form f : SO(3)→ Rcin (with the new number of
input channels corresponding to the previous layer’s output channels) are processed further
by group convolutions of the form[

κ ⋆SO(3)f
]
(ϕ) :=

∫
SO(3)

κ(ϕ−1ω) f(ω) dω ϕ ∈ SO(3) , (17.25)

where κ : SO(3)→ Rcout×cin is now a matrix-valued function on SO(3) and dω is the Haar
measure on SO(3). From the viewpoint of steerable CNNs on homogeneous spaces [56]
and GM -convolutions, scalar functions on SO(3) are viewed as feature fields on S2 ∼=
SO(3)/SO(2), that transform according to the regular representation of the fibers (stabilizer
subgroups) SO(2); cf. Section 4.5 and Appendix J. The initial convolution in Eq. (17.24)
applies in this interpretation SO(2)-steerable kernels between scalar and regular fields, while
the group convolution in Eq. (17.25) applies SO(2)-steerable kernels between regular fields
on S2.

Esteves et al. [83] apply spherical convolutions as in Eq. (17.24) with the additional assump-
tion that the kernels are zonal, that is, invariant under SO(2) rotations around the polar axis;
cf. Fig. 16.5. While the integral technically still gives responses in SO(3), the kernel sym-
metry implies that these responses are constant on the fibers SO(2) of SO(3), when being
interpreted as bundle over S2. The resulting feature fields are therefore identified as scalar
fields on S2, which allows for a repeated application of this type of convolution. Note that
the zonal symmetry of the kernel is consistent with the steerability kernel constraint between
scalar fields (trivial representations) that we encountered before in Eq. (16.6) and the upper
left entry of Table 5.2. As already discussed in the previous Section 16.3, this constraint is
equivalent to the O(2)-steerability constraint between scalar fields in Eq. (16.7), which im-
plies that the model of Esteves et al. [83] is actually O(3)-equivariant. It is in spirit similar to
the spherical graph convolutions discussed above, but is derived from a different viewpoint
and is discretized differently in the implementation.

Esteves et al. [86] generalize this model from scalar fields to general spin weighted spherical
functions. These functions depend not only on the position p ∈ S2 on the sphere, but in
addition on the particular choice of right-handed, orthonormal reference frame at that point.
They are associated to the irreps ρs of SO(2), where the integer s ∈ Z is denoted as the
functions’ spin weight.6 Their values for the different frames SOpM of the SO(2)-structure
SOM are constrained such that gauge transformations of the frame by g ∈ SO(2) lead to a
transformation of the function value by ρs(g). In equations, they are therefore defined by7

sf : SOM → C such that sf
(
[e1, e2]◁ g

)
= ρs(g) sf

(
[e1, e2]

)
(17.26)

∀ [e1, e2] ∈ SOpM, g ∈ SO(2) ;

see [24] for more details and alternative definitions. Note the similarity of this symmetry
constraint to the equivalence relation[

[ei]
2
i=1 ◁ g, f

]
∼ρs

[
[ei]

2
i=1, ρs(g)f

]
(17.27)

6One can generalize this concept to spin representations, labeled by half-integer spin weights.
7A real-valued implementation would instead consider spin weighted functions of the form sf :

SOM → Rdim(ρs), where ρs are the irreps of SO(2) over the real numbers.
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from Eq. (11.42), which is underlying the definition of associated bundles. Spin weighted
spherical functions are indeed equivalent to sections of the associated bundles (SOM ×
C)/ ∼ρs ; see for instance Proposition 1.6.3 in [326]. They appear in our theory simply
as SO(2)-irrep fields, including scalar fields for s = 0 and vector fields for s = 1. The
neural networks proposed by Esteves et al. [86] convolve spin weighted features with spin
weighted kernels on the sphere. This operation corresponds to a convolution with SO(2)-
steerable kernels where ρin and ρout are irreps – these kernels were derived in Section 5.3 and
are listed in Table 5.2.

The models in [54, 83, 86] are initially formulated in the spatial domain, i.e. as process-
ing functions on S2 as discussed above. They are, however, implemented in the spec-
tral domain, which is possible thanks to generalized convolution theorems on S2 and on
SO(3) [191, 162, 157]. Kondor et al. [163] generalize these approaches, proposing a model
that is based on learned linear combinations of all feature fields’ Fourier modes of the same
frequency. The authors argue that this approach covers the full space of SO(3)-equivariant
linear maps between feature fields on the sphere. On the other hand, Cohen et al. [56] show
that any such map can in the spatial domain be written as a convolution with SO(2)-steerable
spherical kernels. A notable property of the model proposed by Kondor et al. [163] is that it
operates fully in Fourier space: instead of transforming back to the spatial domain and ap-
plying pointwise nonlinearities like ReLUs there, as done in the previous approaches, the au-
thors compute the tensor product (Def. B.5.4) between all feature fields and decompose them
subsequently via the Clebsch-Gordan decomposition (Def. B.5.17) back into irreducible fea-
tures (Fourier modes). This is computationally beneficial, however, comes at the expense of
losing the locality of the nonlinearities. Certain learning tasks, especially in the natural sci-
ences, might benefit from such nonlinearities since physical interactions are often described
by tensor products.

As argued in [56, 55], all of these models can be viewed as applying steerable kernels on S2

that map between scalar fields [83], regular feature fields [54] or irrep fields [86, 163]. In
the remainder of this section and Appendix L we show that they can as well be viewed as
GM -convolutions. The claim that spherical convolutions with steerable kernels on S2 are
equivalent to GM -convolutions is thereby made precise in Theorem 17.2.2. This theorem
relies crucially on Theorem 17.2.1, which establishes an isomorphism between the spherical
steerable kernels and G-steerable kernels on the tangent spaces.

Let I be any transitive isometry group of the sphere, i.e. I = O(3) or I = SO(3). Cohen
et al. [56] describe I-equivariant spherical convolutions in terms of Stabn-steerable spher-
ical kernels κ : S2 → Rcout×cin , where Stabn < I is the stabilizer subgroup of any point
n ∈ S2, e.g. the north pole. As these kernels are defined on the sphere, which is topologi-
cally distinct from R2, it is not directly possible to define an isomorphism between them and
G-steerable kernels. However, as the south pole −n is a set of measure zero, we can replace
the integration domain S2 of the spherical convolutions with S2\−n without changing the
result. With this adaptation, the spherical steerable kernels of Cohen et al. [56] are defined
as

KStabn
ρin,ρout

:=
{
κ : S2\−n→ Rcout×cin

∣∣∣ κ(ξ(p)) =ρout

(
gNNξ (n)

)
·κ(p) ·ρin

(
gXPξ (p)

)−1
∀ p ∈ S2\−n, ξ ∈ Stabn

}
, (17.28)

when being translated to our notation. Since the kernels are globally defined on the sphere,
their values in Rcout×cin are expressed relative to potentially different gauges N at n, where
the kernel is centered, P at p ∈ S2, where the kernel contracts a feature fP (p) ∈ Rcin and
X at ξ(p), where this feature moves under the action of ξ ∈ Stabn. This kernel constraint
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relates all kernel values that lie on the orbits Stabn.p = {ξ(p) | ξ ∈ Stabn} via their isome-
try induced gauge transformations gXPξ (p) and gNNξ (n); see Eqs. (13.38) and (13.39).8 Our
equivalent G-steerable kernels, where G ∼= Stabn, is given by

K
G,BR2 (0,π)
ρin,ρout

:=
{
K : BR2(0, π)→ Rcout×cin

∣∣∣K(gv) = ρout(g) ·K(v) ·ρin(g)
−1

∀ v ∈ BR2(0, π), g ∈ G
}
.

(17.29)

The kernel domain is hereby restricted from R2 to the open ball BR2(0, π) := {v ∈
R2 | ∥v∥ < π} of radius π around the origin of R2 – which can via the exponential map
be identified with S2\−n. Note that KG,BR2 (0,π)

ρin,ρout
is well defined since Stabn ∼= G contains

isometries, implying G = O(2) or G = SO(2), under whose action BR2(0, π) is closed.
We furthermore dropped the determinant factor from the more general G-steerability con-
straint in Eq. (5.4) since |det g| = 1 for G ≤ O(2). Our kernel constraint is considerably
simpler than that of Cohen et al. [56] since it describes the kernel locally relative to a single
gauge, instead of globally relative to an atlas of gauges. Note further that we dropped the
smoothness assumption on the kernels, since the smoothness or continuity of feature fields
is not discussed by Cohen et al. [56]. This property could easily be added by demanding that
theG-steerable kernels converge to the same value for ∥v∥ going to π, corresponding via the
exponential map to the south pole.

The spaces of Stabn-steerable kernels on S2\−n and G-steerable kernels on BR2(0, π) are
isomorphic, that is, their kernels are identified by an invertible map Ω that respects the kernel
constraints:

K
G,BR2(0,π)
ρin,ρout

KStabn
ρin,ρout

Ω

Ω−1

(17.30)

This isomorphism (or rather its inverse Ω−1) can be viewed as the analog of the transporter
pullback of feature fields: it pulls the kernel values from points expn

(
ψNTM,n

)−1
v in S2\−n

back to geodesic normal coordinates v ∈ BR2(0, π). To express the kernel values from all
points p ∈ S2\−n relative to the same gauge, it applies Levi-Civita transporters ρ

(
gNPn←p

)
from p along the geodesics to the north pole n. In addition, it rescales the kernel values

by the Riemannian volume element
√∣∣η∂/∂vp

∣∣ :=
√∣∣det(ηp( ∂

∂vi

∣∣
p
, ∂
∂vj

∣∣
p

)
ij

)∣∣ relative to

the geodesic normal coordinate system (coordinate chart) v : S2\−n → BR2(0, π), p 7→
v(p) := ψNTM,n logn p.9 The following theorem defines and proves the kernel space isomor-
phism formally.

8Cohen et al. [56] denote the isometry induced gauge transformations by h(p, ξ) instead of
gXP
ξ (p), assuming that the gauges X at ξ(p) and P at p are the same. Their definition of h(p, ξ)

is similar to our Eq. (13.32).
9Note that the coordinate bases

[
∂

∂v1
|p, ∂

∂v2
|p
]

that are induced by the geodesic normal coordinates
v : S2\−n → BR2(0, π) are for G ≤ O(2) not contained in GM . These bases play no role for the
GM -convolution but appear only to correct for the Riemannian volume when integrating in geodesic
normal coordinates over the sphere.



17.2. Fully rotation equivariant spherical CNNs 317

Theorem 17.2.1 (Spherical steerable kernels in geodesic coordinates). Let I be any
transitive isometry group of S2 and let Stabn be its stabilizer subgroup at the north
pole n ∈ S2. Given any choice of gauge ψNTM,n at this pole, let G ≤ GL(2)
be the isomorphic structure group that represents Stabn in coordinates according to
Stabn

∼−→ G, ξ 7→ ψNTM,n ◦ ξ∗,TM ◦
(
ψNTM,n

)−1
. The space KStabn

ρin,ρout
of Stabn-steerable

kernels on S2\−n by Cohen et al. [56] (Eq. (17.28)) is then isomorphic to the space
K
G,BR2(0,π)
ρin,ρout

of G-steerable kernels on the open ball BR2(0, π) (Eq. (17.29)). The ker-
nel space isomorphism

Ω : K
G,BR2(0,π)
ρin,ρout

∼−→ KStabn
ρin,ρout

(17.31)

is given by

Ω(K) : S2\−n→ Rcout×cin , (17.32)

p 7→
[
Ω(K)

]
(p) := K

(
ψNTM,n logn p

)
ρin

(
gNPn←p

)√∣∣η∂/∂vp

∣∣−1
if the kernel is expressed relative to (potentially independent) gauges N at n and P
at p. Its inverse is given by

Ω−1(κ) : BR2(0, π)→ Rcout×cin , (17.33)

v 7→
[
Ω−1(κ)

]
(v) := κ

(
expn

(
ψNTM,n

)−1
v
)
ρin

(
gNPn←p

)−1√∣∣η∂/∂vp

∣∣,
where we abbreviated p := expn

(
ψNTM,n

)−1
v.

Proof: By inserting the two expressions, one can easily see that Ω−1 is a well defined inverse
of Ω since Ω ◦ Ω−1 = id

K
Stabn
ρ

in
,ρout

and Ω−1 ◦ Ω = id
K

G,BR2(0,π)

ρ
in
,ρout

. The technical part of

the proof is to show that the two kernel constraints imply each other, which is done in
Appendix L.1. □

Note that the volume scaling factor is not necessary to establish the isomorphism between
the kernel spaces but is required to make the spherical convolution integral over S2\−n
equivalent to the GM -convolution integral over BR2(0, π).

Cohen et al. [55] define the convolution [κ ⋆S2 f ] of a feature field f ∈ Γ(Ain) with spherical
steerable kernels κ ∈KStabn

ρin,ρout
in coordinates. Given gauges P at p and q atQ, let ϕp ∈ I be

the unique isometry that moves the north pole to p, i.e. ϕp(n) = p, and that maps the frame
at n to the frame at p, that is, (ϕp)∗,GMσ

N (n) = σP (p) or, equivalently, gPNϕp
(n) = e. Let

furthermore X be the gauge at ϕ−1p (q). The spherical convolution is then in [55] relative to
these gauges pointwise defined by[

κ ⋆S2 f
]P

(p) :=

∫
S2

κ
(
ϕ−1p q) ρin

(
gXQ
ϕ−1
p
(q)
)
fQ(q) dq (17.34)

=

∫
S2\−p

κ
(
ϕ−1p q) ρin

(
gXQ
ϕ−1
p
(q)
)
fQ(q) dq ,

where we removed the antipodal point −p in the second step without changing the result.10

Intuitively, this operation computes an output feature at p by 1) taking both the kernel and
10This formulation is more general than that in Eq. (17.24). The latter is recovered for kernels that

map scalar fields to regular feature fields.
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the input field, 2) rotating them via ϕ−1p such that p moves to the north pole (via the induced
gauge transformation for the feature vector) and 3) integrating their product over the sphere.
Instead of sharing weights directly over the tangent spaces, as we do, this operation is there-
fore sharing weights via the isometry action. By the definition of ϕp, both definitions of
weight sharing orient the kernel at the target location p such that it is aligned with the chosen
frame σP (p) at this location. The following theorem proves that the GM -convolution with
a kernel K ∈K

G,BR2 (0,π)
ρin,ρout

is equivalent to the spherical convolution with the corresponding
spherical kernel Ω(K) ∈KStabn

ρin,ρout
.

Theorem 17.2.2 (Spherical steerable convolutions as GM-convolutions). Let Stabn be
the stabilizer subgroup of any transitive isometry group I of S2 and let G ≤ GL(2) be
any isomorphic structure group. Let furthermoreK ∈K

G,BR2 (0,π)
ρin,ρout

be anyG-steerable
kernel on the open ball BR2(0, π) of radius π (Eq. (17.29)) and let Ω(K) ∈ KStabn

ρin,ρout

be its corresponding Stabn-steerable kernel on S2\−n (Eqs. (17.28) and (17.32)). The
GM -convolution (here for clarity denoted by ⋆GM ) with K is then equivalent to the
spherical convolution (⋆S2 , Eq. (17.34)) by Cohen et al. [55] with the spherical kernel
Ω(K), that is,

Ω(K) ⋆S2 f = K ⋆GM f (17.35)

holds for any spherical feature field f ∈ Γ(Ain).

Proof: The proof is given in Appendix L.2. □

This proof justifies our claim that the models from [54, 83, 86, 163], discussed in this section,
are all special cases of GM -convolutions.

17.3 Azimuthal rotation equivariant spherical CNNs on cylindrical
topologies

Besides fully SO(3) or O(3)-equivariant spherical convolutions, many spherical CNNs are
designed to be equivariant w.r.t. azimuthal rotations around a specified polar axis. All of
the models discussed in this section rely either on the SO(2)-invariant {e}-structure that
is shown in Figs. 17.2b and 17.3 or, alternatively, that in Fig. 17.4. Due to the triviality
of the structure group G = {e}, the kernel spaces remain unconstrained ({e}-steerable).
Features are transported according to the unique {e}-compatible trivial connection which
differs from the usual spherical Levi-Civita connection. With this information, and with the
explicit exponential maps in Eq. (17.10), the spherical GM -convolutions in this section are
in theory fully specified. In practice, the implementations, listed in row (38) of Table 14.1,
differ in their numerical implementations, which we discuss in the following.

Concurrent with our definition of convolutional weight sharing, the models in [58, 351, 295,
77, 203] share a given template kernel over the tangent spaces by orienting it relative to the
frames of the considered {e}-structure in Fig. 17.2b. However, seemingly contrary to GM -
convolutions, the matching of these kernels with the feature field is not done via exponential
maps (or transporter pullbacks), but via the gnomonic projection. This gnomonic projection
is at any point p defined by

Gp : TpM → H2
p ⊂ S2, v 7→ p+ v

∥p+ v∥
, (17.36)
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Figure 17.2: Gnomonic projection
Gp : TpM → H2

p of the tangent space
at p to the upper hemisphere H2

p ⊂
S2 around p. When interpreting the
sphere as being embedded in R3, the
gnomonic projection Gp(v) (blue) is
given by the sum of p ∈ S2 ⊂ R3

(purple) and v ∈ TpM ⊂ R3

(yellow) in ambient space, followed
by a normalization back to the
sphere. Theorem 17.3.1 proves that
this operation is equivalent to a pro-
jection of a radially warped vec-
tor ω(v) = arctan(∥v∥) v

∥v∥ ∈
BTpM (0, π

2
) (red) via the exponential

map (green). The gnomonic projec-
tion based spherical convolutions in

[58, 351, 295, 77, 203] are therefore special cases of spherical GM -convolutions with radially warped
kernels. GM -convolutions are more general since they allow for kernel projections over the whole
sphere instead of the upper hemisphere only.

which is visualized in Fig. 17.2. The summation of p ∈ S2 ⊂ R3 with tangent vectors
v ∈ TpM ⊂ R3 is hereby performed in the embedding space R3 and the normalization
projects the result back to the sphere. The codomain of the gnomonic projection is the
“upper” hemisphere

H2
p :=

{
q ∈ S2

∣∣ ⟨p, q⟩R3 > 0
}
⊂ S2 (17.37)

centered around p. Given this difference in the kernel projections, it might seems like
the models in [58, 351, 295, 77, 203] are not (or only approximately) explained as GM -
convolution. The following theorem proves, however, that the gnomonic projection is equiv-
alent to a projection via the exponential map after applying a radial warp

ω : TpM → BTpM (0, π2 ), v 7→ arctan
(
∥v∥
) v

∥v∥
(17.38)

to the tangent spaces, which contracts tangent vectors to an open ball of radius π/2 around
the origin:
Theorem 17.3.1 (Gnomonic projections as warped exponential maps). The gnomonic

projection Gp of TpM to the upper hemisphere H2
p ⊂ S2, defined in Eq. (17.36), is

equivalent to a projection of its radial warp ω(TpM) = BTpM (0, π2 ), Eq. (17.38), via
the exponential map, that is, the following diagram commutes:

TpM

H2
p ⊂ S2

BTpM (0, π2 )

Gp

ω

expp

(17.39)

In equations,

Gp(v) = expp ◦ω(v) (17.40)

holds for any p ∈ S2 and any v ∈ TpM .
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Proof: The proof is given by the following simple calculation, which holds for any p ∈ S2

and any v ∈ TpM :

expp ◦ω(v)
(1)
= p · cos

(
∥ω(v)∥

)
+

ω(v)

∥ω(v)∥
· sin

(
∥ω(v)∥

)
(2)
= p · cos

(
arctan(∥v∥)

)
+

v

∥v∥
· sin

(
arctan(∥v∥)

)
(3)
=

p+ v√
1 + ∥v∥2

(4)
=

p+ v

∥p+ v∥
(5)
= Gp(v) (17.41)

The first two steps make use of the explicit definition of the embedded sphere’s expo-
nential map, Eq. (17.10), and the radial warp, Eq. (17.38). The third step follows since
cos ◦ arctan(x) = 1√

1+x2
and sin ◦ arctan(x) = x√

1+x2
. In the fourth step we used

that ∥p∥ = 1 and ⟨p, v⟩R3 = 0, while the last step identified the gnomonic projection,
Eq. (17.36). □

This theorem implies that the gnomonic projection based convolutions in [58, 351, 295,
77, 203] are indeed specific GM -convolutions after identifying the kernels via the radial
warp ω.11 Note that this identification holds not only for {e}-steerable kernels but for
any subgroup G ≤ O(2) since the corresponding G-steerability constraints affect only the
kernels’ angular parts but are independent from the warped radial parts. We furthermore
want to mention that the exponential map based projection of GM -convolutions is insofar
more general than the gnomonic kernel projection that it can describe kernels that extend
beyond the upper hemisphere H2

p around p. Note that both kernel projections become in
the practically relevant limit of small kernels even without the radial warp equivalent since
arctan

(
∥v∥
)
= ∥v∥+O

(
∥v∥3

)
.

The implementations in [58, 351, 295, 77, 203] are in the continuum all equivalent to each
other and to our GM -convolution, however, their numerical discretizations differ. Coors
et al. [58], Eder and Frahm [77] and Martin et al. [203] discretize feature fields on (approx-
imately) uniform sampling grids on the sphere. Specifically, Coors et al. [58] and Martin
et al. [203] use the “generalized spiral set on S2” from [254] as sampling points, while Eder
and Frahm [77] use the vertices of an icosphere. Since the gnomonic projections of kernel
sampling grids on the tangent spaces do not match the spherical sampling grid, the authors
interpolate bilinearly between them. The kernel sampling coefficients can hereby be pre-
computed in an offline step. The actual convolution computes then an output feature field by
contracting the projected, interpolated kernels at each point with the input field.

Zhao et al. [351] and Tateno et al. [295] discretize their spherical feature fields f :
S2\{n, s} → Rc instead in form of a regular pixel grid on an equirectangular projection
of the sphere. Mathematically, the equirectangular projection, visualized in Fig. 17.3, is for-
malized as the pullback χ∗f = f ◦ χ :

(
−π2 ,

π
2

)
× R → Rc, of the image by the spherical

11Technically, the equivalence of both convolutions requires furthermore a radially dependent
change of the kernel amplitude to account for the change in the volume measure when warping the
kernel. As the kernels are anyways learned, this difference does not matter.
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Figure 17.3: Visualization of the SO(2)-invariant {e}-structure that is considered by most models
discussed in Section 17.3. All of the frames

[
∂
∂θ
, 1

cos(θ)
∂
∂φ

]
are aligned towards the north pole and

are orthonormal w.r.t. the embedding metric of the sphere in R3. The spherical coordinate map χ :
(−π

2
, π
2
) × R → S2\{n, s} from Eq. (17.7) allows to pull spherical feature fields back to feature

fields on spherical angles (−π
2
, π
2
) × R, which is denoted as equirectangular projection. Since χ is

non-isometric, the spherical {e}-structure is in coordinates deformed by a latitude dependent factor
of 1/ cos(θ), which diverges towards the poles. The spherical convolution on this {e}-structure is
in [58, 77, 203] implemented by projecting and interpolating a kernel sampling grid on the tangent
spaces to a feature field sampling grid on the sphere. If the feature fields are instead sampled on the
equirectangular projection, the kernel sampling grid is in a second step mapped further from the sphere
to a deformed sampling grid on (−π

2
, π
2
) × R [351, 295]. Note that regular sampling grids on the

equirectangular projection oversample the signal (relative to the spherical metric) towards the poles.

coordinate map χ from Eq. (17.7):(
−π2 ,

π
2

)
× R S2\{n, s} Rc

χ

χ∗f

f
(17.42)

As in the previous approaches, the authors project a kernel sampling grid via the gnomonic
projection from the tangent spaces to the sphere. In an additional step, they map it via
χ to the equirectangular projection where they compute interpolation coefficients between
the projected kernel sampling grid and the feature field sampling gird. Since the deforma-
tion incurred by the equirectangular projection is independent from the longitude ϕ ∈ R,
it is sufficient to compute it only once for each latitude θ ∈

(
−π2 ,

π
2

)
. The following dia-

gram, which commutes by the definitions of Ksphere
p and Kequirect

p , gives an overview of the
gnomonic projection of a kernel K : R2 → Rcout×cin to the sphere [58, 77, 203] and to its
equirectangular projection [351, 295] (note that Gp is invertible on H2

p ):

Rcout×cin

R2 TpM H2
p χ−1(H2

p)︸ ︷︷ ︸
⊂ (−π

2 ,
π
2 )×R

K

ψA
TM,p Gp = expp◦ω

Ksphere
p

χ

Kequirect
p

(17.43)
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A major disadvantage of discretizing spherical feature fields via a regular pixel grid on the
equirectangular projection is that this approach oversamples the signal towards the poles.

Further variants of spherical convolutions on the equirectangular projection were proposed
by Su and Grauman [287, 288]. Instead of precomputing the deformed kernel sampling pat-
tern, Su and Grauman [287] untie the weight sharing such that each latitude applies its own,
independent kernel in a 1-dimensional Euclidean convolution. The network is then on each
latitude being pretrained to recover the result that would be obtained when convolving with
a kernel that is shared over the tangent spaces as discussed above. If convolutional weight
sharing is a suitable inductive bias, this method should optimally converge to the geometry
based methods by Zhao et al. [351], Tateno et al. [295]. Su and Grauman [288] develop
this approach further and employ a meta-network that predicts a deformed kernel based on a
shared input template kernel and the target latitude. Both of these approaches share weights
over the circular orbits (lines of constant latitude) of the considered isometry group SO(2)
of S2\{n, s}; cf. Fig. 13.6. They are therefore identified as kernel field transforms with
SO(2)-invariant kernel fields, which are by Theorem 13.2.4 SO(2)-equivariant.

Given a spherical feature field in equirectangular projection, it might furthermore be tempt-
ing to process it directly with a conventional Euclidean CNN, skipping the kernel projection
from the tangent spaces, as done for instance in [171, 128]. As discussed in Chapter 15, such
Euclidean convolutions correspond to GM -convolutions on the canonical {e}-structure of(
−π2 ,

π
2

)
× R ⊂ R2, visualized in Figs. 15.3a and 17.4 (top right). This {e}-structure con-

sists of frames
[
∂
∂θ ,

∂
∂φ

]
, which are orthonormal w.r.t. the Euclidean metric of

(
−π2 ,

π
2

)
×R.

These frames are, however, not orthonormal w.r.t. the spherical metric, Eq. (17.9), which is
in Fig. 17.4 (top left) reflected in the frame contraction by a factor of cos(θ) in longitudinal
direction. A GM -convolution on this {e}-structure corresponds therefore geometrically not
to a spherical convolution. It rather corresponds to a GM -convolution on a cylinder, which
is via the isometric coordinate map

χ̃ :
(
−π2 ,

π
2

)
× R →

(
−π2 ,

π
2

)
× S1, (θ, ϕ) 7→

(
cosϕ
sinϕ
θ

)
(17.44)

embedded in R3. In contrast, the {e}-structure that is shown in Figs. 17.2b and 17.3 consists
of frames

[
∂
∂θ ,

1
cos(θ)

∂
∂φ

]
, which are orthonormal w.r.t. the spherical metric. Note that

these frames and the spherical metric are stretched by a factor of 1/ cos(θ) relative to their
canonical Euclidean counterparts on

(
−π2 ,

π
2

)
× R.

Jiang et al. [139] propose an alternative approach for spherical convolutions on the {e}-
structure shown in Figs. 17.2b and 17.3. Instead of defining kernels on the tangent spaces,
they process the signal via second order partial differential operators of the form wid +
weA1 ∂1+weA2 ∂2+wLaplace(∂

2
1 +∂

2
2), where ∂i denotes the partial derivative in the direction

of the i-th frame axis and the weights w(·) ∈ Rcout×cin are optimized during training. That
the weights are position-independent corresponds to our spatial weight sharing. Together
with the SO(2)-invariance of the {e}-structure, along which the differential operators are
aligned, this guarantees the SO(2)-equivariance of the operation. In the continuous theory,
this model corresponds to a {e}M -convolution in the limit of infinitesimally small kernels
or, equivalently, to a convolution with {e}-steerable PDOs by Jenner and Weiler [137]. In
practice, Jiang et al. [139] sample the feature field on an icosphere mesh and represent the
differential operators in terms of spatially extended stencils on the mesh vertices. This makes
the method equivalent to a GM -convolution with spatially extended kernels.
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Figure 17.4: The spherical coordinate map χ :
(
−π

2
, π
2

)
× R → S2\{n, s}, Eq. (17.7), sends an-

gles (θ, ϕ) to points on the sphere. It is non-isometric, which means that the pushforward of or-
thonormal frames

[
∂
∂θ
, ∂
∂φ

]
w.r.t. the Euclidean metric on

(
−π

2
, π
2

)
× R does not yield frames that

are orthonormal w.r.t. the spherical metric. A conventional Euclidean convolution in coordinates(
−π

2
, π
2

)
× R does therefore not correspond to a spherical convolution – its kernels would be con-

tracted by a factor of cos(θ) in longitudinal direction. Since distances are measured in terms of an-
gles, this operation corresponds rather to a convolution on a cylinder, which is via the isometric map
χ̃ :

(
−π

2
, π
2

)
× R →

(
−π

2
, π
2

)
× S1, Eq. (17.44), embedded in R3. A spherical convolution requires

the {e}-structure that is shown in Fig. 17.3.

The model of Lee et al. [178] operates again on an icosphere, however, with a drastically
changed (non-smooth) {e}-structure: instead of aligning the reference frames such that they
all point towards the north pole, the frames point alternatingly towards the north or south.
This design is motivated by the pixelation of the icosphere, whose triangular faces are fac-
ing either north or southwards. Adjacent pixels can therefore be processed by kernels that
are rotated by 180◦ relative to each other. The authors argue that the training process should
make up for this rotation by learning accordingly steerable kernels. Despite the drastic kernel
rotations, the {e}-structure is invariant under those azimuthal rotations that map northwards
pointing frames on themselves, resulting in an approximate SO(2)-equivariance of the con-
volution.

The models discussed in this section are easily extended to other solids of revolution (SO(2)-
invariant manifolds) like the cylinder from Fig. 17.4 or the egg from Fig. 13.1. They are
furthermore adapted to be O(2)-equivariant when considering a lift of the {e}-structures to
R-structures, which corresponds to using R-steerable kernels as shown in Fig. 13.7.
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Figure 17.5: The icosahedron is a Platonic solid that is in [187, 57, 346] used as a piecewise flat
approximation of the spherical geometry. It consists of 12 vertices, 20 equilateral triangular faces
and 30 edges. It admits a regular sampling grid, which is constructed by iteratively subdividing each
triangle into four smaller triangles. After r iterations, this procedure results in a grid of 5 · 22r+1 + 2
vertices. The three highlighted patches show the qualitatively different geometry of neighborhoods
around vertices on faces (red), edges (green) and icosahedron vertices (blue). The red neighborhood
is obviously flat. While the green neighborhood is bent in the embedding space, its intrinsic Gaussian
curvature is again vanishing. That this is the case reflects in the facts that it can be flattened out
isometrically (i.e. without being cut) and, equivalently, that the Levi-Civita transport along a closed
path around the central node is the identity map. The blue neighborhood needs to be cut along one
edge in order to be flattened out. The angle defect, i.e. the angle by which the cut is spread when
flattening the cusp, equals 2π

6
. When parallel transporting a vector once around the central vertex of

the neighborhood, it gets rotated by this angle defect. Instead of having constant positive Gaussian
curvature like the sphere S2, the icosahedron’s curvature is concentrated (singular) at its vertices and
vanishes everywhere else.

17.4 Icosahedral approximations of spherical CNNs

The sphere S2 is in computational sciences commonly approximated by Platonic solids, i.e.
regular convex polyhedra. In the context of deep learning, interest has mostly been focused
on the icosahedron, Fig. 17.5, which approximates the sphere most closely among the pla-
tonic solids [261]. While the Riemannian geometry of the sphere is only approximated,
Platonic solids have the advantage to be piecewise flat and admit regular meshes. These
properties allow for the use of planar convolution routines as described in Part I, which are
computationally better optimized than the methods from the previous two sections. This
section discusses the icosahedral CNNs from [187], [346] and [57], which rely on the G-
structures that are shown in Figs. 17.6a, 17.6b and 17.6c, respectively. Before coming to
their implementations in terms of the atlas of affine charts in Fig. 17.7, we give more details
on the icosahedral geometry and the considered G-structures.

Icosahedral geometry: The icosahedron is a discrete two-dimensional manifold consist-
ing of 20 equilateral triangular faces, 12 vertices and 30 edges. As done for the 2-sphere,
we define the icosahedron as being embedded in R3, from which it inherits the embedding
metric in Eq. (17.9). The embedded tangent spaces TpM ⊂ R3 on the faces are hereby de-
fined such that their normals coincide with the face normals. Tangent spaces on the vertices
and edges could be defined via the average of the adjacent faces’ normals as discussed in the
following Chapter 18. However, as we consider feature fields as being sampled on the icosa-
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hedron faces (which is almost everywhere), we are independent form this choice. Assuming
the Levi-Civita connection, the parallel transport of tangent vectors over faces acts such that
it keeps them parallel in the embedding space R3. When being parallel transported across an
edge, tangent vectors keep the same angle relative to the edge on either side – this transport
may intuitively be thought of as 1) flattening the two adjacent faces out 2) transporting the
vector over the edge as usual on a two-dimensional Euclidean space, and 3) bending the
two faces back to their original embedding; see Fig. 18.2 and [60]. Geodesics are therefore
piecewise linear in R3, crossing edges such that their angle of emanation equals their angle
of incidence. Exponential maps expp(v) are thus easily computed by tracing out a piecewise
constant path for a distance of ∥v∥. In practice, the authors of [187, 57, 346] sample feature
fields on a regular mesh and consider only those tangent vectors that map to the neighboring
mesh vertices.

Fig. 17.5 shows disc-like neighborhoods around exemplary points on faces (red), edges
(green) and vertices (blue) of the icosahedron. The red neighborhood is fully contained
within a face, and is therefore flat. The green neighborhood is bent in the embedding space,
however, its intrinsic (Riemannian or Gaussian) curvature is still zero since the Levi-Civita
transport of vectors once around the central vertex preserves them as they are. That this is
the case is equivalent to the fact that the green neighborhood can be flattened out isometri-
cally, i.e. without stretching or cutting it. This isometric flattening is not possible for the
blue type of neighborhoods around vertices, which have to be cut open at one of the edges
in order to be flattened out. Being constructed from five equilateral triangles, the flattened
cusp exhibits an angle defect of 2π

6 . The holonomy of any closed path around any (single)
vertex, that is, the angle between an arbitrary vector and its transport once around the loop,
is given exactly by this angle defect. Overall, these results imply that the (discrete) Gaussian
curvature of the icosahedron is zero everywhere but at the vertices, where it is singular with
holonomy 2π

6 . The simple geometry of the icosahedron allows for it to be cut open and glob-
ally flattened out as visualized in Fig. 17.7, which was in [187, 57, 346] used for an efficient
implementation of icosahedral GM -convolutions.

The icosahedron’s full isometry group Isom(M) = Ih ≤ O(3) is finite and consists of
120 elements. It can be thought of as being constructed as the direct product I×R of the
subgroupR of reflections and the subgroup Isom+(M) = I ≤ SO(3) of orientation preserv-
ing isometries, containing 60 rotations. Each vertex p is stabilized by five discrete rotations
around the axis through p and its antipodal vertex, which form the cyclic group C5 ≤ SO(2).
The vertex p is furthermore stabilized by reflections over the plane defined by the rotation
axis and any edge emanating from p, such that its full stabilizer subgroup is given by the di-
hedral group Stabp = D5 ≤ O(2). The equivariance of icosahedralGM -convolutions w.r.t.
isometry groups Ih, I, D5 or C5 was in [57] shown to approximate the full O(3), SO(3),
O(2) or SO(2) equivariance of spherical CNNs reasonably well when continuous rotational
data augmentation is used.12

Icosahedral G-structures: The icosahedral GM -convolutions by Liu et al. [187]
and Zhang et al. [346] (implicitly) assume {e}-structures, while that by Cohen et al. [57]
assumes a C6-structure. Fig. 17.6 visualizes the idea behind these G-structures, which we
explain in the following three paragraphs in more detail.

12This was in [57] empirically shown for I ≤ SO(3). That this result generalizes to Ih ≤ O(3)
is clear since the groups differ only by reflections, w.r.t. which icosahedral GM -convolutions can be
made exactly equivariant. It holds furthermore for D5 ≤ O(2) and C5 ≤ SO(2), since these are
subgroups of Ih ≤ O(3).
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(a) Grid-aligned icosahedral
{e}-structure from [187].

(b) North-aligned icosahedral
{e}-structure from [346].

(c) Grid-aligned icosahedral
C6-structure from [57].

Figure 17.6: Conceptual idea of the G-structures assumed in [187, 346, 57]. For space reasons, only
two adjacent faces next to the north pole of the flattened icosahedron (Fig. 17.7) are shown. The
{e}-structure in Fig. 17.6a is defined by aligning all frames along the “horizontal” edges of the faces
(assuming the polar axis to be vertical). Fig. 17.6b shows an alternative {e}-structure whose frames are
aligned towards the north pole. It is in contrast to the previous {e}-structure continuous since frames
on the cut edges agree with each other when gluing the edges back together. The C6-structure in
Fig. 17.6c is constructed by adding frames that are rotated by multiples of 2π

6
to the {e}-structure from

Fig. 17.6a. Since this angle agrees with the angle defect at the cut edges, the thus defined C6-structure
is smooth (continuous). Note that the two {e}-structures are incompatible with (i.e. not closed under)
the Levi-Civita transport but imply an alternative trivial connection. The C6-structure, in contrast, is
compatible with the Levi-Civita transport.

The {e}-structure by Liu et al. [187], shown in Fig. 17.6a, is defined by aligning the first
frame axes with the “horizontal” edges of the corresponding triangular faces. When flat-
tening the icosahedron into a plane as shown in Fig. 17.7, all frames of this {e}-structure
are parallel in this plane, which greatly simplifies the implementation of the corresponding
GM -convolutions. As usual, the {e}-structure specifies a unique trivial connection accord-
ing to which features are transported. This trivial connection agrees within the faces, on
edges which are not cut in Fig. 17.7 and on the magenta cut edge with the Levi-Civita con-
nection. However, its transport over the remaining cut edges differs from the Levi-Civita
transport since the frames of the {e}-structure rotate there discontinuously by an angle
of 2π

6 . As the {e}-structure is preserved by rotations in C5 around the polar axis, its GM -
convolutions are approximately SO(2)-equivariant, i.e. approximate the models from the
previous Section 17.3. However, the {e}-structure – and therefore the network inference
– is non-continuous over the edges with non-zero angle defect. Furthermore, the reference
frames do not point exactly towards the north pole, as it is the case for the spherical {e}-
structure from Section 17.3 and Fig. 17.2b.

Zhang et al. [346] propose to resolve the latter two issues by working with the {e}-structure
in Fig. 17.6b. It is defined such that the frames point exactly along the projection of the polar
axis onto the faces, i.e. towards the north pole. This {e}-structure is continuous everywhere
except at the north and south poles.13 It is in this sense a better approximation of the spherical
{e}-structure from Fig. 17.2b. The {e}-structure implies again a unique trivial connection.
Its transport agrees with the Levi-Civita transport over edges, however, it differs from it when
transporting over faces since it rotates vectors smoothly along with the frames. As the other
{e}-structure, this frame field is invariant under azimuthal rotations in C5, and approximates
thus azimuthal rotation equivariant spherical CNNs.

The C6-structure in Fig. 17.6c by Cohen et al. [57] is defined by augmenting the frames
of the {e}-structure from Fig. 17.6a with those frames that are rotated by multiples of 2π

6 .
It is clearly continuous since the angles between the set of preferred frames at each point
equal exactly the angle defects at the cut edges. It is in contrast to the previous two {e}-

13To see this, imagine to glue the cut edge in Fig. 17.6b back together: the frames on the left and
right half of the edge are then being mapped together, which is not the case in Fig. 17.6a.
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structures compatible with the Levi-Civita transport since the structure group C6 agrees
with the icosahedron’s holonomy group. The C6-structure is furthermore preserved under
the action of the icosahedron’s orientation preserving isometries I. GM -convolutions on
this C6-structure approximate therefore the fully SO(3) rotation equivariant spherical CNNs
from Section 17.2.

Implementations: To implement the GM -convolutions on the corresponding G-
structures, Liu et al. [187], Zhang et al. [346] and Cohen et al. [57] assume a regular grid on
the icosahedron’s faces; see Fig. 17.5. This regular hexagonal grid is constructed by itera-
tively subdividing edges, replacing each triangle with four smaller ones. At resolution r, this
yields a grid with 5 · 22r+1 + 2 vertices. Note that this grid is by construction exactly sym-
metric under isometries of the icosahedron, which leads to an exact IsomGM -equivariance
of the discretized GM -convolutions.14 Liu et al. [187] proposed to represent icosahedral
feature fields relative to the atlas of charts that is shown in Fig. 17.7. The charts have the
advantage that they map the hexagonal grids on the icosahedron’s faces to common square
pixel grids. Note, however, that orthonormal frames on the icosahedron are in this repre-
sentation deformed, such that they are not orthonormal relative to the canonical Euclidean
metric. Hexagonal convolution kernels on the icosahedron are deformed accordingly and can
be implemented in terms of square kernels which are masked such that two of their corners
are filled with zeros.

The GM -convolution by Liu et al. [187] assumes frames that are all parallel and can there-
fore in the interior of the charts, where the kernel support does not extend over its boundaries,
be implemented via a conventional Euclidean convolution; see Chapter 3. At points that are
close to an edge between different charts, the kernel accumulates features from beyond the
cut. As already discussed and visualized in Section 10.4 and Fig. 10.3, this is conveniently
implemented via a transport padding operation which pads a border of parallel transported
features around the array of square pixels before running the convolution operation. For the
trivial transport implicitly assumed by Liu et al. [187], this padding operation just copies a
row of features at each edge without transforming them. Since the authors assume the trivial
structure group G = {e}, the hexagonal kernels remain unconstrained.

The implementation of Cohen et al. [57] is mostly similar, however, it differs crucially in that
it uses Levi-Civita transporters and C6-steerable kernels. Instead of directly padding rows of
pixels across edges, the Levi-Civita transport requires that the features are steered either by
g = e for all internal edges and the magenta edge or by an angle of ±2π

6 over all edges with
angle defect 2π

6 , with the sign depending on the transport direction. Cohen et al. [57] assume
the regular representation of C6 as field type and constrain the convolution kernels to satisfy
the corresponding steerability constraint. After transport padding, their GM -convolution is
implemented as a conventional Euclidean convolution with these steerable kernels, i.e. an
Aff(C6)-steerable convolution from Chapter 4 on the chart codomains. Note that this GM -
convolution is within the faces, i.e. except for the transport padding, similar to the HexaConv
by Hoogeboom et al. [125].

Since the GM -convolution by Zhang et al. [346] assumes a trivial structure group G =
{e}, the transport padding is again implemented as a trivial copy of pixels without steering
and the kernels are again left unconstrained. However, as the frames of the {e}-structure
are aligned towards the north pole, they are not longer parallel in the rectangular square
pixel representation, which prevents an immediate implementation in terms of conventional

14The icosphere grid, used by some of the models from Sections 17.2 and 17.3, is defined by project-
ing the nodes of this grid to unit radial distance from the origin, i.e. to S2. The models in this section
do not assume this projection but convolve directly over the piecewise flat icosahedral geometry.
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Figure 17.7: The implementations in [187, 57, 346] represent feature fields relative to an atlas that
covers the icosahedron with five charts. To construct these charts, one cuts the icosahedron along the
colored edges and flattens it out. Five regions, consisting of four triangles each, are then sheared to
rectangular chart codomains. This operation maps the hexagonal grid to a grid of square pixels, such
that icosahedral feature fields can be encoded by a set of five rectangular arrays. Note that reference
frames and kernels are deformed accordingly on the chart codomains. The Levi-Civita transport over
all colored edges but the magenta one picks up a rotation of ± 2π

6
, with the sign depending on the

transport direction. This is implemented by transport padding rows of pixels along the cut edges as
previously described in Fig. 10.3.
(Lizards adapted under the Creative Commons Attribution 4.0 International license by courtesy of Twitter.)

https://github.com/twitter/twemoji/blob/gh-pages/LICENSE-GRAPHICS
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convolutions. Instead, the kernels have to be applied in a different rotation at each grid
point. As the hexagonal kernel can be rotated by 2π

6 without using interpolation, and since
the alignments towards the north pole differ at most by this angle from each other, the authors
propose the following efficient approximating of this operation: they convolve twice on each
face, once with the original kernel and once with its 2π

6 rotated version. The two response
fields are then linearly combined, with the precomputed interpolation weights depending on
the angles of the north-aligned reference frames relative to the two kernel alignments (i.e.
relative to the pixel grid). This implementation is therefore approximately twice as costly as
those in [187, 57].

An alternative implementation of spherical convolutions on the icosahedron was proposed
by Eder et al. [78]. The authors project the spherical signal on planes spanned by the 20
faces (denoted as tangent images) and subsequently run a conventional CNN on each of
these images. We did not include this network in our list as it processes these representations
independently from each other, that is, it does not transport or pad features between them,
and is therefore not exactly described as GM -convolution.

As mentioned before, the empirical results by Kicanaoglu et al. [148] suggest that the icosa-
hedral geometry approximates the spherical geometry reasonably well for deep learning ap-
plications. More specifically, the authors compare their spherical CNN on an icosphere
grid with the piecewise flat icosahedral CNN by Cohen et al. [57] and find that both per-
form similarly despite the deformed geometry of the latter. The equivariance of icosahedral
CNNs under continuous rotations in SO(3) is found to be violated significantly, however,
this seems to be a mere overfitting effect as it is easily and without loss of model perfor-
mance counteracted by leveraging SO(3) data augmentation.

As always, we want to mention that the C5-equivariant CNNs by Liu et al. [187] and
Zhang et al. [346] can easily be made D5-equivariant by considering a R-structure and thus
reflection-steerable kernels. Similarly, the I-equivariant CNN by Cohen et al. [57] can be
made equivariant under the full isometry group Ih of the icosahedron by making the kernels
D6-steerable instead of C6-steerable.





CHAPTER 18

Coordinate independent CNNs on general surfaces

Instead of operating on a fixed geometry, the GM -convolutions in the current chapter are
defined on general manifolds. We restrict our review to surfaces (d = 2) since we are not
aware of implementations on (general) higher-dimensional manifolds. The signals to be
processed could either be directly given by the dataset or are computed from the surfaces’
geometries. Examples for the former would be color textures or physical quantities like
temperature fields or the wall stress of a pressurized container. The latter could for instance
be Gaussian and principal curvatures, SHOT descriptors or wave kernel signatures. Most
applications so far focus on classifying the surfaces [131, 140, 327], segmenting parts of
them [232, 131, 327, 339] or finding correspondences between different surfaces [204, 22,
259, 327, 67]. Further applications are the prediction of physical quantities like mechanical
stress [293] or the synthesis of color textures [304, 343] or geometric deformations [119].

The design of Euclidean and spherical CNNs is strongly guided by the requirement for
global symmetry equivariance. Since general surfaces come usually with trivial isometry
groups this guiding principle falls away, which leaves us with a large freedom in the choice
of G-structures. The models that we review in this chapter can be classified into rotation-
steerable and {e}-steerable surface convolutions. Both approaches address the issue of a
missing canonical direction on surfaces, however, they do it in a fundamentally different
way. Rotation-steerable models account for the lack of reference direction by their equiv-
ariant design, treating all directions equivalently. Their underlying SO(2)-structure is – up
to a practically irrelevant choice of orientation1 – fixed by the Riemannian metric. The
rotation steerable models differ therefore mainly in their choice of field types. The {e}-
steerable models are non-equivariant and are therefore not associated to a (non-trivial) field
type. However, they differ from each other by the specific choice of {e}-structure that is
used to determine the kernel alignments.

This chapter is organized as follows: we start in Section 18.1.1 with a brief overview of the
classical differential geometry of surfaces, discussing in particular the difference between
their intrinsic and extrinsic geometry. In practice, most implementations operate on dis-
cretized surfaces. Section 18.1.2 gives an overview of the geometry of triangular surface
meshes, which are arguably the most common surface discretizations in the deep learning
literature. In Section 18.2 we discuss rotation-steerable surface convolutions. Heuristics for
fixing the frame fields that define {e}-steerable surface convolutions are reviewed in Sec-
tion 18.3.

1The chosen orientation is on a (connected, orientable) manifold arbitrary when kernels are learned:
if the opposite orientation was chosen, the training would just result in oppositely oriented kernels.
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For completeness, we mention in the following paragraph a few alternative approaches to
define surface convolutions before coming to the actual content of this chapter.

Surface CNNs beyond GM-convolutions

While quite some surface CNNs can be interpreted as GM -convolutions, many alternative
network designs have been proposed. These methods rely for instance on graph convolu-
tions on surface meshes, spectral approaches, multi view renderings of surface embeddings,
volumetric methods in the embedding space, differential operators, or other operators which
operate immediately on the mesh data structures. The following brief review is intended to
give an overview of the different directions which have been explored.

One method to classify or segment embedded surfaces is to render them from multiple view-
points and process the renderings with conventional Euclidean CNNs. The resulting fea-
tures are then aggregated by pooling over the viewpoints [285, 236] or via a consensus
method [224]. Esteves et al. [85] choose to place the camera viewpoints on a sphere ac-
cording to a discrete subgroup of SO(3), for instance the icosahedral group. The resulting
features are then processed jointly via a discrete group convolution (not a surface convolu-
tion).

Instead of projecting the surface by rendering it, it can be projected to R2 by defining a
chart. Sinha et al. [278] define approximately authalic (area preserving) global charts on
spherical topologies. These charts are discontinuous and in general not conformal (angle
preserving). A conventional Euclidean CNN is used to process the resulting images. The
discontinuities can be circumvented by pulling the surface features back along toric [199]
or more general [115, 13] covering maps. The subsequent Euclidean convolution on the
pullback can not be interpreted as a GM -convolution since the sheets of the covering map
induce different, incompatible {e}-structures on the surface. Li et al. [180] use an atlas of
(approximately) isometric charts – as discussed at the end of Section 18.3, this corresponds
indeed to a GM -convolution.

Volumetric methods process embedded surfaces with conventional Euclidean CNNs in the
embedding space R3, for instance by interpreting the vertices of a surface mesh as a point
cloud [234, 235, 300] or by voxelizing the input. Point cloud based methods are reviewed
in [112]. Mescheder et al. [207] and Peng et al. [226] argue that an implicit surface
parametrization is more economical and propose networks which model surfaces as deci-
sion boundaries.

Spectral approaches are inspired by the convolution theorem. The Fourier basis on a mani-
fold is thereby given by the eigenfunctions of the Laplace-Beltrami operator. Spectral neural
networks process feature maps by manipulating their Fourier spectrum with learned linear
operators. As the Fourier basis is non-localized, Boscaini et al. [21] use instead a windowed
Fourier transform; an alternative are the localized manifold harmonics of Melzi et al. [206].
Bruna et al. [28] interpret surface meshes as graphs. They are therefore applying graph
Fourier transforms, which are based on the eigenfunctions of the graph Laplacian.

Sharp et al. [269] suggest a model which is based on differential operators. Scalar features
are propagated via heat diffusion with a learnable diffusion time. As the Laplacian (occur-
ring in the heat equation) is isotropic, it can not respond selectively to pattern in specific
rotations. The authors are therefore additionally applying a gradient operator, followed by
taking scalar products of the resulting tangent vector-valued features. Note that both oper-
ations are gauge invariant. The networks can be implemented on all data structures which
admit partial differential operators, for instance point clouds or meshes.
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Quite some networks do not operate on the Riemannian manifold structure but rather on the
data structure which represents the surfaces numerically. An example are networks which
interpret the nodes and edges of a surface mesh as forming a graph and consequently apply
graph networks. The isometry equivariance of graph networks was investigated in [144,
126]. Verma et al. [309] proposed a graph network with dynamic filters, i.e. filters that
are during the forward pass predicted from the features. The model of Milano et al. [210]
operates on the primal and dual graphs of meshes and utilizes attention mechanisms.

Spiral nets process features on meshes via local spiral operators [183, 108]. These operators
enumerate features by following a spiral path outwards from the central node. A response
is computed by applying a LSTM to the resulting sequence of features or an MLP to their
concatenation. The choice of first neighbor and spiraling direction corresponds to a choice
of {e}-structure. Hanocka et al. [117] and Hertz et al. [119] define convolutions on mesh
faces and edges, respectively. Both models are made invariant to the arbitrariness in the
mesh element ordering, which could be generalized to a permutation equivariant design.

For more in-depth reviews of such methods we point the reader to Bronstein et al. [26] and
Guo et al. [112].

18.1 Geometry of embedded surfaces

This section gives a brief introduction to the geometry of surfaces. Some concepts of the
differential geometry of smooth embedded surfaces are discussed in Section 18.1.1. Sec-
tion 18.1.2 attempts to give an overview of possible ways to discretize differential quantities
on surface meshes.

For a more in depth treatment of parameterized surfaces, we refer the reader to [99]. A
concise and intuitive introduction to the topic and its relation to computational (discretized)
geometry can be found in [60].

18.1.1 Classical differential geometry of embedded surfaces

Classically, surfaces have been described extrinsically, that is, as being immersed (or em-
bedded) in an Euclidean ambient space R3. This immersion can be defined in multiple
equivalent ways, for instance local parametrizations, Monge patches or implicit functions.
Local surface parametrizations are smooth maps

χ : R2 ⊃ V →M ⊂ R3 (18.1)

which immerse open subsets V of R2 into the ambient space R3. They are required to be
regular, that is, their partial derivatives

ei =
∂χ

∂xi
, i = 1, 2 (18.2)

are required to be linearly independent in R3. The derivatives e1(x1, x2) ∈ R3 and
e2(x1, x2) ∈ R3 span the embedded tangent spaces TpM ⊂ R3 at p = χ(x1, x2).2 Sur-
face normals in the embedding space are therefore well defined and given by n = e1×e2

∥e1×e2∥ .
2The derivative vectors ei correspond in the intrinsic chart formalism to coordinate bases; see

Appendix C.3.1.
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An atlas of compatible local surface parametrizations allows to describe surfaces that differ
topologically from the plane on a global level.

The Riemannian metric of the surface – in this context often denoted as its first fundamental
form – is induced from the embedding space. In accordance with the analogous definition
for the embedded sphere S2 in Eq. (17.9) we have:

ηp(v, w) := ⟨v, w⟩R3 ∀ v, w ∈ TpM (18.3)

Let v =
∑
i viei and w =

∑
i wiei be tangent vectors in TpM that are expressed in terms

of their coefficient vectors v,w ∈ R2 relative to the coordinate basis. The metric is relative
to this basis represented by a symmetric coefficient matrix

I =

(
E F
F G

)
(18.4)

with elements3 E = ⟨e1, e1⟩R3 , F = ⟨e1, e2⟩R3 = ⟨e2, e1⟩R3 and G = ⟨e2, e2⟩R3 . This
matrix acts on vector coefficients according to ηp(v, w) = v⊤ Iw. The first fundamental
form encodes the intrinsic geometry of a surface as a two-dimensional Riemannian manifold,
i.e. that part of the geometry which is independent of its immersion into the ambient space.

A surface’s extrinsic geometry, i.e. details about its particular immersion into the ambi-
ent space, is captured by its second fundamental form. Relative to e1 and e2 this form is
represented by the matrix

II =

(
L M
M N

)
(18.5)

with elements L =
〈
n, ∂

2χ
∂x2

1

〉
R3 =

〈
n, ∂e1∂x1

〉
R3 , M =

〈
n, ∂2χ

∂x1∂x2

〉
R3 =

〈
n, ∂e1∂x2

〉
R3 =〈

n, ∂e2∂x1

〉
R3 and N =

〈
n, ∂

2χ
∂x2

2

〉
R3 =

〈
n, ∂e2∂x2

〉
R3 . These elements measure essentially how

the coordinate bases – and thus tangent spaces – bend in ambient space (into the normal
direction) when moving along the coordinate lines. It can for instance be used to determine
the normal curvature

κn(v) =
v⊤ II v

v⊤ I v
(18.6)

of the surface at p in direction of v =
∑
i viei ∈ TpM . Intuitively, this normal curvature can

be understood as the curvature of the curve defined by the intersection of the surface with
the plane spanned by the direction v and the normal n at that point. This curvature agrees
with the inverse radius r = 1/κn(v) of the osculating circle to the curve at p, and therefore
measures how the surface bends into the normal direction when moving in the direction
of v; see [60] for great visualizations of this situation. Other quantities of interest in the
study of immersed surfaces are their principal, mean and Gaussian curvatures, which can be
expressed in terms of the normal curvatures and are exemplified in Fig. 18.1. The directions
(unit vectors in TpM ) vmax and vmin in which the normal curvature at a given point p are
maximal or minimal are denoted as principal directions at p. The corresponding curvatures

κmax = κn(vmax) and κmin = κn(vmin) (18.7)

are the principal curvatures at p. Their mean value

κmean =
κmax + κmin

2
(18.8)

3In modern notation, the coefficients of a (coordinate free) metric g relative to a given basis are
often denoted by gµν .
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Figure 18.1: Embedded surfaces of qualitatively different extrinsic curvatures. Left: The plane is
characterized by vanishing principal and Gaussian curvatures κmax = κmin = κGauss = 0. Middle
left: A cylinder has one direction of positive curvature and one of vanishing curvature, i.e. κmax > 0
and κmin = 0. Its Gaussian curvature κGauss = 0 is therefore zero as well. The plane and the cylinder
are locally isometric, that is, their intrinsic geometry is locally indistinguishable. Note that the plane
can be rolled up (developed) to form a cylinder – the difference between the two is just the embedding
into ambient space. Middle right: An ellipsoid is characterized by its positive principal and Gaussian
curvatures κmax > 0, κmin > 0 and κGauss > 0 at every point. Right: The surface of a saddle bends in
opposite directions, implying opposite signs of the principal curvatures κmax > 0 and κmin < 0. As a
result, the Gaussian curvature κGauss < 0 is negative.

is known as mean curvature. The mean curvature is zero at “saddle-like” points where
κmin = −κmax. Minimal surfaces have zero mean curvature at every point. The product

κGauss = κmax · κmin (18.9)

of the principal curvatures is denoted as Gaussian curvature. This curvature is positive if
the principal curvatures have the same sign, which is for instance the case for ellipsoids. In
order for the Gaussian curvature to be negative, the signs of the principal curvatures need to
differ, as around hyperbolic (saddle-like) regions. The Gaussian curvature is zero if either
(or both) of the principal curvature values is (are) zero, i.e. if the surface has a flat direction.
An example for a manifold with zero Gaussian curvature is the cylinder. Such surfaces are
said to be developable, which means that they can be flattened out into a plane without
being distorted, or, more rigorously formulated, they are locally isometric to the plane. Carl
Friedrich Gauss proved in his theorema egregium that the Gaussian curvature of a surface is
actually an intrinsic property, i.e. that it does not depend on how the surface is immersed into
ambient space. It is in one-to-one correspondence with the (intrinsic) Riemannian curvature
tensor of a surface (and thus also to its Ricci and scalar curvature). An important property
of the Gaussian curvature is that its integral over a topological disk D ⊂ M equals the
holonomy δ∂D, i.e. the angle by which a vector is rotated when (Levi-Civita) transporting it
once around the disk boundary ∂D:∫

D

κGauss dp = δ∂D (18.10)

As we will see below, this relation can be used to generalize the Gaussian curvature to
meshes, where the holonomy δ∂D agrees with the angle defect of an unfolded loop of faces
(like the blue neighborhood in Fig. 17.5).

SinceGM -convolutions depend only on the intrinsic geometry of a surface, the reader might
wonder why we are discussing their extrinsic properties like principal curvatures. The reason
is that GM -convolutions may nonetheless be informed about a surface’s extrinsic geometry,
for instance by encoding it in feature fields. The extrinsic geometry may furthermore be used
to heuristically align the frames of an {e}-structure and thus kernels. For example, Jin et al.
[140] and Li et al. [180] align the frames along the z-axis of the ambient space R3, while
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Boscaini et al. [22] and Tatarchenko et al. [294] align the frames along the surface’s dominant
principal curvature direction. Note that these heuristics are not always well defined: for
instance, the projection of the z-axis on a “horizontal” tangent space (in the ambient space)
is zero, and the dominant principal curvature direction might not be defined, as it is the case
on the sphere.

18.1.2 Discretized geometry of surface meshes

In principle, it would be possible to describeGM -convolutions on local surface parametriza-
tions as described in the last section. While this approach might be suitable for certain simple
or symmetric geometries like ellipsoids, hyperboloids or tori, it seems impractical for more
complex geometries. In practice, surfaces come mostly discretized, for instance in form of
triangle meshes, quad meshes, halfedge meshes, subdivision surfaces or point clouds. Due
to their widespread use – both in general and specifically in the description of the surface
GM -convolutions that we review in the next two sections – we will in the following focus
primarily on triangle meshes. Our goal for the remainder of the current section is therefore
to take the quantities and definitions from the smooth theory and discuss their discrete coun-
terparts on triangle meshes. Unfortunately, these discrete analogues are usually not unique,
such that a plethora of inequivalent definitions exists.4 We will in the following try to give a
general idea about some of the most common approaches of discretizing the smooth geom-
etry of surfaces in terms of triangle meshes.

Topology, geometry and embedding of triangle meshes: Triangle meshes (V,F) are
commonly encoded in terms of a set

V ⊆ N (18.11)

of vertices and a set

F ⊆
{
{i, j, k}

∣∣ i ̸= j ̸= k ∈ V
}

(18.12)

of triangular faces, satisfying that each vertex is contained in at least one of the faces.5 A set

E =
{
{i, j}

∣∣ i ̸= j ∈ {i′, j′, k′} for some {i′, j′, k′} ∈ F
}

(18.13)

of edges, bounding the faces, follows immediately. In practice, one is often given a set

P =
{
pi ∈ R3

∣∣ i ∈ V} (18.14)

of vertex positions, specifying an embedding of the mesh in the ambient space R3. This
embedding implies lengths

l{i,j} = ∥pj − pi∥ (18.15)

4Meyer et al. [209] describe this situation as follows: “Despite extensive use of triangle meshes in
Computer Graphics, there is no consensus on the most appropriate way to estimate simple geometric
attributes such as normal vectors and curvatures on discrete surfaces.”. Similarly, Crane [60] claims:
“There is no one “right” way to discretize a given geometric quantity, but rather many different ways,
each suited to a particular purpose.”

5Faces may alternatively be defined as ordered 3-tuples of vertices. The ordering of the vertices (or
rather the equivalence classes of orderings under an even number of permutations) may then be used
to encode the faces’ orientations. We will instead encode face orientations as in our smooth theory by
a choice of handedness of reference frames.
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of edges {i, j} and areas

A{i,j,k} =
1

2

∥∥(pj − pi)× (pk − pi)
∥∥ (18.16)

of faces {i, j, k}.
We are specifically interested in surface meshes, which are required to satisfy additional
conditions. In order to formulate these conditions, note that the mesh elements {i0, . . . , in}
(where n = 0, 1 or 2 for vertices, edges or faces) imply n-simplices, defined as the convex
hulls

convex
(
{i0, . . . , in}

)
:= (18.17){∑n

j=0
αj pij

∣∣∣ ∑n

j=0
αj = 1 and αj ≥ 0 ∀ j = 0, . . . , n

}
⊂ R3 .

The set that comprises all of these simplices (mesh elements) forms a pure 2-simplicial
complex [68, 60]. That the 2-simplicial complex is pure means that each 0-simplex (vertex)
and 1-simplex (edge) is a subset of at least one 2-simplex (face). In other words, there are
no disconnected vertices or edges in the mesh. The underlying space⋃
{i0,...,in}∈V∪E∪F

convex
(
{i0, . . . , in}

) (pure)
=

⋃
{i,j,k}∈F

convex
(
{i, j, k}

)
⊂ R3 (18.18)

of the simplicial complex is defined as the union of all of its simplices, equipped with the
usual topology as a subset of R3. A mesh is then said to be a surface mesh (manifold
mesh) if the underlying space is a topological surface (manifold), optionally with boundary.
Intuitively, this requires 1) that each edge is adjacent to two faces (or one at boundaries) and
2) that the faces around each vertex form a topological disk (or a half-disk at boundaries).

Such defined surface meshes are discrete counterparts to embedded Riemannian surfaces.
However, sinceGM -convolutions are independent from the extrinsic geometry of the under-
lying manifold, it is instructive to briefly discuss their intrinsic geometry. Take therefore the
vertex, edge and face sets V , E and F , but discard the embedding locations P of the vertices.
Together, these sets form an abstract 2-simplicial complex V ∪ E ∪ F , defined as a family
of abstract simplices {i0, . . . , in} that is closed under taking subsets [60]. If this (now ab-
stract) 2-simplicial complex is 1) pure and 2) such that the “Star” of every vertex (given by
the simplices containing that vertex) form a combinatorial disk, it forms an abstract simpli-
cial surface (which is exactly the case if the embedded mesh is a surface mesh). Abstract
simplicial surfaces can be viewed as combinatorial counterparts of topological manifolds.
They admit to compute topological invariants, for instance the Euler characteristic

XEuler = |V| − |E|+ |F| . (18.19)

As a topological invariant, the Euler characteristic agrees for any two homeomorphic spaces,
in particular for a smooth manifold and any of its triangulations. For instance, the icosahe-
dron from Section 17.4 has X ico

Euler = 12 − 30 + 20 = 2, which agrees with XS2

Euler = 2 for
the 2-sphere.

To arrive at an intrinsic description of a triangulated surface’s geometry, one assigns edge
lengths lij ∈ R>0 to edges {i, j} ∈ E . For consistency, these lengths are required to satisfy
the triangle inequality l{i,j} + l{j,k} > l{k,i} for any face {i, j, k} ∈ F . The edge lengths
imply Euclidean metrics (distance functions) on the faces, and therefore a piecewise defined
Euclidean metric on the whole surface. It corresponds to a Riemannian metric (or first fun-
damental form) which is Euclidean away from vertices and “cone-like” (singular) on a small
neighborhood around the vertices [61, 68].
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In order to close the circle to our initial, extrinsic definition of triangle meshes, on needs to
embed the mesh into ambient space R3. The necessary information on the extrinsic geometry
is given by equipping the mesh with a second fundamental form. In the discrete setting, this
form can be defined as a choice of dihedral angle (bending angle) between any two adjacent
triangles, i.e. one angle per non-boundary edge of the mesh. Provided that this data is chosen
consistently6, it is possible to reconstruct the embedding, i.e. vertex positions P , up to rigid
motions in E(3) [185, 320]. While an embedding of the surface is not necessary for the
intrinsic GM -convolutions, all of the papers listed in rows (41-45) of Table 14.1 evaluate
their models on embedded triangle meshes.

Tangent spaces and vector fields: To describe vector fields on meshes, and to equip the
meshes with geometric structure like connections, it is necessary to define a notion of tan-
gent spaces that are attached to them. Multiple incompatible definitions, tailored towards
the specific application in mind, occur in the literature. Since vector fields are commonly
sampled at discrete locations, the discrete tangent bundles are often only partially defined,
for instance only on faces, edges or vertices. We briefly review some of these definitions, a
more detailed survey can be found in [65].

Since the faces (2-simplices) of an embedded mesh are flat, one can naturally define their
tangent spaces as those two-dimensional subspaces of R3 in which they are contained [62,
60, 320]. Specifically, given a face {i, j, k} ∈ F , one may define the tangent spaces TpM =
span(pj − pi, pk − pi) ⊂ R3 for every p ∈ convex

(
{i, j, k}

)
as the linear span of any two

edge vectors. The alignment of the tangent space in ambient space is often represented in
terms of the face normal n = (pj−pi)×(pk−pi). Discrete tangent (or feature) vector fields
can in face based representations be defined as being face-wise constant, i.e. represented by
a single tangent (or feature) vector per face. Relative to a choice of reference frame on
each of the faces, such tangent and feature vector fields are encoded by 2|F| or c|F| vector
coefficients, respectively. Note that such vector fields do not extend to vertices or edges.
Due to their discontinuity, the notion of differential operators, acting on such fields, is quite
limited [65] (which is irrelevant for our specific application). A linear interpolation scheme
of face based vector fields was proposed in [181].

As there is no natural normal direction at the vertices of a mesh, there are multiple common
definitions of vertex tangent spaces. Vertex normals can for instance be defined as an area
weighted average of the adjacent faces’ normals [185, 172, 67]. Besides area weighting,
uniform weights or tip angle weights are sometimes used [60]. Another option is to define
normal vectors via a mean curvature normal operator [209]. The resulting normal agrees
with normals derived via area gradients, but differs from those that are derived via volume
gradients or sphere inscribed normals; see [60].

Alternatively, one can define vertex tangent spaces in an intrinsic way, simply by defining
them as two-dimensional vector spaces that are attached to the vertex. Their relation to the
mesh geometry in a local neighborhood around the vertex is hereby encoded by representing
the one-ring neighborhood in the tangent planes. The arguably most prominent of such
approaches is based on a rescaling of the total angle

Θi =
∑

{i,j,k}∈F

θi{i,j,k} , (18.20)

which is summed from the tip angles θi{i,j,k} = arccos
〈 pj−pi
∥pj−pi∥

pk−pi
∥pk−pi∥

〉
of all the triangles

{i, j, k} adjacent to vertex i ∈ V . If this angle is exactly 2π, the local neighborhood around
6The discrete first and second fundamental forms are required to satisfy an integrability condition,

similar to the Gauss’s equation and the Mainardi-Codazzi equations in the smooth setting [320].
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the vertex is intrinsically flat; see for instance the red or green neighborhood in Fig. 17.5.
An angle Θi < 2π, as for the blue neighborhood, signals a positive discrete Gaussian cur-
vature (properly defined below) κGauss,i = 2π − Θi, i.e. a cone-like neighborhood. An
angle Θi > 2π corresponds similarly to a saddle-like neighborhood with negative Gaussian
curvature. The approach followed in [231, 347, 158, 268, 60] is then to flatten the one-ring
neighborhood out by isotropically rescaling polar angles by a factor of si = 2π

Θi
to the total

siΘi = 2π of a Euclidean (tangent) space. A vector field can is in this setting be represented
by one vector per vertex. A choice of gauge, which are often aligned with one of the edges,
allows then to encode tangent or feature vector fields in terms 2|V| or c|V| coefficients, re-
spectively. Zhang et al. [347] proposed to interpolate the vectors with a piecewise linear hat
function weighting from the vertices to the faces. The direction of the vectors is thereby
determined by a usual Euclidean transport on the flattened tangent spaces. As pointed out
by de Goes et al. [65], this interpolation is not continuous. To resolve this issue, the same
authors propose in [186] to define a smooth structure on the triangle mesh and to represent
the one-ring neighborhoods in smooth charts. A smooth interpolation is then performed by
transporting vectors via a smooth simplicial connection on the mesh, which is optimized
to be as close as possible to the original embedding space induced Levi-Civita connection.
Note that both approaches are effectively flattening the geometry around the vertices, that is,
they do not exactly operate on the triangle mesh.

Yet another approach, rooted in discrete exterior calculus [68, 81], is to define tangent vectors
v = ω♯ ∈ TpM in terms of 1-forms ω ∈ T ∗pM by leveraging the (metric-dependent) musical
isomorphism ♯η : T ∗M → TM (“index raising”). Since simplicial 1-forms are naturally
assigned to edges (1-simplices), this leads to an vector fields which are parameterized in
terms of one vector per edge and thus 2|E| coefficients after choosing frames. However, as
argued by de Goes et al. [65] a piecewise linear interpolation of the vectors over the faces
will again lead to discontinuities. It is furthermore not clear to us how this approach could
be generalized to general associated vector bundles and thus feature fields.

Given any of the above constructions of tangent spaces, local reference frames are readily
defined as 2-tuples of linearly independent tangent vectors. A common choice is thereby
to align the first frame axis with one of the adjacent edges of the current simplex (mesh
element). Specifically for the case of orthonormal, right-handed frames, i.e. whenever G ≤
SO(2), a choice of (oriented) edge determines a frame completely. Tangent vectors are
then often represented in polar coordinates, with the angle measured relative to the reference
edge. If the tangent spaces are modeled extrinsically, that is, as two-dimensional subspaces
of the ambient space R3, it is most common to represent the frames explicitly as a 2-tuple
of vectors in TpM ⊂ R3. The definitions of frames and gauges are then fully equivalent to
those in Eqs. (17.17) and (17.12) in Section 17.1.

G-structures are, as usual, defined as bundles of frames, which are in each tangent space re-
lated through G-valued gauge transformations. In the computer graphics community, there
is a particular interest in N -direction fields (or unit N -RoSy fields), which are there de-
fined as a collection of N unit vector fields, such that the N vectors in each tangent space
are spaced by an angle of 2π/N . Since any unit vector implies on an oriented manifold
a corresponding right-handed, orthonormal frame, N -direction fields are seen to be equiv-
alent to CN -structures. An example is the C6-structure on the icosahedron in Fig. 17.6c,
which effectively assigns 6 unit directions to each point, except for the poles, where it has
singularities of index 1

6 (or angle 2π
6 ). The interactive design of smooth direction fields,

with user defined singularities amongst other constraints, is an active field of research in
the computer graphics community [181, 242, 172, 62, 158, 186, 268]. Some of the surface
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GM -convolutions that we review in the following section use such algorithms to compute a
CN -structure [131, 339].

Riemannian metric and isometries: Having a mesh equipped with tangent spaces, one
can define a Riemannian metric on it. The most common case that of isometrically embedded
meshes with tangent spaces modeled as two-dimensional subspaces of the ambient space R3.
As described before in Eqs. (17.9) and (18.3), the metric is then induced by restricting the
standard Euclidean inner product ⟨·, ·⟩R3 of the embedding space to the tangent spaces.

If the tangent spaces are modeled intrinsically, a metric can be fixed by choosing an O(d)-
structure, i.e. reference frames that are defined to be orthonormal. Somewhat less tau-
tological, if one is given edge lengths l{i,j}, and therefore a piecewise defined Euclidean
distance function on the surface as discussed above, the choice of O(d)-structure is required
to be compatible with these lengths. Specifically, the logarithmic map should result in tan-
gent vectors of (Riemannian) norm | logp(q)| = d if the points p and q are separated by
a Euclidean distance d ∈ R≥0. Note that this statement requires a consistent definition of
Levi-Civita connection on the mesh, which we discuss further below.

Isometries are intrinsically defined as usual, that is, as those mappings of the mesh to it-
self, which preserve the metric. Extrinsically, the isometry group is comprised of those
isometries ϕ ∈ E(2) of the embedding space, which leave the mesh invariant. Most of the
papers in rows (41-45) of Table 14.1 consider datasets whose meshes have a trivial isome-
try group. However, local neighborhoods of the meshes are often nonetheless isometric (or
approximately isometric) to each other, which was exemplified in Fig. 13.2. As discussed in
Section 13.1.1, the isometry equivariance of GM -convolutions will still hold locally if the
kernels’ field of view is sufficiently small.

Connections, transporters and geodesics on triangle meshes: The last ingredient that
we need to implement GM -convolutions on meshes is the transporter pullback Exp∗p of fea-
ture fields, Eq. (9.21). We are therefore required to know how to 1) parallel transport feature
vectors over meshes and 2) compute geodesics on meshes, specifically the exponential map
or, depending on the implementation, the logarithmic map. All of these mappings depend
ultimately on a choice of connection on the mesh. In the smooth setting, a connection is
essentially a collection of infinitesimal transporters between adjacent tangent spaces. One
defines discretized connections on meshes therefore usually as transporters between adja-
cent mesh elements. The particular choice of tangent bundle discretization, options of which
were discussed above, influences the particular definition of connection. In the following,
we review some discretizations of connections found in the literature and explain how they
can be used to compute transporters and geodesics.

The simplest case to consider is the transport or connection between two adjacent faces.
Recall that the Levi-Civita transport on a flat plane is defined as shifting a vector such that
it stays parallel in the usual Euclidean sense; see Fig. 8.4a. As connections are inherently
intrinsic, they do not depend on the particular embedding of this plane into ambient space,
which tells us how to transport on any developable surface. It tells us in particular how
to transport between two adjacent triangles, since they can be unfolded (developed) into a
plane as visualized in Fig. 18.2. The Levi-Civita connection between faces can therefore
be thought of as 1) flattening the faces 2) transporting the vector as usual on the plane and
3) folding the faces back to their original embedding [62, 213, 60]. The resulting transporter
P
TM,{i, j, k}→{i, j, l} between the faces {i, j, k} and {i, j, l} can optionally be expressed in

terms of a group element gAÃ{i, j, k}→{i, j, l} in GL(2). Since the Levi-Civita connection is a
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Figure 18.2: Parallel transport between mesh faces. The local geometry of two adjacent faces is de-
velopable, that is, it is intrinsically flat and can be unfolded into a plane. The Levi-Civita transport
between the faces is therefore given by shifting a vector over the unfolded faces, followed by bend-
ing the faces back to their original embedding. This parallel transport between adjacent faces can be
viewed as the discrete analog of the continuous Levi-Civita connection in the smooth setting [62].
Given any choice of reference frames, the transport P

TM,{i, j, k}→{i, j, l} is represented by a group ele-

ment gAÃ
{i, j, k}→{i, j, l} ∈ GL(2) (or SO(2) when considering right-handed, orthonormal frames). More

general connections apply an additional linear transformation to the coordinate free vector when transi-
tioning between the faces. Alternative definitions of discrete connections, for instance for the transport
between vertices along edges, are discussed in the main text.

metric connection, it results for the specific case of orthonormal frames in group elements
in O(2), and for oriented orthonormal frames in SO(2)-elements or rotation angles.

As proposed by Crane et al. [62], it is possible to generalize this construction beyond Levi-
Civita connections: instead of merely shifting vectors between the flattened faces, more
general connections apply an additional linear transformation, for instance an additional ro-
tation. While this additional transformation will be reflected by a corresponding transforma-
tion of the transporter’s coordinate expression gAÃ{i, j, k}→{i, j, l}, it is conceptually independent
from it and can be defined in a purely coordinate free setting. The authors use this idea
to construct smooth trivial connections, which are defined by having a transport of zero
holonomy around any possible loop, and which are optimized to be as smooth as possi-
ble, except for at some singularities, which are topologically enforced [62]. They consider
furthermore connections which apply (coordinate free) rotations by 2π

N and can be used to
construct N -direction fields, corresponding to CN -structures. In our applications, we will
always consider Levi-Civita connections to compute geodesics. The models reviewed in the
following Section 18.2 assume a structure group G = SO(2) on oriented meshes and utilize
Levi-Civita transporters for feature vectors. In contrast, the models in Section 18.3 assume
a trivial structure group G = {e} and therefore allow only for {e}-structure compatible
trivial connections. They transport features such that their coefficient vectors relative to the
{e}-structure frames remain invariant, i.e. merely copy their numerical values.

Given embedded tangent spaces TpM ⊂ R3 at other mesh elements like vertices or edges,
this approach is naturally generalized to transitions between arbitrary mesh elements [67]:
instead of aligning the faces, one could e.g. align the vertex tangent space with the adjacent
face before shifting the vector. Geometrically, this operation can be thought of as the trans-
port over a mesh whose vertices and edges are cut off in an infinitesimal neighborhood, an
are replaced with a polygonal face.

An alternative definition of discrete connections is given in [158] and [268]. The authors of
both papers model tangent spaces only at the vertices, where they are defined in terms of the
rescaling of the total incident angle, Eq. (18.20), to 2π, as discussed above. A connection
on the mesh is then given by transporters over all edges {i, j} ∈ E , which link the adja-
cent vertices’ tangent spaces. Since the geometric notion of unfolding triangles is hereby
missing, the edge transporters are encoded via group elements relative to a source and ref-
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erence frame. Specifically for the Levi-Civita connection, and orthonormal, right-handed
reference frames, these group elements lie in SO(2). The utility of this construction for the
direct transport along arbitrary paths over the manifold is unclear, however, it is useful to
solve PDEs that depend on the covariant derivative. Sharp et al. [268] showed that a solution
of the vector heat equation allows nonetheless to use such connections to (indirectly) com-
pute the parallel transport between arbitrary points on a mesh. Liu et al. [186] propose yet
another construction, namely smooth simplicial connections between and within all mesh
elements. They discuss furthermore how such connections can be optimized to be as close
to the (non-smooth) Levi-Civita connection as possible.

A given connection determines the parallel transport along a path. In the smooth setting,
where connections are infinitesimal transporters, the finite transport is computed by inte-
grating the connection along the path. In the discrete setting, the transport is accordingly
given by composing the individual transformations that constitute the connection between
the mesh elements that are crossed by the path. For the Levi-Civita connection, this process
corresponds to a flattening of all the mesh elements along the path, followed by shifting the
vector over it; see Fig. 7 in [172]. The vector heat equation based method by Sharp et al.
[268] computes the transport of vectors specifically along geodesics. Since it solves for the
transport from a source location to any other location on the manifold simultaneously, this
approach can be more efficient than integrating the transport for every single path individu-
ally.

The curvature of a connection is in the smooth setting defined as the holonomy of its trans-
port around an infinitesimally small disk. The curvature at a vertex is in the discrete setting
similarly defined as the holonomy of the transport around this vertex. For the Levi-Civita
connection, this is just the Gaussian curvature, which is given by the angle defect

κGauss,i = δi = 2π −Θi , (18.21)

where Θi is the total tip angle from Eq. (18.20). We refer again to the icosahedron as
example, which has vanishing curvature everywhere, except for its original twelve vertices,
where the angle defect (curvature) equals 2π

6 . Trivial connections have by construction zero
curvature.

Lastly, we need to discuss geodesics. In the smooth setting, geodesics are defined as straight-
est paths, which is formalized by the statement that the covariant derivatives of their tangent
vectors along the curve vanish, that is, ∇γ̇ γ̇ = 0. This is equivalent to the requirement
that the transport of a tangent vector γ̇(t0) along the geodesic remains tangent to it, i.e.
P
TM,γ(t1)←γ(t0)

γ̇(t0) = γ̇(t1) for arbitrary t0 and t1. Furthermore, the shortest path be-
tween any two points on a connected manifold is given by a geodesic. As pointed out by
Polthier and Schmies [231], this equivalence of shortest and straightest paths does not longer
hold on meshes, such that one needs to distinguish between the two concepts.

Recall that the exponential map expp : TpM → M is defined as mapping vectors v to that
point which is reached when walking for a distance of ∥v∥ from p along the (unit speed)
geodesic in direction of v. This concept is readily generalized to meshes, where one follows
the straightest geodesic in the direction of v for distance ∥v∥. As in the smooth setting,
one may define such straightest geodesics on meshes as those curves that keep their tangent
vector parallel to the curve. This property is naturally satisfied on the planar faces (or along
edges), such that the resulting geodesic is piecewise linear, with the only nontrivial points
being those where the geodesics transitions between adjacent mesh elements. The outgoing
direction of the geodesic after such a transition is thereby determined by the connection,
i.e. by the transport of the incoming tangent direction to the next mesh element. If one
considers the Levi-Civita connection, which we always do to compute geodesics, this results
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in an ordinary straight line after unfolding the mesh elements into a plane. To implement the
discrete exponential map, it is sufficient to trace out such a straightest geodesic until reaching
the distance ∥v∥.
Logarithmic maps logp :M → TpM , on the other hand, can be thought of as computing the
shortest geodesics between points p and q.7 They return that vector logp(q) in TpM which
is tangent to this geodesic at p and whose norm equals the geodesic distance between the
points. A prominent way of computing geodesic distances from a source point (or set) p is
to solve the eikonal equation

|∇τ | = 1 subject to τ(p) = 0 , (18.22)

where ∇ denotes the covariant derivative. The first part of this PDE enforces the natural
requirement that the gradient of the distance function should be one, while the second part
fixes the distance at the source to zero. A Fast Marching algorithm, which solves the eikonal
equation on triangle meshes, was proposed by Kimmel and Sethian [150]. Given the distance
function τ , the geodesic γ between p and any other point q can be traced back by following
the distance gradient starting from q, i.e. by solving the ODE

γ̇ = −∇τ . (18.23)

With this information, we know that ∥logp(q)∥ = τ(q), with the direction of logp(q) given
by geodesic path at p. The solution by Mitchell et al. [213] generalizes the Dijkstra algorithm
for computing distances along edges of a graph to a continuous version, which can cross
faces and therefore operate on meshes. It computes a distance function by propagating a
wavefront starting from p. The heat method by Crane et al. [63] computes geodesic distances
by exploiting Varadhan’s formula, which establishes a connection to the heat kernel. Their
algorithm is essentially solving the heat equation u̇ = ∆u with initial condition u0 = δ(p),
i.e. it diffuses a “heat spike” from the source point p. For short diffusion times, the gradient
∇u points exactly in the opposite direction of the geodesic distances’ gradient. Since it is
known that the geodesic distance gradient has unit magnitude (Eq. (18.22)), one can compute
the distance field from this information. The method is substantially faster than previous
algorithms. Sharp et al. [268] generalize this method to the vector heat equation, which
allows to diffuse vector-valued quantities instead of scalar heat. The algorithm can be used
to transport vectors from a source point (or set) over the whole manifold, but it also suitable
for solving with high accuracy for logarithmic maps.

18.2 Rotation-steerable surface convolutions

In this section we review the SO(2), CN and DN -steerable surface convolutions that are
listed in rows (41-44) of Table 14.1. All of these models have in common that they address
the ambiguity of reference directions on general surfaces via a locally rotation equivariant
(or invariant) design, which distinguishes them from the {e}-steerable models discussed in
the following Section 18.3. Before discussing the individual models in detail, we start with
a higher level overview of common design choices and possible numerical discretizations.

General remarks and overview: All of the models that are reviewed in this section op-
erate on triangle surface meshes and are rotation-steerable. The continuous structure group

7Strictly speaking, the logarithmic map logp can only be defined on that subset of M to which
expp maps injectively.
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G = SO(2) is for all models that assume regular field representations (rows (42) and (43))
discretized by cyclic groups CN , i.e. N equally spaced directions. The model by Huang et al.
[131] assumes a more specific structure group D4. Note that the purely rotation-steerable ar-
chitectures operate only on oriented surfaces without violating the smoothness (continuity)
of their inference. Non-oriented surfaces require additional reflection-steerability, i.e. struc-
ture groups O(2) or DN . This requirement is often easily satisfiable with minor adaptations,
most importantly by using further restricted kernel spaces.

In accordance with the definition of GM -convolutions, the models parameterize features
in the local neighborhood around each sampling point in terms of geodesic normal coor-
dinates. Almost all of the models sample feature fields on the mesh vertices; only Huang
et al. [131] samples features densely on the mesh faces. The continuous convolution integral
in Eq. (9.39), which matches the features in geodesic normal coordinates with a steerable
kernel, can be discretized in different ways. The majority of models discretize this integral
at a vertex p ∈ V as a summation over its neighboring vertices Np ⊂ V . Features from
these vertices q ∈ Np are then matched with the values of the continuous kernel at point
ψTM,p logp(q) ∈ R2, where ψATM,p is the gauge corresponding to the chosen reference frame
at p. Together with the transport from q to p, this results in the discretization

fAout(p) =
∑
q∈Np

AqK
(
ψATM,p logp(q)

)
ρ
(
gAÃp←q

)
f Ãin (q) , (18.24)

where Aq ∈ R are suitably chosen area weights that sum to the total mesh area,
∑
q∈V Aq =∫

M 1dp. Common choices are barycentric area weights of the form

wq =
1

3

∑
{i,j,q}∈F

A{i,j,q} , (18.25)

with the sum running over all triangles that are adjacent to vertex q, or Voronoi areas [310].
Since the discretization in Eq. (18.24) sums over neighboring vertices, the algorithms com-
pute log maps via shortest geodesics between q and p; see Section 18.1.2 and [231].

Instead of computing logarithmic maps of neighboring vertices, one can alternatively dis-
cretize the convolution integral on the kernel domain R2. The authors of [204] use an
equiangular and equiradial binning of geodesic polar coordinates. They compute the expo-
nential map for each sampling point (r, φ), that is, they shoot a straightest geodesic ([231])
of length r in direction φ relative to the reference frame. As these geodesics end in general in
a face, the feature vectors from adjacent vertices need to be interpolated, for instance based
on barycentric coordinates. Yang et al. [339] approximate the geodesic neighborhood via a
“parallel transport unfolding” algorithm [29].

Table 14.1 organizes the models by their respective field types, i.e. by the group repre-
sentations ρ that specify their transformation laws under gauge transformations. The only
non-trivial field types used so far are (complex) irreducible representations of SO(2) [327]
and regular representations of SO(2), discretized by regular representations of a discrete
subgroup CN [232, 293, 67, 339]. Regular representations of SO(2) act by definition on
functions on L2(SO(2)), that is, on features which assign “one value per direction”. In the
discretized version, we have L2(CN ) ∼= R|CN | = RN , where each of theN dimensions of a
regular feature vector corresponds to one of the directions in

{
k 2π
N

∣∣ k = 0, . . . , N−1
}

. The
correspondence to regular representations is in most of these papers implicit – the network
architectures are rather derived from a more intuitive viewpoint. It turns out that the authors
use only a subset of the complete space of steerable kernels that map between CN -regular
feature fields. We substantiate this claim further below when discussing the models in detail.
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A construction of the complete kernel space is given in [322], a visualization can be found
in Fig. 3 of [324]. The remaining models are based on trivial representations, i.e. scalar
fields. One approach to compute scalar fields is to apply a kernel in N directions, result-
ing in an intermediate CN -regular feature field, followed by a pooling operation over the N
responses [204, 217, 293]. Since gauge transformations in CN will lead to a mere cyclic
shift (a permutation) of the feature’s direction channels, the pooling operations are invariant
under gauge transformations, i.e. result in scalar fields. Huang et al. [131] uses immediately
D4-invariant kernels; see Fig. 18.5. As gauge transformation leave such kernels invariant,
the resulting feature fields are invariant as well, i.e. scalar fields.

Lastly, we can compare the models by the feature transporters that they assume. All of the
convolutional networks in [327, 232, 293, 67] assume the canonical Levi-Civita transporters
on the mesh. As all of the models in [204, 217, 293, 131] rely on scalar fields their parallel
transport is trivial. An alternative approach was followed by Yang et al. [339] who compute
a CN -valued connection on the mesh. This connection is flat (trivial) everywhere except for
at a few singularities with a holonomy of k 2π

N for some k = 0, . . . , N − 1 and fixed N . The
authors optimize their CN -valued connection such that it approximates the SO(2)-valued
Levi-Civita connection as close as possible; see also [62]. Note that this approach is similar
to the local flattening of spherical CNNs into icosahedral CNNs (N = 6) from Section 17.4
but applies to general meshes.

With these general remarks in mind, we focus on some more specific design choices that are
made in the models.

Harmonic Surface Networks: The Harmonic Surface Networks by Wiersma et al. [327],
listed in row (41) of Table 14.1, are a prototypical example of GM -convolutions on meshes.
They generalize Harmonic Networks [335] – whose features transform according to the com-
plex irreps of G = SO(2); see rows (35-38) of Table 6.6 in Chapter 6 – from the Euclidean
plane to general curved spaces. The authors define their convolution as in Eq. (18.24), using
the barycentric area weights from Eq. (18.25). Levi-Civita transporters and logarithmic maps
are computed via the vector heat method [268], which is not restricted to triangle meshes but
allows to apply the model to polygon meshes and point clouds. The SO(2)-equivariant non-
linearities used by the models act only on the absolute value of the complex features but
leave their argument invariant.

As proven in [173, 322], the SO(2)-steerable kernel spaces that are used by the authors are
complete over the complex field. However, if the complex feature fields are implemented
in terms of two channels that contain their real and complex parts, they should rather be
viewed as transforming according to the real irreps of SO(2), as derived in Section 5.3.4.
The kernel constraint allows in this case for additional steerable kernels; see Appendix F.5
of [322] for a detailed discussion. We furthermore want to mention that empirical evidence
suggests that networks which are based on irrep fields perform significantly worse that those
that are based on regular representations; see e.g. the benchmark in [322]. Note that Har-
monic Surface Networks can easily be turned into networks that operate on regular feature
fields by employing the “regular nonlinearity” from [67], which essentially applies a Fourier
transformation of a stack of irrep fields to transform them into a regular feature field.

Multi Directional Geodesic CNNs: Poulenard and Ovsjanikov [232] proposed Multi Di-
rectional Geodesic CNNs (MDGCNNs) which operate on so-called directional functions. As
we argue in the following, directional functions are equivalent to regular feature fields and
MDGCNNs are specific GM -convolutions between such features. The authors define direc-
tional functions as real-valued function that depend on points p ∈ M and unit directions
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Figure 18.3: Visualization of the directional functions by Poulenard and Ovsjanikov [232]. Directional
functions assign a real-valued response (colored dots) to each direction (unit vector) in S1

pM ⊂ TpM
(black circle). When expressing these functions relative to right-handed, orthonormal reference frames
or gauges ψX

TM,p, the coordinate representations assign real-valued responses to unit vectors in S1 ⊂
R2. The transformation law between these coordinate representations is given by a rotation of the
feature values on S1. Mathematically, this transformation law is identified as the action of the regular
representation of SO(2); see Eq. (18.28). Directional functions are therefore regular feature fields,
and the surface CNN of Poulenard and Ovsjanikov [232] is based on GM -convolutions between such
fields. A diagrammatic version of this figure is given in Eq. (18.29).

v ∈ TpM, ∥v∥ = 1. Denoting the circle of unit directions in TpM by

S1
pM :=

{
v ∈ TpM

∣∣ ∥v∥ = 1
} ∼= S1 , (18.26)

a directional feature at p is defined as a map

𭟋 : S1
pM → R (18.27)

from unit directions in the tangent plane to real-valued responses.8 A choice of right-handed,
orthonormal reference frame fixes a reference direction relative to which the directional func-
tion can be expressed. Let ψATM,p be the gauge corresponding to a chosen frame, which maps
the unit directions in S1

pM ⊂ TpM to “coordinate unit directions” in S1 ⊂ R2. The coordi-
nate expression of the directional function is then given by

𭟋Ap := 𭟋 ◦
(
ψATM,p

∣∣
S1
pM

)−1
: S1 → R , (18.28)

8The full directional function can then be defined as a map from S1M , the bundle with fibers S1
pM ,

to real values.
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that is, it assigns real-valued responses to the unit coefficient vectors on R2. From the com-
mutativity of the diagram

R2 ⊃ S1 S1
pM S1 ⊂ R2

R

gBA
p ·

𭟋A
p

𭟋

ψA
TM,p

∣∣
S1
pM

ψB
TM,p

∣∣
S1
pM

𭟋B
p

(18.29)

one can read off that the coordinate expressions of directional functions obey the following
transformation law:

𭟋Bp = 𭟋Ap ◦
(
gBAp

)−1
=: ρreg

(
gBAp

)
𭟋Ap (18.30)

The second equality identified the transformation law between the coordinate expressions
as the action of the regular representation (Def. B.5.18), which justifies our statement that
directional functions are just regular feature fields.9 Fig. 18.3 shows a directional function
and its coordinate representations relative to different frames.

The multi directional geodesic convolutions by Poulenard and Ovsjanikov [232] map in
a coordinate independent manner between directional functions by contracting them with
equivariant kernels in a geodesic parametrization around each vertex. This observation im-
plies that these convolutions are specific GM -convolutions between regular feature fields.
A difference in the formulation of multi directional geodesic convolutions is that their trans-
porter pullback does not transport the whole regular feature vector (directional function) back
along the geodesics, but only that single response that corresponds to the tangent direction
of the geodesic. Instead of matching the transported features with a matrix-valued kernel,
multi directional convolutions match the single transported response with a scalar kernel.
The equivalence of both operations is restored by imposing a corresponding sparsity pattern
to our matrix-valued SO(2)-steerable kernels, effectively zeroing out those responses that
are not transported back by MDGCNNs. While multi directional geodesic convolutions are
just GM -convolutions between regular feature fields, they do therefore not use the complete
space ofG-steerable kernels between regular feature fields. This sparsity makes MDGCNNs
computationally efficient, however, the memory cost remains the same and it is unclear how
severely this choice limits their expressional capacity.

The infinite number of directions in SO(2) (or S1
pM or S1) is in practice discretized to theN

equally spaced directions in the cyclic group CN , e.g. the 8 directions that are visualized in
Fig. 18.3. Since the Levi-Civita transport along features is in general SO(2)-valued instead
of CN -valued, the authors use a linear interpolation between the N discrete directions.

As discussed above, MDGCNNs transport only those specific responses of the features back
which correspond to the direction of the emanating geodesic relative to the local reference
frame at p. This direction is undefined at the origin v = 0 ∈ TpM , which prevents
self-interactions of the vertices. The authors resolve this issue by applying an additional
1×1-convolution which adds the missing self-interaction back. As derived in Section 9.1.1,

9Strictly speaking, the regular representation of SO(2) acts on functions SO(2) → R. However,
we can canonically identify such functions with functions on S1 by identifying (1, 0) ∈ S1 with
{e} ∈ SO(2).
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Figure 18.3: Degrees of freedom of a CN -steerable kernel
K : R2 → RN×N which maps between feature fields that transform
according to the regular representation ρreg : CN → GL(N) for N = 4;
see Table B.1 and [322]. The kernel constraint, Eq. (9.37), enforces
the color-coded weight sharing pattern. The PFCNNs of Yang et al.
[339] convolve features on each sheet of their N -direction field (CN -
structure) with rotated versions of a single scalar-valued kernel but do
not include interaction between the different sheets. This shared kernel
corresponds to the diagonal entries (green) of the complete kernel space.
Off-diagonal entries, which are implicitly forced to zero, would correspond
to interactions between the sheets.

the 1×1-convolution kernels are required to be intertwiners in order to preserve the coordi-
nate independence of the model. This requirement is indeed satisfied by MDGCNNs10 as
the 1×1-convolution matrix is constructed such that it mixes whole regular feature vectors
with the same weight instead of linearly combining their channels independently. This is
implemented by representing min regular CN -features not as a c = N ·min-dimensional fea-
ture vector but as an array of shape (N,min), and then applying a (shared) matrix of shape
(mout,min) over the last axis which results in an output array of shape (N,mout).

Parallel Frame CNNs: The Parallel Frame CNNs (PFCNNs) by Yang et al. [339] rely on
N -direction frame fields, which are just G-structures GM for cyclic structure groups G =
CN . Recall from our discussion above that these fields encode a connection which is trivial
everywhere but at a few singularities and which is optimized to approximate the original
Levi-Civita connection. As this G-structure is precomputed in an offline step, we take it in
the following as given and focus on the actual PFCNN convolution. It turns out that this
operation is equivalent to a GM -convolution between CN -regular feature fields, however,
again assuming specific sparsity pattern in the kernels that is implied by the particular net-
work design.

The feature spaces of PFCNNs are the spaces C∞(GM) of real-valued functions on GM .

Since GM
π
GM−−−→M is for G = CN a |G| = N -fold cover of M , such feature fields can

analogously be seen as assigning a tuple of N real numbers to each point p ∈ M . As
the N sheets of the covering space are furthermore identified with N directions (given by
the first frame axes), these features are equivalent to the (discretized) directional functions
of Poulenard and Ovsjanikov [232]. Theorem J.0.1 in Appendix J proves furthermore that
there is an isomorphism

C∞(GM) ∼= Γ(Aρreg) (18.31)

between the features of PFCNNs and our regular feature fields. PFCNNs are therefore
performing coordinate independent convolutions between (an equivalent to) regular feature
fields, and are thus identified as (specific) regular GM -convolutions.

The formulation of parallel frame convolutions seems at first glance to be quite different
from ours: instead of convolving the fullN -dimensional regular feature fields with a matrix-
valued CN -steerable kernel K : R2 → RN×N , PFCNNs convolve their scalar functions on
each of the N sheets independently with a shared scalar-valued kernel which is aligned
with the frame of the respective sheet. This operation is in our framework interpreted as a
convolution with a matrix-valued CN -steerable kernel whose only non-zero values are on its
diagonal and are rotated relative to each other, which is visualized by the green entries in

10Personal correspondence with the author.
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Figure 18.4: Two mesh regions which are topologically equivalent but geometrically distinct. One ap-
proach to define convolutions on meshes is to consider their underlying graph (V, E), which captures
the mesh topology, and run a graph neural network on it. Lacking information about the mesh geom-
etry, (conventional) graph neural networks can not distinguish between the two visualized neighbor-
hoods. Geometrically, they apply isotropic kernels. The Gauge Equivariant Mesh CNNs by de Haan
et al. [67] address this issue by projecting the neighboring vertices qi on the tangent planes and as-
signing them angles θpqi relative to some reference edge, i.e. gauge (red). Requiring the coordinate
independence of the convolutions leads toG-steerable kernels. While the model can discriminate based
on the direction of the neighboring nodes, it ignores their distance. It furthermore deviates from our
geodesic parametrization in that its kernel support is based on the local edge connectivity instead of
geodesic distances.

Fig. 18.3. The missing coupling between features on different sheets implies that the off-
diagonal entries (yellow, blue and red) of the complete steerable kernel space are implicitly
set to zero. As already stated for MDGCNNs, the sparsity pattern of this regular GM -
convolution makes it computationally more efficient than a dense GM -convolution but is
likely to affect its performance and does not save memory cost.

Gauge equivariant Mesh CNNs: The Gauge Equivariant Mesh CNN (GEMCNN) by
de Haan et al. [67] is motivated by the shortcomings of conventional graph neural networks
for the processing of feature fields on meshes. Specifically, vanilla graph neural networks
could be used to process vertex-sampled feature fields on meshes by convolving over the
graph (V, E) that is induced by the mesh. The issue with this approach is that the graph
encodes only the mesh topology, but is not able to capture its geometry. Conventional graph
convolutions do accordingly not distinguish between the ordering of edges, which corre-
sponds on meshes to the use of isotropic kernels that map between scalar fields. Fig. 18.4
shows two regions of a mesh with distinct geometry but equivalent topology – for conven-
tional graph convolutions both neighborhoods look the same. GEMCNNs address this issue
by choosing a reference edge at each vertex p ∈ V , relative to which the direction of all
other edges {p, qi} ∈ E to the one-ring of neighbors qi ∈ Np ⊂ V is measured in terms of
angles θpqi ∈ [0, 2π). A choice of reference edge corresponds to a choice of orthonormal,
right-handed frame. Different choices are related by gauge transformations in the structure
group G = SO(2).

As in our theory, the feature spaces of GEMCNNs are defined as sections of associated vec-
tor bundles, i.e. as spaces of c-dimensional feature fields whose coefficients transform under
gauge transformations according to some group representation ρ : SO(2) → GL(c). Each
edge is assigned an SO(2)-valued Levi-Civita transporter. The convolution operation is de-
manded to be independent from the choice of reference edge, which leads to the requirement
on the kernels to be G-steerable (gauge equivariant). In contrast to our formulation, the ker-
nels are not directly applied in geodesic normal coordinates but pass messages only from the
one-ring neighborhoodsNp := {q ∈ V | {p, q} ∈ E} to that node p around which the kernel
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is centered.11 The kernels are furthermore radially insensitive – in how far this affects the
model performance remains an open question.

The authors decided for (real) irreps as field types for the convolution, however, they per-
form a change of basis to regular representations to apply ReLU nonlinearities, which is
why we list them in row (42) of Table 14.1 instead of row (41).12 Specifically, the au-
thors use the change of basis Q ∈ RN×N that decomposes the regular representation
ρreg : CN → GL(N) of CN into its irrep components to transform a stack of irrep fields into
one regular feature field; cf. Section 5.3.2. For CN , this matrix is just the discrete Fourier
transform. After applying the ReLU nonlinearity to each of the N channels of the regular
feature field individually – which is a CN -equivariant operation since regular representations
are permutation representations – the features are transformed back to a stack of irrep fields
for the following convolution operation. This design has the advantage that the features can
be transported exactly with SO(2)-valued transporters, without having to fall back to an in-
terpolation scheme, as done by Poulenard and Ovsjanikov [232]. Note, however, that the full
network is due to the use of the regular nonlinearities only CN -equivariant.

That the authors use the real irreps of SO(2) means that their kernel spaces are approxi-
mately twice as large as those of the Harmonic Surface Networks by Wiersma et al. [327];
cf. the discussions in [322, 173].

Geodesic CNNs: The earliest work on geodesic convolutions that we are aware of is that of
Masci et al. [204]. The authors identified the rotational ambiguity of geodesic polar coordi-
nates on an oriented Riemannian manifold and address it via a rotation invariant architecture.
Their Geodesic convolutions represent a scalar field relative to arbitrarily oriented geodesic
polar coordinates. As the field type is trivial, the transporter pullback to geodesic coordinates
does not require (non-trivial) transporters. The feature field in geodesic coordinates is then
matched with a scalar kernel, which is applied in N equally spaced rotations by angles 2π

N k
relative to the reference frame, where k = 0, . . . , N − 1. Since a gauge transformation by
2π
N l for some l ∈ {0, . . . , N − 1} rotates all kernels accordingly, it result in a cyclic permu-
tation of the responses by l steps. This operation corresponds therefore in our framework to
a CN -steerable convolution from scalar fields to CN -regular feature fields. Instead of pro-
cessing these fields further via regular group convolutions – as done in MDGCNNs [232],
PFCNNs [339] and GEMCNNs [67] – the authors apply a max-pooling operation over the
N responses. Since CN -valued gauge transformation result in cyclic shifts of the intermedi-
ate regular feature fields, the pooling operation is gauge-invariant, i.e. produces scalar fields.
While this networks design is simple to implement, it prevents features form encoding di-
rectional information. Further variations of this networks design can be found in [205, 217].

ZerNet: Next, we turn to ZerNet by Sun et al. [293]. To avoid confusion, we point out
that the authors proposed two models, which we list in rows (42) and (43) of Table 14.1,
respectively. We describe both models, starting with their common design choices.

The key concept underlying ZerNets is their parameterization of convolution kernels in terms
of Zernike polynomials, which form an orthogonal basis of functions on the closed unit disk

11For a (sufficiently) regular grid and compactly supported kernel in geodesic coordinates both
approaches become equivalent.

12The equivalence of ρ-fields to their irrep decomposition (Theorem B.5.16) was discussed in Sec-
tion 10.2.
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BR2(0, 1) around the origin of R2. In polar coordinates, Zernike polynomials are given by

even: Zmn : [0, 1]× [0, 2π)→ [−1, 1], (18.32)
(r, φ) 7→ Rmn (r) cos(mφ) n ∈ N, 0 ≤ m ≤ n

odd: Z−mn : [0, 1]× [0, 2π)→ [−1, 1], (18.33)
(r, φ) 7→ Rmn (r) sin(mφ) n ∈ N, 1 ≤ m ≤ n ,

where Rmn are the Zernike radial polynomials. That (suitably normalized) Zernike polyno-
mials are orthonormal means that they satisfy the orthonormality relations〈

Zmn , Z
l
k

〉
BR2 (0,1)

=

∫ 1

0

∫ 2π

0

Zmn (r, φ)Zlk(r, φ) r dr dφ = δnk δml . (18.34)

A function on the unit disk, for instance a scalar kernelK : BR2(0, 1)→ R, can be expanded
in the Zernike polynomial basis:

K(r, φ) =
∑
n∈N

n∑
m=−n

K̂m
n Zmn (r, φ) (18.35)

To retrieve the expansion coefficients of a given function on the unit disk, one projects it on
the Zernike basis:

K̂m
n =

〈
K, Zmn

〉
BR2 (0,1)

=

∫ 1

0

∫ 2π

0

K(r, φ)Zmn (r, φ) r dr dφ (18.36)

The inner product between two functions K and Exp∗pf
A on the unit disk can with these

relations be expressed in terms of their expansion coefficients:〈
K, Exp∗pf

A
〉
BR2 (0,1)

(18.37)

=

∫ 1

0

∫ 2π

0

K(r, φ) Exp∗pf
A(r, φ) r dr dφ

=

∫ 1

0

∫ 2π

0

∑
n∈N

n∑
m=−n

K̂m
n Zmn (r, φ)

∑
k∈N

k∑
l=−k

̂[
Exp∗pf

A
]l
k
Zlk(r, φ) r dr dφ

=
∑
n∈N

n∑
m=−n

∑
k∈N

k∑
l=−k

∫ 1

0

∫ 2π

0

Zmn (r, φ)Zlk(r, φ) r dr dφ︸ ︷︷ ︸
δnk δml

K̂m
n

̂[
Exp∗pf

A
]l
k

=
∑
n∈N

n∑
m=−n

K̂m
n

̂[
Exp∗pf

A
]m
n

As suggested by the choices K and Exp∗pf
A for these functions, the authors use this prop-

erty to match kernels with the pullback of the feature fields to geodesic polar coordinates.
The kernel coefficients K̂m

n , which are set to zero beyond a user specified threshold, are op-

timized as learnable parameters of the network. The expansion coefficients ̂[
Exp∗pf

A
]m
n

of
the feature field’s transporter pullback are computed by solving a linear system of equations.

An advantage of the kernel parameterization in terms of Zernike polynomials is that they are
by definition SO(2)-steerable kernels. Specifically, the pairs

(
Zmn , Z

−m
n

)⊤
of kernels for a
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given n ∈ N and 1 ≤ m ≤ n form a pair of kernels that are rotated by multiplying them
with the m-th order real irrep of SO(2),

(
Zmn
Z−mn

)
(r, φ+∆φ) =

(
cos(m∆φ) − sin(m∆φ)
sin(m∆φ) cos(m∆φ)

)(
Zmn
Z−mn

)
(r, φ) , (18.38)

while the kernels Z0
n, i.e. for m = 0, transform trivially (they are isotropic). Note that the

expansion coefficients K̂m
n of a kernel K transform inversely to the basis. The authors use

this transformation law to rotate kernels analytically in terms of their expansion coefficients.
The rotation steerability of the Zernike polynomials’ is independent from their radial parts
but relies on the fact that their angular parts are circular harmonics (Fig. 5.2), which are the
harmonic basis functions in the Peter-Weyl decomposition (Theorem B.5.22) of L2(SO(2)).
Due to their steerability properties, circular harmonic bases have been extensively used to
parameterize real [324, 110] and complex [335, 327] convolution kernels since at least the
’80s [127, 251, 95, 118]. In fact, as discussed in detail in Section 5.3 and [322, 173], circular
harmonics are underlying any SO(2)-steerable kernel.

The first and main model design described by Sun et al. [293] is similar to that by Masci
et al. [204]. A scalar field is pulled back to geodesic normal coordinates, where it is matched
with a scalar kernel that is applied in N discrete rotations, resulting in an intermediate CN -
regular feature field. A subsequent max-pooling operation over the N responses yields then
a CN -invariant output, i.e. an output scalar field. The difference to the implementation by
Masci et al. [204] is that this operation is performed in the Zernike polynomial basis as
specified in Eq. (18.37). This choice corresponds ultimately to an alternative interpolation
scheme. The second model design, described Section 4.4 of [293], is a reimplementation
of the MDGCNNs from Poulenard and Ovsjanikov [232] in the Zernike polynomial basis.
The authors observe that this design leads to a significantly improved performance since the
regular feature fields are able to encode directional information.

Figure 18.5: A D4-
invariant kernel of
3× 3 pixels is pa-
rameterized by three
degrees of freedom.

TextureNet: The last rotation steerable model that we discuss is the
TextureNet by Huang et al. [131]. In contrast to the previous models,
TextureNets assume a D4-structure, which could easily be general-
ized to a DN -structure. This D4-structure is precomputed via Quadri-
Flow, a 3rd party software package which can be used to compute
4-RoSy fields that are optimized to be smooth and have few singular-
ities [130]. As the name suggests, TextureNets process input feature
fields that are represented as textures, and are of potentially higher
resolution than the mesh. The convolution kernels are applied at a
dense set of sampling locations, which are uniformly distributed over
the mesh’s faces. At each sampling point the scalar feature field is
pulled back into geodesic normal coordinates and represented relative
to an arbitrary frame of the D4-structure. It is then matched with a D4-invariant 3×3 kernel.
As visualized in Fig. 18.5, the 9 pixels of such kernels are described by 3 degrees of free-
dom. The convolution is implemented in terms of three 1×1-convolutions whose responses
are subsequently binned and aggregated in each of the tangent spaces. The additional reflec-
tion steerability of the kernels implies that TextureNets are well defined on non-orientable
surfaces. However, as the features of TextureNet are scalar fields they can neither encode
directions nor orientations. To overcome this issue, it is necessary to use non-trivial DN or
O(2)-steerable kernels.
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18.3 {e}-steerable surface convolutions

This section reviews the networks from [217, 140, 259, 294, 141, 180], which have in
common that they rely on {e}-structures on the surfaces. From the viewpoint of GM -
convolutions, these architectures differ mainly in the specific choice of heuristic that de-
termines the {e}-structure.

Assuming a trivial structure group G = {e}, the models apply {e}-steerable (i.e. uncon-
strained) kernels, which are aligned along the frames of the chosen {e}-structure. The field
types (group representations) are necessarily trivial. The same holds for all parallel trans-
porters, which are necessarily {e}-structure compatible. Transporter pullbacks Exp∗pf of
feature fields f to the tangent spaces reduce therefore to pullbacks exp∗p f by the usual ex-
ponential map, that is, they don’t apply (non-trivial) transporters. Recall that continuous
{e}-structures exist only on parallelizable manifolds, implying that the networks’ inference
is inevitably discontinuous on non-parallelizable surfaces. The heuristics that determine the
frame fields are furthermore not always well defined, or are instable under deformations of
the surfaces’ geometry, as further discussed below.

The models of Monti et al. [217], Jin et al. [140] and Schonsheck et al. [259] operate on
triangular meshes and process feature fields that are sampled at the vertices. Tatarchenko
et al. [294] and Jin et al. [141] propose networks that operate on surface point clouds while
the architecture of Li et al. [180] defines convolutions on texture atlases of meshes.

Geodesic MoNets: The first model family that we discuss are the MoNets by Monti et al.
[217]. The authors discuss a variety of models on graphs and manifolds, most of which are
not explained as GM -convolutions. These models have in common that they apply kernels
relative to some choice of “pseudo-coordinates” on the manifold or graph – we are here
only interested in those MoNets that rely on geodesic normal coordinates and are therefore
identified as GM -convolutions.

As stated above, the main difference between {e}-steerable surface convolutions is their
particular choice of {e}-structure. Inspired by previous work of Boscaini et al. [22]13, the
authors choose to align the reference frames of the {e}-structure with the principal curvature
direction of the manifold. Note that this heuristic is not well defined when the principal
curvatures κmax = κmin agree, i.e. when the principal curvature direction is degenerate. An
extreme example is the 2-sphere S2, where the principal curvature direction is nowhere well
defined. Even when the principal curvatures are unequal, they determine only an undirected
line, disambiguating reference frames up to a C2-structure (with the two constituent frames
pointing along the two directions along the line). To make the network independent form the
choice of frame, they should therefore actually apply C2-steerable kernels. Moreover, the
principal curvature directions are instable under deformations of the surface. As an example,
imagine the principal curvature direction at the north pole (on the positive z-axis) of the 2-
sphere S2: an infinitesimal squeezing of the sphere along the x-axis results in a principal
curvature direction along the x-axis while an infinitesimal stretching along the x-axis results
in a principal curvature direction along the y-axis. We furthermore want to mention that
principal curvatures depend on the embedding of a manifold, that is, the approach is non-
intrinsic.

13The Anisotropic CNNs by Boscaini et al. [22] assume the same principal curvature direction based
{e}-structure. However, their kernels are not defined in geodesic normal coordinates but are based on
anisotropic heat kernels on the manifold. Monti et al. [217] claim that such heat kernels correspond to
anisotropic Gaussian kernels in geodesic coordinates – if this statement is true, Anisotropic CNNs can
be viewed as GM -convolutions.
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3DMCNN: Jin et al. [140] proposed a 3D Mesh CNN (3DMCNN) that convolves over the
surfaces of scanned faces to recognize expressions like happiness, anger or surprise. As the
face-masks are topologically planes (with holes at the eyes) they are parallelizable, which
allows for smooth GM -convolutions for G = {e}.
The convolution kernel is discretized into one central sampling point and eight other points
at a fixed radial distance R and angles φk = k 2π

8 , k = 0, . . . , 7 in polar coordinates. The
kernels – and thus the frames that constitute the {e}-structure – are rotated such that they are
aligned with the z-axis of the embedding space R3. This approach seems reasonable since
the face masks are parallelizable and, more importantly, aligned upright. To match a such
oriented kernel with a feature field, geodesics of length R are shot in the eight directions.
Barycentric coordinates are used to interpolate the signal from the surrounding vertices to
the end point of the geodesic.

Parallel Transport Convolutions: As a last mesh-based {e}-steerable convolution we
discuss the Parallel Transport Convolutions (PTCs) by Schonsheck et al. [259]. The key idea
of PTCs is to define the convolution kernel at some “origin” p0 ∈ M and share it with any
other location p ∈M by Levi-Civita transporting it along the shortest geodesics between p0
and p. To formulate this weight sharing procedure in more detail, consider the closed disks
BTpM (0, R) ⊂ TpM of radiusR around the origins of the tangent spaces, whereR ∈ R>0 is
the injectivity radius of the manifold. Let furthermore Mp,R := expp(BTpM (0, R)) ⊂ M
be the images of these disks under the exponential map, which include all points whose
geodesic distance from p is smaller than or equal to R. Schonsheck et al. [259] define their
(unconstrained) scalar convolution kernels than as real-valued functions

K̂p0 :Mp0,R → R (18.39)

on the neighborhood around the origin p0, i.e. directly on the manifold. To share the kernel
with other locations p ∈ M , the authors compute the shortest geodesics between p0 and
the target locations p via Fast Marching. They parallel transport the kernel then along these
geodesics, which is done by pulling them back to the tangent spaces. In equations, the kernel
at p is defined as

K̂p :Mp,R → R, q 7→ K̂p(q) := K̂p0 ◦ expp0 ◦P
−1
TM,p0→p

◦ logp(q) , (18.40)

which is visualized by the following commutative diagram:

Mp0,R BTp0M (0, R) BTpM (0, R) Mp,R

R
K̂p0

expp0
PTM,p0→p expp

K̂p

(18.41)
The existence of the logarithmic map is guaranteed since the domain is restricted to points q
within the injectivity radius. To compute the convolution response at p, the transported
kernel is matched with the (scalar) feature field on Mp,R.

In order to describe PTCs as GM -convolutions, we need to identify the corresponding {e}-
structure and {e}-steerable kernel on R2. A compatible {e}-structure is fixed by choosing
an arbitrary frame

[
eAi (p0)

]d
i=1

at the origin p0. The frames at any other location p are then
determined by Levi-Civita transporting this initial frame along the shortest geodesics, that
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is, they are defined as14 [
eAi (p)

]d
i=1

:= P
FM,p0→p

[
eAi (p0)

]d
i=1

. (18.42)

Note that this definition implies in particular the following equivalent relation for the corre-
sponding gauges, which is easily seen by applying it to the frame field:

ψAGM,p = ψAGM,p0
◦ P−1

GM,p0→p
(18.43)

Given the reference frame at p0, we can express K̂p0 in geodesic normal coordinates, which
gives rise to our usual notion of template kernel on R2:

K : BR2(0, R)→ R, v 7→ K(v) := K̂p0 ◦ expp0 ◦
(
ψATM,p0

)−1
(v) (18.44)

To show that our weight sharing via the such constructed {e}-structure is indeed consistent
with that by Schonsheck et al. [259], we reproduce the kernels K̂p at p by mapping our
template kernel K down to the manifold:

K ◦ ψATM,p ◦ logp = K̂p0 ◦ expp0 ◦
(
ψATM,p0

)−1 ◦ ψATM,p ◦ logp
= K̂p0 ◦ expp0 ◦P

−1
TM,p0→p

◦ logp

= K̂p (18.45)

The second step in this calculation used the equivalent to Eq. (18.43) for the tangent bundle
transporter and gauges. All definitions, and their consistency, are concisely summarized by
the statement that the following diagram commutes:

Mp0,R BTp0M (0, R) BTpM (0, R) Mp,R

BR2(0, R)

R

K̂p0

expp0
PTM,p0→p

ψA
TM,p0 ψA

TM,p

expp

K̂pK

(18.46)
Since we constructed our {e}-structure by choosing an initial frame at p0, the reader might
wonder about the implications of this choice. A different choice of initial frame will result
in a corresponding transformation of the geodesic normal coordinates at p0, and therefore
of the template kernel K (Eq. (18.44)). However, since the {e}-structure is constructed by
transporting the initial frame, all of its reference frames will transform accordingly. The
transformation of the template kernel will then cancel out with the transformation of the
{e}-structure such that all choices of initial frames are ultimately equivalent.

The {e}-structures underlying PTCs depend crucially on the choice of origin p0 from which
the frame field is constructed – different choices of origins can lead to very different {e}-
structures. As most manifolds do not come with a canonical notion of origin, the proposed
heuristic seems somewhat arbitrary. Transport based {e}-structures, and thus PTCs, are

14Since this relation defines the {e}-structure, we need to use the Levi-Civita transporters on the
full frame bundle FM .
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furthermore discontinuous at the cut locus. This implies in particular that they are close to
the cut locus unstable under deformations of the surfaces’ geometry since such deformations
may shift the cut locus. In contrast to the heuristics of the previous models, the heuristic of
PTCs depends solely on the intrinsic geometry of the surface, that is, it is not based on its
embedding in ambient space.

To avoid confusion, we need to mention that Schonsheck et al. [259] construct in their imple-
mentation (Section 3.2) another frame field, which should not be confused the {e}-structure
that we described above. This frame field is required for the numerical computation of the
Levi-Civita connection on the mesh, according to which the kernels are then transported.
Our analysis above is purely based on their coordinate free definition of the model, most
importantly the definition of weight sharing in (our) Eq. (18.40).

Note furthermore that the implicitly assumed feature vector transporters in the transporter
pullback rely necessarily on the {e}-compatible trivial connection that is implied by the
{e}-structure. The feature transport agrees along the geodesics emanating from p0, based on
which the {e}-structure was constructed, with Levi-Civita transporters. Transporters along
any other path differ in general from the Levi-Civita transport.

Tangent convolutions: The tangent convolutions by Tatarchenko et al. [294] operate on
point clouds P ⊂ R3 whose points are assumed to lie on a surface. Tangent spaces at the
sampling points are computed via a local principal component analysis (LPCA). The LPCA
at p ∈ P is essentially computing the eigenvectors ei∈ R3, i =1, 2, 3, of the covariance ma-
trix of all points within a spherical neighborhood Np ={q ∈ P |∥q − p∥ < R} of radius R
around p. As the point cloud is sampled from a surface, one of the eigenvalues should be
close to zero. The corresponding eigenvector e3 is taken as the normal vector of the em-
bedded tangent plane TpM ⊂ R3 at p. The two other eigenvectors span an orthonormal
frame [e1, e2] on the tangent plane, such that the collection of LPCA eigenvectors implies
an {e}-structure on the point cloud. Note that the eigenvector with the largest eigenvalue
points in the direction of minimal principal curvature, that is, one has κn(e1) = κmin and
κn(e2) = κmax. The considered {e}-structure is therefore similar to that of Boscaini et al.
[21] and Monti et al. [217], however, the frames are rotated by π/2 since they are aligned
with the minimal instead of maximal curvature direction.15 Since the sign of the eigenvectors
is arbitrary, this heuristic fixes frames actually only up to rotations by π. To address this am-
biguity, tangent convolutions would either have to disambiguate between the two directions
or fall back to C2-steerable kernels.

Instead of representing the feature field in geodesic normal coordinates, tangent convolutions
project the features along the normal direction on the tangent plane.16 They are then interpo-
lated to a regular grid of N ×N pixels. As this grid is aligned with the reference frame, it
can be viewed as a discretization of the tangent space coordinatization ψATM,p(TpM) = R2.
The convolution computes features then by taking the inner product with a N ×N pixel
kernel.

NPTC-net: Jin et al. [141] proposed NPTC-nets on surface point clouds P ⊂ R3. Like
tangent convolutions, NPTC-nets compute tangent planes via a local principal component
analysis, however, their {e}-structure is independent from the LPCA. The {e}-structure that

15Since all reference frames are rotated by the same angle, this difference is irrelevant if the kernels
are learned.

16This choice makes tangent convolutions (and NPTC-nets) different from GM -convolutions. In
the limit of small kernels relative to the curvature of the surface both projections of feature fields to the
tangent spaces become equivalent.
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is underlying NPTC-nets is rather aligned with the gradient of the geodesic distance function
from some initial point p0 ∈ P . To solve for the distance function, Jin et al. [141] solve the
Eikonal equation via a Fast Marching algorithm. Instead of operating directly on the point
cloud as done for instance in [63], the authors propose to use a sparse voxel grid whose
voxels lie in a narrow band around the point cloud. Having computed the distance function
on the voxel grid, which should produce approximately geodesic distances, its gradient is
computed and projected on the tangent planes. The projected vector determines the first
frame axes of the {e}-structure. Note that such defined frame fields are singular at p0.

Jin et al. [141] observe that this {e}-structure implies a trivial connection on the surface (de-
fined such that the frame field is closed under this transport). The frame field (or convolution
kernels) can be understood as being transported according to this trivial connection, which
motivates the “PTC” (parallel transport convolution) in the model name. Note, however, that
NPTC-nets rely in contrast to the PTCs of Schonsheck et al. [259] not on the Levi-Civita
transport. Moreover, this statement can be made for any {e}-structure and corresponding
trivial connection.

Like tangent convolutions, NPTC-nets project the features in the ambient space to the tangent
plane. Instead of using a projection along the normal direction, the authors use a nearest
neighbor interpolation with distances measured in ambient space. The convolution kernel
is then oriented along the frames of the {e}-structure and matched with the interpolated
feature field. Given a convolution kernel K : R2 → R, the authors formulate its assignment
to that tangent spaces as K ◦ ψATM,p : TpM → R where ψATM,p := (⟨eA1 , v⟩, ⟨eA2 , v⟩)⊤. This
procedure matches our definition of weight sharing and gauges (Eq. (17.17)) exactly.

Cross-atlas convolutions: An entirely different approach was followed by Li et al. [180].
Their cross-atlas convolutions compute a texture atlas whose charts are optimized to be
approximately isometric. The convolution operation is then performed on the texture atlas,
with pixel offset maps modeling the transition maps between charts.

Before running the actual convolutions, an atlas of charts is computed. From an abstract
viewpoint, the charts map patches of the surface to R2, such that the whole surface is cov-
ered. Concretely, they map patches of a c-channel input feature field (texture) in a non-
overlapping way to an array of dimensions (X,Y, c). Since the patches in the array should
approximately represent geodesic neighborhoods on the surface, the charts should be ap-
proximately isometric, i.e. minimize distortions. To satisfy this requirement, the surface is
cut such into patches that the mutual angles between all triangle normals within a patch stay
below a user specified threshold – note that this approach is based on the surfaces’ extrinsic
geometry. After optimizing the patches on the surface, the feature field is on each patch pro-
jected along a dominant projection direction. A bin-packing algorithm packs the projected
patches densely into the texture map of shape (X,Y, c). To resolve the directional ambiguity
of the patches they are required to be rotation aligned. This is achieved by demanding that
the projections of the ambient space’s z-axis to each patch are all aligned in the texture map.

The convolution operates directly on the texture map. It groups the pixels into three different
categories which are processed in a different manner. Pixels which are in the interior of a
patch, such that the kernel does not range out of the patch, are convolved via conventional
Euclidean convolutions. Since the charts are approximately isometric, this corresponds ap-
proximately to a geodesic convolution on the patch interior regions on the surface. Pixels
that are outside of the patches are not processed, their value is fixed to zero. The interesting
case is that of pixels which are close to the boundary of the patches. As the convolution
kernel ranges for such pixels out of the current patch, it requires transition maps which
query features from a neighboring patch on the surface. The query location is computed by



358 Chapter 18. Coordinate independent CNNs on general surfaces

1) finding the original point on the surface that corresponds to the current kernel location,
2) shooting a geodesic to find the kernel sampling location on the surface and 3) mapping
this location to the corresponding pixel in the texture map. Using these transition maps the
patches are stitched together according to the surface geometry and the convolution on the
texture map corresponds approximately to a geodesic convolution on the surface. In the
limit of the normal angle threshold going to zero, the approximating converges to an exact
geodesic convolution. However, the patches shrink then down to individual faces, leading to
more non-trivial transition maps.

Cross-atlas convolutions correspond in this limit to GM -convolutions whose {e}-structure
is induced from the charts. The {e}-structure is at the boundaries between adjacent patches
discontinuous, however, the jumps should due to the rotation alignment of the patches in
the texture map in most cases be minimized. The discontinuities are expected to be large at
patches of the surface which are approximately horizontal.

For completeness, we want to point to the atlas based methods by Sinha et al. [278] and
Maron et al. [199]. Both consider non-isometric projections of the surface to a planar
domain, which implies that the subsequent Euclidean convolutions do not correspond to
geodesic convolutions on the surface.
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APPENDIX B

Groups, representations and equivariant maps

This appendix gives a brief introduction to elementary group theory, the mathematics of
symmetries. Since all definitions and theorems are well known and easy to find in the liter-
ature, we omit proofs. For a more in-depth discussion we point the reader to the literature,
for instance [303, 212, 101, 33, 267].

After reviewing basic definitions in the following Appendix B.1, we discuss subgroups and
products of groups in Appendix B.2, group actions, orbits, quotients and homogeneous
spaces in Appendix B.3 and equivariant maps in Appendix B.4. Appendix B.5 gives a very
brief introduction to the theory of group representations.

B.1 Symmetry groups – basic definitions

The symmetries of an object are the set of transformations that leave it invariant; see Fig. B.1.
Simple examples are geometric transformations like translations, rotations or reflections. It
is intuitively clear that symmetry operations can be composed with each other – for instance,
two rotations that leave an object invariant can be composed to give 1) another rotation
that 2) still leaves the object invariant. It is furthermore evident that the trivial (identity)
transformation is a symmetry of each object and that every symmetry has an inverse. In
the case of rotations, these would be the rotation by zero degrees and by the negative angle
around the same axis. The set of all symmetries of an object and their composition forms a
symmetry group, which is formalized as follows:

Definition B.1.1 (Group).
A group is a tuple (G, ·), consisting of a set G and a binary operation

· : G×G→ G, (g, h) 7→ g · h (B.1)

satisfying the following three group axioms:

associativity: for all g, h, k ∈ G one has (g · h) · k = g · (h · k)

identity element: ∃e ∈ G such that ∀g ∈ G one has e · g = g = g · e

inverse element: ∀g ∈ G ∃g−1 ∈ G such that g · g−1 = e = g−1 · g
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(a) Trivial symmetry group {e} (b) Reflection symmetry group R (c) Dihedral symmetry group D6

Figure B.1: An object is said to be symmetric when it comes with a non-trivial set of symmetry
transformations, leaving it invariant. Symmetries are mathematically modeled by groups, Def B.1.1.
Left: The asymmetric butterfly in Fig. B.1a has no non-trivial symmetries. Its symmetry group is
therefore trivial, i.e. contains only the identity element. Middle: The butterfly in Fig. B.1b has a
bilateral symmetry and is therefore modeled by the reflection group R with two elements (identity and
reflection). Right: Fig. B.1c shows a snowflake with dihedral symmetry D6. It consists of rotations by
multiples of 2π/6 and reflections, making 12 group elements in total. The neural connectivity (synapse
weights) of group equivariant neural networks is necessarily invariant (symmetric) under the action of
the symmetry group. (Butterflies adapted under the Creative Commons Attribution 4.0 International license by courtesy of
Twitter, snowflake adapted under the Apache license 2.0 by courtesy of Google.)

The identity element and the inverse of a group element can be shown to be unique. It is
customary to abbreviate the group by its set G and to omit the binary operation, i.e. to write
gh for g · h. We will use these abbreviations in the following whenever the meaning is clear
from the context.

Common examples of groups are the trivial group {e}, consisting of the identity element
only, the d-dimensional continuous translation group (Rd,+), the special orthogonal rota-
tion groups SO(d) := {A ∈ Rd×d |A⊤ = A−1, det(A) = 1}, the general linear groups
GL(d) := {A ∈ Rd×d | det(A) ̸= 0}, modeling transitions between arbitrary reference
frames of Rd (change of basis), or the Euclidean groups E(d), which model the isometries
of Rd (combined translations, rotations and reflections).

Groups are often equipped with additional mathematical structure. For instance, topological
groups are equipped with a topology w.r.t. which the group composition and inversion are
required to be continuous, (locally) compact topological groups are in addition (locally)
compact spaces or Lie groups are smooth manifolds, with smooth composition and inversion
maps.

While the composition of group elements is associative, it is in general not commutative; see
Fig. B.2.

Definition B.1.2 (Abelian group).
A group is called abelian iff all of its elements commute, i.e. iff:

gh = hg ∀g, h ∈ G (B.2)

Examples of abelian groups are translations or rotations in two dimensions. As one can easily
check with any object in reach, rotations in three dimensions do in general not commute.1

1Rotate the object for instance by π/2 around the z-axis and then by π/2 around the x-axis.
Rotating instead first around the x and then around the z-axis yields a different final rotation.

https://github.com/twitter/twemoji/blob/gh-pages/LICENSE-GRAPHICS
https://github.com/googlefonts/noto-emoji/blob/main/LICENSE
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Figure B.2: The composition of
group elements is in general not
commutative, that is, gh ̸= hg. This
is exemplified by the action of re-
flections and rotations, whose order
matters. Groups for which all ele-
ments commute are called abelian.
(Lizards adapted under the Creative Commons
Attribution 4.0 International license by cour-
tesy of Twitter)

Group homomorphisms are structure preserving maps between groups in the sense that the
composition of group elements in the domain is compatible with the composition of their
images in the codomain.

Definition B.1.3 (Group homomorphism). A group homomorphism between two groups
(G, ·) and (G′, ⋆) is a map γ : G→ G′ such that

γ(g · h) = γ(g) ⋆ γ(h) ∀ g, h ∈ G , (B.3)

visualized by the following commutative diagram:

G×G G

G′ ×G′ G′

·

γ × γ γ

⋆

(B.4)

This implies generally that γ(g−1) = γ(g)−1 and that g(e
G
) = e

G′ . A simple ex-
ample for a homomorphism is the map proj1 : (R2,+) → (R,+), (x1, x2) 7→ x1
since proj1

(
(x1, x2) + (y1, y2)

)
= proj1(x1 + y1, x2 + y2) = x1 + y1 =

proj1(x1, x2) + proj1(y1, y2). As evident from this example, homomorphism may lose
some of the structure (here the translation of the second axis).

If all group structure is preserved by a homomorphism, which is exactly the case when it is
invertible, one speaks of an isomorphism:

Definition B.1.4 (Group isomorphism). A group homomorphism γ : G → G′ is denoted
as group isomorphism if it is invertible, that is, if there exists an inverse γ−1 : G′ → G
satisfying γ−1 ◦ γ = idG and γ ◦ γ−1 = idG′ . One writes G ∼= G′ to state that G and
G′ are isomorphic.

Isomorphic groups are fully equivalent in their structure. An example of isomorphic groups
are all subgroups of SO(3) consisting of rotations around a fixed axis - all of these subgroups
are planar rotations in the plane orthogonal to the respective axis, and therefore in particular
isomorphic to SO(2). One can show that they are furthermore all isomorphic to the unitary
group U(1) := {eiϕ |ϕ ∈ [0, 2π)}, modeling rotations of the complex plane C.

https://github.com/twitter/twemoji/blob/gh-pages/LICENSE-GRAPHICS
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B.2 Subgroups and products of groups

One is often interested in a subset of symmetries that forms a group itself:

Definition B.2.1 (Subgroup). A subsetH ⊆ G of a groupG forms a subgroup if it is closed
under composition and taking inverses:

composition: for all g, h ∈ H one has gh ∈ H

inversion: for all g ∈ H one has g−1 ∈ H

As the name suggests, subgroups are themselves groups, that is, they satisfy the three
group axioms. One writesH ≤ G to denote that H is not only a subset, but a subgroup
of G.

Note that every group has itself as subgroup. Any subgroupH ≤ G different from the group
G itself is denoted as proper subgroup, which may be symbolized by using a < symbol
instead of≤. Any group has the trivial group {e} as subgroup. Further examples are discrete
translations (Zd,+) < (Rd,+) or discrete two-dimensional rotations CN < SO(2) by
multiples of 2π/N .

Definition B.2.2 (Cosets). Let G be a group and H ≤ G a subgroup. The subsets of G
defined by left (right) translations of H by g ∈ G are known as left (right) cosets of H
in G:

left coset: gH := {gh |h ∈ H}

right coset: Hg := {hg |h ∈ H}

The (quotient) space of left cosets is denoted by G/H , while the (quotient) space of
right cosets is written H\G.

The spaces G/H and H\G do in general not carry a group structure. However, they can be
shown to do, in the special case where H is a normal subgroup of G.

Definition B.2.3 (Normal subgroup). A subgroup N ≤ G of a group G is called normal
iff its left and right cosets coincide, that is, iff

gN = Ng ∀ g ∈ G . (B.5)

One usually writes N ⊴G if N is a normal subgroup of G.

Two groups may be combined in different ways to form a new group. The simplest way of
doing so is the (outer) direct product of groups, which combines its factors such that they
transform independently:

Definition B.2.4 (Direct product of groups). Let (H, ·) and (K, ⋆) be arbitrary groups.
Their (outer) direct product (H, ·) × (K, ⋆) is defined on the Cartesian productH×K
of the underlying sets, equipped with the binary operation

H ×K → H ×K,
(
(h̃, k̃), (h, k)

)
7→
(
h̃ · h, k̃ ⋆ k

)
(B.6)

which composes the elements of the factors H and K independently from each other.
One commonly abbreviates the direct product by H ×K.
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The direct product is generalized to an arbitrary number of factors by taking the Cartesian
product over all sets and defining the binary operation element wise. Given a direct product
H ×K, one can recover subgroups H ′ :=

{
(h, e

K
)
∣∣h ∈ H} and K ′ :=

{
(e
H
, k)

∣∣ k ∈
K
}

, which are isomorphic to H and K, respectively. Note that these subgroups satisfy the
following algebraic properties:

the intersection H ′ ∩K ′ = (e
H
, e

K
) is trivial

there is a unique decomposition of elements in H ×K into one element of H ′ and
one of K ′

elements in H ′ and K ′ commute – they are both normal subgroups of H ×K

If a group contains subgroups that satisfy these properties, it is called inner direct product
and is guaranteed to be isomorphic to the outer direct product of these subgroups.

An example of a direct product is the symmetry group (R,+) × SO(2) of an infinitely
extended cylinder, whose factors describe the independent translation along the cylinder and
rotations around its axis.

A generalization of the direct product is the semidirect product of groups, in which the
subgroups are not composed independently anymore but the second factor acts on the first
one:

Definition B.2.5 (Semidirect product of groups). Assume arbitrary groups (N, ·) and
(H, ⋆) to be given and let γ : H → Aut(N) be a group homomorphism fromH into the
automorphism group (symmetries) of N . The corresponding (outer) semidirect product
(N, ·)⋊γ (H, ⋆) is defined by:

the underlying set is the Cartesian product N×H

a binary operation given by (N×H)× (N×H)→ N×H,(
(ñ, h̃), (n, h)

)
7→
(
ñ · γ(h̃)n, h̃ ⋆ h

)
This definition includes the direct product for the trivial homomorphism γ(h) = idN ∈
Aut(N) for any h ∈ H , which leaves N invariant. A non-trivial example is the Euclidean
group E(d) = (Rd,+) ⋊γ O(d), for which γ(h) = h ∈ O(d) ≤ Aut(Rd), such that
(t2, h2) · (t1, h1) =

(
t2 +h2t1, h2h1

)
for any translations t1, t2 ∈ (Rd,+) and orthogonal

group elements h1, h2 ∈ O(d). It is worth building an intuition by drawing a few examples
of the composition of translations and rotations on a piece of paper – you will indeed find
that rotations of the plane act on previous translations, while translations do not affect the
overall rotation.

As for the direct product, the semidirect product N ⋊γ H contains subgroups N ′ :={
(n, e

H
)
∣∣n ∈ N

}
and H ′ :=

{
(e
N
, h)

∣∣h ∈ H
}

that are isomorphic to N and H . In
general, only N is a normal subgroup of the semidirect product. One can show that there
exists again a unique decomposition g = nh of an element g ∈ N ⋊γ H into elements
n ∈ N ′ and h ∈ H ′.

Without going into more detail, we want to mention that further products of groups, like
the Wreath product or the Zappa–Szép product, exist, and are applied in equivariant deep
learning [316].
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(a) SO(2)-action on R2 (b) SO(2)-orbits on R2 and quotient SO(2)\R2 ∼= R≥0

Figure B.3: Action, orbits and quotient of the 2-dimensional rotation group G = SO(2) on the
plane R2. Left: A group element g ∈ SO(2) (blue) acts on a point x ∈ R2 (orange) by rotating
it to another location g ▷ x ∈ R2 (green). The set of points SO(2) ▷ x := {g ▷ x | g ∈ SO(2)}
(purple) reached by acting with SO(2) on x is denoted as orbit of x. Right: The group action parti-
tions R2 in disjoint orbits. While the orbits for points different from the origin are circles, the origin’s
orbit is a single point. The space of orbits is the quotient space SO(2)\R2 of the action. It is in this
example isomorphic to the positive real line (radii) R≥0. The quotient map q▷ : R2 → SO(2)\R2

collapses points in the space acted on to their orbits, i.e. to the quotient space. The wiggly arrow is a
(non-canonical) choice of orbit representatives.

B.3 Group actions, orbits and quotient spaces

In our application to equivariant networks we are mainly interested in the action of groups
on some object like a space or feature field.
Definition B.3.1 (Left group action).

Let G be a group and X be a set. A left group action is a map

▷ : G×X → X, (g, x) 7→ g ▷ x (B.7)

that is compatible with the group composition and identity element:

associativity: (gh)▷ x = g ▷ (h▷ x) for any g, h ∈ G, x ∈ X

identity: e▷ x = x for any x ∈ X

G is then said to act on X from the left and X said to be a left G-set.

Fig B.3a visualizes the natural action of the matrix group SO(2) ⊂ R2×2 on R2 by matrix
multiplication, thereby rotating points in the plane.

Besides left actions, there are right actions, which are similarly defined:
Definition B.3.2 (Right group action).

Let G be a group and X be a set. A map

◁ : X ×G→ X, (x, g) 7→ x◁ g (B.8)

is denoted as right group action iff it satisfies:

associativity: x◁ (gh) = (x◁ g)◁ h for any g, h ∈ G, x ∈ X

identity: x◁ e = x for any x ∈ X
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The difference between left and right group actions lies in their associativity law, specifically
in the order in which the composition gh of two group elements g, h ∈ G acts. Left and right
actions can be converted into each other by means of inversion of the acting group elements
since this inversion (gh)−1 = h−1g−1 swaps their order. To make this explicit, let ▷ be a
left group action, then

◁inv : X ×G→ G, (x, g) 7→ x◁inv g := g−1 ▷ x (B.9)

is a right action since, for arbitrary g, h ∈ G and x ∈ X ,

x◁inv (gh) = (gh)−1 ▷ x =
(
h−1g−1

)
▷ x (B.10)

= h−1 ▷ (g−1 ▷ x) = (x◁inv g)◁inv h ,

as required for right actions. An equivalent argument holds to convert right actions to left
actions. We will make heavy use of both left and right group actions on fiber bundles, with
left actions modeling their active transformations (diffeomorphism pushforwards) and right
actions modeling passive gauge transformations. Since all of the following definitions can
be made similarly for both types of actions, we will only give them for left group actions.

If G acts on X , one may ask where a point x ∈ X may be moved by the G-action. The set
of such points is known as orbit of x; see Fig. B.3.
Definition B.3.3 (Group orbit). Let ▷ be an action of G on X and consider any element

x ∈ X . The subset

G▷ x :=
{
g ▷ x

∣∣ g ∈ G} (B.11)

of X is then denoted as orbit of x.

Note that one can define an equivalence relation, defined in footnote 11, by identifying any
two elements of X iff they are lying in the same orbit:

reflexivity: x∼▷x, that is, x is contained in its own orbit G▷ x

symmetry: x∼▷ y ⇔ y∼▷x, that is, if x is contained in y’s orbit, then y is contained
in x’s orbit

transitivity: x∼▷ y ∧ y∼▷ z ⇒ x∼▷ z, that is, if x is contained in y’s orbit and if y
is contained in z’s orbit, then x is contained in z’s orbit

The G-action thus partitions X into disjoint equivalence classes (the orbits). The set of all
orbits is the corresponding quotient set:
Definition B.3.4 (Quotient set and quotient map). The quotient set induced by aG-action

▷ on X is the set of all orbits:

G\X := {G▷ x | x ∈ X} (B.12)

The corresponding quotient map collapses elements of X to their orbit:

q▷ : X → G\X, x 7→ G▷ x (B.13)

We distinguish quotient spaces arising from right group actions in our notation by writing
them as X/G instead of G\X .

Since the quotient map is in general non-injective, it does not have an inverse. However, by
the axiom of choice, one may make a non-canonical choice of orbit representative r▷(x) ∈
G▷ x ⊂ X for each orbit G▷ x:
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Definition B.3.5 (Orbit representative). Orbit representatives are specified by a map

r▷ : G\X → X such that q▷◦ r▷(G▷ x) = G▷ x ∀ G▷ x ∈ G\X ,
(B.14)

i.e. such that the following diagram commutes:

G\X X G\X
r▷

idG\X

q▷ (B.15)

Orbit representatives can in general not be chosen continuously.

The additional requirement on r▷ in Eq. (B.15) ensures that the orbit representative is indeed
an element of its orbit as subset ofX . Fig. B.3 visualizes the orbits, quotient space and some
choice of representatives for the SO(2)-action on R2.

The orbit of a G-set element x is related to its stabilizer subgroups, which is that subgroup
of G that leaves x invariant:
Definition B.3.6 (Stabilizer subgroup). Let X be a G-set, acted on by ▷. The stabilizer

subgroup of G corresponding to some element x ∈ X is defined as:

Stabx := {g ∈ G | g ▷ x = x} ≤ G (B.16)

With this definition, we formulate the orbit stabilizer theorem:
Theorem B.3.7 (Orbit-stabilizer theorem). Let ▷ be a continuous action of a topological

group G on a G-space X and let x ∈ X . The orbit of x is then isomorphic (homeo-
morphic) to the quotient (coset space) of G w.r.t. the stabilizer subgroup:

G▷ x ∼=top G/Stabx (B.17)

Note that the stabilizer subgroups of different elements of the same orbit are always isomor-
phic (even conjugate), that is, Stabx ∼= Staby for any x, y ∈ G▷ z and z ∈ X .

B.3.1 Properties of group actions

Group actions may have further properties of interest, like being transitive, faithful or fixed-
point free. A transitive group action is distinguished by being able to move any element of
the set it acts on to any other element – there is only one single orbit:

Definition B.3.8 (Transitive action). A G-action ▷ on X is called transitive iff it satisfies:

∀ x, y ∈ X =⇒ ∃ g ∈ G such that y = g ▷ x . (B.18)

Spaces with a transitive group action are known as homogeneous spaces; see Appen-
dices B.3.2 and F for more details. Examples of transitive actions are SO(3)-rotations of
the sphere S2. The plane R2 is being acted on transitively by the standard actions of the
two-dimensional translation group (R2,+) or the Euclidean group E(2), but not by the ro-
tation group SO(2) or by one-dimensional translations (R,+) along some axis.

Faithful group actions are actions for which any non-trivial group element moves at least one
element of the space it acts on:
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Definition B.3.9 (Faithful action).
Let ▷ be a G-action on X . This action is called faithful if it satisfies

∀ g ∈ G\{e} =⇒ ∃x ∈ X such that g ▷ x ̸= x . (B.19)

G\{e} := {g ∈ G | g ̸= e} refers hereby to all group elements except for the identity,
not to a quotient.

To construct a counterexample, consider the the two-dimensional translation group (R2,+),
acting on the plane R2 as defined by (u, v) ▷ (x, y) := (x + u, y). This is a well defined
group action since (0, 0)▷(x, y) = (x, y) and (u, v)▷ (r, s)▷ (x, y) = (x+ u+ r, y) =
(u+ r, v + s)▷ (x, y) for any x, y, u, v, r, s ∈ R. However, it is not faithful since
(0, v)▷ (x, y) = (x, y) for any v, x, y ∈ R. One can show that a non-faithful G-action
corresponds always to a faithful action of some subgroup of G.

As the name suggests, a fixed-point free action leaves no single point of the space on which
it acts invariant:
Definition B.3.10 (Fixed-point free action). A G-action ▷ is fixed-point free iff all stabi-

lizer subgroups are trivial, that is, iff Stabx = {e} ∀x ∈ X .

Fixed-point free actions are always faithful if the set acted on is non-empty. The standard
action of the translation group (Rd,+) on Rd is fixed-point free, while the standard action
of the Euclidean group E(d) on Rd is not – it has stabilizer subgroups Stabx ∼= O(d),
consisting of rotations and reflections around any point x ∈ Rd. Another counterexample is
the standard action of O(d) on Rd: while the stabilizers for all points x ̸= 0 are trivial, the
origin is fixed by all group elements, i.e. Stab0 = O(d).

B.3.2 Homogeneous spaces

Homogeneous spaces are of particular importance for the theory of equivariant networks
since they admit a natural definition of convolution integrals. Since homogeneous spaces
and their convolutions are reviewed in detail in Appendix F, we will here just give a brief
overview.

Definition B.3.11 (Homogeneous space). A G-space is said to be homogeneous iff it is
equipped with a transitive group action, Def. B.3.8.

The transitivity of the group action implies that the homogeneous space consists of a single
orbit. As a corollary of the orbit-stabilizer theorem B.3.7, any homogeneous space arises as
a group quotient, i.e. as a space of cosets:
Corollary B.3.12 (Homogeneous space as group quotient). Let X be a homogeneous G-

space of a topological group G and x ∈ X arbitrary, then

X ∼=top G/Stabx . (B.20)

Since the stabilizer subgroups at all points of the homogeneous space are isomorphic to the
same group H ≤ G, the quotient map

G→ G/H, g 7→ gH (B.21)

makes G a principal H-bundle over the homogeneous space G/H; see Section 11.1.5 for a
definition of principal bundles.
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An example of a homogeneous space is Rd ∼= E(d)/O(d) since the action of the Euclidean
group E(d) on Rd is transitive with stabilizer subgroups isomorphic to O(d) < E(d). It
arises further as a homogeneous space Rd ∼= (Rd,+)/{e} under the transitive action of
the translation group (Rd,+) with trivial stabilizers {e}. Another example is the sphere
S2 ∼= SO(3)/ SO(2) ∼= O(3)/O(2) with transitive symmetries SO(3) and O(3), whose
stabilizer subgroups are isomorphic to SO(2) and O(2), respectively.

One further distinguishes principal homogeneous spaces. They have trivial stabilizers and
are thus isomorphic to the group as topological spaces, but don’t carry a group structure.

Definition B.3.13 (Principal homogeneous space (torsor)). A principal homogeneous G-
space has a transitive and fixed-point free group action.

Missing the group structure of G, a principal homogeneous G-space does not have a dis-
tinguished identity element. Principal G-bundles, defined in Section 11.1, have principal
homogeneousG-spaces as fibers. In the case ofG-structures, which are principalG-bundles
of reference frames, the lack of identity element reflects the lack of a canonical reference
frame.

A simple example of a principal homogeneous space is the circle S1 ∼=top SO(2), which is
acted on transitively and fixed-point free by SO(2).

B.4 Invariant and equivariant maps

We turn now to functions mapping betweenG-sets. Such functions are said to beG-invariant
if their result does not change when acting on their input. Since we are in our application
interested in invariant (or equivariant) neural network layers, we denote the maps in the
following by L.

Definition B.4.1 (Invariant map). Let X be a G-set, acted on by some group action ▷
X

.
A function L : X → Y is called G-invariant, iff it satisfies

L(g ▷
X
x) = L(x) ∀ g ∈ G, x ∈ X , (B.22)

visualized by the commutativity of the following diagram:

X

Y

X

L

g▷
X

L

(B.23)

As an example, consider the map | · | : Rd → R≥0, x 7→ |x|, which maps any vector to
its Euclidean norm. This map is invariant under rotations and reflections of the vector, i.e.
under the standard action of the orthogonal group O(d) on Rd. Another example are neural
networks for image classification, which should usually be invariant under translations of the
input image.
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Since G-invariant maps are constant on the group orbits, they imply a unique unconstrained
map L̃ : G\X → Y on the quotient set such that L = L̃ ◦ q▷:

X Y

G\X

L

q▷
L̃

(B.24)

While the result of an invariant map does not change when acting on their domain, the result
of an equivariant map changes according to some group action on the function’s codomain.

Definition B.4.2 (Equivariant map). LetX and Y beG-sets, acted on by group action ▷
X

and ▷
Y

, respectively. If a function L : X → Y commutes with these group actions,

L(g ▷
X
x) = g ▷

Y
L(x) ∀ g ∈ G, x ∈ X , (B.25)

it is said to be G-equivariant. This condition corresponds to the commutative diagram
below:

X Y

X Y

L

g▷
X

g▷
Y

L

(B.26)

Note that invariant functions are a special case of equivariant functions for which the output
group action g▷ = idY is trivial:2

X

Y

X

L

g▷
X idY

L

⇐⇒

X Y

X Y

L

g▷
X idY

L

(B.27)

On the other hand, any equivariant map w.r.t. group actions ▷
X

and ▷
Y

on its domain and
codomain can itself be viewed as an invariant under the joint action on the function space,
since for any g ∈ G:3

L ◦
(
g ▷

X
(·)
)
=
(
g ▷

Y
(·)
)
◦ L

⇐⇒
(
g−1 ▷

Y
(·)
)
◦ L ◦

(
g ▷

X
(·)
)
= L (B.28)

This insight has immediate consequences for equivariant neural networks: their neural con-
nectivity (synapses) is necessarily invariant under the simultaneous group action on the neu-
rons’ input and output space, a property which is usually referred to as weight sharing. Our
central Theorem 13.2.4 confirms indeed that equivariant kernel field transforms (network
layers) on manifolds are specified by invariant kernel fields (neural connectivity).

2The trivial (invariant) action ▷ : G × Y → Y, (g, y) 7→ g ▷ y := y is indeed a well defined
group action since (gh)▷ y = y = g ▷ y = g ▷ (h▷ y) and e▷ y = y, as demanded in Def. B.3.1.

3One checks that this is indeed a well defined group action on the function space.
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As an example for an equivariant map, consider the one-dimensional Euclidean convolution
map

K∗ : L2(R)→ L2(R), f 7→ K ∗ f :=

∫
R
dy K(x− y) f(y) , (B.29)

acting on square integrable functions on the real line (the kernel K is also an element of
L2(R)). Denote by ▷ the regular translation group action on real valued functions, which is
defined by (g ▷ f)(x) = f(x− g). The convolution is then easily shown to be equivariant
w.r.t. this action on its domain and codomain since for any g ∈ (R,+), any x ∈ R and any
K, f ∈ L2(R) one has:

(
K ∗ (g ▷ f)

)
(x) =

∫
R
dy K(x− y) (g ▷ f)(y)

=

∫
R
dy K(x− y) f(y − g)

=

∫
R
dz K((x− g)− z) f(z)

=
(
K ∗ f

)
(x− g)

=
(
g ▷ (K ∗ f)

)
(x) (B.30)

That convolutions are not only sufficient, but necessary for a linear and regular translation
group action equivariant map is proven in Theorem 3.2.1.

B.5 Group representations and intertwiner maps

We now turn to the study of group representations, which are essentially linear group actions
on vector spaces. A group representation assigns matrices (or linear operators) to group
elements and models the group operation by matrix multiplications (composition of linear
maps). Representation theory is of great practical relevance in physics and deep learning
where the objects being acted on are typically elements of some vector space.

The definitions and results of representation theory depend heavily on the class of groups,
representations and vector spaces under consideration. In the following Appendix B.5.1
we focus on finite dimensional representations of locally compact groups. Appendix B.5.2
studies unitary representations of compact groups, for which some additional properties
can be proven. While one considers usually complex vector spaces, we allow for K-vector
spaces, where K is either the field of real or complex numbers, R or C, respectively.

As we keep our introduction short and intuitive, it can hardly live up to the rich literature on
representation theory. For a more rigorous introduction we point the reader to [102, 303].
The representation theory ofG-steerable kernels for compact groupsG is in depth developed
in [173].4 We will not discuss induced representations, which are described in [35, 55].

4Compact groups include in particular (all subgroups of) the unitary groups U(d) and the orthogo-
nal groups O(d), which model rotations and reflections of Cd and Rd, respectively. Further examples
of compact groups are listed on Wikipedia.

https://en.wikipedia.org/wiki/Compact_group
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B.5.1 Finite dimensional representations of locally compact groups

This section introduces finite dimensional representations of locally compact groups. The
finite dimensionality refers hereby to the vector space being acted on. Locally compact
groups include in particular finite groups, compact groups and Lie groups.

Definition B.5.1 (Linear group representation). A linear group representation of a group
G on a vector space V is a tuple (ρ, V ) where

ρ : G→ GL(V ) (B.31)

is a group homomorphism fromG to the general linear group GL(V ) (invertible linear
maps) of the vector space. V is called representation space.

One sometimes refers to only ρ or V as representation if the other constituent is clear from
the context.

By the definition B.1.3 of homomorphisms, group representations satisfy

composition: ρ(gh) = ρ(g)ρ(h) ∀ g, h ∈ G (B.32)

inverse: ρ(g−1) = ρ(g)−1 ∀ g ∈ G (B.33)
identity: ρ(e) = idV , (B.34)

which makes the composition of the linear maps in the image Im(ρ) ⊆ GL(V ) of ρ consis-
tent with the composition of G-elements in its domain.

If V = Kc, the representation assigns invertible matrices ρ(g) ∈ GL(Kc) to group ele-
ments and acts via matrix multiplication. One can always choose such an explicit matrix
representation of finite-dimensional representations by choosing some basis of V .

Group representations are in one-to-one relation with linear group actions as defined in
Def. B.3.1 since any G-representation ρ defines an action

▷ρ : G× V → V, (g, v) 7→ g ▷ρ v := ρ(g) v (B.35)

and any linear G-action ▷ defines a representation

ρ▷ : G→ GL(V ), g 7→ ρ▷(g) := g ▷ (·) , (B.36)

satisfying their respective defining properties, as is easily checked.

If G is a topological (e.g. locally compact) group and V is a topological vector space, linear
group representations (ρ, V ) are required to be continuous in the sense that the associated
group action ▷ρ is a continuous map.

We list some of the representations commonly encountered in equivariant deep learning:

the trivial representation of any group is given by ρ(g) = idV , where V ∼= K1

the standard representation (or defining representation) of any matrix group G ≤
GL(Kc) is given by the group element itself, i.e. by ρ(g) = g. It acts on Kc by
matrix multiplication.

the tensor representation of rank (r, s) of any matrix group G ≤ GL(Kc) is given
by tensor products of the group elements, i.e. by ρ(g) = ⊗s(g−1)⊤ ⊗r g. It acts
on ((Kc)∗)⊗s ⊗ (Kc)⊗r, where ((K)c)∗ is the dual of Kc.
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ϕ 0 π
2 π 3π

2

ρC4
reg (ϕ)


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0



0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0



0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0


Table B.1: Visualization of the regular representation matrices of the cyclic group C4, consisting of
rotations that are multiples of π/2. It is a permutation representation that shifts the four axes of K4 in
a cyclic manner.

the regular representation of a finite groupG acts on K|G| by permuting its |G| ele-
ments according to the group composition law.5 Specifically, consider the standard
basis {eg | g ∈ G} of K|G|, labeled by group elements. The regular representation
acts then as ρ(g̃)eg := eg̃g . Table B.1 visualizes the regular representation for the
cyclic group C4. A more abstract definition, extending regular representations to
infinite-dimensional vector spaces, is given in Def. B.5.18 below.

From the example of the trivial representation it is clear that group representations are, just
as group actions, not necessarily faithful (Def. B.3.9).

A representation of a group implies representations of any of its subgroups via restriction:

Definition B.5.2 (Restricted representation). Let (ρ, V ) be a G-representation and let
H ≤ G be a subgroup. The restricted representation is the H-representation on V
defined by restricting the domain of ρ from G to H:

ResGH ρ : H → GL(V ), h 7→ ρ(h) (B.37)

The direct sum of vector spaces extends naturally to representations:

Definition B.5.3 (Direct sum representation). Assume two G-representations (ρ1, V1)
and (ρ2, V2) to be given. Their direct sum (ρ1⊕ρ2, V1⊕V2) is a dim(V1) + dim(V2)-
dimensional representation, acting on the direct sum of vector spaces as defined by:

(ρ1 ⊕ ρ2)(g) (v1 ⊕ v2) := ρ1(g) v1 ⊕ ρ2(g) v2 (B.38)

When a basis of V1 and V2 is chosen, the resulting matrix representation is the matrix direct
sum of the matrix representations ρ1 and ρ2:

(ρ1 ⊕ ρ2)(g) =

(
ρ1(g) 0
0 ρ2(g)

)
(B.39)

The two subspaces V1 and V2 of V1 ⊕ V2 are transforming independently under this repre-
sentation.

5 More abstractly, the regular representation is identified with the group algebra K[G] ofG over K.
As a K-vector space, it is the free vector space generated byG, consisting of formal linear combinations
λg + µh of group elements where g, h ∈ G and λ, µ ∈ K. The algebra structure of K[G] is inherited
from the group multiplication, that is, it is defined by k(λg+µh) := λ(kg)+µ(kh) for any g, h, k ∈
G and µ, λ ∈ K.
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It is furthermore possible to combine two representations by constructing their tensor prod-
uct:

Definition B.5.4 (Tensor product representation).
Let (ρ1, V1) and (ρ2, V2) be twoG-representations. Their tensor product representation
(ρ1 ⊗ ρ2, V1 ⊗ V2) is dim(V1) · dim(V2)-dimensional and acts on the tensor product
of vector spaces as follows:

(ρ1 ⊗ ρ2)(g) (v1 ⊗ v2) := ρ1(g) v1 ⊗ ρ2(g) v2 (B.40)

Not every element of V1 ⊗ V2 can be represented as simple tensor v1 ⊗ v2, but this
definition extends to the general case by linearity.

In the case of matrix representations, the tensor product is simply given by the Kronecker
product,

(ρ1 ⊗ ρ2)(g) =

ρ1(g)11 · ρ2(g) · · · ρ1(g)1V · ρ2(g)
...

. . .
...

ρ1(g)V1 · ρ2(g) · · · ρ1(g)V · ρ2(g)

 , (B.41)

where we abbreviated dim(V1) =: V . Direct sum and tensor product representations can be
extended to a finite number of factors, which are written

⊕N
i=1 ρi and

⊗N
i=1 ρi, respectively.

Having seen how we can build new, larger representations from existing ones, we ask now
whether we can split representations into separate constituent parts.

Definition B.5.5 (Invariant subspace, subrepresentation).
Let (ρ, V ) be a G-representation and consider a vector subspace W ⊆ V . This sub-
space is called invariant if it is closed under the action of ρ, that is, if ρ(g)w ∈ W for
any w ∈ W, g ∈ G. This implies a homomorphism ρ|W : G → GL(W ), denotes as
subrepresentation of ρ.

An obvious example are direct sum representations, which have their summands by con-
struction as subrepresentations.

Representations of special interest are those which are not further reducible in (nontrivial)
subspaces:

Definition B.5.6 (Irreducible representation (irrep)).
A representation (ρ, V ) is called irreducible representation (irrep) if it has only the two
trivial subrepresentations W = V and W = 0.

Whether a representation is reducible or not may depend on the field K under consideration.
For instance, the real valued irreps of SO(2) are the trivial representation and the frequency-
k rotation matrices

ρ
SO(2),R
k (ϕ) :=

(
cos(kϕ) − sin(kϕ)
sin(kϕ) cos(kϕ)

)
, k ∈ N , (B.42)

while the complex irreps of SO(2) are frequency-k complex exponentials ρSO(2),C
k (ϕ) :=

eikϕ, k ∈ Z (including the trivial irrep for k = 0). Over the complex field, the rep-
resentation matrices in Eq.(B.42) are reducible. They decompose into a direct sum of
two invariant subspaces, corresponding to complex valued irreps of opposite frequency, i.e.
ρ
SO(2),R
k

∼=C ρ
SO(2),C
−k ⊕ ρSO(2),C

k , k ∈ N.
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The restriction ResGH(ρ) of a G-irrep ρ to a subgroup H ≤ G is in general not irreducible
anymore. An obvious example is the restriction to the trivial group H = {e}, for which
ResG{e} ρ =

⊕dim(V )
i=1 (1) decomposes into a (reducible) direct sum of dim(V ) trivial irreps

of {e}. As another example, consider the defining representation ρ(g) = g of SO(3), which
is irreducible. If it is restricted to the subgroup SO(2)z of rotations around the z-axis, we
end up with a direct sum of the defining representation of SO(2), modeling the rotation of
the xy-plane around the z-axis, and the trivial representation, ensuring that the z-axis is itself
fixed:

[
Res

SO(3)
SO(2)z

g
]
(ϕ) =

(
cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1

)
=

(
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)
⊕ (1) (B.43)

The central building blocks of any equivariant neural network are linear equivariant maps,
which are known as intertwiners:

Definition B.5.7 (Intertwiner). Let (ρ1, V1) and (ρ2, V2) be two G-representations. An
intertwiner between them is an equivariant linear map L : V1 → V2. It satisfies

L ◦ ρ1(g) = ρ2(g) ◦ L ∀ g ∈ G , (B.44)

that is, it makes the following diagram commute:

V1 V2

V1 V2

L

ρ1(g) ρ2(g)

L

(B.45)

The vector space of intertwiners is usually denoted as HomG(V1, V2).

Recall our example of convolutions as translation equivariant maps in Appendix B.4. Since
the convolution and the considered group action are linear, convolutions are identified as
intertwiners.6

If V1 and V2 are finite dimensional and given some choice of bases for them, the intertwiner
is represented by a matrix L ∈ Kdim(V2)×dim(V1). Rewriting the equivariance constraint in
Eq. (B.44), it needs to satisfy ρ2(g)Lρ1(g)−1 = L for any group element g. Vectorizing
this linear constraint leads to7(

(ρ1(g)
−1)⊤ ⊗ ρ2(g)

)
vec(L) = vec(L) ∀ g ∈ G , (B.46)

which shows that intertwiners are the invariants under the simultaneous action of ρ1 and ρ2.
This equation is particularly useful to solve numerically for intertwiners.

Working towards a better understanding of intertwiner spaces, specifically those between
irreps, we need to introduce both isomorphisms and endomorphisms of representations:

6The (linear) group action on the convolution’s domain and codomain is the translation of functions
with domain R, which is the (infinite dimensional) regular representation of (R,+); see Def. B.5.18.

7The vectorization operator vec : Km×n → Km·n acts on an m×n–matrix by stacking its
columns into an m·n-vector. It satisfies vec(AXB) = (B⊤ ⊗A) vec(X) for any triple A,X,B
of dimensionally matching matrices [229].
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Definition B.5.8 (Equivalent (isomorphic) representations).
Two G-representations (ρ1, V1) and (ρ2, V2) are said to be equivalent or isomorphic if
there exists an invertible intertwiner, i.e. a vector space isomorphism L : V1

∼−→ V2
satisfying L ◦ ρ1(g) = ρ2(g) ◦ L ∀ g ∈ G, between them.

In terms of matrix representations, this just means that there exists a change of basis (invert-
ible intertwiner) Q such that the representations are similar as matrices:

ρ2(g) = Qρ1(g)Q
−1 ∀ g ∈ G . (B.47)

Definition B.5.9 (Endomorphism).
Consider a G-representation (ρ, V ). Intertwiners from (ρ, V ) to itself, that is, linear
maps L : V → V such that L ◦ ρ(g) = ρ(g) ◦ L ∀g ∈ G, are called endomorphisms.
The endomorphism space is written EndG(V ) = HomG(V, V ).

With these preparations we can formulate Schur’s lemma, which sheds light on the space of
intertwiners between irreducible representations:
Lemma B.5.10 (Schur’s lemma).

Let (ρ1, V1) and (ρ2, V2) be G-irreps over K = R or K = C, then:

if (ρ1, V1) and (ρ2, V2) are not isomorphic, there exists no non-trivial8 intertwiner
between them.

if (ρ1, V1) = (ρ2, V2) =: (ρ, V ) are identical, any intertwiner is (by definition) an
endomorphism and:

– if K = C, it is given by scalar multiples λ idV of the identity, where λ ∈ C.
– if K = R, the endomorphism space EndG(V ) is either one-, two- or four-

dimensional, depending on whether the representation is of real, complex or
quaternionic type [173, 25].

The second statement of the theorem is usually only stated for complex representations (or
representations over any other algebraically closed field), however, the case of real represen-
tations is of particular importance for the theory of steerable kernels [173].

B.5.2 Unitary representations of compact groups

In many applications the representation space is equipped with an inner product, making it an
inner product space. It is in this case possible to define (not necessarily finite-dimensional)
unitary representations, which assign unitary (norm-preserving) transformations to group el-
ements. Specifically for unitary representations of compact groups, strong results regarding
their decomposability into irreps can be proven. The Clebsch-Gordan decomposition and
the Peter-Weyl theorem describe this decomposition for the case of tensor products of irreps
and for quotient (or regular) representations, respectively.

Definition B.5.11 (Unitary transformation).
Let V1 and V2 be two inner product spaces. A unitary transformation from V1 to V2 is
an isometric (norm preserving) bijective linear map:

U : V1 → V2 such that ⟨Uv, Uw⟩
V2

= ⟨v, w⟩
V1
∀ v, w ∈ V1 (B.48)

Unitary transformations are the isomorphisms between inner product spaces.
8The zero-map 0 : V1 → {0} ⊂ V2 is a trivial intertwiner between any pair of representations

(ρ1, V1) and (ρ2, V2).
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As the composition of unitary maps is again unitary, the unitary maps from a vector space to
itself form a group:
Definition B.5.12 (Unitary group). Let V be an inner product space. The unitary group

U(V ) =
{
g ∈ GL(V )

∣∣ ⟨gv, gw⟩
V
= ⟨v, w⟩

V
∀ v, w ∈ V

}
≤ GL(V ) (B.49)

is the group formed by all unitary transformations from V to itself.

If V = Cc, the unitary group is concretely realized as the group of unitary matrices
U(Cc) = {g ∈ GL(Cc) | gg† = g†g = idCc}, where † is the Hermitian adjoint. In the
case of real inner product spaces V , it is common to talk about orthogonal groups O(V )
instead. Specifically for V = Rc, the orthogonal group is realized by orthogonal matrices,
i.e. O(c) = {g ∈ GL(c) | gg⊤ = g⊤g = idRc}. We will in the following for simplicity
refer to both as unitary groups.
Definition B.5.13 (Unitary representation).

A unitary representation of a locally compact topological group G on a (potentially
infinite-dimensional) inner product space V is a tuple (ρ, V ) where

ρ : G→ U(V ) (B.50)

is a continuous group homomorphism to the unitary group of V . The continuity re-
quirement refers hereby to the continuity of the associated group action G× V → V,
(g, v) 7→ ρ(g)v.

The significance of unitary representations for the representation theory of compact groups
becomes evident by the following theorem:
Theorem B.5.14 (Compact groups & unitary representations).

Every linear representation of a compact group on an inner product space is equivalent
to a unitary representation.

This statement is certainly true if the inner product (·, ·) on the inner product space is already
G-invariant. If it is not, one can always define a group averaged inner product ⟨x, y⟩ :=∫
G dg (gx, gy), with g being the Haar measure, which is by construction (left) G-invariant.

Definition B.5.15 (Isomorphism of unitary representations).
An isomorphism between unitary representations (ρ1, V1) and (ρ2, V2) is an invertible
unitary intertwiner V1

∼−→ V2.

A central result for finite unitary representations is their decomposability into irreps:
Theorem B.5.16 (Complete reducibility).

Let (ρ, V ) be a finite dimensional unitary representation of any groupG. It decomposes
then into an orthogonal direct sum ρ ∼=

⊕
i ρi of irreducible unitary subrepresentations

ρi [297].

An explicit application is the Clebsch-Gordan decomposition of tensor products of irreps
into their irreducible subrepresentations.
Definition B.5.17 (Clebsch-Gordan decomposition and coefficients).

Let (ρl, Vl) and (ρk, Vk) be unitary irreducible representations of a compact group G.
Their tensor product ρl⊗ρk is not necessarily irreducible, however, by Theorem B.5.16
there exists an isomorphism

CGlk : Vl ⊗ Vk →
⊕

j∈Ĝ

⊕mj,lk

s=1
Vj , (B.51)
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known as Clebsch-Gordan decomposition, which decouples the tensor product into a
direct sum of irreps. Ĝ denotes hereby the set of isomorphism classes of unitary irreps
of G while mj,lk ∈ N0 is the multiplicity of irrep j in the tensor product of irreps l
and k.

To make the Clebsch-Gordan decomposition concrete, consider a choice of basis
{eµj |µ = 1, . . . ,dim(Vj)} of irrep j, implying basis tensors eml ⊗ enk of Vl ⊗ Vk
and basis elements eMjs of

⊕mj,lk

s=1 Vj (additionally labeled by s). The Clebsch-Gordan
coefficients are then the matrix elements of CGlk in this basis:

⟨s, jM |lm; kn⟩ :=
〈
eMjs
∣∣CGlk ∣∣ eml ⊗ enk〉 (B.52)

Harmonic analysis (Fourier transforms) on homogeneous spaces decompose a signal into a
basis of harmonic functions. It is formalized in the Peter-Weyl theorem, which describes the
decomposition of unitary regular or quotient representations into their irreducible subspaces,
corresponding to the individual harmonics.
Definition B.5.18 (Regular representation).

The (left) regular representation
(
ρGreg, L

2
K(G)

)
of a groupG acts on the space of square

integrable functions on the group by left translation:[
ρGreg(g̃) f

]
(g) := f(g̃−1g) ∀ g, g̃ ∈ G, f ∈ L2

K(G) (B.53)

Remark B.5.19 (Regular representation for finite groups). Specifically for finite groups
G, functions f : G → K can take |G| independent values for the |G| group el-
ements, and are therefore in one-to-one correspondence to finite-dimensional vec-
tors

#»

f ∈ K|G|. To make this isomorphism explicit, one identifies the canonical basis of
K|G| with group elements, i.e. considers basis vectors eg for any g ∈ G, and defines
#»

f =
∑
g f(g)eg . This implies the regular group action ρGreg(g̃)

#»

f =
∑
g f
(
g̃−1g

)
eg =∑

g f(g)eg̃g on
#»

f , first written as acting on the coefficients, then on the basis itself.
More abstractly, K|G| with the regular representation action forms the group algebra
K[G] of G over K; see footnote 5 above.

Note that regular representations are permutation representations, i.e. act by permuting
function (or vector) values. Table B.1 gives an explicit example of the regular representation
of the cyclic group C4, instantiated by 4×4 permutation matrices.
Definition B.5.20 (Quotient representation). Let G be a group with subgroup H ≤ G.

The corresponding quotient representation
(
ρ
G/H
quot , L

2
K(G/H)

)
of G acts on the space

of square integrable functions on the homogeneous space G/H by left translation:[
ρ
G/H
quot (g̃) f

]
(gH) := f(g̃−1gH) ∀ g̃ ∈ G, gH ∈ G/H, f ∈ L2

K(G/H)
(B.54)

Remark B.5.21 (Quotient representation for finite groups). For finite groups G, one
may as in Remark B.5.19 identify functions f : G/H → K with finite-dimensional
vectors, here

#»

f ∈ K|G|/|H|. The basis of K|G|/|H| is naturally labeled by cosets gH in
the quotient space G/H , and the quotient representation action permutes basis vectors
via the group action on cosets, ρG/Hquot (g̃)egH = eg̃gH .

The regular representation is a special case of quotient representations for H = {e}.
That these representations are well defined homomorphisms is easily checked by assert-
ing that

[
ρ
G/H
quot (k̃) ρ

G/H
quot (g̃) f

]
(gH) =

[
ρ
G/H
quot (g̃) f

]
(k−1gH) = f(g̃−1k−1gH) =
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f
(
(kg̃)−1gH

)
=
[
ρ
G/H
quot (kg̃) f

]
(gH), which holds for arbitrary k, g̃ ∈ G, gH ∈ G/H

and f ∈ L2
K(G/H).

Quotient (and thus regular) representations of compact groups are decomposed as follows:9

Theorem B.5.22 (Peter-Weyl). The quotient representation
(
ρ
G/H
quot , L

2
K(G/H)

)
of a com-

pact group G decomposes into irreducible subrepresentations

L2
K(G/H) ∼=

⊕̂
j∈Ĝ

⊕mj

i=1
Vj , (B.55)

where Ĝ is the set of isomorphism classes of G-irreps, (̂·) is a topological closure and
the integer mj ≤ dim(Vj) is the multiplicity of irrep Vj in L2

K(G/H).

For K = C and H = {e}, i.e. complex regular representations, one has multiplicities
mj = dim(Vj).

Since quotient representations act on (square integrable) functions f : G/H → K, the
Peter-Weyl theorem ensures in practice that there exist linear subspaces of such functions
which transform according to irreducible representations, and that general functions may be
expanded in terms of functions from these subspaces. Specifically, denote by{

Y mji : G/H → K
∣∣m = 1, . . . ,dim(Vj)

}
(B.56)

an (orthonormal) basis of the i-th occurrence of Vj in the the Peter-Weyl decomposition,
Eq. (B.55), satisfying by definition the G-steerability condition

dimVj∑
n=1

ρj(g̃)nm Y
n
ji(gH) = Y mji

(
g̃−1gH

)
(B.57)

and the orthonormality relation∫
G/H

Y mji (gH)Y m
′

j′i′(gH) d(gH) = δjj′ δii′ δmm′ . (B.58)

Then there exist expansion coefficients λmji ∈ K such that any f ∈ L2
K(G/H) is given by

f =
∑
mji λ

m
ji Y

m
ji . The Y mji are called harmonic basis functions. Well-known examples

are circular harmonics forG = SO(2) andH = {e}, such thatG/H ∼=top S
1 and spherical

harmonics for G = SO(3) and H = SO(2), such that G/H ∼=top S
2; see Figs. 5.2 and 5.3

respectively.

9Regular and quotient representations are defined for arbitrary (not necessarily compact) groups,
but the Peter-Weyl theorem applies only to compact groups.



APPENDIX C

Coordinate chart formalism of differential geometry

This appendix serves the purpose of drawing connections between the fiber bundle formal-
ism, underlying the theory of coordinate independent CNNs, and the coordinate chart for-
malism, which one likely encounters in a first study of differential geometry. The main
difference between both is that the bundle formalism refers to points p of the base space
M in a coordinate free way. If required, coordinates are directly assigned to the fibers (e.g.
tangent spaces) via local bundle trivializations. In contrast, the chart formalism relies on
coordinate charts (diffeomorphisms)

x :M ⊇ U → V ⊆ Rd , (C.1)

which assign coordinates to local patches U of the manifold. Local bundle trivializations
and gauge transformations between them are induced as differentials of charts and chart
transition functions. In this appendix we work out the connection between both formalisms.
An overview of the results is given in Table C.1.

We start in Appendix C.1 by briefly introducing tangent spaces TpM as spaces of direc-
tional derivative operators, from which the cotangent spaces T ∗pM follow as dual spaces.
Appendix C.2 defines general differentials and the more specific gradients and Jacobians.
Based on these preparations, we will in Appendix C.3.1 define coordinate bases (holonomic
bases)

[
∂
∂x1

∣∣
p
, . . . , ∂

∂xd

∣∣
p

]
∈ FpM of the tangent spaces TpM , which are spanned by di-

rectional derivative operators along the coordinate grid that is pulled by the chart from V

to U . The dual bases
[
d̂xµ|p, . . . , d̂xµ|p

]
of the cotangent spaces T ∗pM are given by the

gradients of the chart components xµ. Transition maps between charts induce covariant and
contravariant gauge transformations between the corresponding bases, which are derived in
Appendix C.3.2. Appendix C.4 interprets the coordinate bases as local bundle trivializations
and makes the connection between the bundle formalism and the chart formalism precise.
The bases and trivializations induced from coordinate charts do not cover all possible trivial-
izations, such that one distinguishes between coordinate bases and non-coordinate bases (the
bundle formalism allows with general non-coordinate bases). In the physics literature, non-
coordinate bases are usually introduced via vielbein fields. Appendix C.5 argues that these
vielbein fields are just GL(d)-valued gauge transformations from general frames in FM
into a given G-structure GM , within which one can subsequently apply G-valued gauge
transformations that preserve the G-structure.

Comprehensive introductions to the chart formalism are given in [221, 262, 32]. A more
rigorous exposition is found in [262].
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We want to remind the reader that we are not making use of covariant and contravariant
indices. Indices will always appear as subscripts, with Greek letters µ, ν, . . . signaling co-
ordinate chart related indices and Latin letters i, j, . . . signaling indices of general gauges.
Superscripts A,B, . . . are preserved for labeling different charts or gauges.

C.1 Tangent spaces, cotangent spaces and dual bases

C.1.1 Tangent spaces in terms of directional derivatives

common definition of the tangent spaces TpM of a manifold M is as vector spaces of direc-
tional derivative operators at p ∈M , which we will briefly motivate here. Let f ∈ C∞(M),
that is, f : M → R is a smooth map, and, for some interval I ⊆ R containing 0, let
γ : I →M be a smooth curve which passes at time t = 0 through p, i.e. satisfies γ(0) = p.
One then defines the directional derivative operator at p along γ as the linear operator

vγ : C∞(M)→ R, f 7→
(
f ◦ γ

)′
(0) . (C.2)

As the derivative is taken along the direction of γ, that is, tangential to it, vγ is called tangent
vector. It can be thought of as the velocity of a particle with trajectory γ at time t = 0. For
later reference we give the following simple commutative diagram, which shows the pullback
f ◦ γ of f from M to R via γ, in terms of which the directional derivative is defined:

R ⊃ I M R
γ

f ◦ γ

f
(C.3)

One can show that the space of all tangent vectors to curves at p forms a d-dimensional
vector space

TpM :=
{
vγ
∣∣ γ is a smooth curve through p

}
, (C.4)

known as the tangent space at p. For more details on the definition of tangent vectors and
the vector space structure of the tangent spaces we refer to [262].

Having defined the tangent spaces as vector spaces, one might choose to treat tangent vec-
tors as abstract geometric vectors, thereby “forgetting” about their definition via directional
derivatives (or any alternative definition made). We do this at most places, but refer back to
the definition via directional derivatives in the following sections to derive differentials of
smooth maps and coordinate bases.

C.1.2 Cotangent spaces

As real vector spaces, the tangent spaces TpM have corresponding dual spaces T ∗pM :=
(TpM)∗, the cotangent spaces. By the definition of dual spaces, they consist of linear func-
tionals

ω : TpM → R , (C.5)



C.2. Differentials, gradients and Jacobians 389

which are in differential geometry usually called covectors or 1-forms. Together with the
(co)vector addition (ω + ω̃)(v) = ω(v) + ω̃(v) and scalar multiplication (λ · ω)(v) =
λ · (ω(v)), the cotangent spaces are vector spaces themselves.

As finite-dimensional duals of each other, TpM and T ∗pM are isomorphic and are thus in
particular of the same dimensionality d = dim(M) = dim(TpM) = dim(T ∗pM). The
isomorphism between both is, however, not canonical. A vector space isomorphism can be
specified via a (non-degenerate) bilinear form ηp : TpM × TpM → R on TpM , for instance
a Riemannian metric, via

η̂p : TpM → T ∗pM, v 7→ ηp(v, ·) , (C.6)
which determines the linear functional η̂p(v) : TpM → R, w 7→ ηp(v, w).

C.1.3 Dual bases

Any basis
[
ei
]d
i=1

of TpM canonically induces a dual basis
[
e∗i
]d
i=1

of T ∗pM , defined to
satisfy the relations

e∗i ej = δij for any i, j ∈ 1, . . . , d . (C.7)

Let
[
eAi
]d
i=1

and
[
eBi
]d
i=1

=
[
eAi
]d
i=1

◁
(
gBA

)−1
be two bases of TpM , which are related by

the right action ◁ of the (inverse) structure group element
(
gBA

)−1 ∈ GL(d) in Eq. (7.10),
that is, for j = 1, . . . , d :

eBj =
∑
l

eAl
(
gBA

)−1
lj

(C.8)

The dual basis
[
eA,∗i

]d
i=1

transforms accordingly under that left action which sends eA,∗i to

eB,∗i =
∑
k

gBAik eA,∗k . (C.9)

This is affirmed by pairing

eB,∗i eBj =
∑
k,l

gBAik eA,∗k eAl
(
gBA

)−1
lj

=
∑
k,l

gBAik δkl
(
gBA

)−1
lj

=
∑
k

gBAik
(
gBA

)−1
kj

= δij . (C.10)
The inverse transformation behavior of bases and dual bases is usually referred to as covari-
ant and contravariant transformation. Note the similarity of the dual basis transformation to
the contravariant transformations ψB = gBAψA of gauges in Eq. (7.7) and vB = gBAvA

of vector components in (7.9). Indeed, gauges are just choices of a cotangent basis as further
discussed below.

C.2 Differentials, gradients and Jacobians

In vector calculus one considers functions ϕ : Rm → Rn, which can at any point p ∈ Rm
be linearly approximated by their Jacobian matrix (or total derivative or differential) dϕp =(
∂ϕi

∂xj

∣∣
p

)
ij

. Here we introduce the generalization of this concept to differentials of smooth
functions between smooth manifolds.
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Differentials in general: Let ϕ : M → N be a smooth map between smooth manifolds
M and N . At any point p ∈M , such a map induces a differential (or pushforward)

dϕp : TpM → Tϕ(p)N, v 7→ dϕp(v) (C.11)

which linearly maps tangent vectors at p to tangent vectors at ϕ(p). For the definition of
tangent spaces in terms of directional derivatives in Eq. (C.2), the pushforward of v ∈ TpM
along ϕ is explicitly given by

dϕp(v) : C
∞(N)→ R, f 7→

(
dϕp(v)

)
(f) := v(f ◦ ϕ) , (C.12)

that is, by the application of v on the pullback f ◦ ϕ : M → R of f : N → R via ϕ. These
definitions are clarified by the following two commutative diagrams:

M N

R

ϕ

f ◦ ϕ
f

C∞(M) C∞(N)

R

v

( · ) ◦ ϕ

dϕ(v)

(C.13)

From this definition it follows immediately that the differential of the composition of smooth
maps equals the composition of their individual differentials, which is just the chain rule:

d(ϕ ◦ ψ)p = dϕψ(p) ◦ dψp (C.14)

If ϕ is invertible (a diffeomorphism) it furthermore follows that its differential is a vector
space isomorphism whose inverse equals the differential of ϕ−1, that is,(

dϕp
)−1

= d
(
ϕ−1

)
ϕ(p)

. (C.15)

Together, the differentials dϕp at individual points p ∈ M imply a vector bundle morphism
(a fiber-wise linear bundle map, see Sections 11.1) between the tangent bundles of M and
N :

TM TN

M N

dϕ

πTM πTM

ϕ

(C.16)

Note that we are in this appendix using a different notation, namely dϕ, than in the main
paper, where we instead write ϕ∗,TM . We decided for the former to connect to the usual
notation dxµ for the chart induced bases of cotangent spaces. The latter is used in the main
text to emphasize the similarity to the bundle maps ϕ∗,FM , ϕ∗,GM and ϕ∗,A , which are induced
on the associated bundles FM , GM and A.

Gradients: In the case of smooth real-valued functions ϕ :M → R, i.e. ϕ ∈ C∞(M), the
differential dϕp : TpM → Tϕ(p)R pushes vectors v in TpM to vectors dϕ(v) : C∞(R)→ R,
f 7→ v(f ◦ ϕ) in Tϕ(p)R. By leveraging the canonical isomorphism

ιR : Tϕ(p)R
∼−→ R, v 7→ v(idR) (C.17)
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one defines the gradient operator

d̂p : C
∞(M)→ T ∗pM, ϕ 7→ d̂ϕp := ιR ◦ dϕp =

(
dϕp( · )

)
(idR) , (C.18)

which sends smooth functions ϕ to covectors1 d̂ϕ, which in turn act on vectors as

d̂ϕp : TpM → R, v 7→ d̂ϕp(v) =
(
dϕp(v)

)
(idR) = v(idR ◦ ϕ) = v(ϕ) . (C.19)

By an abuse of notation one usually drops the “hat” on d̂ and immediately defines dϕp(v) :=
v(ϕ). While this notation is very common, we stick in the following with the “hat” to make
the requirement for the canonical isomorphism ιR explicit.

In Appendix C.3.1 below we will see that the bases of T ∗pM which are dual to coordinate
bases of TpM are given by the gradient 1-forms d̂xµ|p, where xµ are the components of the
coordinate chart.

Jacobians: Specifically for functions ϕ : Rn → Rm between (subsets of) Euclidean
spaces the differential dϕx0

: Tx0
Rn → Tϕ(x0)Rm is easily seen to coincide with the Ja-

cobian ∂ϕ
∂x

∣∣
x0

: Rn → Rm after canonically identifying TpRk ∼= Rk in both the domain and
codomain. The canonical isomorphism is here given by

ιRk : v 7→
(
v(proj1), . . . , v(projk)

)
, (C.20)

which generalizes ιR from Eq. (C.17) to multiple dimensions. As the calculation is mostly
similar as in the case of gradients, we will not repeat it here but visualize the idea via a
commutative diagram:

Rn Tx0
Rn Tϕ(x0)Rm Rm

∂ϕ
∂x

∣∣∣
x0

ιRn dϕ|x0 ιRm

(C.21)

If ϕ is invertible, the identity in Eq. (C.15) becomes

∂ϕ

∂x

∣∣∣∣−1
x0

=
∂ϕ−1

∂x

∣∣∣∣
ϕ(x0)

, (C.22)

which is just the inverse function theorem. We will use this identity later on to invert gauge
transformations between different coordinate bases which are induced as Jacobians of chart
transition maps.

C.3 Chart induced coordinate bases

In this section we consider coordinate charts of the form

x : U → V , (C.23)

1The gradient field is often defined as a vector field ∇f := (d̂f)♯
η

which is computed from the
covector field d̂f via the musical isomorphism ♯η : T ∗M → TM corresponding to the metric (“raising
indices”).
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which diffeomorphically assign coordinates x(p) ∈ V ⊆ Rd to each point p ∈ U ⊆ M .
Any such chart induces a natural choice of bases for the tangent spaces TpM over U , known
as coordinate bases. The dual spaces T ∗pM of the tangent spaces over U are accordingly
endowed with dual coordinate bases of cotangent vectors. Transition maps between the
coordinates of two charts induce gauge transformations which translate between the corre-
sponding coordinate bases. These gauge transformations are given by the Jacobians of the
transition maps.

C.3.1 Charts and induced coordinate bases

Coordinate bases for TpM : To motivate the definition of coordinate bases, observe that x
implies a “coordinate grid” on U by pulling the canonical coordinate grid on V back to the
manifold. The coordinate basis at a specific point p ∈ U can then be thought of as consisting
of those d many directional derivative operators which are going along the coordinate grid
lines of x on U .

To make this more precise, consider first the curves

γ̃µ : I → V, t 7→ x(p) + tϵµ µ = 1, . . . , d (C.24)

which pass at time t = 0 with unit velocity in µ-direction through x(p) ∈ V . Mapping those
γ̃µ via the chart to U defines the above mentioned curves

γµ : I → U, t 7→ x−1 ◦ γ̃µ(t) = x−1
(
x(p) + tϵµ

)
(C.25)

which pass at time t = 0 along the coordinate grid of x on U through p. The d-dimensional
coordinate basis of TpM induced by x is then given by the directional derivative operators in
Eq. (C.2) along the paths γµ. Denoting the µ-th basis vector by the usual abuse of notation
as ∂

∂xµ

∣∣
p

one therefore defines:

∂

∂xµ

∣∣∣∣
p

: f 7→ ∂

∂xµ

∣∣∣∣
p

f :=
(
f ◦ γµ

)′
(0)

=
(
f ◦ x−1 ◦ γ̃µ

)′
(0)

=
(
f ◦ x−1

(
x(p) + tϵµ

))′
(0)

=
[
∂µ
(
f ◦ x−1

)](
x(p)

)
(C.26)

In the last step we identified the usual µ-th partial derivative of the pullback f ◦ x−1 : V →
R, which motivates the notation ∂

∂xµ

∣∣
p
. These definitions are visualized in the following

commutative diagram which extends the diagram in Eq. (C.3):

V

R ⊃ I U R

f ◦ x−1

γµ

γ̃µ

f ◦ γµ

f

x
(C.27)
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Dual coordinate bases for T ∗
pM : As stated in Appendix C.1, any basis of TpM induces

a dual basis of T ∗pM . Specifically for coordinate bases, spanned by vectors ∂
∂xµ

∣∣
p
, the dual

basis elements are given by the gradients d̂xµ|p = d̂(xµ)p ∈ T ∗pM of the chart components
xµ = projµ ◦x : U → R. That these gradients do indeed make up the dual basis, is easily
seen by acting on the basis vectors as defined in Eq. (C.19):

d̂xµ
∣∣
p

∂

∂xν

∣∣∣∣
p

=
∂

∂xν

∣∣∣∣
p

xµ

=
[
∂ν
(
xµ ◦ x−1

)](
x(p)

)
=

[
∂ν
(
projµ

)](
x(p)

)
= δµν . (C.28)

Chart differentials as canonical local trivialization: Given that the chart maps fromU ⊆
M to V ⊆ Rd, its differentials at p ∈ U are maps of the form

dxp : TpM → Tx(p)Rd . (C.29)

Employing the canonical isomorphism ιRd from Tx(p)Rd to Rd from Eq. (C.20) once again,
we obtain a map

d̂xp : TpM → Rd,

v 7→ d̂xp(v) := ιRd ◦ dxp(v)

=
((
dxp(v)

)
(proj1) , . . . ,

(
dxp(v)

)
(projd)

)⊤
=
(
v
(
proj1 ◦x ◦ x−1

)
(x(p)) , . . . , v

(
proj1 ◦x ◦ x−1

)
(x(p))

)⊤
=
(
v(x1(p)) , . . . , v(xd(p))

)⊤
=
(
d̂x1|p(v) , . . . , d̂xd|p(v)

)⊤
(C.30)

after identifying the individual chart component gradients in the last step. Note that the
action of this chart differential on the µ-th coordinate basis yields

d̂xp
∂

∂xµ

∣∣∣∣
p

=

(
d̂x1|p

∂

∂xµ

∣∣∣∣
p

, . . . , d̂xd|p
∂

∂xµ

∣∣∣∣
p

)⊤
=
(
δµ1 , . . . , δµd

)⊤
= ϵµ , (C.31)

that is, the µ-th unit vector ϵµ of Rd. This implies that d̂xp : TpM → Rd plays the role of a
gauge ψp at p. One could therefore equally well have started by defining a cotangent basis
and setting

∂

∂xµ

∣∣∣∣
x(p)

= d̂x−1p (ϵµ) , (C.32)

which is the analog of Eq. (7.4) in the chart formalism.
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C.3.2 Chart transition maps and induced gauge transformations

Different charts induce different coordinate bases. Chart transitions therefore induce gauge
transformations, i.e. transformations of bases and vector coefficients, which we derive in
this section.

In the following we consider two arbitrary, overlapping charts xA : UA → V A and xB :
UB → V B . The different coordinates which they assign to the overlap UA ∩ UB ̸= ∅ are
then related via chart transition maps

xB ◦
(
xA
)−1

: xA
(
UA ∩ UB

)
→ xB

(
UA ∩ UB

)
. (C.33)

Transformation of tangent coordinate bases: The coordinate bases of TpM which are
induced by the two charts are according to the last line of Eq. (C.26) by their action on
f ∈ C∞(M) defined as

∂

∂xAµ

∣∣∣∣
p

f =
[
∂µ
(
f ◦
(
xA
)−1)](

xA(p)
)

(C.34)

and
∂

∂xBµ

∣∣∣∣
p

f =
[
∂µ
(
f ◦
(
xB
)−1)](

xB(p)
)
, (C.35)

which is visualized by the following commutative diagram:

V A ⊃ xA
(
UA ∩ UB

)

UA ∩ UB R

V B ⊃ xB
(
UA ∩ UB

)

f ◦
(
xA

)−1

xB ◦
(
xA

)−1 f

xA

xB

f ◦
(
xB

)−1

(C.36)

Via the chart transition maps, the different coordinate bases relate by

∂

∂xBµ

∣∣∣∣
p

f =
[
∂µ
(
f ◦
(
xB
)−1)](

xB(p)
)

(C.37)

=
[
∂µ
(
f ◦
(
xA
)−1 ◦ xA ◦ (xB)−1)](xB(p)) ,

which, making use of the multivariate chain rule, further leads to:

∂

∂xBµ

∣∣∣∣
p

f =
d∑
ν=1

[
∂ν
(
f ◦
(
xA
)−1)](

xA(p)
)
·
[
∂µ
(
xAν ◦

(
xB
)−1)](

xB(p)
)

=
d∑
ν=1

∂f

∂xAν

∣∣∣∣
p

∂xAν
∂xBµ

∣∣∣∣
xB(p)

(C.38)
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In the last step we introduced the usual abuse of notation2

∂xAν
∂xBµ

∣∣∣∣
xB(p)

:= ∂µ
(
xAν ◦

(
xB
)−1)(

xB(p)
)

(C.39)

for the components of the Jacobian

∂xA

∂xB

∣∣∣∣
xB(p)

= d̂xAp ◦ d̂(xBp )−1 (C.40)

of the transition maps. Dropping f from Eq. (C.37), we identify the transformation law

∂

∂xBµ

∣∣∣∣
p

=
d∑
ν=1

∂

∂xAν

∣∣∣∣
p

∂xAν
∂xBµ

∣∣∣∣
xB(p)

(C.41)

of tangent coordinate bases. We did hereby choose to write the Jacobian on the right of
the basis vector to emphasize that the change of basis is to be understood as a right action.
Doing so, we need to warn the reader that ∂

∂xν

∣∣
p

is just an abuse of notation for the basis
vector but does not imply an action of a differential operator on the Jacobian on the right.

Transformation of cotangent coordinate bases: The contravariant transformation law of
cotangent space coordinate bases follows from the inverse transformation of dual bases in
Eq. (C.9) relative to (C.8). To apply this relation, we first adapt Eq. (C.41) to our convention
that bases transform according to a right action with an inverse group element. This is
achieved by applying Eq. (C.22) to invert the Jacobian (remember the abuse of notation)

∂xA

∂xB

∣∣∣∣
xB(p)

=
∂xB

∂xA

∣∣∣∣−1
xA(p)

(C.42)

which implies:

∂

∂xBµ

∣∣∣∣
p

=
d∑
ν=1

∂

∂xAν

∣∣∣∣
p

∂xAν
∂xBµ

∣∣∣∣
xB(p)

=
d∑
ν=1

∂

∂xAν

∣∣∣∣
p

(
∂xA

∂xB

∣∣∣∣
xB(p)

)
νµ

=
d∑
ν=1

∂

∂xAν

∣∣∣∣
p

(
∂xB

∂xA

∣∣∣∣−1
xA(p)

)
νµ

(C.43)

The cotangent basis elements therefore transform according to Eqs. (C.8) and (C.9) like

d̂xBµ |p =
d∑
ν=1

∂xBµ
∂xAν

∣∣∣∣
xA(p)

d̂xAν |p . (C.44)

Transformation of chart differentials: The expression of chart differentials d̂xA|p in
terms of chart component gradients d̂xAµ |p in Eq. (C.30) allows to deduce their transfor-
mation law from that in Eq. (C.44). Alternatively, one obtains the transformation law by

2The “abuse” is that xA is interpreted as a function of xB(p), and should therefore rather be written
xA ◦

(
xB

)−1 as made precise on the right-hand side.
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right multiplying with the identity in the form idTpM = d̂xA|p ◦
(
d̂xA|p

)−1
and identify a

left multiplication with the Jacobian of the chart transition maps:

d̂xB|p = d̂xB|p ◦
(
d̂xA|p

)−1 ◦ d̂xA|p
=

∂xB

∂xA

∣∣∣∣
xA(p)

d̂xA|p (C.45)

Note that this result is simply the matrix expression of Eq. (C.44).

Transformation of vector coefficients: Vectors v ∈ TpM are relative to a coordinate
basis

[
∂
∂xB

µ

∣∣
p

]d
µ=1

expressed by coefficients vA ∈ Rd:

v =
d∑

µ=1

vAµ
∂

∂xAµ

∣∣∣∣
p

(C.46)

The individual coefficients are recovered by the action of the cotangent basis:

d̂xAµ
∣∣
p
(v) = d̂xAµ

∣∣
p

d∑
ν=1

vAν
∂

∂xAν

∣∣∣∣
p

=
d∑
ν=1

vAν δµν = vAµ (C.47)

This implies that the coefficients transform contravariantly, just as the cotangent coordinate
basis:

vBµ = d̂xBµ
∣∣
p
(v) =

d∑
ν=1

∂xBµ
∂xAν

∣∣∣∣
xA(p)

d̂xAν |p(v) =
d∑
ν=1

∂xBµ
∂xAν

∣∣∣∣
xA(p)

vAν (C.48)

It is easily asserted that this transformation law does indeed lead to a coordinate independent
representation of coordinate free vectors v ∈ TpM :

∑
µ

∂

∂xBµ

∣∣∣∣
p

vBµ =
∑
µ,ν,ρ

∂

∂xAν

∣∣∣∣
p

∂xAν
∂xBµ

∣∣∣∣
xB(p)

∂xBµ
∂xAρ

∣∣∣∣
xA(p)

vAρ =
∑
ν,ρ

∂

∂xAν

∣∣∣∣
p

δνρ v
A
ρ

=
∑
ν

∂

∂xAν

∣∣∣∣
p

vAν (C.49)

C.4 Coordinate bases as local bundle trivializations

The chart transition map induced transformation laws in Appendix C.3.2 coincide the
gauge transformations as formulated in Chapters 7 and 11 when identifying the Jacobians
∂xB

∂xA

∣∣
xA(p)

with gBAp . In Appendix C.4.1 we make these connections precise by listing all
correspondences. Appendix C.4.2 extends these results by deriving expressions for chart
induced bundle trivializations on extended domains U ⊆M as introduced in Chapter 11. A
dictionary which summarizes the correspondences is given in Table C.1.
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C.4.1 Correspondences to pointwise trivializations of TpM

Gauges and chart differentials: The bundle formalism relies on the definition of gauges
(Eq. (7.1))

ψATM,p : TpM → Rd , (C.50)

which are vector bundle isomorphisms, assigning coordinates to tangent spaces with p ∈
UA. In the chart formalism, gauges over UA are induced as chart differentials (Eq. (C.30)):

d̂xAp : TpM → Rd (C.51)

Different gauges are related by gauge transformations (Eq. (7.7))

ψBTM,p = gBAp ψATM,p with gBAp := ψBTM,p ◦
(
ψATM,p

)−1 ∈ G . (C.52)

The same definition holds for the chart induced gauges, where gauge transformations turn
out to coincide with the Jacobian of the chart transition maps (Eq. (C.45)):

d̂xBp =
∂xB

∂xA

∣∣∣∣
xA(p)

d̂xAp with
∂xB

∂xA

∣∣∣∣
xA(p)

= d̂xBp ◦
(
d̂xAp

)−1 ∈ GL(d) (C.53)

Vector components: As vector components vA = ψATM,p(v) or vA = d̂xA|p(v) are given
by the action of gauges, they show the same covariant transformation behavior

vB = gBAp vA and vB =
∂xB

∂xA

∣∣∣∣
xA(p)

vA . (C.54)

In terms of components, these relations are written as

vBi =
d∑
j=1

(
gBAp

)
ij
vAj and vBµ =

d∑
ν=1

∂xBµ
∂xAν

∣∣∣∣
xA(p)

vAν . (C.55)

Induced reference frames: Reference frames are in the bundle formalism induced by
mapping the vectors ϵi of the standard frame e ∈ G of Rd through the gauge map back to
TpM (Eq. (7.4)): [

eAi
]d
i=1

=
[(
ψATM,p

)−1
(ϵi)
]d
i=1

(C.56)

The corresponding relation in the chart formalism is according to Eq. (C.32) given by[
∂

∂xAµ

∣∣∣∣
p

]d
µ=1

=
[(
d̂xAp

)−1
(ϵµ)

]d
µ=1

(C.57)

Eq. (7.10) shows that the transformation laws of reference frames is given by the right action

[
eBi
]d
i=1

=
[
eAi
]d
i=1

◁
(
gBAp

)−1
:=

[∑d

j=1
eAj
(
gBAp

)−1
ji

]d
i=1

=

[∑d

j=1
eAj
(
gABp

)
ji

]d
i=1

. (C.58)
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In analogy, the transformation law of coordinate bases is from Eq. (C.43) seen to be given
by[

∂

∂xBµ

∣∣∣∣
p

]d
µ=1

=

[
∂

∂xAµ

∣∣∣∣
p

]d
µ=1

◁
∂xB

∂xA

∣∣∣∣ −1
xA(p)

=

[
d∑
ν=1

∂

∂xAν

∣∣∣∣
p

(
∂xB

∂xA

∣∣∣∣
xA(p)

)−1
νµ

]d
µ=1

=

[
d∑
ν=1

∂

∂xAν

∣∣∣∣
p

∂xAν
∂xBµ

∣∣∣∣
xB(p)

]d
µ=1

(C.59)

C.4.2 Chart induced local trivializations of π−1
TM(U)

The correspondences laid out in the last section were relating pointwise trivializations ψTM,p

of TpM to chart differentials d̂xp. In order to complete this picture, this section adds expres-
sions for local trivializations

ΨTM : π−1
TM

(U)→ U × Rd (C.60)

which are induced by charts.

A good candidate to construct ΨTM from is the chart differential

dx : π−1
TM

(U)→ TV (C.61)

which is a vector bundle isomorphism that differs from the vector space isomorphisms dxp
by not being restricted to a single point p ∈ U . To proceed, we generalize the canonical
isomorphism ιRd in Eq. (C.20) from a single point to all the tangent spaces TxV ∼= Rd over
V ⊆ Rd, resulting in the following canonical local trivialization of TV :

ιTV : TV → V × Rd, v 7→
(
π
TV
(v), ιRd(v)

)
. (C.62)

This allows to generalize d̂xp from a single point to a map

d̂x := ιV×Rd ◦ dx : π−1
TM

(U)→ V × Rd , (C.63)

which is, however, still not the local trivialization sought for. By mapping the first factor via
the inverse chart from V to U , we obtain the chart induced local bundle trivialization:

ΨTM :=
(
x−1 × id

)
◦ d̂x (C.64)

As usual, we visualize the definitions made in a commutative diagram:

V × Rd TV π−1
TM

(U) U × Rd

V U

(
x−1 × id

)

proj1

πTV

ιV ×Rd

πTM

ΨTMdx

d̂x

proj1

x

(C.65)
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Considering two overlapping charts xA : UA → V A and xB : UB → V B and denoting
UAB = UA ∩ UB , one obtains transition maps

d̂xB ◦
(
d̂xA

)−1
=

(
xB◦(xA)−1 × ∂xB

∂xA

)
: xA

(
UAB

)
× Rd → xA

(
UAB

)
× Rd

(C.66)

and

ΨBTM ◦
(
ΨATM

)−1
=

(
id× ∂xB

∂xA

)
: UAB × Rd → UAB × Rd . (C.67)

These definitions and their mutual relation is shown in the following commutative diagram:

xB
(
UAB

)
× Rd UAB × Rd

π−1
TM

(
UAB

)

xA
(
UAB

)
× Rd UAB × Rd

(
(xB)−1 × id

)

d̂xB

d̂xA

ΨB
TM

ΨA
TM

(
(xA)−1 × id

)

(
xB◦(xA)−1 × ∂xB

∂xA

) (
id× gBA

)
=

(
id× ∂xB

∂xA

) (C.68)

C.5 G-structures and vielbein fields

As discussed in Sections 11.3 and 11.4, any G-atlas {(ΨXTM , UX)} of local tangent bun-
dle trivializations specifies a corresponding G-structure, that is, a subbundle GM of dis-
tinguished reference frames which respect (or define) some geometric structure on M . By
definition, the transition maps gBA of associated G-bundles take values in a reduced struc-
ture group G ≤ GL(d). This raises the question whether one can similarly find “G-
atlases of charts” {(xX , UX)}, whose Jacobians ∂xB

∂xA take values in a reduced structure
group G ≤ GL(d) and therefore encode a G-structure. For some structure groups this
is certainly possible; for instance, an orientation of an orientable manifold can always be
fixed by specifying some GL+(d)-atlas of positively oriented charts, whose transition Ja-
cobians take values in GL+(d). In general, it is, however, impossible to find coordinate
charts which induce coordinate bases that lie in a given G-structure. One therefore resorts
to explicit gauge transformation from coordinate bases into the G-structure, known as viel-
bein fields [342, 357, 221, 32]. After initially transforming from coordinate bases to the
G-structure, the gauge freedom within the G-structure allows for further G-valued gauge
transformations.

An important example in physics are O(d)-structures (or O(1, d − 1)-structures for space-
times), which consist of orthonormal reference frames relative to the (pseudo) Riemannian
metric η of M .3 Such orthonormal frames represent the possible laboratory frames of an

3The symbol η is in the physics literature commonly preserved for the Minkowski metric
diag(+1, −1, . . . , −1) while the (pseudo) Riemannian metric of M is denoted by g. In contrast,
we are writing group elements in the structure group as g ∈ G and thus use η for the (pseudo) Rie-
mannian metric of M .
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inertial observer. They are for instance used to formulate relativistic quantum field theories,
specifically the Dirac equation, in curved spacetimes. Recall that a given G-structure is to
be respected by local bundle trivializations, which means that the gauge maps ψGM,p need to
map the G-structure GpM at p ∈ M to the canonical standard G-structure G of Rd. For
the specific case of O(d)-structures this is equivalent to the requirement on bundle trivial-
izations to preserve the metric, i.e. ηp(v, w) = ⟨ψTM,p(v), ψTM,p(w)⟩ for any p ∈ M and
v, w ∈ TpM , which is accomplished without problems in the bundle formalism. Given a
coordinate chart x : U → V , the induced gauges on p ∈ U were in the previous sections
shown to be given by ψTM,p = d̂xp : TpM → Rd. The requirement on them to preserve the
metric therefore becomes

ηp(v, w) =
〈
d̂xp(v) , d̂xp(w)

〉
, (C.69)

which is exactly the defining property for x being an isometry. This result implies that
coordinate bases only define an O(d)-structures if U and V are isometric – which is only
the case if M is locally flat on U . For any non-flat region of M it is therefore impossible
to describe an O(d)-structures via coordinate bases directly. This incompatibility expresses
itself for instance in the fact that the components ηµν of the Riemannian metric onM relative
to the chosen coordinate basis differ from δµν (or diag(+1,−1, . . . ,−1)µν).

As mentioned before, the orthonormal frames of an O(d)-structure OM are in the physics
literature typically defined via a gauge transformation relative to some chart induced frame
field

[
∂
∂xµ

]d
µ=1

. Denoting this gauge transformation, which is called vielbein field, by

eA : U → GL(d) , (C.70)

the orthonormal frame field is defined by4

[
eAi
]d
i=1

:=

[
∂

∂xµ

]d
i=1

◁
(
eA
)−1

=

[∑
µ

∂

∂xµ

(
eA
)−1
µi

]d
i=1

∈ Γ(U,OM) . (C.71)

The orthonormality of the resulting frame field is usually expressed as5

δij = η
(
eAi , e

A
j

)
= η

(∑
µ

∂

∂xµ

(
eA
)−1
µi
,
∑
ν

∂

∂xν

(
eA
)−1
νj

)

=
∑
µν

η

(
∂

∂xµ
,
∂

∂xν

)(
eA
)−1
µi

(
eA
)−1
νj

=
∑
µν

ηµν
(
eA
)−1
µi

(
eA
)−1
νj
, (C.72)

which explains why the vielbein field is sometimes called “square root of the metric”. As
usual, vector components are translated via the non-inverted gauge transformation, that is:6

vAi =
∑
µ

eAiµ vµ (C.73)

4In the physics literature this relation is expressed as eAi = (eA)µi
∂

∂xµ The inverse is here merely
signaled by the opposite position of the indices (eA)µi := (eA)−1

µi in comparison to (eA) i
µ := eAµi.

5In the physics literature this relation is usually written ηµν (eA)µi (e
A)νj = δij .

6Again, in the usual notation in physics this relation reads (vA)i = (eA) i
µ v

µ.
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A simple dimension counting argument illustrates the gauge freedom in the O(d)-structure:7

Being an element of the general linear group, a vielbein eA(p) ∈ GL(d) has d2 degrees
of freedom, while the metric η, as a symmetric, bilinear form, has d(d + 1)/2 degrees of
freedom. The missing d(d − 1)/2 degrees of freedom correspond exactly to gauge trans-
formations by structure group elements gBA ∈ O(d). Alternatively, from the viewpoint of
G-structures, FpM ∼= GL(d) has d2 degrees of freedom while OpM ∼= O(d) has d(d−1)/2
degrees of freedom, fixing d(d + 1)/2 degrees of freedom which correspond to the choice
of metric.

All constructions are obviously generalized to arbitrary G-structures with GL(d)-valued
vielbein fields mapping coordinate bases intoGM and the freedom to applyG-valued gauge
transformation afterwards.

7In physics, one rather considers local Lorentz transformations Λ ∈ O(1, 3), which describe rota-
tions and boosts of local reference frames.
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isomorphism bundle formalism chart formalism

chart xA : UA ∼−→ V A — any diffeomorphism

transition map xB◦
(
xA

)−1
: xB

(
UAB

) ∼−→ xA
(
UAB

)
— implied by charts

pointwise trivialization ψA
TM,p : TpM

∼−→ Rd linear isomorphism from G-atlas d̂xA
p =

(
d̂xA

1 |p, . . . , d̂xA
d |p

)⊤
transition map ψB

TM,p ◦
(
ψA
TM,p

)−1
: Rd ∼−→ Rd structure group element gBA

p ∈ G d̂xB
p ◦

(
d̂xA

p

)−1
=

∂xB

∂xA

∣∣∣∣
xA(p)

local trivialization ΨA
TM : π−1

TM

(
UA

) ∼−→ UA × Rd v 7→
(
πTM(v), ψTM,πTM(v)

(v)
) (

(xA)−1 × id
)
◦ d̂xA

transition map ΨB
TM ◦

(
ΨA
TM

)−1
: UAB×Rd ∼−→ UAB×Rd

(
id× gBA

) (
id× ∂xB

∂xA

)

general frame
[
eAi

]d
i=1
∈ FpM

[(
ψA
TM,p

)−1
(ϵi)

]d
i=1

from GL(d)-atlas
[
∂

∂xA
µ

∣∣∣∣
p

]d

µ=1

=
[(
d̂xA

p

)−1
(ϵi)

]d
µ=1

G-structure frame
[
eAi

]d
i=1
∈ GpM

[(
ψA
TM,p

)−1
(ϵi)

]d
i=1

from G-atlas
[∑

µ

∂

∂xµ

∣∣∣∣
p

(
eA

)−1

µi

]d

i=1

Table C.1: An overview of different types of coordinatizations on manifolds. The bundle formalism (3rd column), which is used in this work, directly assigns
coordinates to the tangent spaces, while referring to the points p of the base space M in a coordinate free fashion. In contrast, the chart formalism (4th
column) assigns coordinates to local subsets UX ⊆ M of the manifold. Local trivializations of the tangent bundle and bundle transition maps between
them are induced as differentials of the charts and their transition maps, the latter usually referred to as Jacobians. The second last row gives expressions for
the reference frames which are induced as identity sections of local trivializations of TM (3rd column) or as chart induced coordinate bases (4th column).
Similarly, the last row compares definitions of G-structures – for instance orthonormal frames – via an G-atlas for TM (3rd column) and via vielbein fields
as gauge transformations relative to coordinate bases (4th column). As usual, we abbreviate UA ∩ UB by UAB and assume p ∈ UAB .



APPENDIX D

Integration over tangent spaces

On a Riemannian manifold (M,η) the volume density1 dp on M is uniquely specified by
demanding that orthonormal frames

[
eO1 , . . . , e

O
d

]
with respect to the metric η are assigned

unit volume:

dp
(
eO1 , . . . , e

O
d

)
= 1 for any orthonormal frame

[
eO1 , . . . , e

O
d

]
of TpM (D.1)

Similarly, a volume density dv on the tangent spaces TpM of a Riemannian manifold is
uniquely defined by assigning unit volume to its orthonormal frames w.r.t. ηp:

dv
(
eO1 , . . . , e

O
d

)
= 1 for any orthonormal frame

[
eO1 , . . . , e

O
d

]
of TvTpM (D.2)

To avoid an unnecessarily complicated discussion of the double tangent bundle T TM , we
define the integration over TpM equivalently by pulling it via some isometric (and thus
volume preserving) gauge back to Rd. Let ψOTM,p be such an isometric gauge from an O(d)-
atlas, which identifies orthonormal frames in TpM with orthonormal frames in Rd. The
integral of a function f : TpM → R is then defined via its pullback∫

TpM

f(v) dv :=

∫
Rd

f ◦
(
ψOTM,p

)−1
(vO) dvO

=

∫
Rd

fO(vO) dvO , (D.3)

where we defined the coordinate expression fO := f ◦
(
ψOTM,p

)−1
: Rd → R of f as usual.

The fact that ψOTM,p is isometric ensures hereby that dv does indeed assign unit volume to
orthonormal frames if dvO does. Since the latter is just the standard Lebesgue measure on
Rd, this is the case.

Let now ψATM,p be any gauge at p, relative to which one might want to express the integration.
The transition map between both coordinatizations is simply given by the gauge transforma-
tion vO = ψO ◦ (ψA)−1(vA) = gOAp (vA). By the standard rules for changes of variables
in multidimensional integrals, the differentials are required to transform according to the Ja-
cobian determinant of this transformation in order for the volume to be preserved. As the

1In contrast to a volume form ω, volume densities |ω| assign a positive volume to any frame. They
exist both on oriented and non-oriented manifolds.
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transformation is liner, the Jacobian is given by gOAp itself, such that we obtain∫
TpM

f(v) dv =

∫
Rd

fA(vA)
∣∣∣det(gOAp )∣∣∣ dvA . (D.4)

Through the gauge transformation, this expression still depends on the arbitrary choice of
isometric gauge ψOTM,p. This dependency can be purged by expressing the integration mea-
sure directly in terms of the metric as∫

TpM

f(v) dv =

∫
Rd

fA(vA)
√
|ηAp | dvA , (D.5)

where the factor √
|ηAp | :=

√∣∣∣ det([ηp(eAi , eAj )]ij)∣∣∣ (D.6)

measures the (absolute) volume of the reference frame [eAi ]
d
i=1 relative to the metric η. To

assert the equality of the right-hand sides of Eqs. (D.4) and (D.5), we express the metric ηp
of TpM in terms of the standard inner product ⟨·, ·⟩ of Rd, which is once again done by
using the isometric gauge ψOTM,p from the O(d)-atlas:

ηp
(
eAi , e

A
j

)
=

〈
ψOTM,p

(
eAi
)
, ψOTM,p

(
eAj
)〉

=
〈
ψOTM,p ◦

(
ψATM,p

)−1
(ϵi), ψ

O
TM,p ◦

(
ψATM,p

)−1
(ϵj)

〉
=

〈
gOAp ϵi, g

OA
p ϵj

〉
= ϵ⊤i

(
gOAp

)⊤
gOAp ϵj

=
((
gOAp

)⊤
gOAp

)
ij

(D.7)

The absolute value of the determinant in Eq. (D.6) is therefore given by∣∣∣det([ηp(eAi , eAj )]ij)∣∣∣ =
∣∣∣det ((gOAp )⊤

gOAp
)∣∣∣

=
∣∣∣det ((gOAp )⊤)

det
(
gOAp

)∣∣∣
=

∣∣∣det (gOAp )∣∣2 , (D.8)

from which the equality of the right-hand-sides of Eqs. (D.4) and (D.5) follows by taking the
square root.

Since the factors
√
|ηAp | and

√
|ηBp |measure the volumes of their respective frames, one can

easily show that they are related by the inverse change of volume
∣∣det gBAp ∣∣:√

|ηBp | =
1∣∣det gBA

p

∣∣√|ηAp | (
⇒ −1-density

)
(D.9)

Together with the usual change of variables formula

dvB =
∣∣det gBAp ∣∣ dvA (

⇒ +1-density
)
, (D.10)

this implies that the coordinatizations of the Riemannian volume element dv are by design
invariant under gauge transformations, that is,√

|ηBp | dvB =
√
|ηAp | dvA

(
⇒ 0-density

)
. (D.11)

This relation assures that the integration in Eq. (D.5) is well defined, i.e. coordinate inde-
pendent.
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Equivariant MLPs

Multilayer perceptrons (MLPs) are the most basic neural network architectures. Their feature
spaces are finite dimensional vector spaces Kc over the field K = R or K = C. Basic MLPs
are constructed as a sequence of blocks of layers, where each block

block : Kcin → Kcout , xin 7→ xout := σ(Wxin + b) (E.1)

consists of 1) a linear map (matrix multiplication) W ∈ Kcout×cin , 2) a bias summation layer
where b ∈ Kcout and 3) a nonlinearity σ : Kcout → Kcout . Equivariant MLPs are consequently
constructed from equivariant linear layers (intertwiners), equivariant bias summation oper-
ations and equivariant nonlinearities. As the the latter two were already discussed in Sec-
tions 4.3.2 and 4.3.3, we focus here on equivariant matrix multiplications.1 We assume
that the feature spaces are finite dimensional unitary group representations (Def. B.5.13),
which allows their complete reducibility into a direct sum of irreducible subspaces; see The-
orem B.5.16.

Consider a linear layer W : Kcin → Kcout , mapping between unitary representation spaces
(ρin,Kcin) and (ρout,Kcout). We are interested in the subspace HomG(Kcin ,Kcout) ⊆ Kcout×cin

of linear layers that are equivariant (intertwiners, Def. B.5.7), that is, those layers that satisfy
the constraint

ρout(g)W = Wρin(g) ∀ g ∈ G . (E.2)

To break this constraint down, let Qin ∈ GL(Kcin) and Qout ∈ GL(Kcout) be the change of
basis matrices which decompose the feature spaces into an orthogonal direct sum of irre-
ducible subspaces, acted on by irreducible subrepresentations (irreps, Def. B.5.6). In equa-
tions, these irrep decompositions are defined by the relations

Qin ρin(g)Q
−1
in =

⊕
j∈Ĝ

mj⊕
i=1

ρj(g) and Qout ρout(g)Q
−1
out =

⊕
J∈Ĝ

mJ⊕
I=1

ρJ(g) (E.3)

for any g ∈ G, where Ĝ is the set of all isomorphism classes of irreps ofG andmj , mJ ∈ N
are the unique (mostly zero) multiplicities of the corresponding irreps ρj and ρJ in ρin and
ρout, respectively. Introducing the linear map

W̃ := Qout W Q−1in (E.4)
1The results in these sections applied to feature fields. However, since the considered biases and

nonlinearities were applied pointwise, i.e. individually to each feature vector, the results are exactly
equivalent to the case of MLPs.
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between the decoupled feature spaces, the intertwiner constraint on W in Eq. (E.2) can be
rewritten as the equivalent constraint

W̃ =
(⊕
J∈Ĝ

mJ⊕
I=1

ρJ(g)
)
W̃
(⊕
j∈Ĝ

mj⊕
i=1

ρj(g)
−1
)

∀ g ∈ G . (E.5)

on W̃ . Due to the direct sum decomposition into G-independent subspaces, this constraint
is equivalent to

(∑
J∈ĜmJ

)
·
(∑

j∈Ĝmj

)
independent irrep constraints

W̃JI,ji = ρJ(g) W̃JI,ji ρj(g)
−1 ∀ g ∈ G (E.6)

on blocks W̃JI,ji ∈ Kdim(ρJ )×dim(ρj) of W̃ which map between all pairs of invariant sub-
spaces. The space of such irrep intertwiners is in the following denoted as HomG(ρj , ρJ).

To solve the irrep constraints in Eq. (E.6), recall Schur’s lemma B.5.10, which states in
particular that the irrep intertwiners W̃JI,ji are zero for non-isomorphic irreps J ̸= j. The
only possibly non-zero components of W̃ are therefore the endomorphisms

W̃jI,ji ∈ EndG(ρj) = HomG(ρj , ρj) (E.7)

which map between isomorphic irreducible subrepresentations j = J .

Assume that we are given bases {Ej,µ |µ = 1, . . . , dim(EndG(ρj))} of the endomorphism
(vector) spaces EndG(ρj). The blocks W̃JI,ji may then be parameterized as

W̃JI,ji =

{
0 if J ̸= j∑
µ λjIi,µ Ej,µ if J = j ,

(E.8)

where λjIi,µ ∈ K are dim(EndG(ρj)) learnable parameters (for fixed j, J, i, I). For com-
plex numbers K = C, the endomorphisms spaces are one-dimensional and contain ele-
ments λjIi · idCdim(ρj) which are complex multiples of the identity. For K = R one has
dim(EndG(ρj)) = 1, 2 or 4 when the real irrep is of real, complex or quaternionic type,
respectively [173].

With these results we have all ingredients that are necessary to construct the most general
linear equivariant network layer W ∈ HomG(ρin, ρout). All that is required is to

1) parameterize the individual matrix blocks W̃JI,ji according to Eq. (E.8),

2) fill them into W̃ and

3) undo the irrep decomposition in Eq. (E.4), i.e. set W = Q−1out W̃ Qin.

As many of the matrix blocks are filled with zeros and since the dimensionality of the endo-
morphism spaces is usually lower than the dimensionality of an unconstrained block, equiv-
ariant linear layers are more parameter efficient than their non-equivariant counterparts.

The representation theoretic viewpoint discussed here was already proposed in the early 90’s
by Wood and Shawe-Taylor [332]. Nowadays, its main advocates are probably Kondor et al.
[163][161, 162, 163, 164, 134, 3, 18, 299]. Finzi et al. [92] developed a general algorithm
to solve automatically for the intertwiners between finite representation spaces of arbitrary
matrix groups. Their approach is based on the observation that it is sufficient to solve the in-
tertwiner constraint for the generators of the group only, i.e. for Lie algebra elements and/or
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finite generators. Most other works describe linear equivariant layers from a group theoretic
instead of representation theoretic viewpoint. Their results are equivalent to ours, however,
they might be expressed quite differently. Specifically for finite groups with permutation
actions, the intertwining matrices are usually formulated in terms of weight sharing pat-
terns [241, 200, 109], where weights are shared over invariant subspaces of the permutation
action W 7→ ρout(g)W ρin(g)

−1 [2]. The universality of equivariant MLPs was investigated
in [240].

Linear layers between non-finite representations can be significantly harder to characterize.
An example are the steerable convolutions between induced affine group representations
from Chapters 4 and 5.





APPENDIX F

Equivariant convolutions on homogeneous spaces

The works by Kondor and Trivedi [162], Cohen et al. [55][56] and Bekkers [10] are in
spirit quite similar to ours in that they are defining group equivariant convolutions in a fairly
general setting. These papers have in common that they operate on feature maps on homo-
geneous spaces I/H of a global symmetry group I , whereH ≤ I .1 They differ in the types
of groups I which they cover and in the definition of their feature spaces, specifically the
linear group actions on them. The main theorems of the papers assert that the most general
equivariant linear maps between such feature spaces are convolutions (or correlations) with
symmetry constrained kernels; cf. Theorems 3.2.1 and 4.3.1. The specific details on these
generalized convolutions depend on the particular feature spaces and group actions which
the models consider.

This appendix examines these theories and their relation to our coordinate independent con-
volutions from Parts II and III. The most important similarities and differences are summa-
rized in the following list:

Not any homogeneous space is a Riemannian manifold and not any Riemannian man-
ifold is a homogeneous space of its isometry group.2 There is, however, a significant
overlap, for instance for Euclidean steerable CNNs on Ed ∼= Aff(G)/G from Chap-
ter 4 or spherical CNNs on S2 ∼= O(3)/O(2) from Chapter 17.
The authors consider compact [162], locally compact, unimodular [55][56], and Lie
groups [10], respectively. The global symmetry groups in our theory are isometries
of M or, specifically for Euclidean spaces, affine groups Aff(G). Note that affine
groups are not compact and only forG ≤ O(d) unimodular – general affine groups are
therefore not covered in the respective theories.
Coordinate independent CNNs shift the focus from global to local symmetries. On ho-
mogeneous spaces I/H these local symmetries correspond to the stabilizer subgroups
Stabp ∼= H of I . Our Chapter 13 works out the relations between global and local
symmetries in detail – the models’ local equivariance induces their global equivariance.
The models assume different types of feature fields and group actions on them: Kon-
dor and Trivedi [162] and Bekkers [10] assume scalar fields on homogeneous spaces,

1[162, 56, 10] use G instead of I to refer to global symmetries. We use I since we reserve G for
the structure group. Note furthermore that we use I here to denote arbitrary global symmetries, not
necessarily isometries as in Parts II and III.

2For instance, I/H = O(2)/ SO(2) ∼= R is a finite group (or set) but not a Riemannian manifold.
Another example are (Zd,+) group convolutions on the discrete pixel grid Zd.
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i.e. real-valued functions f : I/H → R which transform according to ϕ.f(ζ.H) =
f
(
ϕ−1ζ.H

)
.3 Cohen et al. [55][56] consider feature fields of more general types ρ

which are defined as sections of H-associated feature vector bundles. Their trans-
formation laws are given by induced representations IndIH ρ. This setting covers the
real-valued functions from [162, 10] as a special case when choosing trivial field rep-
resentations (or, as made precise below, more general quotient representations ρG/Hquot
(Def. B.5.20) where H ≤ G ≤ I). Our theory models feature fields as sec-
tions of associated bundles as well. Their transformation is given by pushforwards
ϕ▷ f := ϕ∗,A ◦ f ◦ ϕ−1, which generalize induced representations.

The works by Kondor and Trivedi [162], Cohen et al. [55][56] and Bekkers [10] derive
convolutional weight sharing from the requirement on the models to be globally equiv-
ariant; just as we did in Part I. OurGM -convolutions, on the other hand, share weights
by definition over the G-structure. We adopted the idea of deriving weight sharing
over Riemannian manifolds from global symmetries (isometries) in Section 13.3. The
requirement for isometry equivariance implies weight sharing over the isometry or-
bits and a stabilizer constraint on the kernels; see e.g. Fig. 13.7. Theorem 13.3.3
asserts that isometry equivariant kernel field transforms on homogeneous spaces are
GM -convolutions – this result mirrors those of Kondor and Trivedi [162], Cohen et al.
[55][56] and Bekkers [10] closely.

All of the theories derive some linear symmetry constraint on the kernel spaces. In the
case of Kondor and Trivedi [162] and Bekkers [10], the kernels are essentially scalar
functions on double quotient spaces Hout\I/Hin (assuming correlations, for convolu-
tions Hin and Hout are swapped; see below). The kernels of Cohen et al. [55][56] and
in our theory are satisfying a steerability constraint which depends on the particular
choice of field types ρin and ρout. Note that the determinant factor is missing in the G-
steerability constraint of Cohen et al. [55][56] since the authors restrict to unimodular
groups. The factor does appear in the kernel constraint by Bekkers [10].

While Kondor and Trivedi [162] and Cohen et al. [55][56] describe kernels immedi-
ately on the group or homogeneous space, Bekkers [10] and our GM -convolutions
define kernels on the tangent spaces and project them subsequently via the exponential
map. These approaches are in general inequivalent, for instance since the exponen-
tial map is on a non-connected manifold non-injective. On Euclidean spaces both
approaches are obviously equivalent since the exponential map becomes trivial; see
Section 15.2. Our Theorem 17.2.1 in Section 17.2 bridges this gap furthermore for
spherical kernels by providing an isomorphism between kernels of the two approaches.
In practice, the general incompatibility is irrelevant since kernels of convolutional net-
works are usually compactly supported within the injectivity radius of the exponential
map.

We will in the following elaborate on the theories of Kondor and Trivedi [162], Bekkers
[10] and Cohen et al. [55][56] in more detail. As a preparation, we will first discuss homo-
geneous spaces, group convolutions and group correlations. For alternative reviews of the
topic we refer the reader to Esteves [82] and Gerken et al. [105]. After the original version
of this appendix was published in [325], Aronsson [5] published another review of the topic,
including in particular a formulation in terms of reproducing kernel Hilbert spaces and Xu
et al. [337] presented the Fourier space analogue to Cohen et al. [55][56]. We furthermore
want to point to the work by Chakraborty et al. [41], which also defines convolutions on
homogeneous spaces but is not covered in more detail in this appendix since their models

3Multi-channel feature maps are constructed by stacking multiple such functions.
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assume Hout = {e}, that is, their convolution kernels are unconstrained and always lift the
input signal to a scalar field on I .

F.1 Homogeneous spaces, group convolutions and group correlations

Homogeneous spaces: Let I be some group which acts on some space X . The space is
said to be homogeneous if the group action is transitive (Def. B.3.8), i.e. if any two points
p, q ∈ X are related by the I-action. In equations, X is homogeneous if and only if for any
p, q ∈ X there exists an element ϕ ∈ I such that q = ϕ(p). Note that the action on X is
not required to be fixed point free (Def. B.3.10), that is, each point p ∈ X has a potentially
non-trivial stabilizer subgroup Stabp = {ξ ∈ I | ξ(p) = p} ≤ I (Def. B.3.6). It can be
shown that the homogeneous space can be identified with the quotient space I/H where
H = Stabp for some p ∈ X .4

Since any homogeneous space arises as a quotient, we consider in the following always some
subgroup H of I . This subgroup has left cosets (Def. B.2.2), i.e. subsets of the form

ϕ.H =
{
ϕh
∣∣h ∈ H} (F.1)

which are elements of the (homogeneous) quotient space

I/H =
{
ϕ.H

∣∣ϕ ∈ I} . (F.2)

A natural left action of I on I/H is given by

I × I/H → I/H,
(
ϕ̃, ϕ.H

)
7→ ϕ̃ϕ.H . (F.3)

This action is easily seen to be transitive, making I/H a homogeneous space of I . The
canonical quotient map

qII/H : I → I/H, ϕ 7→ ϕ.H (F.4)

turns I into a principal H-bundle over I/H . Analogous definitions can be made for right
cosets

H.ϕ ∈ H\I . (F.5)

and double cosets

H̃.ϕ.H ∈ H̃\I/H (F.6)

and their respective quotient spaces.

An universal property of the quotient maps qII/H , which will become important in our dis-
cussion below, is the following. Let f↑ : I → R be a continuous, rightH-invariant function,
i.e. a function which satisfies f↑(ϕh) = f↑(ϕ) for any ϕ ∈ I and h ∈ H . Then there exists
a unique continuous function f : I/H → R such that f↑ = f ◦ qII/H . Conversely, one may
lift any continuous map f : I/H → R uniquely to a right H-invariant map f↑ : I → R,
which is used by Kondor and Trivedi [162] to generalize group convolutions to homogeneous

4Other choices of points yield other realizations of the non-canonical isomorphism I/H ∼= X .
Any choice is equally valid since Stabp

∼= Stabq for homogeneous spaces.
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spaces. The relation between both functions is visualized in the following commutative dia-
gram:

I

I/H R

f↑ := f ◦ qI
I/HqI

I/H

f

(F.7)

An analogous construction can obviously be made for right quotient spaces H\I and left
H-invariant maps. The following commutative diagram visualizes the case of double quo-
tient spaces H̃\I/H and maps f↑ which are simultaneously left H̃-invariant and right H-
invariant, i.e. which satisfy f↑

(
h̃ϕh

)
= f↑(ϕ) for any ϕ ∈ I , h̃ ∈ H̃ , and h ∈ H:

I

H̃\I/H R

f↑ := f ◦ qI
H̃\I/HqI

H̃\I/H

f

(F.8)

Group convolutions and group correlations: Convolutions are naturally generalized
from Euclidean spaces (or translation groups) to arbitrary locally compact groups. Let I
be a locally compact group and let dζ be a left Haar measure on I . The group convolution
(f ∗I κ) : I → R of two integrable functions f : I → R and κ : I → R is then defined by
the following equivalent expressions, taken from [102]:(

f ∗I κ
)
(ϕ) : =

∫
I
f(ζ)κ

(
ζ−1ϕ

)
dζ

=

∫
I
f(ϕ ζ)κ

(
ζ−1

)
dζ

=

∫
I
f
(
ζ−1

)
κ(ζϕ) ∆(ζ−1) dζ

=

∫
I
f
(
ϕ ζ−1

)
κ(ζ) ∆(ζ−1) dζ , (F.9)

The group homomorphism ∆ : I → (R>0, ∗), appearing in the last two expressions, is the
modular function of I . Kondor and Trivedi [162] define group convolutions as in the last
line, however, without the modular function. This is valid since the authors assume compact
groups, which are unimodular, i.e. satisfy ∆(ϕ) = 1 for any ϕ ∈ I .

Closely related to group convolutions are group correlations(
f ⋆I κ

)
(ϕ) :=

〈
f, ϕ.κ

〉
L1(I) =

∫
I
f(ζ)κ

(
ϕ−1ζ

)
dζ , (F.10)

which are defined as the inner product of a function f with a shifted kernel ϕ.κ. A compar-
ison with Eq. (F.9) reveals that group convolutions and group correlations are equivalent up
to an inversion of the kernel argument, that is,(

f ⋆I κ
)
=
(
f ∗I

[
κ ◦ ( · )−1

])
. (F.11)
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While Kondor and Trivedi [162] consider (generalized) group convolutions, Bekkers [10]
and Cohen et al. [56] assume correlations – to reconcile the theories one has to invert the
kernel arguments.

Group convolutions and group correlations are by definition equivariant w.r.t. left actions
α.f(ϕ) = f

(
α−1ϕ

)
of group elements α ∈ I on the first factor. For the case of convolu-

tions, this is shown by(
[α.f ] ∗I κ

)
(ϕ) =

∫
I

[
α.f
]
(ζ)κ

(
ζ−1ϕ

)
dζ

=

∫
I
f
(
α−1ζ

)
κ
(
ζ−1ϕ

)
dζ

=

∫
I
f
(
ζ̃
)
κ
(
ζ̃−1α−1ϕ

)
d
(
αζ̃
)

=
(
f ∗I κ

)
(α−1ϕ)

=
[
α.(f ∗I κ)

]
(ϕ) , (F.12)

where we substituted ζ̃ = α−1ζ in the third step and made use of the fact that dζ̃ is a
left Haar measure, i.e. satisfies d

(
αζ̃
)
= dζ̃ . The case of correlations follows trivially by

Eq. (F.11).

The majority of equivariant CNNs rely on group convolutions or group correlations. In
particular, the models in rows (1-3), (5), (7), (13), (17), (22), (25), (28), (29) and (36) of
Table 14.1, all of which operate on homogeneous spaces and are (or could equivalently be)
labeled by regular representations, are group convolutional CNNs. Prior to their use in equiv-
ariant CNNs, group convolutions have been widely applied in robotics [49] or for image anal-
ysis [192, 275, 276, 27, 277, 223]. Cohen and Welling [52] showed that group convolutions
(or rather correlations) naturally generalize conventional CNNs. Since the feature maps of
convolutional networks comprise multiple channels, they are not given by real-valued func-
tions on I but by vector-valued functions f : I → Rc. Kernels are accordingly defined to
be (unconstrained) matrix-valued functions on the group, i.e. κ : I → Rcout×cin . The works
of Kondor and Trivedi [162], Bekkers [10] and Cohen et al. [55][56], which we review in the
following, generalize such group convolutional networks to arbitrary homogeneous spaces.

F.2 Scalar field convolutions on homogeneous spaces

We start with the I-equivariant convolutional (or correlational) networks on homogeneous
spaces by Kondor and Trivedi [162] and Bekkers [10]. Both theories define feature maps as
scalar fields on homogeneous spaces, that is, each channel is given by a real-valued function

f : I/H → R . (F.13)

Individual channels transform independently under the action of the global symmetry group
I as specified by[

ϕ̃.f
]
(ϕ.H) := f

(
ϕ̃−1ϕ.H

)
ϕ̃ ∈ H, ϕ.H ∈ I/H . (F.14)

Each layer l = 1, . . . , L may be assigned a different subgroup Hl ≤ I and thus homoge-
neous space I/Hl on which its feature maps live. This allows for instance to model lifting
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convolutions from the sphere S2 ∼= SO(3)/ SO(2) to the group SO(3) ∼= SO(3)/{e} when
choosing subgroups SO(2) and {e}, respectively. The choices of subgroups correspond in
some sense to the choices of group representations in our theory, which we will explain
further below.

The results of the two papers are to large parts equivalent, however, Kondor and Trivedi
[162] consider compact groups I and convolutions while Bekkers [10] assume I to be a Lie
group and use correlations.

Kondor and Trivedi [162] : In a nutshell, Kondor and Trivedi [162] investigate the most
general I-equivariant linear maps between scalar field features on homogeneous spaces
I/Hin and I/Hout, assuming the transformation law in Eq. (F.14). They prove that this
operation is given by a generalized group convolution with a kernel

κ : Hin\I/Hout → R (F.15)

on the double quotient space specified by Hin and Hout. Formulated for finite groups, as
done by the authors, this generalized convolution operation is shown to be given by(

f ∗I/Hin
κ
)
(ϕ.Hout) := |Hin|

∑
Hin.ζ ∈Hin\I

f
(
ϕζ−1.Hin

)
κ
(
Hin.ζ.Hout

)
. (F.16)

A comparison with the last line of Eq. (F.9) suggests that this operation is indeed closely
related to group convolutions – the modular function ∆ drops out since I is compact and
therefore unimodular. The generalized convolution is in fact equivalent to a group convolu-
tion (

f ∗I/Hin
κ
)
(ϕ.Hout) =

(
f↑ ∗I κ

↑)(ϕ) (F.17)

with features and kernels that are lifted according to the diagrams in Eqs. (F.7) and (F.8).
Note that the convolution kernel on Hin\I/Hout corresponds to a correlation kernel on
Hout\I/Hin since convolutions and correlations are according to Eq. (F.11) related by an
inversion of the kernel argument. One could therefore view the kernels by Kondor and
Trivedi [162] as left Hout-invariant correlation kernels on the input space I/Hin.

To give an intuition on these results, we come back to our spherical CNN example from
above. Let therefore I = SO(3), Hin = SO(2) and, for now, Hout = {e}. This setting de-
scribes lifting convolutions from the 2-sphere I/Hin = SO(3)/SO(2) ∼= S2 to the rotation
group manifold I/Hout = SO(3)/{e} ∼= SO(3). Considering correlations instead of convo-
lutions, the kernels are real-valued functions on Hout\I/Hin = {e}\ SO(3)/SO(2) ∼= S2.
If we let instead Hout = SO(2), the convolution maps from scalar fields on the 2-sphere to
scalar fields on the 2-sphere I/Hout = SO(3)/SO(2). In this case the correlation kernels
are given by real-valued functions on SO(2)\ SO(3)/SO(2). Equivalently, the correlation
kernels are given by left SO(2)-invariant functions on S2, i.e. zonal kernels as visualized
in Fig. 16.5. When assuming Hin = Hout = {e}, one has I/Hin = I/Hout

∼= SO(3)
and unconstrained kernels on Hout\I/Hin

∼= SO(3), corresponding to conventional group
convolutions (or correlations). These results are in line with our discussion in Section 17.2.

For completeness, we mention that Kondor and Trivedi [162] explain their results addition-
ally from a representation theoretic perspective, i.e. with features and kernels in Fourier
space. The fact that features and kernels live on quotient spaces is in this formulation re-
flected in sparsity patterns of the Fourier coefficients.
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Bekkers [10] : Instead of considering compact groups, Bekkers [10] assumes I to be a
general Lie group. The feature maps of layer l are defined as real-valued square integrable
functions in L2(I/Hl) which transform according to Eq. (F.14) when being acted on by I .

Bekkers [10] models the layers of his convolutional (or rather correlational) networks as
linear bounded operators

K : L2(I/Hin)→ L2(I/Hout) (F.18)

between feature maps on homogeneous spaces I/Hin and I/Hout. Such operators are in
general given by integral operators of the form[

Kf
]
(ϕ.Hout) =

∫
I/Hin

κ̂
(
ϕ.Hout, ζ.Hin

)
f(ζ.Hin) dµI/Hin

, (F.19)

where dµI/Hin
is some Radon measure on I/Hin and

κ̂ : I/Hout × I/Hin → R (F.20)

is an integrable 2-argument kernel.

The requirement on the operator to be equivariant, that is,

K
(
ϕ.f
)
= ϕ.K(f) ∀ ϕ ∈ I, f ∈ L2(I/Hin) , (F.21)

is shown to imply that the 2-argument kernel reduces to a single argument kernel

κ̂
(
ϕ.Hout, ζ.Hin

)
=

dµI/Hin
(ϕ−1ζ.Hin)

dµI/Hin
(ζ.Hin)

κ
(
ϕ−1ζ.Hin

)
. (F.22)

The group element ϕ ∈ ϕ.Hout ⊂ I is hereby an arbitrary representative of the coset in
which it is contained. This 1-argument kernel is – up to a measure dependent scale factor –
constrained to be left Hout-invariant:

κ(ζ.Hin) =
dµI/Hin

(ξ−1ζ.Hin)

dµI/Hin
(ζ.Hin)

κ
(
ξ−1ζ.Hin

)
∀ ζ.Hin ∈ I/Hin, ξ ∈ Hout (F.23)

Note that this result is very similar to that of Kondor and Trivedi [162] since a left Hout-
invariant kernel on I/Hin is equivalent to an element of Hout\I/Hin (again assuming cor-
relation kernels instead of convolution kernels). The main difference is the additional scale
factor, which appears since the Radon measure dµI/Hin

is not necessarily left I-invariant.

One of the practically relevant cases is that of group correlations, for which Hin = {e}
and I/{e} = I . In this case dµI is a left (invariant) Haar measure on I , such that the
scale factor drops out. A second relevant case is that of affine equivariant convolutions on
Euclidean spaces, i.e. the choices I = Aff(G) and Hin = G, for which I/Hin

∼= Rd.
Assuming dµI/Hin

to be the Lebesgue measure on Rd and denoting ϕ = tg ∈ I , Bekkers
[10] prove that the scale factor is in this case given by:

dµI/Hin
((tg)−1x)

dµI/Hin
(x)

=
1

|det g |
∀ x ∈ Rd (F.24)

This is exactly the determinant factor which appears in our G-steerability kernel constraint,
Eq. (9.37), as well.
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Since SO(3) is a Lie group, the spherical CNN examples that we gave after discussing
the theory by Kondor and Trivedi [162] apply without changes (assuming the standard left-
invariant measure on S2).

Bekkers [10] defines kernels in close analogy to ourGM -convolutions on the tangent spaces
and projects them via exponential maps to the homogeneous spaces. The kernels on the
tangent spaces are hereby modeled via B-splines. A difference is that Bekkers [10] does
not need to consider parallel transporters since he is assuming scalar feature maps on the
homogeneous spaces.

Relation to GM-convolutions: Due to the quite different formulation it is not immediately
obvious how the results of Kondor and Trivedi [162] and Bekkers [10] relate to our theory.
Instead of considering different quotient spaces I/Hl in each layer l, we consider a fixed
manifold M . To see how both approaches connect, assume another subgroup G to be given
such that Hl ≤ G ≤ I for all layers l = 1, . . . , L and satisfying that M := I/G is a
manifold. The scalar features on I/Hl can in this case be viewed as G-associated feature
fields on M which transform according to quotient representations ρG/Hl

quot . To see this, note
that the group action in Eq. (F.14) is nothing but the induced representation IndIHl

ρHl
triv =

ρ
I/Hl
quot from the trivial representation ofHl, which describes the transformation law of scalar

fields on I/Hl. This representation can via induction in stages (see [35]) be decomposed
into

IndIHl
ρHl

triv = IndIG IndGHl
ρHl

triv = IndIG ρ
G/Hl
quot , (F.25)

that is, into the induction of the quotient representation ρG/Hl
quot from G to I . The real-valued

functions on I/Hl are therefore equivalent to ρG/Hl
quot -fields on M = I/G. This result was

for Euclidean spaces already shown in Section 4.5.

Interesting special cases are G = Hl and G = {e}. For the former one has ρG/Hl
quot = ρGtriv,

describing scalar fields on M = I/G = I/Hl. For the latter, ρG/Hl
quot = ρGreg is the regular

representation, corresponding to conventional group convolutions.

These insights imply that the theory of Kondor and Trivedi [162] explains all models in Ta-
ble 14.1 which operate on homogeneous spaces of compact groups I and are labeled by ei-
ther trivial, regular or more general quotient representations – these are essentially the spher-
ical CNNs in rows (36) and (37). A minor generalization of the theory to locally compact,
unimodular groups would additionally describe some of the isometry equivariant Euclidean
CNNs. As Bekkers [10] is assuming arbitrary Lie groups, his models additionally describe
those Aff(G)-equivariant CNNs in Table 14.1 which are labeled by trivial, regular or more
general quotient representations. They cover in particular scale equivariant Euclidean CNNs
(G = S) for which the determinant factor |det g | is non-trivial.

Other types of feature fields and non-homogeneous spaces like punctured Euclidean spaces
Ed\{0} and spheres S2\{n, s}, the icosahedron, general surfaces and the Möbius strip are
not covered.

F.3 Steerable CNNs on homogeneous spaces

Motivated by Kondor and Trivedi’s [162] generalization of group convolutions to homo-
geneous spaces, Cohen et al. [55][56] generalized steerable CNNs to homogeneous spaces
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of locally compact unimodular groups.5 Instead of restricting to scalar fields, Cohen et al.
[55][56] assume more general Hl-associated feature fields on I/Hl which transform ac-
cording to induced representations IndIHl

ρl of I . The network layers implement linear
equivariant maps between such fields, i.e. they are intertwiners between induced representa-
tions. As expected, these layers are parameterized by – and are thus isomorphic to – spaces
of steerable kernels. Cohen et al. [55][56] show that these kernels can be described on I , on
I/Hin or on Hout\I/Hin, in each case still satisfying a linear steerability constraint.6 The
following three paragraphs will 1) introduce feature fields and their transformation laws on a
global and local level, 2) review the spaces of intertwiners and steerable kernels which map
between such fields, and 3) discuss how these results relate to ours.

Our formulation and notation in this section is adapted to be more similar to that which was
chosen to develop our theory. It differs therefore slightly from that of Cohen et al. [55][56].
Most notably, we do not assume a single local trivialization (section) which is defined almost
everywhere on I/Hl but consider an atlas of local trivializations which cover the homoge-
neous space.7 The notation of local, coordinatized quantities is therefore augmented with
gauge labels A,B, . . . .

Feature fields and induced representations: Let I be a locally compact unimodular
group and let Hl ≤ I be any subgroup of it. As stated above, the quotient map

qI
I/Hl

: I → I/Hl, ϕ 7→ ϕ.Hl (F.26)

implies a principal Hl-bundle; see Section 11.1.5. The right Hl-action on the total space I
is given by the usual right multiplication

I × I/Hl → I/Hl, (ϕ, h) 7→ ϕh (F.27)

of group elements. It preserves the fibers Iϕ.Hl
=
(
qI
I/Hl

)−1
(ϕ.Hl) ⊂ I since it satisfies

qI
I/Hl

(ϕh) = ϕh.Hl = ϕ.Hl = qI
I/Hl

(ϕ) (F.28)

for any ϕ ∈ I and h ∈ Hl and is easily seen to be both transitive and free. Abbreviating
U := UA ∩ UB , local trivializations ΨAI , Ψ

B
I of this bundle and the transition maps hBA

between them are defined via the following commutative diagram:

U ×Hl

I ⊇
(
qI
I/Hl

)−1
(U) U ×Hl

I/Hl ⊇ U

qI
I/Hl

ΨA
I

ΨB
I

(id× hBA·)

proj1

(F.29)

5Note that there are a preprint version [55] and a conference version [56] of this paper.
6As we will argue below, the constructions on I/Hin andHout\I/Hin depend on local sections and

are therefore only possible for trivial bundles. We adapt the former to nontrivial bundles by defining
kernels on an open cover of I/Hin.

7This is only necessary if the homogeneous space is a (non-trivial) manifold. If it is discrete, one
may always choose a global section I/H → I which selects coset representatives. One would in this
case usually not talk about “atlases” and “local trivializations”, however, we will do so for simplicity.
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As usual, the principal bundle trivializations imply local identity sections

σA : UA →
(
qI
I/Hl

)−1
(UA) , ϕ.Hl 7→ σA(ϕ.Hl) :=

(
ΨAI
)−1

(ϕ.Hl, e) , (F.30)

which were introduced in Section 11.4. The identity sections labeled by Ã at ζ.Hl and A at
ϕ ζ.Hl are related by

ϕ σÃ(ζ.Hl) = σA(ϕ ζ.Hl) h
AÃ
ϕ (ζ.Hl) , (F.31)

which defines the I-induced gauge transformations hAÃϕ (ζ.Hl) ∈ Hl; see Eq. (13.32).8

The feature fields of steerable CNNs on homogeneous spaces are defined as sections f ∈
Γ(Al) of associated Hl-bundles

Al := (I × Rcl)/∼ρl , (F.32)

which were introduced in Section 11.3. The equivalence relation

(ϕ, f) ∼ρl (ϕh−1, ρl(h)f) (F.33)

is determined by a choice of field representation

ρl : Hl → Rcl (F.34)

of the layer’s subgroup; compare this to our analogous definition in Eq. (11.42). Being an
associated Hl-bundle, the local feature vector bundle trivializations transform covariantly
with those of the corresponding principal bundle:

U × Rcl

π−1
Al

(U) U × Rcl

U

πAl

ΨA

Al

ΨB

Al (
id× ρl

(
hBA

)
·
)

proj1

(F.35)

The precise construction of associated bundle trivializations from principal bundle trivializa-
tions was given in Eq. (11.65).

Cohen et al. [55][56] use two different approaches to describe feature fields. Globally, fea-
ture fields are represented as functions

F : I → Rcl such that F (ϕh−1) = ρl(h)F (ϕ) ∀ ϕ ∈ I, h ∈ Hl , (F.36)

whose definition is consistent with the equivalence relation from Eq. (F.32). On trivializing
neighborhoods UA ⊆ I/Hl, the fields are furthermore given by feature vector coefficient
fields

fA : UA → Rc (F.37)

8To avoid confusion, note that Cohen et al. [55][56] denote hAÃ
ϕ (ζ.Hl) by h(ζ.Hl, ϕ), omitting

the gauge labels.
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relative to some gaugeΨA
Al

. While the former is more convenient for algebraic manipulations,
the latter is non-redundant, and therefore more suitable for numerical implementations. The
local field representation may at any time be computed from the global one by setting

fA(ϕ.Hl) = F
(
σA(ϕ.Hl)

)
for ϕ.Hl ∈ UA . (F.38)

Here σA : UA → I is that local section of the principal Hl bundle which corresponds to the
chosen trivialization ΨAI (“identity section”) and is analogously defined to Eq. (11.61). Note
that the global field representation can in general not be recovered from a (single) local one.
It is, however, locally over UA given by

F (ϕ) = ρl
(
ψAI,ϕ.Hl

(ϕ)
)−1

fA(ϕ.Hl) for ϕ ∈
(
qI
I/Hl

)−1
(UA) ⊆ I , (F.39)

which is closely related to Eq. (11.66).

The global, active transformations of feature fields are formalized by induced representations
IndIHl

ρl of I , which are conceptually similar to our isometry pushforwards from Def. 13.1.2.
For the global field representations, this action is simply defined as a shift on I:[[

IndIHl
ρl
]
(ζ)F

]
(ϕ) = F

(
ζ−1ϕ

)
(F.40)

Since the I-action is global, it is more difficult to describe for local field representations. Let
UA be a trivializing neighborhood around ϕ.Hl and U Ã around ζ−1ϕ.Hl. The action of the
induced representation is relative to gauges on these neighborhoods given by[[

IndIHl
ρl
]
(ζ) f

]A
(ϕ.Hl) = ρl

(
hAÃζ

)
f Ã
(
ζ−1ϕ.Hl

)
, (F.41)

where hAÃζ is the ζ-induced gauge transformation, which is analogously defined to that in
Eq. (13.38). Note the similarity of this definition to our isometry pushforward of feature
fields in coordinates from Eq. (8.19). We furthermore identify the transformation law of
scalar fields on homogeneous spaces from Eq. (F.14) as a special case for trivial representa-
tions ρl. Steerable CNNs on homogeneous spaces cover therefore the homogeneous scalar
field convolutions of Kondor and Trivedi [162] and Bekkers [10] as a special case (ignoring
the different assumptions made on the type of group I).

Intertwiners between induced representations and steerable kernels: The main en-
deavor of Cohen et al. [55][56] is to characterize the space

HomI
(
Γ(Ain),Γ(Aout)

)
:= (F.42){

K : Γ(Ain)→ Γ(Aout) linear
∣∣ K ◦ IndIHin

(ϕ) = IndIHout
(ϕ) ◦ K ∀ ϕ ∈ I

}
of intertwiners between induced representations, i.e. the space of linear equivariant maps
between feature fields. Diagrammatically, this space consists of those linear maps K which
let the following diagram commute for any ϕ ∈ I:

Γ(Ain) Γ(Aout)

Γ(Ain) Γ(Aout)

K

IndI
Hin

ρin(ϕ) IndI
Hout ρout(ϕ)

K

(F.43)
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These maps are the analog to our isometry equivariant kernel field transforms, which were
defined in Def. 13.2.1. Cohen et al. [55][56] prove that these maps are given by correlations
with steerable kernels. We will in the following briefly review these results for both global
and local field representations.

When working with the global field representation from Eq. (F.36), Cohen et al. [55][56]
start with a general bounded linear operator K of the form[

KF
]
(ϕ) =

∫
I
κ̂(ϕ, ζ)F (ζ) dζ (F.44)

where dζ is a left Haar measure on I and

κ̂ : I × I → Rcout×cin (F.45)

is a matrix-valued 2-argument kernel. The equivariance constraint is shown to require
the kernels to satisfy the relation κ̂(ϕ̃ϕ, ϕ̃ζ) = κ̂(ϕ, ζ) for any choice of group elements
ϕ̃, ϕ, ζ ∈ I . This result is resembling our Theorem 13.2.4, which states that isometry
equivariant kernel field transforms imply kernel fields which are invariant under the action
of isometries, Def. 13.2.3. Given this constraint, the 2-argument kernel can be replaced by a
1-argument kernel which is defined as

κ : I → Rcout×cin , ϕ 7→ κ(ϕ) := κ̂(e, ϕ) . (F.46)

We therefore have κ̂(ϕ, ζ) = κ̂(ϕ−1ϕ, ϕ−1ζ) = κ
(
ϕ−1ζ

)
, implying that the linear operator

is given by a group correlation (Eq. (F.10)), that is:[
KF
]
(ϕ) =

∫
I
κ
(
ϕ−1ζ

)
F (ζ) dζ =

(
F ⋆I κ

)
(ϕ) (F.47)

The correlation kernel is furthermore required to satisfy the linear Hout-Hin-steerability con-
straint

κ(hout ϕhin) = ρout(hout)κ(ϕ) ρin(hin) ∀ ϕ ∈ I, hin ∈ Hin, hout ∈ Hout . (F.48)

This constraint is reminiscent of that found by Kondor and Trivedi [162] and Bekkers [10].
Instead of enforcing kernels to be leftHout- and rightHin-invariant, which would correspond
to trivial representations ρout = ρHout

triv and ρin = ρHin
triv , the constraint of Cohen et al. [55][56]

allows for more general steerable kernels. The vector space KIρin,ρout
of such steerable corre-

lation kernels is argued to be isomorphic to the intertwiner space HomI
(
Γ(Ain),Γ(Aout)

)
.

Since the global field representations F on I are redundant they are not the best choice for
numerical implementations. Cohen et al. [55][56] are therefore additionally investigating
intertwiners which operate on local field representations. The authors approach this problem
by assuming one single local trivialization to be given, which is defined almost everywhere
on the homogeneous space I/Hin. They are therefore effectively operating on a trivial bun-
dle. Our following review adapts their results slightly to the more general case of a set of
field representations relative to an atlas of local trivializations. The formulation of Cohen
et al. [55][56] is retrieved by restricting the integration to one single trivialization. We ex-
plicitly write out all gauge labels to make the coordinate dependencies transparent. To give
an overview of the local trivializations that will play a role in the following, we mention that
we will need to consider trivializing neighborhoods UA, U Ã, UH ⊆ I/Hin such that

ζ.Hin ∈ UA , ϕ̃ζ.Hin ∈ U Ã and hζ.Hin ∈ UH (F.49)
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and trivializing neighborhoods UP , U P̃ , UE ⊆ I/Hout such that

ϕ.Hout ∈ UP , ϕ̃ϕ.Hout ∈ U P̃ and e.Hout ∈ UE . (F.50)

We will furthermore assume any partition of unity {PUX}X∈X subordinate to the open cover
underlying the atlas Ain = {(UX ,ΨX)}X∈X of local trivializations on I/Hin. This means
that we are given maps PUX : I/Hin → [0, 1] with the properties

supp
(
P
UX

)
⊆ UX and

∑
UX∈Ain

P
UX (ϕ.Hin) = 1 ∀ ϕ.Hin ∈ I/Hin . (F.51)

Eq. (F.44) stated the general form of a bounded linear operator between global field repre-
sentations F . Its local analog, which makes use of the partition of unity, is given by[
Kf
]P

(ϕ.Hout) =
∑

UA∈Ain

∫
UA

P
UA(ζ.Hin)

←̂−κ PA(ϕ.Hout, ζ.Hin) f
A(ζ.Hin) d(ζ.Hin) ,

(F.52)

whereP andA label local trivializations as stated above and d(ζ.Hin) is a measure on I/Hin.
We furthermore have 2-argument kernels

←̂−κ PA : UP× UA → Rcout×cin , (ϕ.Hout, ζ.Hin) 7→ κ̂
(
σP (ϕ.Hout), σ

A(ζ.Hin)
)

(F.53)

which are inherently locally defined on UP× UA ⊆ I/Hout × I/Hin. The global 2-
argument kernel can be recovered from a set of local kernels on the open covers. Cohen
et al. [55][56] prove that these local kernels are required to satisfy

←̂−κ PA(ϕ.Hout, ζ.Hin) = ρout

(
hP̃P
ϕ̃

(ϕ.Hout)
)−1 ←̂−κ P̃ Ã(ϕ̃ϕ.Hout, ϕ̃ζ.Hin) ρin

(
hÃA
ϕ̃

(ζ.Hin)
)

(F.54)

for any ϕ̃ ∈ I. Note that hP̃P
ϕ̃

(ϕ.Hout) is hereby an induced gauge transformation on

I/Hout while hÃA
ϕ̃

(ζ.Hin) is an induced gauge transformation on I/Hin. In order to re-
duce these local 2-argument kernels to local 1-argument kernels, Cohen et al. [55][56]
consider the unique group element ϕ̃ ∈ I which satisfies 1) ϕ̃ϕ.Hout = e.Hout and 2)
ϕ̃σP (ϕ.Hout) = σE(e.Hout) = e, where the last equality fixes a specific gauge at the “ori-
gin” e.Hout, which is always possible. The first point allows us to identify the gauges P̃
and E without loss of generality. The relations imply furthermore ϕ̃ = σP (e.Hout)

−1 and,
by Eq. (F.31), hEP

ϕ̃
(ϕ.Hout) = e. Plugging these choices into Eq. (F.54) yields

←̂−κ PA(ϕ.Hout, ζ.Hin) (F.55)

= idPERcout
←̂−κEÃ

(
e.Hout, σ

P(ϕ.Hout)
−1ζ.Hin

)
︸ ︷︷ ︸

=:←−κ EÃ
(
σP(ϕ.Hout)

−1ζ.Hin
)

ρin

(
hÃAσP(ϕ.Hout)−1(ζ.Hin)

)
,

where the identity map is kept explicit to explain the gauge labels. We furthermore intro-
duced the local 1-argument kernels

←−κ EÃ : U Ã → Rcout×cin , (F.56)
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whose responses are always given in the specific gauge E at e.Hout. These kernels are still
required to satisfy the Hout-steerability constraints

←−κ EH(houtζ.Hin) = ρout(hout)
←−κ (ζ.Hin)

EA ρin

(
hHAhout

(ζ.Hin)
)−1

(F.57)

for any ζ.Hin ∈ I/Hin and hout ∈ Hout. Putting everything together, the equivariant corre-
lation becomes[
Kf
]P

(ϕ.Hout) = idPERcout

∑
UA∈Ain

∫
UA

P
UA(ζ.Hin)

←−κEÃ
(
σP(ϕ.Hout)

−1ζ.Hin

)
(F.58)

· ρin

(
hÃAσP(ϕ.Hout)−1(ζ.Hin)

)
fA(ζ.Hin) d(ζ.Hin).

Adding the assumption that a single gauge A = Ã covers I/Hin almost everywhere, we can
drop the partition of unity and retrieve the formulation of Cohen et al. [55][56]:[
Kf
]P

(ϕ.Hout) = idPERcout

∫
UA

←−κEA
(
σP(ϕ.Hout)

−1ζ.Hin

)
(F.59)

· ρin

(
hAAσP(ϕ.Hout)−1(ζ.Hin)

)
fA(ζ.Hin) d(ζ.Hin)

We comment on the relation of this operation to our GM -convolutions further below.

Instead of defining the local 1-argument kernels in coordinates from Eq. (F.56) on local
subsets U Ã, Cohen et al. [55][56] define them globally on I/Hin. Since their construction
relies on a continuous section, this is only possible if the bundles are trivial. Our adaptation
to local kernel representations on an open covering is bridging this gap.

Cohen et al. [55][56] claim an isomorphism between the global kernels on I , satisfying
the steerability constraint in Eq. (F.48), and their kernels on I/Hin, satisfying the steerabil-
ity constraint in Eq. (F.57). Note that this isomorphism can only hold if either the bundle
is trivial or the continuity assumption on the sections (and therefore network inference) is
dropped. It should, however, be possible to prove an isomorphism between the global kernel
and a collection of local kernels on a covering of I/Hin, satisfying the relations in Eq. (F.57).

The authors furthermore claim that the steerable kernels can be described on the double
quotient space Hout\I/Hin, still satisfying a steerability constraint.

Relation to GM-convolutions: The steerable CNNs on homogeneous spaces by Cohen
et al. [55][56] are conceptually quite similar to our GM -convolutions on Riemannian man-
ifolds, however, there are some important differences which we discuss in the following.
Most importantly, the theories differ in 1) being based on different spaces I/Hl in each
layer l vs. assuming a fixed manifold M , 2) modeling kernels on the space I/Hin itself
or on tangent spaces TpM of it, 3) the way of how weights are shared, and 4) the types of
global symmetry group I and spaces I/Hl or M , which they cover. Despite these differ-
ences, many of the results of Cohen et al. [55][56] have analogs in our theory.

Both theories share the idea to define feature fields as sections of associated vector bundles.
While Cohen et al. [55][56] consider a global symmetry group I as a set of multiple principal
Hl-bundles over homogeneous spaces I/Hl, we work with some G-structure GM over a
fixed Riemannian manifold M . All of our feature vector bundles are defined as G-bundles
and are associated to each other, while the feature bundles of Cohen et al. [55][56] may not be
associated to each other if their structure groups Hl do not agree. As already claimed at the
end of the last Appendix F.2, these differences can be mitigated if a structure groupG can be
chosen such that Hl ≤ G ≤ I for every layer l and M := I/G is a Riemannian manifold.
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One can then replace all homogeneous spaces I/Hl with M and all Hl-representations ρl
with induced G-representations

ρGl := IndGHl
ρl . (F.60)

The global field transformation laws are preserved by this reinterpretation since

IndIHl
ρl = IndIG IndGHl

ρl = IndIG ρ
G
l (F.61)

holds by induction in stages [35].

Another main difference lies in the definition of convolution kernels and weight sharing. On
the global, coordinate free level and prior to the isometry assumption, Cohen et al. [55][56]
start in Eq. (F.44) with a bounded linear operator which is parameterized by an unconstrained
kernel

κ̂ : I × I → Rcout×cin . (F.62)

This operator corresponds in our theory to a general kernel field transform, Def. 12.2.5,
which is parameterized by an unconstrained kernel field

K : TM → Hom(Ain,Aout) , (F.63)

see Def. (12.2.1). The 2-argument kernels κ̂ can be thought of as representing a kernel field
as well. Their two arguments are thereby thought of as addressing 1) a specific (1-argument)
kernel, yielding a response at the corresponding point in the output bundle I → I/Hout and
2) the spatial dependency of this 1-argument kernel on the input bundle I → I/Hin. The
analog in our kernel fields K is that elements v ∈ TM encode 1) the location p = π

TM
(v)

of the kernel and 2) its spatial dependency via v ∈ TpM .

When requiring the bounded linear operator to be I-equivariant, the 2-argument kernel κ̂
becomes constrained to satisfy

κ̂
(
ϕ̃ϕ, ϕ̃ζ

)
= κ̂(ϕ, ζ) ∀ ϕ̃ ∈ I . (F.64)

Isometry equivariant kernel field transforms were in Theorem 13.2.4 shown to require the
isometry invariance of the kernel field, i.e.

ϕ̃∗,KK = K ∀ ϕ̃ ∈ I ; (F.65)

see Def. 13.2.3 and Fig. 13.6.

The invariance constraint on 2-argument kernels κ̂ allows to replace them with 1-argument
kernels

κ : I → Rcout×cin , (F.66)

defined in Eq. (F.46). They are still required to satisfy the steerability constraint in Eq. (F.48).
Our isometry invariant kernel fields were in Theorem 13.3.2 shown to be equivalent to a field
of kernels

Q̂ : π−1
TM

(
r
M
(I\M)

)
→ π−1

Hom

(
r
M
(I\M)

)
(F.67)

whose support is restricted to the tangent spaces over representatives r
M
(I\M) ⊆ M of

the quotient I\M .9 These kernels are required to satisfy a stabilizer subgroup steerability
9Theorem 13.3.1 proves another isomorphism to a space of kernels Q : rTM (I\TM) →

rHom(I\Hom) whose support is even further restricted to representatives of the tangent bundle quo-
tient I\TM .
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constraint as well. For the specific case that M is a homogeneous space of its isometry
group, the quotient I\M reduces to a single element. Theorem 13.3.2 implies in this case a
single (1-argument) kernel

Q̂ : TpM → Hom(Ain,p,Aout,p) (F.68)

at p = r
M
(I\M), which is the direct analog to the 1-argument kernel of Cohen et al.

[55][56].

Note that the full kernel fields can via the action of I be reconstructed from the single 1-
argument kernels. The theories derive therefore both a form of convolutional weight sharing
from the requirement of global symmetry equivariance. While kernels can for transitive sym-
metries be shared over the whole homogeneous space, they can in general only be shared over
the orbits of the symmetry group. If the manifold is asymmetric in such a way that the orbits
are single points no weights can be shared with this definition. As this is the default case
for Riemannian manifolds, GM -convolutions resort to the sharing of G-steerable kernels by
placing them relative to frames of the G-structure. This definition does not have a coun-
terpart in steerable CNNs on homogeneous spaces. Our Theorem 13.3.3 shows, however,
that the global symmetry induced weight sharing is for the specific case of homogeneous
spaces equivalent to our process of sharing G-steerable kernels. In other words, isometry
equivariant kernel field transforms on homogeneous spaces are necessarily convolutions –
this mirrors the central results of Kondor and Trivedi [162], Bekkers [10] and Cohen et al.
[55][56].

After investigating the analogies for the global, coordinate free kernels of both theories, we
compare the definition of their coordinate representations relative to local trivializations.
Given some choice of trivializing neighborhoods UP ⊆ I/Hout and UA ⊆ I/Hin, the
unconstrained global 2-argument kernels of Cohen et al. [55][56] are locally represented by
unconstrained functions

←̂−κ : UP × UA → Rcout×cin . (F.69)

In our theory, we instead have a single trivializing neighborhood UP = UA ⊆ M relative
to which a kernel field is given by an unconstrained map

KA : UA × Rd → Rcout×cin . (F.70)

Investigating the global I-equivariance of the operator K based on local kernels is on non-
trivial bundles necessarily difficult as it involves multiple trivializations. The equivariance
requirement implies for steerable CNNs on homogeneous spaces the constraints between
different local kernels in Eq. (F.54). They leads to the 1-argument kernels

←−κ EA : UA → Rcout×cin , (F.71)

from Eq. (F.56), which are still subject to the steerability constraint in Eq. (F.57). Single
kernels Kp : TpM → Hom(Ain,p,Aout,p) (like e.g. Q̂ from Eq. (F.68)) are according to
Eq. (12.24) in coordinates given by functions

KAp : Rd → Rcout×cin , (F.72)

whose domains are tangent space coordinates Rd instead of of a open subset UA of the
manifold. A particular important example are G-steerable kernels, which correspond to the
GM -convolutional kernel fields from Def. 12.2.3.

While our kernels are globally defined in a single gauge ψATM,p of TpM , the local 1-argument
kernels of Cohen et al. [55][56] need to be defined on an open cover of I/Hin. As this is
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significantly more complicated, they propose therefore to represent the kernels on a single
gauge which is defined almost everywhere.10 Note that this still requires that this single
trivializing neighborhood is closed under the left action of Hout in order for the constraint
in Eq. (F.57) to make sense. We investigated this approach in Section 17.2 for the specific
example of spherical CNNs, defining kernels on the trivializing neighborhood UA = S2\−
n. Theorem 17.2.1 proved that Cohen et al.’s [55][56] steerable kernels on S2\ − n ⊂ S2

are in this case isomorphic to our G-steerable kernels on BR2(0, π) ⊂ R2. The equivalence
of the corresponding convolutions was established in Theorem 17.2.2.

Finally, we discuss which class of models steerable CNNs on homogeneous spaces cover.
Obviously, the theory does not describe convolutions on non-homogeneous spaces like punc-
tured Euclidean spaces Ed\{0}, the sphere without poles S2\{n, s}, whose isometries O(2)
are non-transitive, the icosahedron, general surfaces or the Möbius strip. However, in con-
trast to GM -convolutions, the base spaces I/Hl are not required to be Riemannian man-
ifolds. While Kondor and Trivedi [162] and Bekkers [10] cover only those convolutions
whose feature fields transform according to scalar fields on I/Hl, the associated bundle
formulation of Cohen et al. [55][56] allows for general field representations ρl. Restricting
to unimodular groups, steerable CNNs on homogeneous spaces do, however, only include
those Aff(G)-equivariant Euclidean convolutions for which the structure groups are sub-
groups of O(d). This reflects in the fact that the steerability constraints of Cohen et al.
[55][56] do not include the determinant factor in the constraint of Bekkers [10] and of our
G-steerable kernels.

10In practice, one might anyways work with compactly supported kernels on a single trivializing
neighborhood, which would render this choice unproblematic.
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Figure F.1: A given coordinate free kernel Kp on the tangent space TpM may be
represented in arbitrary gauges ψA

p or ψB
p . Its coordinate expressions KA

p and KB
p

on Rd differ in general from each other. G-steerable kernels have the property to
take exactly the same form in all gauges, that is, they satisfy KA

p = KB
p = K (not

visualized).

Figure F.2: A coordinate free kernel may be defined by sharing a given kernel K
on Rd relative to some reference frame. Different choices of frames result in a
different coordinate free kernel. G-steerable kernels have the property to produce
exactly the same coordinate free kernel, independent from the chosen reference
frame along which they are shared (not visualized). This allows for a coordinate
independent weight sharing.

Figure F.3: Visualizations of the concepts of 1) the coordinatization of a given coordinate free kernel
on TpM in Fig. F.1 and 2) the sharing of a kernel on Rd along different frames of TpM in Fig. F.2.
Depending on the direction (coordinatization or sharing), the resulting kernels differ either on Rd or
on TpM . G-steerable kernels are exactly those kernels that can be shared in a coordinate independent
manner, i.e. for which the resulting kernels are equivalent in arbitrary gauges.
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Coordinate independent weight sharing

A fundamental assumption in the design of GM -convolutions is that kernels K on Rd are
shared relative to some choice of reference frame as visualized in Fig. F.2. For general ker-
nels different choices of frames will lead to different alignments of the resulting coordinate
free kernel on the tangent space TpM – the weight sharing process is therefore not coordinate
independent. Fig. F.1 shows a different situation: here we assume a coordinate free kernel
Kp that is already given on TpM and express it in different gauges on Rd. The coordinate
representations KAp and KBp do in general not agree with each other but the construction is
coordinate independent.

G-steerable kernels are constrained exactly such that they guarantee the coordinate indepen-
dence of the weight sharing process. Sharing them relative to different frames results in the
same coordinate independent kernel on the tangent space, that is, there will be no difference
between the two kernels in the middle of Fig. F.2. Equivalently, the resulting coordinate free
kernel on TpM will take the same form KAp = KBp = K when being expressed in different
gauges, that is, the left and the right kernel in Fig. F.1 would agree.

Note that this does not necessarily require the kernel to be invariant in the sense that
K(gv) = K(v) for any g ∈ G and any v ∈ Rd, as the visual intuition might suggest. This is
indeed a special case for kernels that map between scalar fields, i.e. for which both ρin and
ρout are trivial representations (see e.g. Fig. 1.3b (left) for G = SO(2) or O(2) or Fig. 1.3b
(left) for G = R). For more general field types the kernels need to be gauge equivariant,
i.e. need to satisfy the G-steerability constraint K(gv) = |det g |−1ρout(g) K(v) ρin(g)

−1

which allows for a steering of the cout × cin kernel channels (not visualized). Of course,
G-steerable kernels can be interpreted as being gauge invariant in the sense that K(v) =
|det g |ρout(g)

−1 K(gv) ρin(g) for any g ∈ G and any v ∈ Rd. This notion of gauge invari-
ance allows the coordinate independent sharing of G-steerable kernels.

A more detailed discussion of coordinate free kernels and their coordinate expressions is
found in Section 9.2.2. The G-steerability constraint is in different settings derived in Sec-
tions 4.3.1 and 9.2.3. Chapter 5 gives more details on steerable kernels in general.
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An intuition for the Wigner-Eckart theorem for steerable
kernels

The Wigner-Eckart theorem 5.3.1 describes the construction of complete G-steerable kernel
bases from 1) harmonics on G-orbits, 2) irrep endomorphisms and 3) Clebsch-Gordan coef-
ficients. As the formal proofs in the original publications by Lang and Weiler [173] and Cesa
et al. [40] are rather technical, we aim in this appendix to motivate these three ingredients
step be step:

harmonics: We start in Appendix H.1 by considering the specific case of convolu-
tions mapping from scalar inputs to general irrep output fields, observ-
ing that their kernel constraints are generally solved by harmonic basis
functions.

endomorphisms: Appendix H.2 shows that these solutions may additionally be composed
with irrep endomorphisms without violating the steerability constraint.

CG-coefficients: Appendix H.3 turns to the general constraint with arbitrary irreducible
input and output field types Vl and VJ , and shows how it may be rewrit-
ten in terms of a tensor product Vl ⊗ VJ . A Clebsch-Gordan decom-
position allows to reduce this constraint into individual constraints on
irrep subspaces. Each of those constraints corresponds to the ones con-
sidered in the previous two sections, which implies that their solutions
in terms of harmonics and irrep endomorphisms can be combined via
Clebsch-Gordan coefficients to give the general solution – this recovers
the statement of the Wigner-Eckart theorem.

Note that this approach is constructivistic – it only shows the sufficiency of and intuition
behind the constructions, but not their necessity, which is proven in [173] and [40]. To
clarify the abstract constructions, we will give examples for different use cases throughout
the appendix.

As in Section 5.3.3, we assume G throughout this appendix to be compact, which allows for
the complete reducibility of finite dimensional G-representation into irreps and guarantees
the existence of harmonic basis functions. X denotes again some G-orbit as described in
Section 5.3.1. (ρj , Vj) denotes the real, unitary G-irrep of order j and dimj := dimVj its
dimensionality.
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H.1 Harmonic kernels

Before turning to general G-steerable kernels that map between arbitrary irreducible input
and output feature fields, i.e. satisfy Eq. (5.27), we consider the simpler case where only
the output type (VJ , ρJ) is an arbitrary irrep, while the input type (ρ0, V0) is assumed to be
trivial for now. Appendix H.3 below will discuss the general case with arbitrary irrep input
fields, reducing it to the current case via a Clebsch-Gordan decomposition.

Given a scalar input field, i.e. ρin = ρ0, the kernel is a map KJ0 : X → RdimJ , satisfy-
ing the constraint KJ0(gx) = ρJ(g)K

J0(x). Using the assumed unitarity (orthogonality)
ρJ(g)

−1 = ρJ(g)
⊤, this constraint is equivalent to KJ0

(
g−1x

)
= ρJ(g)

⊤KJ0(x), or, in
components,

KJ0
m

(
g−1x

)
=
∑
n

ρJ(g)nmK
J0
n (x) ∀ x ∈ X, g ∈ G, m = 1, . . . ,dimJ , (H.1)

where KJ0
m : X → R are scalar functions on the orbit (homogeneous space) X .

We know from the Peter-Weyl theorem B.5.22 that square integrable functions on homo-
geneous spaces of compact groups G decompose into a direct sum of irreducible subspace
components

L2(X,R) ∼=
⊕̂

J

⊕mJ

i=1
VJi , (H.2)

where mJ is the multiplicity of the irreducible subspaces VJi ∼= RdimJ that are acted on by
irrep ρJ . Each subspace VJi has a basis of harmonic functions

{
Y mJi

∣∣m = 1, . . . ,dimJ

}
,

transforming according to irrep ρJ as Y mJi
(
g−1x

)
=
∑
n ρJ(g)nmY

n
Ji(x). Noting that this

defining equation of the harmonic basis agrees exactly with the kernel constraint in Eq. (H.1),
we see that the vector valued functions

#»

YJi :=
(
Y 1
Ji, . . . , Y

dimJ

Ji

)⊤
: X → RdimJ (H.3)

constitute mJ solutions. These solutions do, however, not span the full G-steerable kernel
space yet, but may additionally be modulated via irrep endomorphisms, as discussed in the
next Appendix H.2.

Examples: Fig. 4.1 visualizes a mapping from a scalar field (l = 0) to a frequency J =
3 irrep field, as discussed in this paragraph, for G = SO(2). It requires a G-steerable kernel
whose angular part is given by frequency j = 3 circular harmonics, for instance

#»

Y
SO(2)
3 (ϕ) =

(
cos(3ϕ), sin(3ϕ)

)⊤
. (H.4)

Another example are steerable convolutions between input and output scalar fields, requiring
G-invariant (constant) kernels, i.e. K00(gx) = K00(x). This result is expected, since scalar
fields cannot encode any information about the G-pose of patterns of features, and invariant
kernels cannot detect such poses. Both examples have mJ = 1, i.e. there is only a single
harmonic subspace associated to irrep ρJ .

H.2 Irrep endomorphisms

While the harmonic basis functions in Eq. (H.3) are solutions of the kernel constraint, they
are not necessarily spanning the complete solution space yet. As proven by Lang and Weiler
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[173], the complete solution space allows for a postcomposition with irrep endomorphisms
(Def. B.5.9), that is, linear maps cJ ∈ RdimJ × dimJ that commute with the irrep action:

cJ · ρJ(g) = ρJ(g) · cJ ∀ g ∈ G (H.5)

To make this result plausible, observe that

cJ ·KJ0(gx) = cJ · ρJ(g)KJ0(x) = ρJ(g) · cJ ·KJ0(x) (H.6)

holds for arbitrary points x ∈ X , group elements g ∈ G, endomorphism cJ ∈ End(VJ)
and G-steerable kernels KJ0, implying that cJ ·KJ0 is G-steerable if KJ0 is. The Wigner-
Eckart theorem 5.3.1 proves that such endomorphism modulated harmonics are indeed mak-
ing up the complete space of steerable kernels KJ0.1 More specifically, let{

cJr
∣∣ r = 1, . . . ,dimEnd(VJ)

}
(H.7)

be a basis of the irrep endomorphism space End(VJ), then a steerable basis is given by

KG,X
ρ0,ρJ :=

{
KJ0 : X → RdimJ

∣∣∣KJ0(gx) = ρJ(g) ·KJ0(x) ∀ x ∈ X, g ∈ G
}

= span
{
cJr ·

#»

YJi
∣∣ i = 1, . . . ,mJ , r = 1, . . . ,dimEnd(VJ)

}
, (H.8)

i.e. all mJ harmonics of order J , modulated by the dimEnd(VJ) basis endomorphisms.

The dimensionality of End(VJ) is for real irreps VJ either 1, 2 or 4, depending on whether
the irrep is of real, complex or quaternionic type; see [25].

Example: To give an example, consider G = SO(2), whose real irreps are the one-
dimensional trivial representation ρ0(ϕ) = (1) and the two-dimensional frequency J ro-
tation matrices

ρJ(ϕ) =

(
cos(Jϕ) − sin(Jϕ)
sin(Jϕ) cos(Jϕ)

)
J ∈ N . (H.9)

The latter are irreps of complex type and have a two-dimensional endomorphism space
spanned by

End(VJ) = span

((
1 0
0 1

)
,

(
0 −1
1 0

))
J ∈ N , (H.10)

as is easily checked. SE(2)-equivariant linear maps from scalar fields to order J ≥ 1 irrep
fields are therefore convolutions with SO(2)-steerable kernels, whose angular parts are given
by a linear combination of(

cos(Jϕ)
sin(Jϕ)

)
=

(
1 0
0 1

)(
cos(Jϕ)
sin(Jϕ)

)
e.g., for J = 2,

( )⊤
and(
− sin(Jϕ)
cos(Jϕ)

)
=

(
0 −1
1 0

)(
cos(Jϕ)
sin(Jϕ)

)
e.g., for J = 2,

( )⊤
.

1Here we are still assuming scalar input fields and general irrep output fields, i.e. ρin = ρ0 and
ρout = ρJ .
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These are a pair of circular harmonics, and another pair that is phase-shifted by π/2 (or a
spatial angle of π/(2J)) relative to the first one. A linear combination of these basis elements
allows to express any phase shifted pair of circular harmonics.

If we would have considered G = O(2) instead of SO(2), the endomorphism space would
have been one-dimensional, thus resulting in a one-dimensional steerable kernel basis. These
solutions for SO(2) and O(2) are shown in the bottom left entries of Tables 5.2 and 5.3,
respectively.

H.3 General irrep steerable kernels and Clebsch Gordan coefficients

The case of general steerable kernels between irreducible input and output feature fields is
via a Clebsch Gordan decomposition (Def. B.5.17) reduced to the previous case. To see this,
we vectorize the irrep kernel constraint, Eq. (5.27), which yields2

vecKJl(gx) =
(
ρ−⊤l ⊗ ρJ

)
(g) vecKJl(x) ∀x ∈ X, g ∈ G , (H.11)

Since ρl is unitary, we have ρ−1l = ρ⊤l , resulting in a constraint involving the irrep ten-
sor product ρl ⊗ ρJ . Such tensor products of irreducible representations are in general not
irreducible. Their reduction to irreducible subspaces is known as Clebsch-Gordan decom-
position, which is an isomorphism

CGlJ : Vl ⊗ VJ →
⊕
j∈Ĝ

mj,lJ⊕
s=1

Vj , (H.12)

where the first summand is over all (isomorphism classes of) irreps, while the second sum
determines the (potentially zero) multiplicity mj,lJ ∈ N0 with which irrep ρj occurs in the
tensor product ρl ⊗ ρJ . Using it to decompose CGlJ

(
ρl⊗ρJ

)
CG−1lJ =

⊕
j∈Ĝ

⊕mj,lJ

s=1 ρj ,
the general irrep kernel constraint in Eq. (H.11) implies

CGlJ vecK
Jl(gx) = CGlJ

(
ρ−⊤l ⊗ ρJ

)
(g)
[
CG−1lJ CGlJ

]
vecKJl(x)

⇐⇒ K
Jl
(gx) =

⊕
j∈Ĝ

⊕mj,lJ

s=1
ρj(g)K

Jl
(x) (H.13)

for any x ∈ X and g ∈ G, where K
Jl

:= CGlJ vecK
Jl. The steerable kernel consists

therefore of mj,lJ subspaces that transform according to ρj . As discussed in the previous
two sections, each of these subspaces has a basis described by harmonics of order j and
their irrep endomorphisms cjr, r = 1, . . . ,dimEnd(Vj). The complete basis of steerable
kernels is therefore spanned by

KJl
srji := unvecCG+

lJ,js cjr
#»

Yji j ∈ Ĝ, s ≤ mj,lJ , i ≤ mj , r ≤ dimEnd(Vj)

(H.14)

where CGlJ,js := projjs ◦CGlJ is the Clebsch-Gordan decomposition in Eq. (H.12),
followed by a projection on the s-th irreducible subspace Vj , such that the pseudoinverse

2The vectorization operator vec : Rm×n → Rm·n acts on an m×n–matrix by stacking its
columns into an m·n-vector. It satisfies vec(AXB) = (B⊤ ⊗A) vec(X) for any triple A,X,B
of dimensionally matching matrices [229].
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CG+
lJ,js is the embedding of this subspace Vj into Vl ⊗ VJ . This is exactly the statement of

the Wigner-Eckart theorem 5.3.1 for G-steerable kernels.

Given the harmonics, irrep endomorphisms and Clebsch-Gordan coefficients of the structure
groupG, this result allows us to construct the most generalG-steerable kernels for mappings
between irrep fields. An additional change of basis byQin andQout (Section 5.3.2) turns this
into steerable kernel bases for arbitrary field types ρin and ρout.

Example: As a simple example, let us consider the case of irrep fields for G = SO(3).
The irreps of SO(3) are Wigner D-matrices Dj : SO(3) → GL(Vj), acting on Vj ∼=
R2j+1, where j ∈ N0. They are of real type, implying that the endomorphism spaces
are one-dimensional, and can therefore be ignored. The (non-trivial) orbits are 2-spheres,
such that

#»

Yj : S2 → R2j+1 is a vector of 2j + 1 spherical harmonics as shown in the
rows of Fig. 5.3. Each harmonic subspace in the Peter-Weyl decomposition of L2(S2,R)
appears with multiplicity mJ = 1, such that we may ignore the index i. The Clebsch-
Gordan decomposition of Vl ⊗ VJ contains all of the 2min(l, J) + 1 irreps Vj with indices
|l − J | ≤ j ≤ l + J with multiplicity mj,lJ = 1 and all other irreps with multiplicity
zero – we can therefore restrict to this range of indices and drop the index s as well. What
remains is the basis

KSO(3)
ρl,ρJ

= span
{
Kj := unvecCG+

lJ,j

#»

Yj
∣∣ |l − J | ≤ j ≤ l + J

}
, (H.15)

of (angular parts of) SO(3)-irrep steerable kernels; as originally derived by Weiler et al.
[323]. A general SO(3)-irrep steerable kernel is expanded in this basis, with one learn-
able parameter per harmonic component j and radial shell (or alternative parametrization
of the radial part). Fig. 5.4 visualizes different input and output irrep orders l and J and
the valid harmonic components j mapping between them. The similarity to the selection
rules for quantum state transitions in the hydrogen atom are no coincidence, since the hy-
drogen atom’s potential is SO(3)-invariant, implying that its quantum states are irreducible
representations of SO(3).





APPENDIX I

Existence and smoothness of kernel field transforms

In Def. 12.2.5 we proposed kernel field transforms TK as smooth integral transforms

TK : Γ(Ain)→ Γ(Aout) (I.1)

which are parameterized by some kernel field K (Def. 12.2.1) and are pointwise given by[
TK(f)

]
(p) :=

∫
TpM

K(v) Exp∗pf(v) dv =

∫
TpM

K(v) PAin,p←exppv
f(exppv) dv . (I.2)

Kernel field transforms include GM -convolutions from Def. 12.2.7 as a special cases for
GM -convolutional kernel fields.

Here we briefly discuss the well-definedness of kernel field transforms. It is clear that the
integrand of Eq. (I.2) lies for any p ∈ M and v ∈ TpM in Aout,p. What remains to be
shown is the existence of the integral and the smoothness of the resulting feature field. In
the following we will first give some general remarks on how to approach these questions.
We will then prove Theorem 12.2.6, i.e. the well-definedness of kernel field transforms for
the specific case of fields of kernels which are compactly supported on a ball of fixed radius
around the origin.

Existence: The existence and smoothness of kernel field transforms requires a suitable
choice of kernel field K. Similar to the case of conventional convolutions on M = R, the
requirements on K in order for the kernel field transform to exist depend on the specific
properties of the input feature field f ∈ Γ(Ain).1 In general, K needs to decay sufficiently
rapidly in order to make the integrand in Eq. (I.2) integrable.

A special case of great practical importance is that of kernels Kp : TpM →
Hom(Ain,p,Aout,p) which are at any p ∈ M compactly supported. In this case the inte-
gral is always guaranteed to exist. To see this, note that (input) feature fields and kernel
fields are defined to be smooth. The smoothness of the metric further implies that the Rie-
mannian volume density, the exponential map and the parallel transport are smooth [100].
In combination, the whole integrand in Eq. (I.2) is seen to be a smooth and thus continuous
function from TM toAout. IfKp is in addition compactly supported, the integrand becomes
continuous and compactly supported on TpM , which, by a generalization of the extreme

1See the discussion at https://en.wikipedia.org/wiki/Convolution#Domain_of_
definition.

https://en.wikipedia.org/wiki/Convolution#Domain_of_definition
https://en.wikipedia.org/wiki/Convolution#Domain_of_definition
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value theorem, implies that its image is compact (and in a local trivialization Rc of Aout,p
bounded) [252]. This guarantees the existence of the integral [93, 282].

Depending on the application, the requirement on the support of K might be relaxed. For
instance, images on M = Rd are usually compactly supported themselves, such that no
additional properties of K except for its smoothness are required.

Smoothness: We turn to discuss the smoothness of kernel field transforms, that is, their
property to map smooth input fields fin ∈ Γ(Ain) to smooth output fields fout := TK(fin) ∈
Γ(Aout). By definition, a map fout : M → Aout between manifolds M and Aout is said
to be smooth if its coordinate representations are smooth. In equations, fout is smooth if
for any p ∈ M there exist smooth charts (U, ϕ) about p in M and (Ũ , ϕ̃) about fout(p)

in Aout with fout(U) ⊆ Ũ such that ϕ̃ ◦ fout ◦ ϕ−1 : ϕ(U) → ϕ̃(Ũ) is smooth as a map
between (subsets of) Euclidean spaces. Given (U, ϕ), a convenient choice for (Ũ , ϕ̃) would
be ϕ̃ :=

(
ϕ × id

)
◦ ΨAout

: π−1
Aout

(U) 7→ ϕ(U) × Rc ⊆ Rd × Rc , however, the following

discussion is independent from this choice.2 A map between (subsets of) Euclidean spaces is
smooth if it is smooth in each component of its image, here in each of the d+ c dimensions
of ϕ(U)× Rc. We are therefore interested in the smoothness of the maps

Fi : ϕ(U)→ R, x 7→
[
ϕ̃ ◦ fout ◦ ϕ−1

]
i

(I.3)

for any i = 1, . . . , d + c. By writing out fout and expressing the integral over TpM by an
integral over Rd as discussed in Appendix C.4, the Fi are seen to be of the form

Fi(x) =

∫
Rd

Ii(v, x) dv . (I.4)

The coordinate expressions of the integrands Ii are hereby for any i = 1, . . . , d+ c given by

Ii : Rd×ϕ(U)→ R, (v, x) 7→ (I.5)[
ϕ̃ ◦ K

(
ψ−1
TM,ϕ91(x)

(v)
)
◦ PAin,ϕ

91(x)←exp ◦ψ
TM,ϕ91(x)(v)

◦ fin ◦ exp ◦ψ−1TM,ϕ91(x)
(v)

]
i

,

where we assumed, for convenience and without loss of generality, that ψTM,ϕ91(x) is an
isometric gauge of Tϕ91(x)M , such that the volume scaling factor

√
|det ηp| = 1 drops out.

Note that the integrands Ii are composed of smooth maps and are therefore smooth as well.

From the previous discussion it is clear that the smoothness of fout holds if all Fi are smooth,
i.e. infinitely often partially differentiable. To prove the smoothness of the Fi, it is suf-
ficient to show that the partial differentiations and the integration in Eq. (I.4) commute –
which is not always the case. If they do commute, partial derivatives of arbitrary orders
(n1, . . . , nd) ∈ Nd are given by[

∂n1
x1
. . . ∂nd

xd
Fi
]
(x) =

∫
Rd

[
∂n1
x1
. . . ∂nd

xd
Ii
]
(v, x) dv (I.6)

2Note that π−1

Aout
(U) is guaranteed to be trivializable given that (ϕ,U) is a chart of M . This is clear

since the coordinate bases
[

∂
∂ϕµ

]d
µ=1

of (ϕ,U) yields a trivialization of π−1

TM
(U) (see Appendix C) and

since the local trivializations of FM and A were in Section 11.4 induced from those of TM .
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where 1) the partial derivatives
[
∂n1
x1
. . . ∂nd

xd
Ii
]

of the integrand exist (due to the smoothness
of Ii their existence is guaranteed) and 2) their integral exists. Whether or not the differenti-
ations commute with the integral can be investigated by making use of the following lemma
from [93],3 which is a consequence of the dominated convergence theorem.

Theorem I.0.1 (Differentiation lemma [93]). Let V be a measure space, let T ⊂ R be a
non-degenerate interval and let I : V×T → R be a map with the following properties:

(i) For any fixed t ∈ T the map v 7→ I(v, t) is Lebesgue integrable on V

(ii) For any fixed v ∈ V the map t 7→ I(v, t) is differentiable in T

(iii) There exists a Lebesgue integrable function B : V → R such that∣∣ ∂
∂tI(v, t)

∣∣ ≤ B(v) for any (v, t) ∈ V × T

Then the function F : T → R, t 7→
∫
V
I(v, t) dv is differentiable with derivative

∂

∂t
F (t) =

∫
V

∂

∂t
I(v, t) dv .

The applicability of this lemma (repeatedly for every single partial differentiation) depends
on the properties of the integrand, which in turn depends on the specific properties of the
kernel fieldK and the input feature field fin. For the case of a kernel field which is compactly
supported on balls of fixed radius around the origin of each tangent space, the lemma applies.
Based on this, we give a proof of Theorem 12.2.6 in the remainder of this appendix.

Proof of Theorem 12.2.6 – Kernel field transform existence for compactly
supported kernels

Denote by B closed
TpM

(0, R) :=
{
v ∈ TpM

∣∣ ∥v∥ ≤ R
}

the closed ball of radius R > 0 around
the origin of TpM and by B closed

Rd (0, R) :=
{
v ∈ Rd

∣∣ ∥v∥ ≤ R
}

the corresponding ball
around the origin of Rd. Note that any isometric gauge satisfies ψTM,p

(
B closed
TpM

(0, R)
)
=

B closed
Rd (0, R). Let K̃ be a kernel field whose support falls within balls of the same radius R

in each tangent space, i.e. which satisfies

supp
(
K̃p
)
⊆ B closed

TpM (0, R) ∀p ∈M (I.7)

and thus, for any isometric gauge ψTM,p:

supp
(
K̃p ◦

(
ψTM,p

)−1) ⊆ B closed
Rd (0, R) ∀p ∈M (I.8)

According to Theorem 12.2.6 this property is sufficient to guarantee that the corresponding
kernel field transform TKR

is well defined. A proof of this statement is given in the following.

3Similar versions of this lemma in English language can be found in [156] or at https://en.
wikipedia.org/wiki/Leibniz_integral_rule#Measure_theory_statement. In contrast
to those versions, the version from [93] allows for T being any non-degenerate interval, including
closed intervals, which saves us some additional steps below.

https://en.wikipedia.org/wiki/Leibniz_integral_rule#Measure_theory_statement
https://en.wikipedia.org/wiki/Leibniz_integral_rule#Measure_theory_statement
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Proof: As already stated in the beginning of this appendix, the existence of the integral is
guaranteed given that the kernel supports are compact: The compactness of the kernels
carries over to the integrands of the kernel field transform. Their smoothness further im-
plies their continuity and integrals of compactly supported continuous functions always
exists.

To prove the smoothness of the resulting output feature field fout, we proceed with the
discussion earlier in this section. We aim to apply the differentiation lemma I.0.1 to
swap partial derivatives ∂

∂xµ
for any µ = 1, . . . , d in Eq. (I.6) at any x0 ∈ ϕ(U) with

the integration over Rd. For this purpose, we introduce the auxiliary functions

Ii,x0,µ : Rd × [−ε, ε]→ R, (v, t) 7→ I(v, x0 + tϵµ) (I.9)

and

Fi,x0,µ : [−ε, ε]→ R, t 7→ F (x0 + tϵµ) =

∫
Rd

Ii,x0,µ(v, t) dv , (I.10)

where ϵµ ∈ Rd is the unit vector in µ-direction and ε > 0 is chosen such that{
x0 + tϵµ

∣∣ t ∈ [−ε, ε]
}
⊂ ϕ(U), which is always possible since ϕ(U) is open.

Then Ii,x0,µ is with the identifications V = Rd and T = [−ε, ε] of the form re-
quired by lemma I.0.1. It satisfies property (i) by the assumption that the kernel field
transform exists as discussed earlier. Property (ii) holds due to the smoothness of
the full integrand in Eq. (I.5). For property (iii), observe that both Ii,x0,µ and its
derivative are smooth such that the absolute value

∣∣ ∂
∂tIi,x0,µ

∣∣ is continuous. Since it
is in addition compactly supported on B closed

Rd (0, R) × [−ε, ε], it is by (a generaliza-
tion of) the extreme value theorem bounded by some number b ≥ 0. We therefore set
B(v) = b · IB closed

Rd
(0,R)×[−ε,ε] where I is the indicator function. This choice satisfies∣∣ ∂

∂tI(v, t)
∣∣ ≤ B(v) for any (v, t) ∈ V × T and is integrable such that property (iii) is

fulfilled as well. We can therefore swap the order of differentiation and integration for
arbitrary choices of x0 and µ, which we use to pull arbitrary partial derivatives into the
integral:[

∂

∂xµ
Fi

]
(x0) =

[
∂

∂t
Fi,x0,µ

]
(0) =

∫
Rd

∂

∂t
Ii,x0,µ(v, t)

∣∣∣
t=0

dv (I.11)

=

∫
Rd

∂

∂xµ
Ii(v, x)

∣∣∣
x=x0

dv

Due to the smoothness and compact support of the integrand Ii, its partial derivatives
∂
∂xµ

I are smooth and compactly supported as well. They do therefore satisfy properties
(i), (ii) and (iii) as well (with a potentially adapted bound b). It is thus possible
to repeat the partial differentiation of Fi infinitely often, which proves its smoothness.
Since the derivations were independent from the particular choices for the point p ∈M ,
charts (U, ϕ) and (Ũ , ϕ̃), points x0 ∈ ϕ(U) and indices i and µ, this result proves the
smoothness of the whole output feature field fout = TK(fin).

□



APPENDIX J

Regular feature fields as scalar functions on G-structure

Real-valued functions 𭟋 : GM → R on the G-structure are equivalent to regular feature
fields f :M → Areg on the manifold, that is, that there is an isomorphism

C∞(GM) ∼= Γ(Areg) . (J.1)

This appendix presents a proof of this claim for the case of finite structure groupsG. We start
with the usual definition of (real) regular representations of finite structure groups, which act
on the (free) vector spaces R|G|. One defines a basis

{
ϵg ∈ R|G|

∣∣ g ∈ G} of R|G|, which
is labeled by the group elements g ∈ G. The (left) regular representation’s action on R|G| is
then defined in terms of its action on these basis vectors, which is given by left translation.
Specifically, for any h, g ∈ G, the regular representation acts as follows:

ρreg(h) ϵg := ϵhg . (J.2)

Note that the action on coefficients of a vector is inverse

ρreg(h)
∑
g∈G

fg ϵg =
∑
g∈G

fg ϵhg =
∑
g̃∈G

fh−1g̃ ϵg̃ , (J.3)

which is useful to know, however, we won’t need this property in the following. As the
regular representation permutes the basis vectors of R|G|, it is a permutation representation.
Some visualizations for the cyclic groupG = C4 are found in Appendix B of [322]. Regular
feature fields are defined as smooth sections of the associated G-bundle

Areg =
(
GM × R|G|)/∼ρreg , (J.4)

as defined in Section 11.3.3.

The isomorphismC∞(GM) ∼= Γ(Areg) substantiates our claim in Chapter 18 that the Paral-
lel Frame CNNs by Yang et al. [339] are specific GM -convolutions between regular feature
fields. It furthermore establishes the link between group convolutions (see Appendix F.1)
and regular GM -convolutions that was claimed in Section 15.3 and [322]. A related result,
stating that regular steerable convolutions on Euclidean spaces are group convolutions, was
discussed in Section 4.5.
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With these preparations and remarks we are ready to formulate and prove the theorem:

Theorem J.0.1 (Regular feature fields as scalar functions on G-structure).
Let G ≤ GL(d) be a finite structure group, let GM be a G-structure over M and let
Areg be the bundle that is associated by the action of the regular representation ρreg
of G. Regular feature fields are then identical to smooth, real-valued functions on the
G-structure, that is, there is an isomorphism

Λ : C∞(GM)
∼−→ Γ(Areg) . (J.5)

This isomorphism is defined by[
Λ𭟋
]
(p) =

[
[ei]

d
i=1 ,

∑
g
𭟋
(
[ei]

d
i=1 ◁ g

)
ϵg
]
, (J.6)

where [ei]
d
i=1 ∈ GpM is an arbitrarily chosen representative frame at p. Its inverse is

given by [
Λ−1f

](
[ei]

d
i=1

)
=
〈
ϵe , ψ

[ei]
d
i=1

A,p f(p)
〉
, (J.7)

where we abbreviated p = π
GM

(E) and denote by ψ[ei]
d
i=1

A,p that (unique) gauge that

corresponds to the frame [ei]di=1, i.e. which satisfies ψ[ei]
d
i=1

A,p
(
[ei]

d
i=1

)
= e.

Proof: To prove this statement, we need to show that 1) the isomorphism preserves the
smoothness of the maps, 2) that the choice of representative frame [ei]

d
i=1 ∈ GpM in

the definition of Λ is indeed arbitrary and 3) that Λ−1 is indeed a left and right inverse
of Λ.

1) smoothness :

That the isomorphism preserves the smoothness of the equivalent field representa-
tions is clear since all involved morphisms (right action, gauge map, inner product)
are smooth.

2) independence of the definition of Λ, Eq. (J.6), from the choice of representative frame
[ei]

d
i=1 ∈ GpM :

Suppose that we used any other frame [ei]
d
i=1 ◁ h for an arbitrary h ∈ G. This

arbitrary gauge transformation drops then out by making use of the equivalence
relation ∼ρreg that is underlying the associated bundle construction, Eq. (J.5):[

Λ𭟋
]
(p) (J.8)

=
[
[ei]

d
i=1 ◁ h ,

∑
g
𭟋
(
[ei]

d
i=1 ◁ hg) ϵg

]
(Def. of Λ, Eq. (J.6))

=
[
[ei]

d
i=1 , ρreg(h)

∑
g
𭟋
(
[ei]

d
i=1 ◁ hg) ϵg

]
(equiv. relation ∼ρreg , Eq. (11.42))

=
[
[ei]

d
i=1 ,

∑
g
𭟋
(
[ei]

d
i=1 ◁ hg) ϵhg

]
(ρreg action on basis ϵg , Eq. (J.2))

=
[
[ei]

d
i=1 ,

∑
g̃
𭟋
(
[ei]

d
i=1 ◁ g̃) ϵg̃

]
(substitution g̃ = hg)
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3) Λ−1 in Eq. (J.7) is a well defined inverse of Λ in Eq. (J.6) :

3a) Λ−1◦Λ = idC∞(GM), that is, Λ−1 is a left inverse of Λ :

For any 𭟋 ∈ C∞(GM) and any [ei]
d
i=1 this is shown as follows:[

Λ−1◦Λ𭟋
](
[ei]

d
i=1)

=
〈
ϵe , ψ

[ei]
d
i=1

A,p [Λ𭟋](p)
〉

(Def. of Λ−1, Eq. (J.7))

=
〈
ϵe , ψ

[ei]
d
i=1

A,p
[
[ei]

d
i=1 ,

∑
g
𭟋
(
[ei]

d
i=1 ◁ g

)
ϵg
]〉

(Def. of Λ, Eq. (J.6))

=
〈
ϵe ,

∑
g
𭟋
(
[ei]

d
i=1 ◁ g

)
ϵg
〉

(Def. of ψA,p, Eq. (11.66))

=
∑

g
𭟋
(
[ei]

d
i=1 ◁ g

)
⟨ϵe, ϵg⟩ (pull inner product into sum)

= 𭟋
(
[ei]

d
i=1

)
(Kronecker delta δe,g = ⟨ϵe, ϵg⟩)

(J.9)

3b) Λ◦Λ−1 = idΓ(Areg), that is, Λ−1 is a right inverse of Λ :

Let f ∈ Γ(Areg) and p ∈M , then:[
Λ◦Λ−1f

]
(p)

=
[
[ei]

d
i=1 ,

∑
g

[
Λ−1f ]

(
[ei]

d
i=1 ◁ g

)
ϵg
]

(Def. of Λ, Eq. (J.6))

=
[
[ei]

d
i=1 ,

∑
g

〈
ϵe , ψ

[ei]
d
i=1◁g

A,p f(p)
〉
ϵg
]

(Def. of Λ−1, Eq. (J.7))

=
[
[ei]

d
i=1 ,

∑
g

〈
ϵe , ρreg(g)

−1ψ
[ei]

d
i=1

A,p f(p)
〉
ϵg
]

(gauge trafo, Eq. (11.69))

=
[
[ei]

d
i=1 ,

∑
g

〈
ρreg(g)ϵe , ψ

[ei]
d
i=1

A,p f(p)
〉
ϵg
]

(unitarity of ρreg)

=
[
[ei]

d
i=1 ,

∑
g

〈
ϵg , ψ

[ei]
d
i=1

A,p f(p)
〉
ϵg
]

(ρreg action on basis ϵe, Eq. (J.2))

=
[
[ei]

d
i=1 , ψ

[ei]
d
i=1

A,p f(p)
]

(remove expansion in basis ϵg)

= f(p) (Def. of ψA,p, Eq. (11.66))
(J.10)

This concludes our prove of the equivalence of C∞(GM) and Γ(Areg). □





APPENDIX K

Quotient representative kernel fields – proofs

In this appendix we give proofs for Theorems 13.3.1 and 13.3.3.

K.1 Proof of Theorem 13.3.1 – Isomorphism between isometry invariant
and quotient representative kernel fields

Theorem 13.3.1 claims that the spaces KIinvar of isometry invariant kernel fields in Eq. (13.53)
and KIquot of quotient representative kernel fields in Eq. (13.93) are isomorphic to each other
and that the isomorphism is given by the lift Λ whose inverse Λ−1 is the restriction to
r
TM

(I\TM). Here we present a proof for this statement which consists of showing that
1) Λ−1 is indeed an inverse of Λ, 2) the defining properties of KIinvar and KIquot are satisfied
after lifting and restricting and 3) the constructions do not depend on arbitrary choices.

1) Λ−1 in Eq. (13.95) is a well defined inverse of Λ in Eq. (13.94) :

1a) Λ ◦ Λ−1 = idKI
invar

, that is, Λ−1 is a right inverse of Λ :

This claim follows for any K ∈KIinvar and any v ∈ TM from[
Λ ◦ Λ−1(K)

]
(v) =

[
Λ(K|r

TM
(I\TM))

]
(v) (K.1)

= Φr
TM
(v)∗,HomK|rTM(I\TM) rTMQTM

(v)

= Φr
TM
(v)∗,HomK rTMQTM

(v)

= KΦr
TM
(v)∗,TM rTMQTM

(v)

= K(v) ,

where the invariance (equivariance) of the kernel field in Eq. (13.54) allowed to
swap the order of the isometry action and the evaluation of the kernel field in the
penultimate step.

1b) Λ−1 ◦ Λ = idKI
quot

, that is, Λ−1 is a left inverse of Λ :

LetQ ∈KIquot and w ∈ r
TM

(I\TM). Note that r
TM
Q
TM

(w) = w since w is an orbit
representative. Furthermore, since w = Φr

TM
(w)∗,TM rTMQTM

(w) = Φr
TM
(w)∗,TM(w)
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it follows that Φr
TM
(w) ∈ Stabw such that, by the constraint in Eq. (13.93),

Φr
TM
(w)∗,HomQ(w) = Q(w). Together, this proves the claim:[

Λ−1 ◦ Λ(Q)
]
(w) = Λ(Q)

∣∣
r
TM

(I\TM)
(w) (K.2)

= Λ(Q)(w)
= Φr

TM
(w)∗,HomQ rTMQTM

(w)

= Φr
TM
(w)∗,HomQ(w)

= Q(w)

2) The defining properties of KIinvar and KIquot are satisfied after lifting and restricting :

2a) πHom◦Λ(Q) = π
TM

for anyQ ∈KIquot, that is, the lift Λ(Q) is a bundleM -morphism:
For any Q ∈KIquot and for any v ∈ TM this claim follows from[

πHomΛ(Q)
]
(v) = πHomΦrTM(v)∗,HomQ rTMQTM

(v) (K.3)

= Φr
TM
(v)πHomQ rTMQTM

(v)

= Φr
TM
(v)π

TM
r
TM
Q
TM

(v)

= Φr
TM
(v)r

M
πI\TM QTM

(v)

= Φr
TM
(v)r

M
Q
M
π
TM

(v)

= π
TM

(v) ,

where the last step made use of Eq. (13.87).

2b) πHom◦Λ−1(K) = π
TM

for any K ∈ KIinvar, that is, Λ−1(K) is a bundle r
M
(I\M)-

morphism :
This property follows immediately from the corresponding property of K after re-
stricting to r

TM
(I\TM) ⊆ π−1

TM

(
r
M
(I\M)

)
. For any w ∈ r

TM
(I\TM):

πHom

[
Λ−1(K)

]
(w) = πHomK|rTM(I\TM)(w) (K.4)

= πHomK(w)
= π

TM
(w)

(K.5)

2c) ϕ∗,Hom Λ(Q)ϕ−1∗,TM = Λ(Q) ∀ϕ ∈ I , that is, Λ(Q) satisfies the full isometry invari-
ance constraint :
Let v ∈ TM and ϕ ∈ I . Due to the invariance of the quotient map Q

TM
under

isometries we have Q
TM

(ϕ−1∗,TMv) = Q
TM

(v). Note further that[
Φr

TM
(v)−1 ϕ Φr

TM
(ϕ−1∗,TMv)

]
∗,TMrTMQTM

(v) (K.6)

=
[
Φr

TM
(v)−1 ϕ Φr

TM
(ϕ−1∗,TMv)

]
∗,TMrTMQTM

(
ϕ−1∗,TMv

)
=
[
Φr

TM
(v)−1 ϕ

]
∗,TM ϕ

−1
∗,TM v

= Φr
TM
(v)−1∗,TM v

= r
TM
Q
TM

(v)
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implies [
Φr

TM
(v)−1 ϕ Φr

TM
(ϕ−1∗,TMv)

]
∈ Stabr

TM
Q
TM

(v) , (K.7)

which, via the stabilizer constraint in Eq. (13.93), leads to[
Φr

TM
(v)−1 ϕ Φr

TM
(ϕ−1∗,TMv)

]
∗,HomQ r

TM
Q
TM

(v) = Q r
TM
Q
TM

(v) . (K.8)

Putting these observations together proves the claim:
ϕ∗,Hom Λ(Q)ϕ−1∗,TM(v) (K.9)

= ϕ∗,Hom ΦrTM(ϕ
−1
∗,TMv)∗,HomQ r

TM
Q
TM

(
ϕ−1∗,TMv

)
= ϕ∗,Hom ΦrTM(ϕ

−1
∗,TMv)∗,HomQ r

TM
Q
TM

(v)

=
[
Φr

TM
(v) Φr

TM
(v)−1

]
∗,Hom

ϕ∗,Hom Φr
TM
(ϕ−1∗,TMv)∗,HomQ r

TM
Q
TM

(v)

= Φr
TM
(v)∗,Hom

[
Φr

TM
(v)−1 ϕ Φr

TM
(ϕ−1∗,TMv)

]
∗,Hom
Q r

TM
Q
TM

(v)

= Φr
TM
(v)∗,HomQ r

TM
Q
TM

(v)

= Λ(Q)

2d) ξ∗,Hom

[
Λ−1(K)

]
(w) =

[
Λ−1(K)

]
(w) ∀ w ∈ r

TM
(I\TM), ξ ∈ Stabw, that is,

Λ−1(K) satisfies the stabilizer constraint :
This statement is easily proven since the invariance (equivariance) properties of K
carry over to its restriction Λ−1(K). We obtain for arbitrary w ∈ r

TM
(I\TM) and

ξ ∈ Stabw, that:
ξ∗,Hom

[
Λ−1(K)

]
(w) = ξ∗,HomK|rTM(I\TM)(w) (K.10)

= ξ∗,HomK(w)
= K

(
ξ∗,TMw

)
= K(w)
= K|r

TM
(I\TM)(w)

=
[
Λ−1(K)

]
(w)

3) All constructions and proofs are independent from the particular choice of Φr
TM

:
The definition

Φr
TM
: TM → I such that Φr

TM
(v)∗,TMrTMQTM

(v) = v (K.11)
from Eq. (13.86) is unique up to right multiplication of Φr

TM
with any

ξr
TM
: TM → I such that ξr

TM
(v) ∈ Stabr

TM
Q
TM

(v) (K.12)

since, obviously, Φr
TM
(v)∗,TM ξrTM(v)∗,TM rTMQTM

(v) = Φr
TM
(v)∗,TM rTMQTM

(v) =
v for any v ∈ TM . As argued in footnote 10, this covers all degrees of free-
dom in the definition of reconstruction isometries. From the stabilizer constraint in
Eq. (13.93) it follows that ξr

TM
(v)∗,HomQ rTMQTM

(v) = Q r
TM
Q
TM

(v) such that the
lift Λ is seen to be invariant w.r.t. the ambiguity of Φr

TM
:

Λ(Q) = Φr
TM
(v)∗,HomQ rTMQTM

(v) (K.13)

= Φr
TM
(v)∗,Hom ξrTM(v)∗,HomQ rTMQTM

(v)

Except from the definition of the lifting isomorphism, Φr
TM

is only used (in a slightly
different context) in step 2 c), where the ambiguity is seen to drop out by similar
arguments.

Together, these steps prove that Λ : KIquot →KIinvar is an isomorphism. □
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K.2 Proof of Theorem 13.3.3 – Equivalence of equivariant kernel field
transforms and convolutions on homogeneous spaces

To keep a better overview, we split the proof in two parts, proving the claims made in the
first and second statement of Theorem 13.3.3, respectively.

Part 1) – Constructing H, HM and IsomHM: Let r ∈M be any representative point and,
without loss of generality, let ψÃGM,r be any isometric gauge at r. We set

H := ψÃGM,r Stabr
(
ψÃGM,r

)−1
, (K.14)

which is just a particular representation of Stabr relative to the chosen coordinatization.
Since the gauge maps are isomorphisms, we get an isomorphism between the two groups:

α : Stabr → H, ξ → ψÃGM,r ξ∗,GM
(
ψÃGM,r

)−1
=: hÃÃξ (r) (K.15)

Since Stabr ≤ I ≤ IsomGM , Theorem 13.1.3 assures that hÃÃξ (r) is for any ξ ∈ Stabp an
element of G and thus that H ≤ G. We furthermore have that H ≤ O(d), which is seen by
the following calculation, which holds for any v,w ∈ Rd:〈

hÃÃξ (r) · v , hÃÃξ (r) · w
〉

(K.16)

(1)
=

〈(
ψÃGM,r ξ∗,GM

(
ψÃGM,r

)−1) · v , (ψÃGM,r ξ∗,GM
(
ψÃGM,r

)−1) · w〉
(2)
=

〈
ψÃTM,r ξ∗,TM

(
ψÃTM,r

)−1
v , ψÃTM,r ξ∗,TM

(
ψÃTM,r

)−1
w
〉

(3)
= ηr

(
ξ∗,TM

(
ψÃTM,r

)−1
v , ξ∗,TM

(
ψÃTM,r

)−1
w
)

(4)
= ηr

((
ψÃTM,r

)−1
v ,
(
ψÃTM,r

)−1
w
)

(5)
= ⟨v ,w⟩

Step (1) made use of Eq. (K.15). In step (2) we identified the expression of hÃÃξ (r) via

ψÃGM,r with its expression via ψÃTM,r, which is justified by the commutativity of the diagrams

in Eqs. (13.38) and (13.24). As we assumed ψÃTM,r w.l.o.g. to be isometric, we can identify
the inner product ⟨ ·, · ⟩ on Rd in step (3) with the Riemannian metric ηr. Step (4) uses
that ξ ∈ Stabr ≤ I is an isometry, which preserves the metric by definition; see Eq. (13.1).
Lastly, we pull the metric in step (5) via the isometric gauge back to the inner product on Rd.
The equality of the initial and final expression shows that hÃÃξ (r) preserves the inner product
on Rd – this is exactly the requirement that defines the orthogonal group. We therefore have
that H ≤ O(d), and, together with H ≤ G, that

H ≤ G ∩O(d) . (K.17)

This proves the first statement of part 1) of Theorem 13.3.3. We move on to the second
statement of part 1), the construction of HM and IsomHM .

Given that Stabr is a subgroup of I , we have the canonical quotient map

q : I → I/ Stabr, ϕ→ ϕ.Stabr (K.18)
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which sends group elements ϕ ∈ I to the left coset ϕ.Stabr := {ϕ ξ | ξ ∈ Stabr} of Stabr.
It is well known that this quotient map makes I to a principal Stabr-bundle over the base
space I/Stabr, with the right action given by the right multiplication ◀ : I × Stabr →
I, (ϕ, ξ) 7→ ϕ ξ with stabilizer elements [101, 222]. Furthermore, I/Stabr is isomorphic
to the homogeneous space M . The isomorphism is given by

β : I/Stabr →M, ϕ.Stabr 7→ ϕ(r) , (K.19)

which is obviously independent of the choice of coset representative since different repre-
sentatives differ by group elements that stabilize r. Note that we could equally well view
q : I → I/ Stabr as a principal H-bundle since the typical fiber is only defined up to
isomorphism.

With these preparations we define the H-structure HM as an embedding of the principal
H-bundle I into GM (and therefore into FM ). We define the embedding map as

E : I → GM, ϕ 7→ ϕ∗,GM σ
Ã(r) , (K.20)

which depends once again on our choice of gauge since σÃ(r) =
(
ψÃGM,r

)−1
(e). It can

be thought of as tracing out an embedded copy of I in GM by pushing around the frame
σÃ(r) ∈ GrM . That this gives indeed a valid embedding is guaranteed since the action of I
on frames is fixed point free. The embedding E is a bundle map over β, that is, β◦q = π

GM
◦

E. To show this, it is sufficient to apply both sides on an arbitrary element ϕ ∈ I, which gives
the same result: β ◦ q(ϕ) = β

(
ϕ.Stabr

)
= ϕ(r) and π

GM
◦ E(ϕ) = π

GM
ϕ∗,GM σ

Ã(r) =

ϕ π
GM
σÃ(r) = ϕ(r). The embedding map is furthermore right equivariant: For any ξ ∈

Stabr and any ϕ ∈ I one has

E(ϕ ξ) = ϕ∗,GM ξ∗,GMσ
Ã(r) (K.21)

= ϕ∗,GM ξ∗,GM
(
ψÃGM,r

)−1
(e)

= ϕ∗,GM
(
ψÃGM,r

)−1
ψÃGM,r ξ∗,GM

(
ψÃGM,r

)−1
(e)

= ϕ∗,GM
(
ψÃGM,r

)−1(
hÃÃξ (r)

)
= ϕ∗,GM

(
ψÃGM,r

)−1
(e)◁ hÃÃξ (r)

= E(ϕ)◁ hÃÃξ (r) ,

where we used the right G (and thus H) equivariance of ψÃGM,r (and thus
(
ψÃGM,r

)−1
) in the

penultimate step. Together, these properties show that E is a principal bundle map that makes
the following diagram commutative:

I × Stabr GM ×H

I GM

I/ Stabr M

E × α

◀ ◁

E

q πGM

β

(K.22)
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The claimed H-structure is then defined as the image

HM := E(I) =
{
ϕ∗,GM σ

Ã(r)
∣∣ϕ ∈ I} (K.23)

of E together with the restricted right action and projection map of GM . Since embeddings
are necessarily injective, we have in particular that I and HM are isomorphic as principal
bundles.

As a last point we argue that I and IsomHM = {θ ∈ Isom(M) | θ∗,GMHM = HM}
coincide. The equality θ∗,GMHM = HM holds for a given θ ∈ Isom(M) if θ∗,GMHM is at
the same time a subset and a superset ofHM . The first case, θ∗,GMHM ⊆ HM , requires that

for any element θ∗,GM ϕ∗,GMσ
Ã(r) ∈ θ∗,GMHM , there exists some ϕ′∗,GMσ

Ã(r) ∈ HM such

that θ∗,GM ϕ∗,GMσ
Ã(r) = ϕ′∗,GMσ

Ã(r). Since the action of isometries on the frame bundle is

free, this requires θ∗,GM = ϕ′∗,GMϕ
−1
∗,GM , which in turn implies θ = ϕ′ϕ−1. As one can easily

check, the second case results in the same requirement. Both ϕ′ and ϕ are elements of I
such that θ is required to be an element of I . This proves the claim

IsomHM = I . (K.24)

Part 2) – Equivalence of I-equivariant kernel field transforms and HM-convolutions:
To prove the second statement of the theorem, we construct an I-equivariant kernel field
transform on M and show that it is equivalent to a HM -convolution. Theorem 13.2.4
proved that I-equivariant kernel field transforms require I-invariant kernel fields, which
can, according to Theorem 13.3.2, be equivalently encoded in terms of a field of represen-
tative kernels Q̂ : π−1

TM
(r
M
(I\M)) → π−1

Hom
(r
M
(I\M)). For the case of a homogeneous

space M , the quotient space I\M consists of a single element, which we represent by
r = r

M
(I\M) ∈ M . The full invariant kernel field is therefore described by a single

kernel Q̂|r = Q̂ : TrM → Hom(Ain,r,Aout,r). This kernel is required to satisfy the sta-
bilizer constraint ξ∗,Hom Q̂ ξ−1∗,TM = Q̂ ∀ ξ ∈ Stabr and is shared over M via the lifting

isomorphism Λ̂(Q̂)(v) = Φr
TM
(v)∗,HomQ̂ r

TM
Q
TM

(v) = Φr
TM
(v)∗,HomQ̂ Φr

TM
(v)−1∗,TM(v). As

shown below, the single Stabr-constrained representative kernel corresponds exactly to an
H-steerable template kernel, while the weight sharing via the lifting isomorphism Λ̂ from
Theorem 13.3.2 corresponds exactly to the convolutional weight sharing in Def. 12.2.3.

To make the equivalence of the kernel constraints explicit, we express the kernel Q̂ via
Eq. (12.31) relative to the same gauge Ã as considered before as K := ψÃHom,r Q̂

(
ψÃTM,r

)−1
.

The frame volume factor
√
|ηÃr | drops hereby out since we assumed the gauge w.l.o.g. to be

isometric. The stabilizer constraint relative to this gauge then leads to

K = ψÃHom,r Q̂
(
ψÃTM,r

)−1
(K.25)

= ψÃHom,r ξ∗,Hom Q̂ ξ−1∗,TM
(
ψÃTM,r

)−1
= ψÃHom,r ξ∗,Hom

(
ψÃHom,r)

−1K ψÃTM,r ξ
−1
∗,TM

(
ψÃTM,r

)−1
= ρHom

(
hÃÃξ (r)

)
K
(
hÃÃξ (r)

)−1
=

1∣∣dethÃÃ
ξ (r)

∣∣ ρHom

(
hÃÃξ (r)

)
K
(
hÃÃξ (r)

)−1
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for any ξ in Stabr. Note that we can include the determinant factor in the last step since
hÃÃξ (r) ∈ O(d), as shown above. The isomorphism between Stabr and H in Eq. (K.15)
thus allows us to rewrite the stabilizer constraint as the H-steerability constraint

K =
1

|deth| ρHom(h) ◦K ◦ h
−1 ∀ h ∈ H . (K.26)

on template kernels K of a HM -convolution.1

What remains to be shown is the equivalence of the two ways of sharing weights. The weight
sharing via Λ̂, expressed via gauge Ã in terms of K, reads

Λ̂(Q̂)(v) = Φr
TM
(v)∗,Hom Q̂ r

TM
Q
TM

(v) (K.27)

= Φr
TM
(v)∗,Hom Q̂ Φr

TM
(v)−1∗,TM(v)

= Φr
TM
(v)∗,Hom

(
ψÃHom,r

)−1
ψÃHom,r Q̂

(
ψÃTM,r

)−1
ψÃTM,r ΦrTM(v)

−1
∗,TM(v)

=
(
ψÃHom,r ΦrTM(v)

−1
∗,Hom

)−1
K
(
ψÃTM,r ΦrTM(v)

−1
∗,TM

)
(v) .

The last line already looks quite similar to the definition of HM -convolutional kernel fields
in Def. 12.2.3. To prove their equivalence, we need to show 1) that the isometry induced
gauges ψÃTM,r ΦrTM(v)

−1
∗,TM and ψÃHom,r ΦrTM(v)

−1
∗,Hom at π

TM
(v) are H-compatible with the orig-

inal gauges ψÃTM,r and ψÃHom,r and 2) that the induced gauges correspond to reference frames
of unit volume (to explain the missing frame volume factor in Eq. (K.27)). For the first
point, note that the codomain of the reconstruction isometry Φr

TM
: TM → I coincides

by Eq. (K.24) with IsomHM . Theorem 13.1.3 therefore asserts that these induced gauges
are compatible with any H-atlas of HM . The second point follows immediately since
H ≤ O(d) (or since Φr

TM
(v) is an isometry and Ã is isometric). The weight sharing of

Q̂ via the lifting isomorphism in Eq. (K.27) is therefore seen to coincide with the HM -
convolutional weight sharing of the H-steerable kernel K in Def. 12.2.3. Together with the
result that the stabilizer kernel constraint results in the H-steerability constraint, this implies
that the lifted kernel field is equivalent to a HM -convolutional kernel field, which proves
part 2) of the theorem.

A different choice of gauge Ã might for G < O(d) result in a conjugate subgroup H
to H and an embedding HM of I that differs from HM . As one can easily check, the
H-steerability constraint allows to describe the same kernel relative to HM like the H-
steerability constraint in relation to HM , since the transformation falls out.

1Since h ∈ H ≤ G ∩ O(d), the determinant factor always drops out and could therefore be
omitted.





APPENDIX L

Spherical convolutions as GM-convolutions – proofs

This appendix presents the proofs of Theorems 17.2.1 and 17.2.2 from Section 17.2. To-
gether, these theorems assert that the Stabn-steerable spherical convolution kernels by Co-
hen et al. [56] are equivalent to certain Stabn ∼= G-steerable kernels, and that the I-
equivariant spherical convolutions with these kernels are equivalent to our corresponding
GM -convolutions.

L.1 Proof of Theorem 17.2.1 – Kernel space isomorphism

Theorem 17.2.1 establishes an isomorphism

Ω : K
G,BR2(0,π)
ρin,ρout

∼−→ KStabn
ρin,ρout

(L.1)

between the space K
G,BR2(0,π)
ρin,ρout

of G-steerable kernels on the open ball BR2(0, π) ⊂ R2

and the space KStabn
ρin,ρout

of G ∼= Stabn-steerable kernels on S2\−n, which are defined in
Eqs. (17.29) and (17.28). Given arbitrary gauges N at the north pole n, around which the
kernel is centered, and gauges P at any other point p, this isomorphism is given by

Ω(K) : S2\−n → Rcout×cin , (L.2)

p 7→
[
Ω(K)

]
(p) := K

(
ψNTM,n logn p

)
ρin

(
gNPn←p

)√∣∣η∂/∂vp

∣∣−1 .
Abbreviating p := expn

(
ψNTM,n

)−1
v, its inverse is given by

Ω−1(κ) : BR2(0, π)→ Rcout×cin , (L.3)

v 7→
[
Ω−1(κ)

]
(v) := κ

(
expn

(
ψNTM,n

)−1
v
)
ρin

(
gNPn←p

)−1√∣∣η∂/∂vp

∣∣,
Proof: That Ω−1 is a well defined inverse of Ω is easily shown by inserting their expres-
sions and verifying that

Ω ◦ Ω−1 = id
K

Stabn
ρ

in
,ρout

and Ω−1 ◦ Ω = id
K

G,BR2(0,π)

ρ
in
,ρout

(L.4)
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hold. To see this, note that gauges ψNTM,n, the transporters ρin

(
gNPn←p

)
and the (non-zero)

volume factor
√∣∣η∂/∂vp

∣∣ are always invertible and the latter two commute since the volume
scaling factor is a scalar. The exponential map expn : BR2(0, π)→ S2\−n on BR2(0, π) is
inverted by logn : S2\−n→ BR2(0, π).

The kernel constraints of the two kernel spaces furthermore imply each other. Given any
G-steerable kernel K ∈ K

G,BR2(0,π)
ρin,ρout

, the kernel Ω(K) ∈ KStabn
ρin,ρout

satisfies the Stabn-

steerability constraint from Eq. (17.28). This is for any p ∈ S2\−n, any ξ ∈ Stabn and any
gauge X at ξ(p) shown by:[

Ω(K)
](
ξ(p)

)
(L.5)

(1)
= K

(
ψNTM,n logn ξ(p)

)
· ρin

(
gNXn←ξ(p)

) √∣∣η∂/∂vξ(p)

∣∣−1
(2)
= K

(
ψNTM,nξ∗,TM logn p

)
· ρin

(
gNXn←ξ(p)

) √∣∣η∂/∂vξ(p)

∣∣−1
(3)
= K

(
gNNξ (n)ψNTM,n logn p

)
· ρin

(
gNXn←ξ(p)

) √∣∣η∂/∂vξ(p)

∣∣−1
(4)
= ρout

(
gNNξ (n)

)
·K
(
ψNTM,n logn p

)
· ρin

(
gNNξ (n)

)−1
ρin

(
gNXn←ξ(p)

) √∣∣η∂/∂vξ(p)

∣∣−1
(5)
= ρout

(
gNNξ (n)

)
·K
(
ψNTM,n logn p

)
· ρin

(
gNNξ (n)

)−1
ρin

(
gNXn←ξ(p)

) √∣∣η∂/∂vp

∣∣−1
(6)
= ρout

(
gNNξ (n)

)
·K
(
ψNTM,n logn p

)
· ρin

(
gNPn←p

)
ρin

(
gXPξ (p)

)−1 √∣∣η∂/∂vp

∣∣−1
(7)
= ρout

(
gNNξ (n)

)
·
[
Ω(K)

]
(p) · ρin

(
gXPξ (p)

)−1
The first step just expanded Ω(K), while the second step used logn ξ(p) = ξ∗,TM logξ−1(n) p,
which follows from Eq. (13.42), together with ξ−1(n) = n since ξ ∈ Stabn. In the third
step, we used the definition of isometry induced gauge transformations in Eq. (13.23). Step
four used the G-steerability constraint from Eq. (17.29). The firth step replaced the volume

element
√∣∣η∂/∂vξ(p)

∣∣ with that at
√∣∣η∂/∂vp

∣∣, which is possible since the whole Riemannian
geometry of the sphere, including the metric and exponential map and therefore the volume
factors of the geodesic normal coordinates, is invariant under the action of Stabn. Before
identifying Ω(K) in the last step, step six used the identity

ρin

(
gNNξ (n)

)−1
ρin

(
gNXn←ξ(p)

)
(L.6)

=
[
ψNAin,n

ξ−1∗,Ain

(
ψNAin,n

)−1][
ψNAin,n

P
Ain,n←ξ(p)

(
ψX
Ain,ξ(p)

)−1]
= ψNAin,n

ξ−1∗,Ain
P
Ain,n←ξ(p)

(
ψX
Ain,ξ(p)

)−1
= ψNAin,n

PAin,n←p ξ
−1
∗,Ain

(
ψX
Ain,ξ(p)

)−1
=
[
ψNAin,n

PAin,n←p
(
ψPAin,p

)−1][
ψPAin,p

ξ−1∗,Ain

(
ψX
Ain,ξ(p)

)−1]
= ρin

(
gNPn←p

)
ρin

(
gXPξ (p)

)−1
,

which relies crucially on the commutativity of transporters and isometry pushforwards from
Eq. (13.44).
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For the opposite direction, assume a Stabn-steerable kernel κ ∈ KStabn
ρin,ρout

to be given. The

corresponding kernel Ω−1(κ) satisfies then the G-steerability constraint from Eq. (17.29).
To show this, let v ∈ BR2(0, π), let g ∈ G and let ξ ∈ Stabn be the unique stabilizer
element such that gNNξ (n) = ψNTM,n ξ∗,TM

(
ψNTM,n

)−1
= g. For brevity, we abbreviate p :=

expn
(
ψNTM,n

)−1
v and thus ξ(p) = expn

(
ψNTM,n

)−1
gv, which is as justified by steps 1-3

below. We then find:[
Ω−1(κ)

]
(gv) (L.7)

(1)
= κ

(
expn

(
ψNTM,n

)−1
(gv)

)
· ρin

(
gNXn←ξ(p)

)−1 √∣∣η∂/∂vξ(p)

∣∣
(2)
= κ

(
expnξ∗,TM

(
ψNTM,n

)−1
v
)
· ρin

(
gNXn←ξ(p)

)−1 √∣∣η∂/∂vξ(p)

∣∣
(3)
= κ

(
ξ expn

(
ψNTM,n

)−1
v
)
· ρin

(
gNXn←ξ(p)

)−1 √∣∣η∂/∂vξ(p)

∣∣
(4)
= ρout

(
gNNξ (n)

)
· κ
(
expn

(
ψNTM,n

)−1
v
)
· ρin

(
gXPξ (p)

)−1
ρin

(
gNXn←ξ(p)

)−1 √∣∣η∂/∂vξ(p)

∣∣
(5)
= ρout

(
gNNξ (n)

)
· κ
(
expn

(
ψNTM,n

)−1
v
)
· ρin

(
gXPξ (p)

)−1
ρin

(
gNXn←ξ(p)

)−1 √∣∣η∂/∂vp

∣∣
(6)
= ρout

(
gNNξ (n)

)
· κ
(
expn

(
ψNTM,n

)−1
v
)
· ρin

(
gNPn←p

)−1
ρin

(
gNNξ (n)

)−1 √∣∣η∂/∂vp

∣∣
(7)
= ρout

(
gNNξ (n)

)
·
[
Ω−1(κ)

]
(v) · ρin

(
gNNξ (n)

)−1
(8)
= ρout(g) ·

[
Ω−1(κ)

]
(v) · ρin(g)

−1

The first three steps expanded Ω−1(κ), used the definition of ξ in terms of g and the com-
mutativity of exponential maps with isometry pushforwards, Eq. (13.42). In the fourth step,
the Stabn-steerability constraint of κ from Eq. (17.28) is used. Step five replaced again the
Riemannian volume element at ξ(p) with that at p since they are equal. The sixth step used
the relation

ρin

(
gXPξ (p)

)−1
ρin

(
gNXn←ξ(p)

)−1
(L.8)

= ρin

(
gNXn←ξ(p) g

XP
ξ (p)

)−1
=
([
ψNAin,n

P
Ain,n←ξ(p)

(
ψX
Ain,ξ(p)

)−1][
ψX
Ain,ξ(p)

ξ∗,Ain

(
ψPAin,p

)−1])−1
=
(
ψNAin,n

P
Ain,n←ξ(p)

ξ∗,Ain

(
ψPAin,p

)−1)−1
=
(
ψNAin,n

ξ∗,Ain
PAin,n←p

(
ψPAin,p

)−1)−1
=
(
ψNAin,n

ξ∗,Ain

(
ψNTM,n

)−1
ψNTM,n PAin,n←p

(
ψPAin,p

)−1)−1
= ρin

(
gNPn←p

)−1
ρin

(
gNNξ (n)

)−1
,

which relies again on the commutativity of transporters and isometry pushforwards from
Eq. (13.44). The last two steps identify Ω−1(κ) and, by definition of ξ, that gNNξ (n) = g.

Together, these arguments that Ω is indeed an isomorphism between the kernel spaces. □
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L.2 Proof of Theorem 17.2.2 – Equivalence of steerable spherical and
GM-convolutions

Theorem 17.2.2 claims that GM -convolutions with a G-steerable kernel K ∈ K
G,BR2 (0,π)
ρin,ρout

are equivalent to the spherical convolution with the Stabn-steerable kernel Ω(K) ∈
KStabn
ρin,ρout

. The spherical convolution with a Stabn-steerable kernel κ ∈KStabn
ρin,ρout

from Cohen
et al. [55, 56] was hereby in Eq. (17.34) pointwise defined as

[
κ ⋆S2 f

]P
(p) =

∫
S2\−p

κ
(
ϕ−1p q) ρin

(
gXQ
ϕ−1
p
(q)
)
fQ(q) dq , (L.9)

where P , Q and X denote arbitrary gauges at p, q and ϕ−1p (q), respectively. The isometry
ϕp ∈ I is uniquely specified by demanding that (ϕp)∗,GMσ

N (n) = σP (p). Note that this
implies in particular that

ϕp(n) = p (L.10)

and, using the definition of sections of GM (frame fields) in terms of inverse gauges from
Eq. (11.61), that

ψNTM,n ◦ (ϕp)−1∗,GM = ψPTM,p , (L.11)

both of which we will use below. With these preparations, we turn to the proof of Theo-
rem 17.2.2, i.e. the equivalence

Ω(K) ⋆S2 f = K ⋆GM f (L.12)

of the convolutions.

Proof: Since Ω(κ) is defined on S2\−n, the transformed kernel Ω(κ) ◦ ϕ−1p is defined on
S2\−p. Inserting Ω(κ) in the pointwise definition of the spherical convolution in Eq. (17.34)
leads therefore to[

Ω(K) ⋆S2 f
]P

(p) (L.13)

=

∫
S2\−p

[
Ω(κ)

](
ϕ−1p q) ρin

(
gXQ
ϕ−1
p
(q)
)
fQ(q) dq

=

∫
S2\−p

K
(
ψNTM,n logn ϕ

−1
p q) ρin

(
gNX
n←ϕ−1

p (q)

)
ρin

(
gXQ
ϕ−1
p
(q)
)
fQ(q)

√∣∣η∂/∂v
ϕ−1
p (q)

∣∣−1dq ,
where the second step follows by expanding Ω(K) as defined in Eq. (17.32). To simplify
this expression, note that

ψNTM,n logn ϕ
−1
p (q) = ψNTM,n (ϕp)

−1
∗,TM logϕp(n)(q) = ψPTM,p logp(q) , (L.14)
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which follows from Eq. (13.42) in the first step and Eqs. (L.10) and (L.11) in the second
step. Note furthermore, that

ρ
(
gNX
n←ϕ−1

p (q)

)
ρ
(
gXQ
ϕ−1
p
(q)
)

=
[
ψNA,n PA,n←ϕ−1

p (q)

(
ψXA,ϕ−1p (q)

)−1][
ψXA,ϕ−1p (q) (ϕp)

−1
∗,A

(
ψQA,q

)−1]
(Eqs. (11.85) and (13.39))

= ψNA,n PA,n←ϕ−1
p (q) (ϕp)

−1
∗,A

(
ψQA,q

)−1
(canceled inverse gauges)

= ψNA,n (ϕp)
−1
∗,A PA,ϕp(n)←q

(
ψQA,q

)−1
(Eq. (13.44))

= ψPA,p PA,p←q
(
ψQA,q

)−1
(Eq. (L.11))

= ρ
(
gPQp←q

)
. (Eq. (11.85))

Inserting these two identities, we obtain

[
Ω(K) ⋆S2 f

]P
(p) =

∫
S2\−p

K
(
ψPTM,p logp q) ρin

(
gPQp←q

)
fQ(q)

√∣∣η∂/∂v
ϕ−1
p (q)

∣∣−1dq , (L.15)

To proceed, we express the integral in geodesic normal coordinates v : S2\−p →
BR2(0, π), q 7→ v(q) := ψPTM,p logp q of S2\− p, which are centered at point p. This

cancels the Riemannian volume factor
√∣∣η∂/∂v

ϕ−1
p (q)

∣∣ (and thus justifies its appearance in the

definition of Ω), such that the spherical convolution becomes[
Ω(K) ⋆S2 f

]P
(p) =

∫
BR2(0,π)

K(v) ρin

(
gPQ
p←expp(ψ

P
TM,p)

−1v

)
fQ
(
expp(ψ

P
TM,p)

−1v
)
dv ,

=

∫
BR2(0,π)

K(v)
[
Exp∗pf

]P
(v) dv ,

=
[
K ⋆GM f

]P
(p) . (L.16)

Since all arguments are independent form the chosen point p and the chosen gauges, this
implies

Ω(K) ⋆S2 f = K ⋆GM f , (L.17)

in a coordinate free setting, which proves the theorem.

□





APPENDIX M

Research questions & conclusions

This work is based on the main author’s doctoral dissertation at the University of Amsterdam
(UvA). The Doctorate Regulations of UvA require a separate listing of the research questions
addressed and answers found in the doctoral thesis, and an overview of the articles published
during the doctoral studies. This appendix addresses these requirements, draws conclusions,
and discusses limitations and directions of future research.

M.1 Research questions & contributions

The overarching goal of this work is to develop a unified theory of equivariant convolu-
tional neural networks. Having access to such a theory is of great relevance to the research
community since:

1. It brings order into the model zoo of equivariant CNNs, and clarifies how different
approaches relate to each other.

2. It does not only map out the space of existing models, but also facilitates the design of
novel CNN architectures.

3. It implies a unified implementation, which allows to construct arbitrary equivariant
CNNs, and to benchmark these against each other.

4. It is a prime example of how prior knowledge and mathematical structure can be mod-
eled directly into the networks’ architecture. This is not only relevant for equivariant
CNNs, but also, for instance, for graph neural networks or networks for simulating
PDEs or quantum systems.

5. It is necessarily more abstract and reduced to the essential mathematical structure,
which helps to reveal connections to other sciences beyond deep learning.

The following research questions are targeted towards finding such a general theory of con-
volutional networks.
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As a first step, we need to understand and formalize conventional CNNs and their equivari-
ance properties.

Research question 1: ▷ Chapter 4
What is a convolutional network, how can it be formalized mathematically, and which role
does equivariance play?

Convolutional networks are often described as variants of fully connected networks that
operate on spatial signals and share neural weights between different spatial locations.1
As a consequence, any shift of a layer’s input feature map leads to a corresponding shift
of its output feature map, that is, the layers are translation equivariant.

To formalize such conventional CNNs, we define their feature spaces as regular trans-
lation group representations (Def. 3.1.1), i.e. vector spaces of feature maps that are
equipped with a translation group action which acts by moving signals spatially. Starting
from generic fully connected network operations, we prove that spatial weight sharing
is strictly necessary when demanding the layers’ equivariance. Specifically for linear
maps, Theorem 3.2.1 shows that equivariance implies convolutions. Theorems 3.2.2-
3.2.8 prove similar results for bias summations, nonlinearities, and various pooling oper-
ations.

The crucial insight is that we do not only have the usual implication

weight sharing ⇒ equivariance (sufficiency) ,
but also weight sharing ⇐ equivariance (necessity) .

As a consequence, CNNs are simply translation equivariant neural networks that operate
on feature maps.

Viewing CNNs from this angle suggests that they can be generalized by

1. extending the symmetry groups w.r.t. which they are equivariant, and
2. defining feature maps on more general spaces, for instance, manifolds.

We tackle our overarching research goal by first developing a general theory of equivariant
CNNs on Euclidean spaces; described in Part I and our publications [323, 322, 1, 40, 324,
137]. This formalism is subsequently generalized to a gauge theoretic description of CNNs
on homogeneous spaces and Riemannian manifolds; found in Parts II and III and in [325,
57, 67, 55, 56, 46]. Finally, we investigate the generality of our theory in Part IV and [325].
The following research questions are structured accordingly.

M.1.1 Equivariant CNNs on Euclidean spaces

The context of our initial research question on equivariant Euclidean CNNs was set by sev-
eral articles that have been published prior to the beginning of our studies. Most of these
works were based on variants of group convolutions [223, 52, 324]. Cohen and Welling [53]
proposed an alternative representation theoretic formulation of so-called (discrete) steerable
CNNs, which allowed for more general group actions on the feature spaces. However, their
formulation was limited to discrete pixel grids and finite symmetry groups. It was there-
fore unable to describe models like continuous group convolutions [324], vector field net-

1In addition, neurons are often required to have a local receptive field, however, this is not strictly
necessary for the network to be convolutional.
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works [196], or harmonic networks [335]. Our mission was hence to formulate a general
framework, which comprises all of the above mentioned models as special cases.

Research question 2: ▷ Chapter 4 and Weiler et al. [323]

How should equivariant CNNs on Euclidean spaces be defined? Is there a general formula-
tion, which covers all of the abovementioned models?

A first sub-question to be addressed is which symmetry groups we should consider. The
mutual implication of weight sharing and translation equivariance found above suggests
that, given that we are interested in convolutional networks, translations should be con-
tained as subgroup. We are furthermore interested in transformations like rotations, re-
flections, scaling, or shearing, which are modeled by matrix groups G ≤ GL(d). To
cover all of these settings, we consider a family of affine groups Aff(G) = (Rd,+)⋊G.

The next sub-question is which feature spaces and which Aff(G)-actions on them should
be considered. In order for everything to reduce to conventional Euclidean CNNs when
restricting to translations, it is necessary to define the feature spaces as induced affine
group representations IndAff(G)

G ρ ; see Def. 4.2.1.2 The feature fields are thereby char-
acterized by their field type ρ, which is a G-representation. For any ρ of finite groups
G, this reduces to the assumptions of Cohen and Welling [53], for SO(2)-irreps to the
harmonics networks of Worrall et al. [335], for the defining representation of SO(2) to
the vector fields of Marcos et al. [196], and for regular representations of G ≤ GL(d) to
group convolutions [223, 52, 324] (Theorem 4.5.1). Many other examples are found in
Table 14.1 on page 273.

As done for conventional CNNs, we define generalized CNN layers as equivariant maps
between the feature spaces. Similar to before, we find a mutual implication

Aff(G)-equivariant layer ⇐⇒ Aff(G)-invariant neural connectivity ,

where the right-hand side is a generalized form of weight sharing over affine transfor-
mations. This generalized weight sharing is shown to split in 1) spatial weight sharing,
and 2) novel G-steerability (equivariance) constraints on the shared neural connectivity;
see Theorems 4.3.1-4.3.9. For instance, Aff(G)-equivariant linear maps are necessarily
convolutions with G-steerable kernels.

The definition of equivariant CNNs in terms of induced representations was not novel to
our work, but has previously been proposed by Cohen and Welling [53] – we denote our
networks therefore, as in the original publication, as steerable CNNs. Our main contribu-
tion is rather that we extended the framework from finite groups and discrete pixel grids to
non-finite groups and continuous space. This extension is non-trivial since it prevents the nu-
merical solution of equivariance constraints proposed by Cohen and Welling [53]. Instead,
we had to solve the constraints analytically, the first step of which leads to the statements of
our Theorems 4.3.1-4.3.9, which require G-steerability constraints. The main difficulty in
constructing steerable CNNs is to solve these G-steerability constraints, which is the goal of
our next research question.

2The restriction Res
Aff(G)

(Rd,+)
Ind

Aff(G)
G ρ of induced representations to translations results in the reg-

ular translation group representation that is underlying conventional Euclidean CNNs.
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Research question 3: ▷ Chapter 5, Weiler et al. [323], Weiler and Cesa [322],
Lang and Weiler [173], and Cesa et al. [40]

How can theG-steerability constraints on convolution kernels be solved, and how can steer-
able kernels be parameterized for learning?

To give some context, we note that we formalize convolution kernels as matrix-valued
(non-linear) maps K : Rd → Rcout×cin ∼= Rcout ⊗ (Rcin)∗. Given some G ≤ GL(d), we
have the standard G-action on Rd, and assume some G-representations on the feature
vector spaces Rcin and Rcout to be given. The G-steerability constraint is then a linear
symmetry constraint under these actions, which has to hold for any g ∈ G.

In general, we observed that the space of kernels is a vector space, and the constraint
is linear, implying that we only need to solve for a basis of steerable kernels, in terms
of which any steerable kernel can be expanded. The expansion coefficients constitute
thereby the learnable parameters. Furthermore, the constraint decomposes into indepen-
dent constraints on individual G-orbits. Beyond these statements, we have to consider
specific families of groups and representations:

If Rd is sampled on a grid (e.g. Zd), and G is a finite symmetry group of this grid, this
constraint can be solved numerically [53]. Otherwise it has to be solved analytically.

Weiler et al. [323] considered d = 3 dimensions, rotations G = SO(3), and SO(3)-
irreps acting on the feature vectors. We proved that the steerable basis is given by
spherical harmonics, whose orders are determined by the Clebsch-Gordan decompo-
sition of the irrep’s tensor product.

Weiler and Cesa [322] assumed d = 2, but arbitrary finite G-representations for any
G ≤ O(2). The key observation here is that the constraint for general representa-
tions can be decomposed into irrep constraints. Furthermore, we proposed a Fourier
expansion of the kernels.

Lang and Weiler [173] proved a generalized Wigner-Eckart Theorem 5.3.1, which
extends these results to arbitrary compact groupsG (and hence any dimensionality d).
The theorem describes how steerable kernel bases can be constructed from Clebsch-
Gordan coefficients, harmonics on G-orbits, and irrep endomorphisms.

Cesa et al. [40] reformulated this solution such that it becomes easier implementable
and generalized it such that the smoothness of the kernels can be controlled.

Implementations of steerable kernel spaces for arbitrary field types, and many other
equivariant network operations, are available in our escnn library [38, 39].

A crucial difference between our approach and related work is that our theorems guarantee
the completeness of the kernel spaces and hence equivariant maps. We found for instance
that the original kernel spaces of harmonic networks [335] are incomplete, i.e. that there
exist further steerable basis kernels beyond those found by the authors; see Appendix F.5
in [322]. Our experiments in Table 6.6 show that the complete kernel basis leads to improved
results. Another example are the tensor field networks by Thomas et al. [301] (published
simultaneously with our publication [323]), which proposed the same spherical harmonics
basis. However, the authors only showed that convolutions with spherical harmonics imply
equivariance, but not that they form a complete basis.
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In our original derivation of steerable convolutions as equivariant linear maps, we assumed
the integral transform ansatz in Eq. (3.8) for the linear maps [323]. This results in con-
volutions with spatially extended kernels, which is the standard practice in deep learning.
However, such convolutions are not the only linear Aff(G)-equivariant maps, since they
miss, for instance, partial differential operators (PDOs). This shortcoming is addressed by
the following question.

Research question 4: ▷ Jenner and Weiler [137]
How can partial differential operators be included into the framework of steerable CNNs?
What are the most general linear equivariant maps between induced representations?

To address the first sub-question, we assumed the most general cout×cin-matrix of linear
partial differential operators, mapping cin-dimensional feature fields to cout-dimensional
feature fields. Demanding Aff(G)-equivariance requires 1) that the coefficients of this
PDO matrix are spatially constant (weight sharing), and 2) that it satisfies aG-steerability
constraint. These steerability constraints for PDOs could, via the usual isomorphism be-
tween PDOs and polynomials and assuming compact G, be linked to our original steer-
ability constraints for spatially extended kernels. This allowed us to express complete
steerable PDO bases in terms of the steerable kernel bases found in the previous research
question. Steerable PDOs are implemented as part of escnn [38, 39].

For the second sub-question, we assumed general continuous linear functionals. Once
again, we find that Aff(G)-equivariant maps correspond to steerable convolutions,
however, now in the distributional sense, and requiring a G-steerability constraint on
Schwartz distributions. This setting includes both PDOs and convolutions with classi-
cal kernels, and describes, in fact, the most general (continuous) linear equivariant maps
between (Euclidean) induced representations.

The previous research questions resulted in a quite general formulation of equivariant Eu-
clidean CNNs, complete solutions of their equivariant maps, and an implementation in form
of the PyTorch extension escnn [39] (and its predecessor e2cnn [38]). Having access to this
unified implementation enabled for the first time to conduct a large-scale comparative study
of different equivariant models.

Research question 5: ▷ Chapter 6, Weiler and Cesa [322], and Cesa et al. [40]
How do different equivariant Euclidean CNNs compare relative to each other and to con-
ventional CNNs in an empirical benchmark study?

The design space of equivariant Euclidean CNNs is determined by many novel hyperpa-
rameters. First and foremost, the models differ in their choices of symmetry groups G
and the feature field types ρ, which determine the spaces of steerable kernels and biases.
In addition, there is a multitude of equivariant nonlinearities, pooling operations, and, for
classification tasks, final mappings to invariant predictions.

Table 6.6 shows the result of our benchmarking of 57 different equivariant CNNs in
d = 2 spatial dimensions, where each model is evaluated on datasets with three different
inherent symmetries [322]. We presented similar results in d = 3 dimensions in [40].
The main insight is that larger symmetry groups are preferable, and that regular and
quotient representations usually perform best. For more details we refer to Section 6.5
and the original publications.
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Furthermore, we examine in how far the models’ equivariance properties hold in practice,
and investigate their effect on the models’ performance.

Research question 6: ▷ Chapter 6, Weiler and Cesa [322], Weiler et al. [323],
Weiler et al. [324], Jenner and Weiler [137] and Cesa et al.

[40]
In how far do the theoretical properties of equivariant Euclidean CNNs hold in practice?
What are their implications for the learning dynamics and model performance?

While our theory of Euclidean CNNs was developed in continuous space, implemen-
tations are usually discretized. If the symmetry is respected by the discretization, e.g.
reflections or rotations by right angles on pixel grids Zd, equivariance is found to hold
perfectly. Otherwise, e.g. for continuous rotations, there are discretization artifacts.
Equivariance is then still found to hold quite well, and can furthermore be stabilized via
data augmentation. With and without augmentation, such approximately equivariant im-
plementations outperform non-equivariant CNNs significantly. They require furthermore
less training data and converge faster. A more detailed overview and additional results
are summarized at the beginning of Chapter 6.

Equivariant convolutions apply some G-steerable (i.e. G-equivariant) kernels at each point
of space. It is hence intuitively obvious that steerable CNNs are not only equivariant under
global Aff(G)-actions, but also under independent local G-transformations of each kernel’s
field of view, as visualized in Fig. 4.7. This intuition brings us to our next bundle of research
questions:

Research question 7: ▷ Sections 4.4 and 6.3 and Weiler and Cesa [322]
How can the “local gauge equivariance” of steerable CNNs be formalized? How can local
G-symmetries in signals be exploited when the learning task should not beG-equivariant on
the global scale? Is this design useful in practice?

We start with the second question, assuming that local G-equivariance holds. A glob-
ally Aff(H)-equivariant network for H < G can then be constructed by using an
Aff(G)-equivariant network, whose features are at some layer restricted from Aff(G)-
representations to Aff(H)-representations. This is mathematically described by the re-
striction functor ResHG on field types (Eq. (4.59)), which does in practice not change the
actual data, but implies a decomposition of the feature fields in subrepresentations, which
are by the next layer treated independently. Intuitively, the network is after restriction al-
lowed to break Aff(G)-equivariance, and maintain Aff(H)-equivariance only.

Our experiments show that local rotation and reflection equivariance (G = O(d)) is
usually always improving results by quite a margin. This holds specifically for natural
image datasets (“upright” photos), which exhibit a preferred direction on their global
scale (H = {e} or reflections).

The local gauge equivariance of steerable CNNs can not be proven in the standard frame-
work, however, it is shown to hold in their differential geometric generalization to Rie-
mannian manifolds. Theorem 15.2.1 proves that this generalization includes Euclidean
steerable CNNs as a special case, hence proving their conjectured gauge equivariance.

This concludes our main research questions and findings for Euclidean equivariant CNNs.
In a parallel line of research, we investigated their generalization to non-Euclidean spaces.
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M.1.2 Equivariant CNNs on homogeneous spaces and Riemannian manifolds

On Euclidean spaces, we defined CNNs as networks that are equivariant w.r.t. translations or
more general affine group actions, from which the requirement for weight sharing followed.
The reason for the neural connectivity to be shared across the whole space is that the con-
sidered group actions are transitive, that is, are able to move any point to any other location.
From this viewpoint, it is obvious that our definition of CNNs as equivariant networks gen-
eralizes to any other homogeneous space, i.e. space that is equipped with some transitive ac-
tion. For instance, spherical CNNs can be defined as SO(3) or O(3)-equivariant networks on
the sphere S2 [54, 83]. Kondor and Trivedi [162] used this insight to generalize group convo-
lution based CNNs to arbitrary compact groups and homogeneous spaces thereof. Motivated
by their work, and the insights from our initial paper on Euclidean steerable CNNs [323],
we investigated how steerable CNNs can be generalized to homogeneous spaces.

Research question 8: ▷ Appendix F and Cohen et al. [56]
How can our Euclidean steerable CNNs from [323] be generalized to homogeneous spaces?

Euclidean steerable convolutions are intertwiners (equivariant linear maps) between in-
duced Aff(G)-representations Ind

Aff(G)
G ρ. The feature spaces contain feature fields of

type ρ on the Euclidean homogeneous space Aff(G)/G ∼= Rd.

Any homogeneous space under some H-action arises as a quotient space H/G. Induced
representations IndHG ρ can be defined for any choice of H and G < H and describe
feature fields of G-type ρ on H/G. We define steerable convolutions on homogeneous
spaces – just as in the Euclidean setting – as intertwiners between induced represen-
tations. The space of intertwiners is shown to be given by convolution integrals with
G-steerable kernels, which are now defined on H/G.

The group and homogeneous space convolutions of Kondor and Trivedi [162] are a spe-
cial case of our steerable CNNs for field types ρ that are regular, or more general quotient
representations, respectively. This claim is proven in Theorem 4.5.1 (there we are con-
sidering Euclidean spaces, however, the proof is purely algebraic, and applies to general
homogeneous spaces as well). Our homogeneous steerable CNNs are more general since
they allow to describe more general feature fields, for instance vector or other tensor
fields.

Note that Cohen et al. [56] only derived the G-steerability constraint on kernels on homoge-
neous spaces, but did not provide a solution for their bases. This shortcoming is addressed
in the following research question.

Research question 9: ▷ Lang and Weiler [173]
How can the steerability constraint for kernels on homogeneous spaces be solved?

The constraints on Euclidean steerable kernels decompose generally into independent
constraints on G-orbits, which are by definition homogeneous spaces. Our Wigner-
Eckart theorem does therefore actually describe steerable kernels on homogeneous
spaces, from which the complete Euclidean kernels are assembled. However, the Wigner-
Eckart theorem does not directly apply to Cohen et al.’s [56] definition of steerable ker-
nels on homogeneous spaces, since their steerability constraint differs in general from
that on Euclidean spaces. We could show that the solutions can nonetheless be mapped
to each other, such that our Wigner-Eckart theorem describes complete bases for Cohen
et al.’s [56] notion of steerable kernels as well.
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Besides Euclidean and homogeneous spaces, there is a great interest in defining CNNs on
Riemannian manifolds. Our previous approach – defining convolutions by demanding the
networks’ equivariance under transitive global symmetries of space – does unfortunately not
apply to Riemannian manifolds, since their isometry groups act in general non-transitively.
We hence need to find another way to define convolutions on manifolds, which brings us to
a gauge theoretic formulation of CNNs.

Research question 10: ▷ Parts II and III, Weiler et al. [325] and Cohen et al. [57]
How can feature fields and convolutional networks be defined on Riemannian manifolds?

Since Riemannian manifolds are in general asymmetric (non-homogeneous), we revert
to the alternative definition of CNNs as networks which share weights (kernels) between
spatial locations, without deriving this property. The crucial difference to Euclidean
spaces Rd is that the kernel alignment on manifolds is inherently ambiguous – for in-
stance, there may not be any preferred rotation or reflection of the kernel. From the
viewpoint of steerable CNNs, this issue is naturally addressed by using steerable kernels,
whose responses in different alignments (gauges) are due to their equivariance related by
a predictable transformations, and encode therefore equivalent information.

How can this intuition be formalized? We identify kernel alignments with choices of
reference frames (gauges), such that responses for different alignments can be viewed
as merely being different coordinate representations of the same abstract feature vector.
Mathematically, G-ambiguities in kernel alignments are identified with a G-structure,
and feature fields are sections of G-associated vector bundles. The feature vectors, and
any other G-associated quantities, are equipped with parallel transporters and, for G-
structure compatible isometries, with pushforward actions. While our formulation in
Cohen et al. [57] was still restricted to G = O(d) (or subgroups, if they are compatible
with the Levi Civita connection’s holonomy), Weiler et al. [325] lifted this requirement
and allowed for general G ≤ GL(d).

Generic network layers are defined as any operations that map between associated bundle
sections. Convolutional network layers are additionally required to share weights over
the manifold. While generic operations are entirely unconstrained, we show that, in order
for the weight sharing process to be coordinate independent, the shared connectivity is,
once again, required to be G-steerable:

coordinate independence
weight sharing

}
−→ G steerability (gauge equivariance)

This holds not only for convolution kernels, but for any other shared local operation, like
bias summation, nonlinearities, 1×1-convolutions (M -morphisms), and so on, as well.

Convolution kernels are defined on Rd and shared over the tangent spaces TpM ∼= Rd.
They are via the exponential map matched with feature vectors, which are additionally
parallel transported along the exponential maps’ geodesics. Theorem 12.2.6 proves the
existence (well-definedness) of such defined convolutions provided that the kernels are
compactly supported, and shows that smooth kernels map smooth input fields to smooth
output fields. Besides providing local coordinate expressions of the network operations,
we formulate them globally in a coordinate free language, which comes in handy when
investigating the networks’ global isometry equivariance.
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Coordinate independent CNNs emphasize local G-valued gauge transformations instead of
global group actions. However, for manifolds with non-trivial isometries, we can ask for the
models’ isometry equivariance.

Research question 11: ▷ Chapter 13 and Weiler et al. [325]
Are coordinate independent CNNs isometry equivariant? Which requirement does isometry
equivariance impose on the network structure?

As a preliminary point, we note that we need to consider subgroups IsomGM of the man-
ifold’s full isometry group which respect its additional G-structure GM ; see Def. 13.1.1.
This allows us to control the exact level of symmetries we are interested in, but is with-
out loss of generality since we can always choose G = O(d), for which we get general
isometries.

We start with the second question about the constraints on the network connectivity that
are imposed by isometry equivariance. To this end, we need to consider the uncon-
strained counterpart of convolutions, without the requirement for weight sharing. We
call these operations (general) kernel field transforms (Def. 12.2.5), since they are pa-
rameterized by a field of (generally independent and non-steerable) kernels (Def. 12.2.1).
Theorem 13.2.4 proves that a kernel field transform is exactly then isometry equivariant
(Def. 13.2.1) when the kernel field is invariant under isometry actions (Def. 13.2.3):

isometry equivariant
kernel field transform

⇐⇒ isometry invariant
kernel field

This result enforces weight sharing over isometry orbits and requires, in addition, the
shared kernels’ steerability w.r.t. their respective orbit’s stabilizer subgroup. Note the
analogy to Euclidean and homogeneous spaces, where we got global weight sharing and
a single steerability constraint.

Convolutions are specific instances of kernel field transforms with convolutional kernel
fields (Def. 12.2.3), which are defined as sharing a singleG-steerable kernel according to
some G-structure GM over the whole manifold; see Def. 12.2.7. Theorem 13.2.5 proves
that these kernel fields are by construction IsomGM -invariant, which is visualized in
Fig. 1.12. This implies, by the result above, the IsomGM -equivariance of the convolution
operation. Specifically for G = O(d), the convolutions are guaranteed to be equivariant
w.r.t. their manifold’s full isometry group.

For Euclidean spaces, Theorem 15.2.2 proves the stronger result that coordinate indepen-
dent CNNs are not only isometry equivariant, but equivariant under the action of more
general affine groups Aff(G); see research question 13 below.

Finally, Theorems 13.3.2 and 13.3.1 show that the space of isometry invariant kernel
fields is isomorphic to reduced kernel fields on quotient spaces. Theorem 13.3.3 asserts
that any equivariant kernel field transform on a homogeneous Riemannian manifold is
necessarily a convolution.

We want to emphasize the result that both the convolutions’ local gauge equivariance and
global isometry equivariance properties are fully determined by the symmetries of the G-
structure; more specifically, by their local G-symmetries, and global isometric symmetries
IsomGM , respectively. This is an entirely new way of thinking about equivariant CNNs,
which greatly simplifies their analysis and design, as we will see in research questions 13-16
below.
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With these results, we developed a fiber bundle formulation of CNNs on Riemannian man-
ifolds with G-structure. The G-steerability constraints are already solved by our previous
investigations in research question 3. We turn therefore to numerical implementations of
coordinate independent CNNs.

Research question 12: ▷ Chapters 10, 14, 15, 16, 17 and 18, Weiler et al. [325],
de Haan et al. [67] and Cohen et al. [57]

How can coordinate independent CNNs on Riemannian manifolds be implemented? Do their
theoretical properties hold in practice?

Chapter 14 gives a general overview of the design choices provided and implementation
questions coming along with coordinate independent CNNs. The details of an imple-
mentation depend heavily on the manifold under consideration:

For Euclidean spaces, the models reduce to our Euclidean steerable CNNs from
above; see research question 13. Our library escnn implements them on pixel grids
or sampled on a point cloud.

If the manifold is locally flat, the convolution can be stitched together from local
Euclidean convolutions on isometric chart codomains. The stitching of charts is for-
mally described by transition maps, and is in practice implemented in form of parallel
transporters along geodesics that transition between charts. We used this strategy to
implement coordinate independent convolutions on the icosahedron in [57] and Sec-
tion 17.4, and on the Möbius strip in [325] and Chapter 10.

On curved manifolds, we need to implement custom convolution operations, whose
details depend on the specific geometry. A practically relevant geometry is the 2-
sphere S2. Chapter 17 derives analytical expressions for all necessary quantities, like
exponential and logarithmic maps, transporters, or isometries. Kicanaoglu et al. [148]
and implemented this model for regular feature fields. Theorem 17.2.2 suggests fur-
thermore that spectral implementations of convolutions are suitable to realize our for-
mulation of spherical CNNs.

General manifolds are often modeled by meshes. In the computer graphics com-
munity, there is a specific interest in convolutions on embedded surfaces. Chap-
ter 18 gives details on the classical differential geometry of embedded surfaces, on
their discrete differential geometry counterparts, and discusses algorithms to compute
geodesics and parallel transporters on meshes. We implemented gauge equivariant
mesh CNNs on 2-dimensional meshes in [67]. Geodesics were computed using Danil
Kirsanov’s implementation [154] of the exact algorithm by Mitchell et al. [213]. We
extended this code to support frame fields (gauges), and to compute (coordinate ex-
pressions of) parallel transporters.

All of our implementations – on Euclidean spaces, the icosahedron and Möbius strip,
and on general meshes – are tested for their isometry equivariance. As already found in
research question 6, equivariance holds perfectly whenever the discretization (e.g. pixel
grid) is respected by the isometries. Otherwise, it holds approximately, and can be sta-
bilized by using data augmentation. Our models outperform naive coordinate dependent
(non-equivariant) baseline models on all benchmarks.
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M.1.3 Generality of coordinate independent CNNs & literature review:

Since our overarching research goal was to develop a unified theory of convolutional net-
works, we need to assess in how far our coordinate independent CNNs are able to describe
other models and theories that were proposed in the literature. Table 14.1 gives an overview
of more than 100 models which we investigated and showed to be explained exactly as coor-
dinate independent CNNs when assuming the correct manifolds, G-structures, connections,
and field types.

The first class of models that should be covered by our framework are the steerable Euclidean
CNNs devised in our first research questions.

Research question 13: ▷ Chapter 15 and Weiler et al. [325]
In how far do coordinate independent CNNs describe affine equivariant Euclidean CNNs?

In short, coordinate independent CNNs on Euclidean spaces recover our Euclidean
steerable CNNs from above when considering suitable G-structures. Specifically, if
we are interested in an Aff(G)-equivariant steerable CNN, we need to consider an
Aff(G)-invariant G-structure, as shown in the left column of Fig. 1.6. We define these
G-structures as being induced by Aff(G)-atlases of global charts; see Defs. 15.1.1
and 15.1.2. Theorem 15.2.1 shows that the corresponding coordinate independent con-
volutions reduce to Euclidean steerable convolutions when being expressed relative to
such charts. Their affine group equivariance is proven in Theorem 15.2.2. Conventional
Euclidean CNNs are covered for the trivial structure group G = {e}.

Another interesting class of models are CNNs on Euclidean vector spaces Rd which are ro-
tation equivariant around the origin, but are not translation equivariant. They can be viewed
as convolving on (hyper)spherical shells of different radii around the origin.

Research question 14: ▷ Chapter 16 and Weiler et al. [325]
In how far do coordinate independent CNNs describe such hyperspherical Euclidean CNNs?

The models’ rotational equivariance corresponds in our framework to the rotationally
invariant G-structures that are visualized in Chapter 16. Note that the canonical Levi-
Civita connection of Rd is not compatible with these G-structures, and the networks
are indeed implicitly transporting features according to what we identify as alternative
G-compatible connections.

The log-polar coordinate system induced G-structure in Fig. 16.3 is furthermore imply-
ing an alternative metric, whose distances in radial direction are shrunk logarithmically.
Besides rotations, the isometries relative to this metric comprise “translations” along the
radial direction. Relative to the canonical metric of R2, these radial transformations cor-
respond to a rescaling of the signal, such that the model is overall rotation and scale
equivariant.

The model in Fig. 16.4 is identified as corresponding to an SO(2) or O(2)-structure,
whose individual fibers are aligned in radial direction. The authors’ assumptions corre-
spond again to an alternative metric, whose radial dependence is this time unaltered, but
whose distances in angular direction are radially independent.

The insight from studying these models is that our framework is quite flexible – we just
need to assume the correct G-structures, metrics, connections, and field types to explain
non-standard network architectures.
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Another active area of research investigates spherical CNNs, which are used to process sig-
nals like omnidirectional images, weather data on the globe, or the cosmic microwave back-
ground.

Research question 15: ▷ Chapter 17 and Weiler et al. [325]
In how far do coordinate independent CNNs describe spherical CNNs?

The spherical CNNs in the literature can be categorized in fully SO(3) or O(3)-
equivariant models, in SO(2) or O(2)-equivariant models around some distinguished
rotation axis, and icosahedral approximations of spherical convolutions.

The first category corresponds to the SO(3) or O(3)-invariant SO(2) or O(2)-structures
on S2 shown in Fig. 17.2a. The models in the literature are in our framework interpreted
as processing scalar fields, regular feature fields, or irrep fields, and as transporting fea-
tures according to the sphere’s Levi-Civita connection. A seeming difference is that most
of these models define (steerable) kernels directly on the manifold S2 instead of on its
tangent spaces, as we do. However, our Theorems 17.2.1 and 17.2.2 prove an isomor-
phism between the kernel spaces and the equivalence of the resulting convolutions. These
models are therefore exactly described by coordinate independent CNNs.

The second category of models corresponds to the SO(2)-invariant {e}-structure (frame
field) in Fig. 17.2b or the O(2)-invariant reflection group structure which results when
adding reflected frames. These G-structures have singularities at the sphere’s poles, and
the convolutions are effectively operating on a cylindrical topology. Some of the mod-
els match the kernel on the tangent spaces via a gnomonic projection, instead of our
projection via the exponential map, which again makes the models seemingly different.
Theorem 17.3.1 proves that this is not the case since our projection can model theirs
after a radial warp of the kernel (which does not interfere with isometric steerability
constraints).

The locally flat icosahedral approximations are implemented in charts, as discussed in
research question 12 above. Fig. 17.6 shows the G-structures that allow to explain the
authors’ models in our theory.

Next, we have convolutions on general surface meshes.

Research question 16: ▷ Chapter 18 and Weiler et al. [325]
In how far do coordinate independent CNNs describe CNNs on general surfaces?

CNNs on general surfaces, which are reviewed in Chapter 18, can be categorized in two
broad classes.

The first group of models, described in Section 18.2, addresses the rotational ambiguity
of kernel alignments on oriented surface meshes explicitly by applying some kind of
SO(2)-steerable kernels. Some of these models apply only rotation invariant (isotropic)
kernels, which we interpret as steerable kernels that map between scalar fields. The other
models apply non-trivially rotation steerable kernels, which map between non-trivial field
types. We find that some of these models did not use the complete kernel basis for the
field types considered. All of these models transport feature vectors according to the
Levi-Civita connection.

The second group of models, explained in Section 18.3, uses non-steerable kernels, and
assumes hence a trivial structure group G = {e}. Since no canonical kernel alignment is
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given on general surfaces, the authors propose different heuristics to fix the alignments –
in our framework, these are interpreted as heuristics to fix frame fields ({e}-structures).
Note that this leads on topologically non-trivial surfaces necessarily to singularities, and
hence non-continuous convolution operations. The feature vectors are not transported
according to the surfaces’ Levi-Civita connections, but rather to the unique trivial con-
nection corresponding to the heuristically fixed frame field.

At the end of Chapter 18’s introduction, we furthermore describe some models that
make assumptions which are incompatible with our framework of coordinate indepen-
dent CNNs. Reasons for these incompatibilities are, for instance, that they use alter-
native projections of the kernels from the tangent spaces to the manifold, disregard the
metric structure of the manifold, or are operating entirely differently, e.g. by applying
Euclidean CNNs to renderings of the surface or by interpreting the mesh as a graph and
applying a graph neural network. Coordinate independent CNNs are therefore not ex-
plaining all of the model applied to surfaces, but rather those which map between feature
fields (associated bundle sections), and which project kernels via the exponential map.

Finally, we investigate how our coordinate independent CNNs on Riemannian manifolds
from research questions 10-16 relate to our steerable CNNs on homogeneous spaces from
questions 8 and 9.

Research question 17: ▷ Chapter 13, Appendix F and Weiler et al. [325]
In how far do coordinate independent CNNs describe CNNs on homogeneous spaces?

We begin with the similarities of the theories. Both encode the models’ symmetries via
principal G-bundles, which are for coordinate independent CNNs given by G-structures
GM

π−→M ∼= GM/G, and for homogeneous steerable CNNs by the global symmetry
groups H with projection maps H π−→ H/G. The feature spaces are in both cases sec-
tions of G-associated feature vector bundles. The main operations to map between these
feature spaces are in both cases convolutions with G-steerable kernels.

On closer inspection, it becomes clear that neither of the theories could possibly be a
strict generalization of the other: there exist homogeneous spaces which are not mani-
folds,3 and there exist manifolds which are not homogeneous spaces. Furthermore, ho-
mogeneous steerable CNNs define the kernels directly on the underlying space, while
coordinate independent CNNs define them on the tangent spaces.

The practically most relevant spaces are Euclidean spaces and the 2-sphere, both of which
are homogeneous spaces of their isometry groups. As already mentioned above, our
Theorems 13.3.3, 17.2.1 and 17.2.2 assert that there existG-structures on these spaces for
which coordinate independent CNNs are equivalent to the homogeneous steerable CNNs.
However, the G-structures of coordinate independent CNNs are less restrictive than the
principal G-bundles assumed by steerable CNNs, allowing the former to describe more
general Euclidean and spherical convolutions, not covered by the latter.

More details on the similarities of and differences between the two theories are discussed
in Appendix F.

3A simple example are discrete pixel grids Zd, which are homogeneous spaces for e.g. discrete
translations or more general grid-symmetries.
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M.2 Conclusions & future research

This work proposed a unified theory of equivariant convolutional neural networks – first on
Euclidean spaces, and then generalized to arbitrary homogeneous spaces and Riemannian
manifolds. The fact that our theory is able to describe hundreds of seemingly indepen-
dent models asserts that we indeed managed to identify and formalize the relevant geomet-
ric structure that is underlying convolutional neural networks. Interestingly, this geometric
structure, given by aG-structure (principalG-bundle) and its associated bundles on the man-
ifold, is exactly the same as that underlying fundamental theories in physics.

A central result of our theory is that convolutions on manifolds with aG-structure necessarily
have to apply G-steerable (gauge equivariant) kernels. The majority of CNNs in the litera-
ture that are designed to be equivariant w.r.t. global symmetries of the underlying manifold
are implicitly using some kind of steerable kernels. Our framework proves the previously
unsolved conjecture that these models are, in fact, not only globally equivariant, but more
generally equivariant under local gauge transformations. This insight explains the remark-
able performance of such models on signals whereG-symmetries are only present on a local,
but not on a global scale.

Not only did we identify the requirement for steerable convolution kernels, but we also de-
veloped a full representation theoretic characterization of their (complete) solution spaces,
without which the theory of equivariant CNNs would have been incomplete. As the imple-
mentation of general steerable kernels is quite technical, we provide a general and easy-to-
use software library escnn [38, 39], which has been well adopted by the research commu-
nity. It has in the meantime been used for a long list of projects, including applications of
high societal impact, like medical imaging, or applications in the environmental, chemical,
engineering, or material sciences. Plenty of other research projects relying on our imple-
mentation were listed at the end of page 12.

While we set out to develop a theory for equivariant CNNs, the formulation that we found
is so general that it even encompasses the entirely non-equivariant CNNs in Section 18.3,
which correspond to {e}-structures and trivial connections. That this is possible is remark-
able, since these models were designed without any equivariance in mind, or with the authors
arguing that equivariance would not be desirable.

At the beginning of this appendix, we claimed five ways, in which a unified theory of equiv-
ariant CNNs would propel the field of deep learning. Having developed such a theory, we
revisit these points, and see in how far they are addressed:

1. The research community proposed many different equivariant CNN models, each with
their own very specific assumptions of spaces, symmetries, or group actions, and each
using their own formulation and notation. Part IV showed that many of these models
fit in our framework, and correspond merely to different choices of G-structures and
field types. We hence developed a taxonomy of equivariant CNNs, which explains how
different models relate to each other. In addition, we could show multiple times that
the models do not make use the complete kernel space corresponding to the implicitly
assumed field types, or have a larger equivariance group than claimed by the authors.

2. Our findings allowed us furthermore to develop many novel equivariant network layers
and architectures; including, for instance, all those models that are listed in rows of
Table 6.6 without a citation. Some of the models found this way achieved new state-
of-the-art results in various applications; see Chapter 6. Further examples from the
community that build on our insights are conditional steerable neural processes [122],
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gauge equivariant spherical CNNs [148], or PDO-based steerable 3d CNNs [271], to
name but a few.

3. Having access to our PyTorch extension escnn [38, 39] enabled us – for the first time
– to compare and classify different equivariant models on common ground; see our
benchmark study in Section 6.5. This point is of particular importance to the commu-
nity, since the results from different publications are usually not directly comparable.

4. We claimed furthermore that insights from our work could be helpful for other focus
areas in deep learning. One line of work that was directly motivated by our publications
on “locally gauge equivariant” networks are graph neural networks which focus on
local sub-graph automorphisms instead of global graph automorphisms [66, 298]. We
believe that the insights and techniques of our work can furthermore be useful for
structure preserving deep learning at large [36].

5. Our abstract representation theoretic and differential geometric formulation did indeed
highlight intriguing connections to other sciences beyond deep learning. Most notably,
the formulation is in many ways similar to constructions found in physics, as discussed
in more detail at the end of the previous Chapter 1. Another interesting connection
exists to biological neural networks in neuroscience, since the cortical surface is itself
a curved manifold. Specifically the visual cortex, which is the biological analog of
CNNs, is found to be described by a fiber bundle with “contact structure” [121, 257].

Limitations & future research

Our theory is tailored to explain the current practices of convolutional networks, however
there are several extensions that could be considered in future research.

One such extension would be to develop a partial differential operator (PDO) based counter-
part of coordinate independent CNNs on manifolds, which are currently limited to spatially
extended kernels. We already investigated such models on Euclidean spaces, finding a re-
quirement for steerable PDOs. It is obvious that these networks generalize to Riemannian
manifolds in the same way as Euclidean steerable CNNs with extended kernels did. We sup-
pose that such models could be formulated by 1) prolonging the associated bundle sections
(feature fields) to their jet bundles, 2) defining PDOs as linear maps from these jet prolonga-
tions back to an output field, and 3) deriving a steerability constraint from the requirement for
coordinate independence. An advantage of such a formulation would be that these models
could achieve full diffeomorphism equivariance, while spatially extended kernels allow in
general only for isometry equivariance. Furthermore, this formulation would be even closer
to the differential gauge theories in physics than our current non-differential version of it.
Note that the models in the literature and in Part IV would not be explained by PDO based
networks, since they are explicitly assuming spatially extended kernels.

A related extension would be to develop CNNs with continuous depth instead of discrete
layers. Such models exist already for non-convolutional (fully connected) networks, where
the neural activations’ dynamics in model depth is driven by a “neural ODE” [45]. The con-
volutional counterpart would therefore be (steerable) neural PDEs, describing the evolution
of feature fields with continuous model depth.

Sticking with spatially extended kernels, one could consider alternative kernel projections
from the tangent spaces to the manifold. Our projection via the exponential map and trans-
porters along geodesics is a natural choice, since it corresponds on Euclidean spaces and the
sphere to the usual parametrization of kernels. However, we found in [67] that the “grav-
itational lensing” effect when following geodesics leads to a deteriorated performance on
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rugged manifolds. This issue is eased by reducing the kernel size (or using PDOs), however,
there are alternative approaches, which rely on the insight that the networks do not neces-
sarily require transporters along geodesics, but that any path (or isomorphism) will do. One
could for instance consider a path integral formulation, which accumulates the transporters
along all possible paths via a functional integral. Another related approach, proposed by
Sommer and Bronstein [280], is to accumulate features via diffusion over their associated
bundle.

There is furthermore a close relation between convolutions and spectral approaches, which is
captured by the well-known convolution theorem. This relation motivated many generalized
CNN models, and Xu et al. [337] have developed a spectral formulation of our steerable
CNNs on homogeneous spaces [56]. Future research could investigate whether it is possible
to reformulate coordinate independent CNNs on manifolds in the same manner, for instance
by defining convolutions via point-wise multiplications of the spectrum of some generalized
Laplacian which acts on bundle sections (e.g. the connection or the Bochner Laplacian).

A current limitation of our Wigner-Eckart theorem is that it applies only to compact groups,
since it makes use of the Peter-Weyl theorem and the complete reducibility of the field types.
Leveraging Pontryagin duality [243], it should be possible to prove a similar theorem for
locally compact abelian groups. The obvious application would be to describe scale steerable
kernels, however, the requirement for abelian structure groups is quite limiting. Sellaroli
[265] present a Wigner-Eckart theorem for the Lorentz group, which shows that extensions
beyond compact and abelian groups are in principle possible.

Further extensions of the theory could investigate structure groups that are not subgroups
of GL(d). An interesting application from quantum field theory would be networks that rely
on spin structures (G = Spin(d)) and operate on spinor bundles. One could moreover try to
learn a G-structure on a manifold instead of fixing it.

Besides equivariant linear operations (convolutions) and bias summation, which we char-
acterized completely, there are many potentially interesting nonlinear equivariant maps
between associated bundle sections. While we proposed, implemented and evaluated
many novel nonlinear operations, it remains unclear how nonlinear layers could be inves-
tigated in a systematic fashion. A promising approach for future research in this direc-
tion is to develop equivariant counterparts of common non-equivariant network operations.
For instance, the community already proposed several equivariant attention mechanisms
[133, 247, 245, 246, 97, 98, 42].

Our equivariant and coordinate independent CNNs could furthermore be combined with or-
thogonal advances in equivariant deep learning, like equivariant capsule networks [179, 352,
308] or probabilistic equivariant models [16], including in particular equivariant flows [160,
244, 182] or equivariant neural processes [90, 122, 142]. Another topic of interest is the uni-
versality of equivariant networks [340, 201, 256, 143, 264, 240, 167, 75, 356, 355, 88, 194].

In the long term, it remains to be seen whether either our approach of enforcing equivariance
and coordinate independence, or the antithetical philosophy of using unconstrained models
and learning equivariance purely from data, will prevail. In the infinite data limit, learning
would certainly yield optimal results, and might in addition yield more efficient data rep-
resentations (specifically optimal symmetry groups and their actions). However, this is a
somewhat trivial statement, as even a simple nearest neighbor classifier would perform op-
timally in this limit. Furthermore, we saw in Chapter 6 that, for finite datasets, equivariant
models have an improved data efficiency, convergence rate, and final performance in com-
parison to non-equivariant models. The question is therefore rather how close we will in
practice get to the infinite data limit and how costly training on such data will be. Models
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like Vision Transformers [73] and MLP-Mixer [302] showed that, leveraging huge datasets
like JFT-300M [292] with 300 million labeled images, non-equivariant models can achieve
a comparable performance to CNNs. However, these models still exploit the images’ spatial
structure in one way or the other and contain operations that share weights, such that learn-
ing equivariance is encouraged. We therefore believe that hardcoding geometric cues will
remain relevant, even though probably in a somewhat altered form. This holds specifically in
areas with little data, whenever interpretability is required, or in scientific applications like
computational chemistry, where exact equivariance is required.

M.3 List of publications

The Doctorate Regulations of the University of Amsterdam require a reference list of all arti-
cles contained in the thesis, stating the relative contributions of each (co-)author. The content
of this thesis is not a concatenation of my original publications, but is entirely rewritten from
scratch.4 However, as the insights from these publications did in one form or another flow
into this work, they are nonetheless listed below. Authors that are not further mentioned in
the listed contributions took an advisory role. A superscript * marks a shared first authorship
(equal contributions).

Part I, Equivariant Convolutional Networks on Euclidean Spaces, contains and extends on
insights from the following publications:

3D steerable CNNs [323]:
Maurice Weiler∗, Mario Geiger∗, Max Welling, Wouter Boomsma, and Taco Cohen
3D steerable CNNs: Learning rotationally equivariant features in volumetric data

Conference on Neural Information Processing Systems (NeurIPS), 2018

Personal contributions: analytical solution of the kernel constraint in terms of spher-
ical harmonics and Clebsch-Gordan coefficients, implementation (with Mario), ex-
periments (with Mario and Wouter), and writing (with Mario, Wouter and Taco).
In addition, Mario derived the kernel constraint and Wouter created the protein
datasets.

E(2)-steerable CNNs [322]:
Maurice Weiler∗and Gabriele Cesa∗

General E(2)-equivariant steerable CNNs
Conference on Neural Information Processing Systems (NeurIPS), 2019

Personal contributions: idea, irrep decomposition of the kernel constraint, ker-
nel Fourier expansion, e2cnn library design (with Gabriele), and writing (with
Gabriele). In addition, Gabriele derived the irrep kernel space solutions, imple-
mented and maintains the library and ran experiments.

Steerable filter CNNs [321]:
Maurice Weiler, Fred Hamprecht, and Martin Storath

Learning steerable filters for rotation equivariant CNNs
Conference on Computer Vision and Pattern Recognition (CVPR), 2018

Personal contributions: theory, implementation, experiments and writing.

4Parts II, III and IV were previously published as preprint on arXiv [325].
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Section 5.3 onG-steerable kernel bases and the generalized Wigner-Eckart theorem contains
insights from the previous three publications, and, in addition, from:

Wigner-Eckart theorem [173]:

Leon Lang and Maurice Weiler
A Wigner-Eckart Theorem for Group Equivariant Convolution Kernels
International Conference on Learning Representations (ICLR), 2020

Personal contributions: idea, writing (with Leon) and advisory role. Leon worked
out all of the representation theory and proofs. This paper is based on Leon’s Mas-
ter’s thesis.

E(N)-steerable CNNs [40]:

Gabriele Cesa, Leon Lang, and Maurice Weiler
A program to build E(N)-equivariant steerable CNNs

International Conference on Learning Representations (ICLR), 2022

Personal contributions: advisory role. Gabriele worked out the theory, implemented
it, ran experiments and wrote the paper. Leon helped out with the theory and proofs.

Parts II, III and IV are based on the preprint Coordinate Independent Convolutional Net-
works [325]. Sections 17.4 and 18.2 describe (among other networks) models that were
originally published in [57] and [67], respectively:

Coordinate independent CNNs [325]:

Maurice Weiler, Patrick Forré, Erik Verlinde, and Max Welling
Coordinate independent convolutional networks –

isometry and gauge equivariant convolutions on Riemannian manifolds
arXiv preprint arXiv:2106.06020, 2021

Personal contributions: theory, implementation, experiments and writing.

Gauge equivariant & icosahedral CNNs [57]:

Taco Cohen∗, Maurice Weiler∗, Berkay Kicanaoglu∗, and Max Welling
Gauge equivariant convolutional networks and the Icosahedral CNN

International Conference on Machine Learning (ICML), 2019

Personal contributions: original idea, formulation of the gauge equivariant convo-
lution equation, derivation of the kernel constraint, implementation (with Berkay
and Taco), and experiments (with Berkay). In addition, Taco formalized the bundle
formulation and the convolution on the icosahedron in terms of an atlas of charts.

Gauge equivariant mesh CNNs [67]:

Pim de Haan∗, Maurice Weiler∗, Taco Cohen, and Max Welling
Gauge equivariant mesh CNNs: Anisotropic convolutions on geometric graphs

International Conference on Learning Representations (ICLR), 2021

Personal contributions: theory (with Pim), implementation of parallel transporters
and logarithmic maps on meshes, experiments (with Pim), and writing (with Pim
and Taco). In addition, Pim implemented the convolution operation given trans-
porters and logarithmic maps.
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Further publications, which are not part of this thesis are:

Intertwiners between induced representations [55, 56]:
Taco Cohen, Mario Geiger, and Maurice Weiler

A general theory of equivariant CNNs on homogeneous spaces
Conference on Neural Information Processing Systems (NeurIPS), 2019

Steerable PDOs [137]:
Erik Jenner and Maurice Weiler

Steerable Partial Differential Operators for Equivariant Neural Networks
International Conference on Learning Representations (ICLR), 2022

Homeomorphic VAEs [87]:
Luca Falorsi, Pim de Haan, Tim R Davidson, Nicola De Cao,

Maurice Weiler, Patrick Forré, and Taco Cohen
Explorations in homeomorphic variational auto-encoding

arXiv preprint arXiv:1807.04689, 2018

Covariance in convolutional networks [46]:
Miranda Cheng, Vassilis Anagiannis, Maurice Weiler,

Pim de Haan, Taco Cohen, and Max Welling
Covariance in physics and convolutional neural networks

ICML Workshop on Theoretical Physics for Deep Learning, 2019
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