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Abstract

In many machine learning tasks it is desirable that a model’s prediction transforms
in an equivariant way under transformations of its input. Convolutional neural net-
works (CNNs) implement translational equivariance by construction; for other trans-
formations, however, they are compelled to learn the proper mapping. In this work,
we develop Steerable Filter CNNs which achieve joint equivariance under transla-
tions and rotations. The proposed architecture employs steerable filters to efficiently
compute orientation dependent responses for many orientations without suffering
interpolation artifacts from filter rotation. We utilize group convolutions which guar-
antee an equivariant mapping while allowing to preserve the full information on the
extracted features and their relative orientations. A commonly used weight initial-
ization scheme is generalized from pixel based filters to filters which are defined as
a linear combinations of a system of atomic filters. The proposed approach signifi-
cantly improves upon the state-of-the-art on the rotated MNIST benchmark as well
as on the ISBI 2012 2D EM segmentation challenge.

Zusammenfassung

In vielen Anwendungen des maschinellen Lernens ist es von Vorteil, wenn sich die
Vorhersagen des verwendeten Modells in äquivarianter Weise unter Transforma-
tionen der Eingabe transformieren. Convolutional Neural Networks (CNNs) sind
per Konstruktion translations-äquivariant, müssen eine adäquate Abbildung für an-
dere Transformationen allerdings explizit erlernen. In dieser Arbeit entwickeln wir
Steerable Filter CNNs, welche sich durch Äquivarianz unter gleichzeitigen Transla-
tionen und Rotationen auszeichnen. Die vorgeschlagene Netzwerkarchitektur ver-
wendet Steerable Filter, um effizient orientierungs-abhängige Filterantworten für
eine Vielzahl von Orientierungen zu berechnen, ohne unter Interpolationsartefak-
ten zu leiden. Um eine äquivariante Abbildung zu garantieren, wenden wir Faltun-
gen auf Symmetriegruppen an. Diese können potentiell die volle Information der
extrahierten Features und ihrer relativen Orientierung erhalten. Wir verallgemein-
ern ein standardmäßig genutztes Schema zur Initialisierung der Netzwerkparameter
von pixelbasierten Filtern auf Filter, welche als Linearkombination atomarer Filter
definiert sind. Der vorgeschlagene Ansatz erzielt auf dem rotated MNIST Datensatz
sowie auf der ISBI 2012 EM segmentation challenge signifikant bessere Ergebnisse als
andere dem aktuellen Stand der Technik entsprechende Netzwerke.
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1 Introduction

The visual system of human beings shows a remarkable performance in wide-ranging cognitive
tasks like object categorization and identification, foreground segmentation, motion analysis,
depth estimation or grouping of distinct entities. A primary goal of computer vision research
is to emulate, or better to exceed upon, such capabilities in artificial systems. While recent
advances in machine learning, especially in the field of artificial neural networks, led to a vast
progress in performance of such systems, they are still far from being competitive compared to
our visual cognitive abilities. This raises the question why computer vision is such a difficult
problem. The input to a computer vision pipeline, corresponding to the sensation on our
retina, is a high-dimensional, spatially or spatiotemporally structured signal. Focusing on
object recognition first, the task is to reliably detect objects in this signal and to assign them
to a category. Given that objects typically show high variabilities in appearance, originating
in, e.g. changes in position, orientation, size, pose, illumination or clutter, it is, however,
hard to define features which allow to discriminate among different categories. Evidently,
the desired mapping from low level sensory stimuli to object categories should be invariant
under class-preserving transformations of the input. Indeed, neuroscientific studies support
the hypothesis that late stages of the visual system of primates represent object identity via a
sparse neuron-population coding which meets the aforementioned invariance properties. For
instance, activation patterns in test subjects’ brains allow to discriminate between face images
of different individuals while staying nearly invariant to factors like position, viewing angle or
illumination [DiCarlo et al., 2012, Quiroga et al., 2005, 2008, Barlow, 2009]. In more general
tasks where not only the object category is of interest, the representations of perceived abstract
concepts should rather covary with relevant transformations of the input while being invariant
to nuisance transformations. Again, there are neuroscientific studies which show that this
seems to be the case in primate brains: In the work of Young and Yamane [1992] the axes
of a low-dimensional embedding of measured activation patterns in the inferotemporal cortex
could be identified with continuous changes in the appearance of the presented stimuli.

These findings suggest that a key factor in solving computer vision is to find an appropriate
representation of the data which allows to disentangle the latent sources of variability. While in
general suitable representations can be learned without making assumptions on internal struc-
ture in the data, the task can be greatly facilitated by incorporating such a priori knowledge
into learning algorithms [Bengio et al., 2013]. One of the arguably most successful approaches
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Figure 1.1: Left: Electron microscopy sample of neural tissue from the ISBI 2012 EM segmentation
challenge, partly overlaid with neuron boundary labels. Characteristic patterns appear in
all orientations. Right: A rotated version of the same sample. Since the labels are rotated
together with the EM image, the pair of them is said to transform in an equivariant way. A
computer vision algorithm learning the mapping between the raw data and labels should
optimally incorporate such a-priori knowledge by design.

leveraging additional structure are convolutional neural networks (CNNs) [LeCun et al., 1998,
Krizhevsky et al., 2012]. These architectures take advantage of the topological arrangement
of pixels on a grid by (i) restricting neuronal connectivity to a small spatial adjacency called
local receptive field and (ii) sharing connectivity weights over spatial positions. Immediate
consequences of this design principle are a substantially reduced number of model parameters
and an enriched spatial structuring of intermediate representations in form of feature maps
which transform in an equivariant way under translations of the input. The latter guarantees a
generalization of learned patterns over spatial positions. From the viewpoint of object recog-
nition this can be interpreted as reducing the amount of intra-class variability to be learned
explicitly. An immediate question arising under these considerations is how to adapt the net-
work architecture such that generalization is extended further to other transformations than
just translations.

In this work a focus is laid on the broad class of images which, besides translational invari-
ances, exhibit additional rotational invariances. Typical examples are biomedical microscopy
images of tissue, astronomical data or satellite imagery which do not show a prevailing global
orientation. For an example see Figure 1.1. Ideally, the output of a network processing such
data should be equivariant with respect to the orientation of its input – that is, if the input is
rotated, the output should transform accordingly. This is not the case for conventional CNNs
which are compelled to learn several rotated versions of the same filter, introducing redundant
degrees of freedom and increasing the risk of overfitting.
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1.1 Contribution

We propose a rotation-equivariant CNN architecture which shares weights over filter orien-
tations to improve generalization and to reduce sample complexity. A key property of our
network is that its filters are learned such that they are steerable which enables an exact and
efficient rotation of the filters. We accomplish this by representing the filters as linear combi-
nations of a fixed system of atomic steerable filters.

In all intermediate layers of the network, we utilize group convolutions to ensure an equiv-
ariant mapping of feature maps. Group-convolutional networks were proposed by Cohen and
Welling [2016] who considered four filter orientations. An advantage of our construction
based on steerable filters is that we can achieve an arbitrary angular resolution w.r.t. the sam-
pled filter orientations. Indeed, our experiments show that results improve significantly when
using more than four orientations.

An important practical aspect of CNNs is a proper weight initialization. Since the weights to be
learned serve as expansion coefficients for the steerable system, common weight initialization
schemes need to be adapted. Here, we generalize the results found in Glorot and Bengio
[2010] and He et al. [2015] to networks which learn filters as a composition of (not necessarily
steerable) atomic filters.

The proposed approach significantly improves upon the state-of-the-art on rotation-invariant
recognition tasks: (i) Our approach is the first one to obtain an accuracy higher than 99% on
the rotated MNIST dataset, which is the standard benchmark for rotation-invariant classifica-
tion. (ii) A processing pipeline based on the proposed Steerable Filter CNN ranks first in the
ISBI 2012 EM segmentation challenge.

1.2 Outline

The remainder of this thesis is organized as follows: First, we will introduce the basic con-
cepts of group theory which are relevant for the formal development of group-equivariant
CNNs. The following chapter first discusses how symmetries being present in images can be
exploited by computer vision algorithms in general. We then review conventional CNNs from
the perspective of group theory as a specific example and point out their equivariance prop-
erties under translations. Equipped with these insights, we introduce two possible network
architectures which are simultaneously equivariant under translations and rotations and dis-
cuss their advantages and disadvantages over each other. Next, we propose a system of atomic
steerable filters which is suitable for learning composed filters that can be rotated efficiently
and exactly. The rotation-equivariant CNNs are then reformulated in terms of these steerable
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filters. As the weights parameterizing the filterbanks are expansion coefficients of the atomic
filters rather than pixel values we generalize a common weight initialization scheme to this
case in the following chapter. In chapter 6 we give an overview over related approaches and
highlight similarities and differences to our approach. Finally, the transformation properties
of the proposed architecture are empirically validated and the network performance is exper-
imentally evaluated on two rotation-invariant recognition tasks.

4



2 Elements of group theory

This chapter reviews some basic concepts of group theory which are relevant for a formal
investigation of transformation properties of CNNs and in particular for the development of
Steerable Filter CNNs. In order to keep the discussion practical, many examples are chosen in
foresight of the application to convolutional networks in later chapters. Since the statements
made in this chapter are well known results of group theory we will often omit their proofs; the
interested reader is referred to Serre [2012], Carter [2009], Milne [2013] and Berndt [2007]
on which this chapter is mainly based. All figures in this chapter are taken over and slightly
adapted from Carter [2009].

2.1 Basic definitions

Definition 2.1.1. A group is a tuple (G, ·) consisting of a set G and a binary operation

· : G × G→ G, (g, h) 7→ g · h

when the following group-axioms are satisfied:

- Associativity: for all g, h, k ∈ G, (g · h) · k = g · (h · k)

- Identity element: ∃e ∈ G such that ∀g ∈ G, g · e = g = e · g

- Inverse element: ∀g ∈ G, ∃g−1 ∈ G such that g · g−1 = e = g−1 · g

In the following we will often write gh for g ·h and abbreviate (G, ·) with G in cases where the
meaning is unambiguous. It can be shown that the neutral element and the inverse of each
group element are unique.

Example 2.1.1. The set Rn together with addition + as binary operation forms the translation
group Tn in n dimensions: Addition is associative, the identity element is given by the zero
vector 0 and for each u ∈ Tn there is an inverse element, namely −u.

Definition 2.1.2. The order |G| of a group G is defined as the cardinality of its set.

Example 2.1.2. The set of all N th complex roots of unity
�

e2πi k/N | k = 0, . . . , N − 1
	

together
with complex multiplication form a cyclic group of order N.

5



Two different groups can be resembling or even coincide in their algebraic structure. To for-
malize the relationship between groups one introduces the notion of homomorphisms which
are functions that map groups in a structure preserving way:

Definition 2.1.3. A homomorphism is a map α : G→ G′ from a group (G, ·) to another group
(G′,?) such that one has for all g, h ∈ G that

α(g · h) = α(g) ? α(h) .

That is, the product of two elements in the domain G needs to be reflected in the codomain G′.
It follows directly that α(eG) = eG′ and that for all g ∈ G, α(g−1) = α(g)−1. A special case are
isomorphisms which additionally demand the map α to be bijective. Isomorphisms between
two groups G and G′ exist whenever these are structurally identical. In this case we write
G ∼= G′. When an isomorphism maps a mathematical object to itself, i.e. when its domain and
codomain coincide, it is called an automorphism.

Example 2.1.3. Again, let Tn be the translation group in n dimensions and let u, v ∈ T2. The
projection α : T2→ T1, (x1, x2)

T 7→ x1 is a group homomorphism from T2 to T1 since for
all u, v ∈ T2 it holds that α(u)+α(v) = u1+ v1 = α(u+ v). Since projections are, however,
not bijective, α is no isomorphism between T1 and T2.

Example 2.1.4. Consider the group U(1) :=
�

eiφ
�

�φ ∈ [0,2π)
	

of unitary matrices in C1×1. It
can easily be shown that this group is isomorphic to the special orthogonal group in two
dimensions

SO(2) :=

��

cos(φ) − sin(φ)
sin(φ) cos(φ)

� �

�

�

�

φ = [0,2π)

�

,

that is, U(1)∼= SO(2). Indeed, both groups can be interpreted as rotations when acting on
C or R2, respectively.

A common technique to make the structure of finite order groups visually accessible are so
called Cayley diagrams which illustrate groups as graphs with nodes for each group element.
Before introducing these diagrams we first need to define the concept of generating sets of a
group since these sets determine the connectivity of the Cayley graph.

Definition 2.1.4. Let G be a group. A subset S ⊆ G is called generating set of the group if
every element g ∈ G can be expressed by a finite product of elements of S and inverses
of those. That is, for every g ∈ G there exists a n ∈ N as well as ai ∈ S or a−1

i ∈ S for

i ∈ 1, . . . , n such that g =
n
∏

i=1
ai . The neutral element is typically not included in S since it

is generated for n= 0. We write G = 〈S〉 when G is generated by S.
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(a) The Cayley diagram of the cyclic group of order
N . There is only one generator connecting the el-
ements cyclically.

(b) Cayley diagram of the dihedral group D3. There
is one generator r for rotations and another gen-
erator f for mirroring.

Figure 2.1: Examples of Cayley diagrams for simple, finitely generated groups.

In general, this decomposition is not unique. A group is called finitely generated when S has
finite cardinality.

Example 2.1.5. The group consisting of all N th complex roots of unity introduced in exam-
ple 2.1.2 is generated by {rN}where we identify rN with e2πi/N . Cyclic groups are actually
defined as groups being generated by one element.

Definition 2.1.5. Let G = 〈S〉 be a group which is generated by a subset S 63 e. Its Cayley
graph Γ (G, S) is a directed and colored graph with

- the nodes are associated with the groups elements g ∈ G

- a color cs is assigned to each generator s ∈ S

- the edges
�

(g, gs)
�

� g ∈ G, s ∈ S
	

of the graph connect each group element g with
the group elements that result by multiplying it with generator elements s and are
of color cs.

Example 2.1.6. Figure 2.1a shows the Cayley diagram for a cyclic group of order N . The node
labels chosen here are the number of times the single generator rN is multiplied to the
identity to reach this node.

In all groups mentioned so far the order in which its elements are composed is irrelevant. This
is in general not the case.

Definition 2.1.6. A group G is called abelian if and only if its elements commute, that is iff
for all g, h ∈ G, gh= hg

Example 2.1.7. All aforementioned groups are abelian. As an example for a non-abelian
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(a) Rotational symmetry. (b) Bilateral symmetry.

Figure 2.2: Action of the rotational and bilateral symmetries generators on a 3-gon.

group let us consider dihedral groups Dn which can be thought of as the n rotational
and n bilateral symmetries of n-gons (regular n-sided polygons). These symmetries are
visualized for n= 3 in Figure 2.2. The dihedral groups can be generated by the set {r, f }
consisting of an elementary rotation and a mirroring. Figure 2.1b shows the corresponding
Cayley diagram from which one can easily see that the group is not abelian. For example,
commuting the two generators leads to different results: r f = f r2 6= f r

2.2 Group actions and equivariance

In practice groups often appear as transformation groups acting on some set or space. An
application of particular interest in this work is the transformation of signals, e.g. translations
or rotations of an image. Let G be a group and X be a set.

Definition 2.2.1. A function

φ : G × X → X , (g, x) 7→ φ(g, x) =: g.x

is called a left group action iff it satisfies the following properties:

- Identity: e.x = x ∀x ∈ X

- Compatibility: (gh).x = g.(h.x) ∀g, h ∈ G, x ∈ X

G is then said to act on X from the left and X is called a left G-set. A common abbreviation
is to write the group element as index, that is φg(x) := φ(g, x).

The action of G on X permutes the elements of X . Given a specific element from X one can
ask where it can possibly be moved by the action of G. If all elements in the set can be mapped
to any other element, i.e. if for all x , x ′ ∈ X there exists a g ∈ G such that x ′ = g.x , the
group action is called transitive. This is in general not the case. The set of all points which can
be reached when acting on a specific element in X is known as its orbit:
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Definition 2.2.2. For x0 ∈ X we call the subset

G.x0 :=
�

g x0

�

� g ∈ G
	

of X an orbit of G through x0.

Being an element of the same orbit is an equivalence relation: It is reflective since each group
has a identity element and hence x = e.x , i.e. x is an element of its own orbit. Further,
symmetry holds since y ∈ G.x if and only if x ∈ G.y . This is because y ∈ G.x implies the
existence of a g ∈ G such that y = g.x which, by the existence of the inverse, implies that
x = g−1.y. Transitivity (in the sense of equivalence relations) here means that z = G.x follows
from y = G.x and z = G.y . This property is ensured by the closure of the group under its
binary operation: The statements y = G.x and z = G.y imply the existence of g, h ∈ G such
that y = g.x and z = h.y. Then z = h.(g.x) = k.x for k := hg. The equivalence classes under
this equivalence relation are exactly the group orbits. Being equivalence classes of X , the orbits
form a partitioning of the set X :

Definition 2.2.3. The set of all G-orbits

X/G =
�

G.x
�

� x ∈ X
	

is called the quotient set of X by G.

Example 2.2.1. Consider the special orthogonal group SO(2) in two dimensions and the con-
tinuous planeR2. One possible group action of SO(2) onR2 is given by multiplying x ∈ R2

with the matrices in SO(2), i.e.

ρ : SO(2)×R2→ R2, (R, x) 7→ Rx ,

which rotates the points in x around the origin. The orbit of x0 ∈ R2 is given by the set
of all points with the same distance to the origin as x0, that is

SO(2).x0 =
�

x ∈ R2
�

� |x |= |x0|
	

.

Consequently, the quotient

R2/SO(2) =
��

x ∈ R2
�

� |x |= r
	 �

� r ∈ R+
	

is a set consisting of all circles centered at the origin, its elements differing in the radii of
the rings.

Consider a space which is acted on by a transformation group and a function with this space as
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its domain. One can then ask in which way the group action on the domain is reflected in the
functions image. When the permutation of elements in the functions image induced by acting
on its domain is itself a group action the function is called equivariant under this group.

Definition 2.2.4. Let G be a group and X and Y be two G-sets under group actions φX :
G × X → X and φY : G × Y → Y respectively. Assume further a map f : X → Y between
these sets to be given. This map is called G-equivariant iff one has

f
�

φX
g (x)

�

= φY
g

�

f (x)
�

∀g ∈ G, x ∈ X .

The function can be interpreted as commuting with the group action as visualized in the fol-
lowing commutative diagram:

x

y = f (x)

φX
g (x)

φY
g

�

f (x)
�

= f
�

φX
g (x)

�

f

φX

f

φY

Example 2.2.2. An equivariant mapping of great importance for convolutional networks are
group-convolutions which are a natural generalization of spatial convolutions from trans-
lations to more general transformation groups. Let G be such a transformation group and,
aiming at later practical applications, let ζ : G→ R and Ψ : G→ R be integrable functions
of finite support on this group. Then, their group convolution is defined by

(ζþΨ) (g) =
∫

G
ζ(h)Ψ(h−1 g) dλ(h), (2.1)

where we use the symbolþ to distinguish group convolutions from the spatial convolution
operator ∗, and λ denotes a Haar measure. The result of this operation is again a function
on the group. Group convolutions are equivariant under the action

φ : G × {ζ : G→ R} → {ζ : G→ R} :
�

h,ζ(g)
�

7→
�

φh(ζ)
�

(g) := ζ
�

h−1 g
�

which transforms the functions by acting on their domain. This can be easily shown by
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writing out

�

φh(ζ)þΨ
�

(g) =

∫

G
φh

�

ζ(k)
�

Ψ(k−1 g) dλ(k)

=

∫

G
ζ(h−1k)Ψ(k−1 g) dλ(k)

and substituting k̃ := h−1k, hence k−1 =
�

hk̃
�−1
= k̃−1h−1 which further gives

�

φh(ζ)þΨ
�

(g) =

∫

G
ζ
�

k̃
�

Ψ
�

k̃−1(h−1 g)
�

dλ
�

k̃
�

=
�

ζþΨ
�

(h−1 g)

=
�

φh

�

ζþΨ
��

(g).

(2.2)

The following diagram gives an overview over the functions transformation under group
convolutions and group actions:

ζ(g)

(ζþΨ) (g)

φh

�

ζ(g)
�

φh

�

ζþΨ
�

=
�

φh(ζ)þΨ
�

�

·þΨ
�

φh

�

·þΨ
�

φh

Note that while in this example the actions before and after the equivariant mapping are
the same this is in general not necessary for equivariance.

In some cases the image of a function is not affected by transformations of its domain at all.
This special case of equivariance is called invariance:

Definition 2.2.5. A G-equivariant function f : X → Y from X to Y is called G-invariant iff
the group action in the image is the identity, i.e. when one has

f
�

φX
g (x)

�

= f (x) ∀g ∈ G, x ∈ X .

Example 2.2.3. Another mapping which appears in convolutional networks is global max-
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pooling which on groups is given by

max
G

: {ζ : G→ R} → R, ζ(g) 7→max
g∈G

ζ(g). (2.3)

Consider again the group action

φ : G × {ζ : G→ R} → {ζ : G→ R} ,
�

h,ζ(g)
�

7→
�

φhζ
�

(g) := ζ
�

h−1 g
�

from the last example. The global pooling operation is invariant under this group action
since the action simply moves the maximal value to another group element but does not
alter its value:

max
g∈G

�

φhζ
�

(g) = max
g∈G

ζ
�

h−1 g
�

= max
g∈G

ζ(g) (2.4)

The commutative diagram for this example is given below.

ζ(g)

max
g∈G

ζ(g)

�

φhζ
�

(g)

max
g∈G

�

φhζ
�

(g) =max
g∈G

ζ(g)

max
G

φh

max
G

id

2.3 Subgroups and products of groups

The properties of more complex groups can often be understood better by investigating their
internal structure, especially whether they are composed of simpler building blocks. An im-
portant concept in this context are subgroups which are nonempty subsets of a group that
themselves form a group.

Definition 2.3.1. Let (G, ·) be a group and H ⊆ G be a subset of G. If H together with the
group operation (restricted to H) satisfies

- Closure: for all a, b ∈ H it follows that a · b ∈ H

- Inverse: for all a ∈ H the inverse is contained in the subset, i.e. a−1 ∈ H,

12



(a) Subgroup 〈 f 〉 ∼= C2 contained in D3. (b) Subgroup 〈r〉 ∼= C3 contained in D3.

Figure 2.3: Visualizations of two subgroups of D3.

then H is itself a group and is called a subgroup of G. We denote subgroups symbolically
by writing H ≤ G.

Every group contains at least the trivial subgroup {e} and itself as subgroup. The neutral
element e is necessarily included in every subgroup. Further, the intersection of subgroups of
G can be shown to form a subgroup.

Each subgroup of G comes with related subsets of G which are known as cosets and form a
partitioning of the group.

Definition 2.3.2. Let G be a group, H ≤ G be a subgroup of it and consider an element g ∈ G.
Then we define

gH :=
�

gh
�

�h ∈ H
	

as left coset of H in G w.r.t. g and

H g :=
�

hg
�

�h ∈ H
	

as right coset of H in G w.r.t. g.

A subgroup is always a coset of itself, that is aH = H for a ∈ H since always e ∈ H. As
already stated above, the cosets are either disjoint or equal and hence form a partitioning of
the group. Therefore, all cosets but the subgroup from which they are derived do not contain
the identity element and thus do not form groups themselves. Further, it can be shown that
they all contain the same number of elements. Another quantity of interest is the number of
cosets of a subgroup.

Definition 2.3.3. The index (G : H) of H in G number of left cosets of H in G. It is formally
defined as the cardinality of the set {gH | g ∈ G} of left cosets.

An important property of finite groups which is known as Lagrange’s theorem is that the index
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(a) Left cosets of 〈 f 〉 in D3. (b) Right cosets of 〈 f 〉 in D3.

Figure 2.4: Left and right cosets of 〈 f 〉 in D3 highlighted by different node colors. Left cosets can
be understood in terms of Cayley diagrams by first moving to some group element g and
from thereon exploring the diagram by following the generators of the subgroup under
consideration. In the case of right cosets the order is interchanged: One first moves within
the subgroup and then goes further by taking the same steps as from e to g.

of a subgroup H in G is related to the groups orders via

(G : H) =
|G|
|H|

and thus the order of each subgroup necessarily divides the order of the group.

Example 2.3.1. Consider again the dihedral group D3 from example 2.1.7. The subsets {e, f }
and

�

e, r, r2
	

of D3 are both closed under the group operation and contain the inverses of
each of their elements. They hence form two different subgroups 〈 f 〉 and 〈r〉 which are
shown embedded in D3 in Figure 2.3. Since D3 and therefore its subsets are finite, we
can apply Lagrange’s theorem to calculate the subgroups indices. For example, there are
(D3 : 〈 f 〉) = |D3|

|〈 f 〉| =
6
2 = 3 cosets of 〈 f 〉 in D3. The left cosets of 〈 f 〉 in D3 are e〈 f 〉= {e, f },

r〈 f 〉 = {r, r f } and r2〈 f 〉 =
�

r2, r2 f
	

which are highlighted by different node-colors in
Figure 2.4a. Similarly, Figure 2.4b shows the right cosets of 〈 f 〉 in D3 which are given by
〈 f 〉e = {e, f }, 〈 f 〉r = {r, r2 f } and 〈 f 〉r2 =

�

r2, r f
	

.

Given a group with several subgroups one can ask whether this group can be understood as
being assembled as a combination of its subgroups. One way to construct a large group from
smaller ones is by means of the direct product:

Definition 2.3.4. Assume two groups (H, ·) and (K ,?) to be given. On the Cartesian product
of the groups underlying sets H × K one defines the binary operation

�

(h1, k1), (h2, k2)
�

7→ (h1 · h2, k1 ? k2)

14



(a) Direct product C3 × C2
∼= C6 which is iso-

morphic to the cyclic group of order 6.
(b) Example of a semidirect product C3oC2

∼= D3 which
is isomorphic to the dihedral group with three ori-
entations.

Figure 2.5: Two possible product groups constructed from C3 and C2.

which multiplies elements of H and K independently of each other. This construction
forms a group itself and is known as (outer) direct product. It is common to abbreviate
the direct product by its set H × K .

It is possible to generalize the direct product to more than two groups by analogously taking
the Cartesian product over all sets and and defining the binary operation element wise.

Example 2.3.2. Figure 2.5a shows the direct product C3 × C2 of finite cyclic groups with a
periodicity of 3 and 2 respectively. The independence of the subgroups manifests in the
diagram in the fact that the order in which one moves in the subgroups commutes.

A direct product H × K has subgroups H ′ =
�

(h, eK)
�

�h ∈ H
	

and K ′ =
�

(eH , k)
�

� k ∈ K
	

which
are by construction isomorphic to H and K and thus can be identified with these. The sub-
groups obey the following algebraic properties:

- the intersection H ′ ∩ K ′ = {(eH , eK)} is trivial

- every element in H × K can be uniquely decomposed in the product of one element in
H ′ and one element in K ′

- all elements in H ′ commute with all elements in K ′

When a given group contains subgroups with the above properties it is called inner direct
product and is guaranteed to be isomorphic to the outer direct product of these subgroups.
Both inner and outer products are thus equivalent but emphasize a different viewpoint: The
inner product decomposes a group in its subgroups while the outer product constructs a larger
group from smaller ones. The last algebraic property stated above is often stated equivalently
by saying that H ′ and K ′ are both normal in H × K .

Definition 2.3.5. A subgroup N of G is called normal if its left and right cosets coincide.
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Mathematically this can be formulated as

gN g−1 = N ∀g ∈ G.

In this case we write N Ã G.

In addition to the requirements of conventional subgroups, normal subgroups N Ã G hence
need to be closed under conjugation with arbitrary group elements, that is ∀n ∈ N , g ∈ G ∃n′ ∈
N such that gng−1 = n′. Conjugation with g ∈ G is an automorphism of N which means that N
is closed under conjugation and the permutation of its elements preserves the group structure
of N .

Example 2.3.3. Take another look at the dihedral group D3 and its subgroups 〈 f 〉 and 〈r〉,
both visualized in Figure 2.3. It is clear that 〈 f 〉 is not normal since for example r f r−1 =
r2 f /∈ 〈 f 〉 gives an element in a coset of 〈 f 〉 but not in 〈 f 〉 itself. The subgroup 〈r〉,
however, is normal, which can easily be seen in the Cayley diagram: Conjugating an
arbitrary element of 〈r〉 with any element of 〈 f 〉 always leads back to 〈r〉. To be more
specific, we have f rn f −1 = r−n ∈ 〈r〉.

A generalization of the direct product is the so called semidirect product. It distinguishes itself
from the direct product in that the product group is not necessarily factorizable into two normal
subgroups but into two subgroups from which only one needs to be normal. Lets first give the
outer, constructive definition:

Definition 2.3.6. Assume we are given two groups (N , ·) and (H,?) as well as a homomor-
phism θ : H → Aut(N), h 7→ θh from H into the group of automorphism of N . We can
then construct the (outer) semidirect product group N oθ H which is defined by

- the underlying set is the Cartesian product N ×H

- a binary operation given by
�

(n1, h1), (n2, h2)
�

7→
�

n1 · θh1
(n2), h1 ? h2

�

.

Analogously to the direct product, the semidirect product N oθ H can be decomposed into
subgroups N ′ =

�

(n, eH)
�

�n ∈ N
	

and H ′ =
�

(eN , h)
�

�h ∈ H
	

isomorphic to N and H. In general
only N is a normal subgroup of N oθ H. A further asymmetry in the two factors is that the
elements of H are multiplied independently from N while the elements of N are operated on by
H via θ during multiplication. Different homomorphisms θ lead to different product groups.
For example, the trivial case θh = id ∀h ∈ H recovers the direct product NoidH = N×H.

Example 2.3.4. In example 2.3.2 we constructed the direct product of C3 and C2. Let us this
time combine these groups differently by building a semidirect product. As homomor-
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phism from C2 into the automorphism group of C3 we define

θ : C2→ Aut (C3) , h 7→ θh with θh : C3→ C3, n 7→

(

n, for h= eC2
,

n−1, for h= f .

Then C3 oθ C2
∼= D3 is isomorphic to the dihedral group with three orientations and

we can identify the factors with the subgroups of the dihedral group found before in
example 2.3.1. Specifically, we have C3

∼= 〈r〉 and C2
∼= 〈 f 〉. Intuitively, the automorphism

θ f inverts the direction of cycling through C3. This is visualized in the Cayley diagram in
Figure 2.5b whose nodes are for clarity organized in the same pattern as for the diagram
of the direct product in Figure 2.5a.

One can again define an inner version of the semidirect product. For this purpose, let G be a
group with a normal subgroup N ′ Ã G and a conventional subgroup H ′ ≤ G such that each
g ∈ G can be uniquely factorized into g = nh with n ∈ N ′ and h ∈ H ′. Further, let θ : H ′ →
Aut(N ′) : h 7→ θh be a homomorphism with θh : N ′→ N ′, n 7→ hnh−1 for all n ∈ N ′, h ∈ H ′. By
definition of the normality of N ′ the conjugation with g ∈ G, and therefore with h ∈ H ′, is an
automorphism of N ′. Then N ′oθ H ′ is isomorphic to G, that is, both are structurally identical
and G can be interpreted as being an inner semidirect product of N ′ and H ′. The definition of
the inner semidirect product sheds light on the origin of the structure of the outer semidirect
product’s binary operation: Let gi = nihi ∈ G with i ∈ 1,2 and n ∈ N ′, h ∈ H ′, then we can
write the product of the gi in factorized form by the following manipulations:

g1 g2 = n1h1n2h2 = n1h1n2

�

h−1
1 h1

�

h2 =
�

n1θh1
(n2)

�

(h1h2)

This shows that the isomorphic transformation of n2 to θh1
(n2) = h1n2h−1

1 is a result of moving
h1 to the right when the elements of N ′ and H ′ do not commute.

2.4 Group representations

In order to perform calculations with abstract algebraic structures like groups it is often con-
venient to switch to so called representations of these structures. Here we will focus on linear
representations of groups which are linear maps on some vector space which mimic the group
structure under function composition. This approach opens the possibility to investigate the
groups properties with the tools of linear algebra which is well understood. Since a linear
representation is formally defined as a homomorphism from the group under consideration
into the general linear group we will next define the latter.

Definition 2.4.1. The general linear group GLn(K) of degree n over a field K is the group of
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all invertible n× n matrices together with matrix multiplication as group operation.

The general linear group GLn(K) consists of all automorphisms in a fixed basis of a n-dimensional
vector space V over K. It is often written GL(V ) or Aut(V ).

Definition 2.4.2. A linear representation of a group G in a vector space V is a homomorphism

ρ : G→ GL(V )

from the group to the general linear group of the vector space.

There are in general infinitely many possible representations of a group. A representation is
called faithful if it is injective. In this case the representation fully preserves the group structure
since its surjective restriction is an isomorphism.

Example 2.4.1. Every group G is represented by the trivial representation

ρ : G 7→ GL1(K), g 7→ 1.

This representation is an homomorphism which looses all information of the group struc-
ture and is hence not faithful.

Example 2.4.2. Consider the translation group T2 introduced in example 2.1.1 which trans-
lates vectors in R2 by adding an offset to them. It is not possible to find a representation
ρ : T2 → R2. This is because the origin is a fixed point under linear maps and hence
translations starting from the origin can not be represented. We can, however, write the
vector (x , y)T in homogeneous coordinates (x , y, 1)T and operate on it by multiplication
with translation matrices

Γu :=





1 0 u1

0 1 u2

0 0 1



 .

The map ρ : T2 → GL3(R), u 7→ Γu is a homomorphism since ΓuΓv = Γu+v and is thus
a representation of the translation group. In matrix form the inverse and identity are
represented by Γ−1

u = Γ−u and Γ0 = 13×3. The representation is injective and hence faithful.

We will later on utilize a representation of the special Euclidean group SE(2) used in the
group-convolutional network to work out its group operations in parameterized form from
geometrical considerations.
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3 A group theoretic view on computer vision

The signals under consideration in this thesis are images which we understand as a mapping
from an underlying two-dimensional domain to response vectors representing e.g. brightness
or RGB channels. Since the data is spatially organized, a natural class of image transformations
is induced by group actions transforming the underlying domain. Examples include spatial
translations or rotations of an image. In the following section we will first show on an abstract
level how and in which cases image classification can be facilitated by designing a classifier
which is invariant under such transformations. Subsequently, we analyze the equivariance
properties of conventional CNNs from a group theoretic perspective and investigate how this
leads to invariant classification.

3.1 Invariant image classification

We formally define an image as a function f : X → RK which maps a two-dimensional
domain X to K response channels. In practice images are usually sampled on a pixel grid
X = {1, . . . , m}×{1, . . . , n}. For convenience we will, however, consider them to be defined as
functions with finite support on either Z2 or R2. Let

F =
�

f
�

� f : X → RK
	

be the vector-space of all images which we denote as image-space. In classification settings one
is interested in a partitioning of this space into regions associated with different classes. Next,
let L = {0, 1, . . . , C} be an exhaustive set of C ∈ N class-labels with an additional non-class,
labeled as 0, for all images not falling in one of the other classes. This allows to formally define
a ground-truth function of class-ids

C : F → L

assigning a class to each image. Given a dataset {( fi , li)}Ni=1 of N labeled training samples
where fi ∈ F and li = C( fi) ∈ L ∀ i ≤ N , a classifier is expected to learn decision boundaries
which reflect the partitioning of the class-id function. Due to the often large intra-class vari-
ability the different regions in image space are usually highly entangled such that the classifier
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has to learn convoluted boundaries.

We next show how the complexity of learning decision boundaries can be reduced when certain
symmetries exist in the data. For that purpose consider a transformation group G acting on
the domain X via a left group action

φX : G ×X → X , (g, x) 7→ φX
g (x) = g. x .

This group action induces another group action on images:

φF : G ×F → F , (g, f ) 7→ φF
g ( f ) := f

�

g−1. x
�

Assume that these transformations are label-preserving, i.e. all images in the orbit G. f are
assigned the same label:

C
�

φF
g ( f )

�

= C( f ) ∀ g ∈ G, f ∈ F .

In such cases it is reasonable to enforce the invariance on the learned classifier by design. Doing
so constricts the hypothesis space

Hfree =
�

h
�

�h : F → L
	

(3.1)

of an unrestricted classifier to the hypothesis space

Hinv =
�

h
�

�h : F/G→ L
	

(3.2)

of all hypotheses assigning a class label to each orbit. As a consequence the sample complexity
is reduced since the quotient space F/G is smaller than the full image-space F . Further,
samples f ∈ F seen by the classifier are generalized over their whole orbit G. f ∈ F/G such
that the classifier can detect class instances in related poses f ′ ∈ G. f even if never seen before.
The next section will substantiate these abstract ideas for the translation group on the example
of convolutional neural networks.

3.2 Equivariance properties of CNNs

Image classification is nowadays often done by convolutional neural networks. In principle
it is, however, possible to classify images with conventional multilayer perceptrons (MLPs)
which are simple fully connected feedforward networks. An image is fed to a MLP as a vector
of pixel values which is in each layer multiplied by a weight matrix, added by a bias and then
element-wise transformed by a nonlinearity. Such a network’s output is invariant under a joint
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permutation of the input vector entries and columns of the first layer’s weight matrix. In image
classification this corresponds an arbitrary permutation of the image pixels. This shows that
the model completely ignores the pixels’ spatial arrangement. This problem can be alleviated
by restricting the weight matrices entries to be nonzero only in a small adjacency of every
pixel in the input image. Then the network senses the image in form of small receptive field
for each neuron which capture local patterns that are assembled to the final prediction in a
hierarchy of layers. Besides imprinting the spatial arrangement of pixels into the network this
approach leads to a drastic reduction in network parameters: assuming that the number of
output neurons of each layer is proportional to the number of input pixels N , a conventional
MLP has of the orderO

�

N2
�

weights while the parameter number of a MLP with local receptive
fields scales with O(N).

A second issue of MLPs is that they do not capture any symmetry present in the spatial arrange-
ment of the data. For example, image classification should often be insensitive to spatial shifts,
that is, the network prediction should not vary with the position of the object to be classified. In
more general settings like image segmentation the resulting segmentation mask should move
in an equivariant way under translations of the input image. Convolutional neural networks
are designed to solve this problem for the specific case of translational symmetries. CNNs for
image analysis tasks map an input image to a desired output by repeatedly convolving it with
filters, applying nonlinearities and pooling the feature maps. The convolution operation can
be seen as a further constraint on the networks parameters: since the kernels are shifted over
the image, the local receptive fields share their weights. As a consequence, the number of pa-
rameters is of order O(1), i.e. it does not scale with the size of the image at all. Furthermore,
patterns learned at one position will be detected again at every other position. Together, these
effects lead to a drastically increased sample complexity and generalization in comparison to
MLPs.

Mathematically, the convolution operation results in an equivariant mapping from one feature
map to the next. Specifically, let

ζ
(l)
h : Z2→ R

be a feature map channel in layer l where h= 1, . . . , H counts the channels. To produce activa-
tion channel i, where i = 1, . . . , I , each input channel is first convolved with a corresponding
filter

Ψ
(l)
ih : Z2→ R

over the spatial dimensions. Subsequently, the input channel responses are summed together
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Figure 3.1: Translation-equivariance of the convolution operation. The filter response of a translated
pattern is equivalent to the translated filter response of the original pattern.

to give the pre-nonlinearity activations

y(l)i =

� H
∑

h=1

ζ
(l−1)
h ∗Ψ(l)ih

�

(x) .

The spatial convolution is a special case of the group convolution (2.1) for the translation
group T2 in two dimensions which was introduced in example 2.1.1. Therefore the derivation
in equation (2.2) shows that the convolution operation is equivariant with respect to the group
action

T : T2 ×
�

ζh : Z2→ R
	

→
�

ζh : Z2→ R
	

,
�

u,ζh(x)
�

7→ ζh(x − u) (3.3)

which acts on a feature map by translating it by an offset u. This means that translations
commute with the convolution, i.e.

� H
∑

h=1

Tu(ζh) ∗Ψih

�

(x) =

�

Tu

� H
∑

h=1

ζh ∗Ψih

��

(x) ,

which is visualized in Figure 3.1 The pre-nonlinearity activations are further transformed by
adding a bias βi per channel and applying a nonlinearity σ : R→ R element-wise:

ζ
(l)
i (x) = σ

�

y(l)i (x) + β
(l)
i

�
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Since these operations are independent of spatial positions they are trivially equivariant with
respect to translations. The equivariance properties of one convolutional layer are visualized
in the following commutative diagram:

ζ
(l−1)
h

Tuζ
(l−1)
h

y(l)i

Tu y(l)i

ζ
(l)
i

Tuζ
(l)
i

Tu Tu Tu

∑

h

�

· ∗Ψ(l)ih

�

∑

h

�

· ∗Ψ(l)ih

�

σ
�

· + β (l)i

�

σ
�

· + β (l)i

�

Blocks of convolutional layers as described above are typically applied alternatingly with pool-
ing layers which are used to make the network invariant to small local deformations and to
reduce the spatial extent of the feature map. The latter has the effect that the next layers’
filters have a larger field of view and are therefore able to extract more abstract features on a
larger scale. Motivated by the discussion in Cohen and Welling [2016] we analyze the trans-
formation properties of pooling layers by splitting them into a non-strided pooling step and
subsequent subsampling. Without loss of generality we focus on maximum pooling operations;
the derivations for average pooling operations are analogous. We formalize the non-strided
pooling operation as the operator P acting on the feature map via

�

PPζ
�

(x) := max
x̃∈x .P

ζ( x̃).

where P ⊆ Z2 is the kernel of the pooling operation. This kernel is typically a small domain
�

−b k−1
2 c, . . . , b k

2c
	2

covering k×k pixels around the origin. Further, x .P = {x .p = x + p | p ∈ P}
is the group transformation of the pooling region which, here for the translation group, shifts
the whole kernel by an offset of x over the feature map. This way, the non-strided pooling
operation selects the maximum response inside the kernel region around each pixel. A trans-
lation of the input feature map leads to the same translation of the pooling output, i.e.

(PPTuζ) (x) = max
x̃∈x .P

(Tuζ) ( x̃)

= max
x̃∈x .P

ζ( x̃ − u)

= max
x̃∈(x−u).P

ζ( x̃)

= (TuPPζ) (x) ,

hence the non-strided pooling is translation-equivariant.
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In typical applications the pooling operation is performed with a stride larger than one. Given
the result of the non-strides pooling operation, its strided counterparts can be calculated from
the former by downsampling. Specifically, let s ∈ N be the stride, that is, the integer factor by
which the signal is sampled down. Then we define a downsampling operator Ds acting on a
signal f : Z2→ R via

Ds f (x) := f (sx) .

In order to see in which way the downsampling and translation operations interact, lets switch
to a representation of the corresponding groups. When acting on homogeneous coordinate
vectors x = (x , y, 1)T we can identify

Ds x =





1
s 0 0
0 1

s 0
0 0 1



 x and Tu x =





1 0 u1

0 1 u2

0 0 1



 x ,

where the inverse in 1
s comes from the definition of Ds as shrinking operation rather than

dilation. The two operations do not commute since

DsTu x =





1
s 0 0
0 1

s 0
0 0 1









1 0 u1

0 1 u2

0 0 1



 x =





1
s 0 u1

s

0 1
s

u2
s

0 0 1



 x =





x1+u1
s

x2+u2
s

1





while

TuDs x =





1 0 u1

0 1 u2

0 0 1









1
s 0 0
0 1

s 0
0 0 1



 x =





1
s 0 u1

0 1
s u2

0 0 1



 x =





x1
s + u1
x2
s + u2

1



 .

Instead they are rather related by

DsTsu = TuDs . (3.4)

In continuous space the dilation operation is equivariant under arbitrary translations since for
every translation by u ∈ R2 before downsampling we find a translation by u

s after downsam-
pling. For digitized images, however, translations by u ∈ Z2 after downsampling correspond to
translations by su ∈ s.Z2 =

�

su
�

�u ∈ Z2
	

≤ Z2 before downsampling. All other translations be-
fore downsampling lead to an undefined behavior. The downsampling operation is hence not
equivariant under arbitrary translations but only under the subgroup sT2 ≤ T2 with different
group actions in the original and the strided domain1. Note that the loss of full translation-

1Of course both groups are isomorphic, sT2
∼= T2, hence one could equivalently redefine the group action (3.3) to
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equivariance in inevitable when demanding the network to be invariant to small local defor-
mations. Again, we give a commutative diagram to give an overview over the equivariance
properties of pooling layers:

ζ(l)(x)

ζ(l)(x − su)

�

PPζ
(l)
�

(x)

�

PPζ
(l)
�

(x − su)

ζ(l+1)(x) =
�

PPζ
(l)
�

(sx)

ζ(l+1)(x − u) =
�

PPζ
(l)
�

(s(x − u))

Tsu Tsu Tu

PP

PP

Ds

Ds

After the last convolutional layer there are different options how to deal with the remaining
spatial extent of the feature maps. One possibility is to flatten the tensor over the spatial
coordinates, interpreting the responses at different locations as independent features. This
allows to explicitly keep all information and to make the network sensitive to the coarse spatial
layout of the features in the sense discussed in the first paragraph of this section. It does,
however, break the network’s translation-equivariance. Another option which is often used
is global pooling over the remaining spatial responses which we have already shown to be
translation-invariant in equation (2.4) with G = T2.

The (approximate) translation-equivariance of each layer together with the observation that
the group action in one layer’s codomain coincides with the group action of the next layer’s
domain makes the convolutional part of a CNN (approximately) equivariant under translations
as a whole. When global pooling is used after the last convolutional layer the whole network
becomes invariant to translations of the input signal. This way convolutional networks restrict
the full hypothesis space (3.1) to the hypothesis space (3.2) of an invariant classifier, here
given by

HCNN =
�

h
�

� h : F/T2→ L
	

.

The orbits T2. f ∈ F/T2 of signals f in F comprise all images which are translated versions
of each other. When the CNN has learned to classify one representative element of an orbit
correctly, it is guaranteed to generalize this knowledge over all other images in its orbit.

stride s translations to get an equivariant mapping under T2. The claims made are to be understood with fixed
group action (3.3) in the non-pooled domain and an adapted action of sT2 with unit strides in the downsampled
domain.
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4 Rotation equivariant CNNs

Figure 4.1: Left: Group of interacting galaxies Arp 273 in the
constellation Andromeda, recorded by the Hubble space tele-
scope. Right: A rotated version of the same image which would
also be a plausible recording since galaxies appear in all orien-
tations.
Image credit: NASA, ESA and the Hubble Heritage Team
(STScI/AURA). Accessed on Sep. 6 2017 from http://www.
spacetelescope.org/images/heic1107a/

Figure 4.2: Filterbank of the
first layer of a conventional
CNN trained on natural im-
ages [Zeiler and Fergus, 2014].
Many filters are learned such
that they occur in several ori-
entations.

Motivated by the observations made in the last chapter we aim to generalize the set of transfor-
mations under which the network is equivariant to further enhance its sample complexity and
generalization capabilities. A class of transformations which are of great interest in this regard
are similarity transformations which, in addition to translations, include rotations, reflections
and dilations. Here we focus on exploiting rotational symmetries which are present in a broad
class of images. Typical examples are biomedical microscopy images of tissue, astronomical
data or satellite imagery, e.g. the recording in Figure 4.1. Since these images do not show a
prevailing global orientation, the output of a network processing such data should be equiv-
ariant with respect to the orientation of its input – that is, if the input is rotated, the output
should transform accordingly. Even when there is a predominant direction in an image as a
whole, the low level features in the first layers such as edges usually appear in all orientations;
see for example the learned filterbanks visualized in Figure 4.2. In both cases of globally or
locally rotation-invariant images, conventional CNNs are compelled to learn several rotated
versions of the same filter, introducing redundant degrees of freedom and increasing the risk
of overfitting.
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Figure 4.3: Translations T and rotations ρ on the plane do not commute. Instead, a translation, fol-
lowed by a rotation is equivalent to first applying the same rotation and then a different
translation. This is because the corresponding group structure, the special Euclidean mo-
tion group, is a semidirect product of translations and rotations with the former being the
normal subgroup acted on by conjugation with elements of the latter.

For a formal mathematical treatment it is necessary to investigate the group structure formed
by combined rotational and translational transformations which are known as rigid motions.
Figure 4.3 shows the effect of successively acting on a space by translating and rotating it. Here
T denotes the action of translations as before and ρ is the group action of the rotation group
on the plane. From this visual construction one can see that translations and rotations do not
commute but that instead the conjugation of a translation by some rotation gives a different
translation. This suggests that the group of rigid motions can be understood as a semidirect
product of the translation group T2 and the rotation group SO(2), the latter consisting of all
orthogonal matrices of unit determinant in R2×2. Indeed, the special Euclidean group1 SE(2)
which describes rigid motions is isomorphic to the semidirect product T2 o SO(2) with the
translations being a normal subgroup acted on by rotations by conjugation. We denote the

1The premodifier special is inherited from the special orthogonal group SO(2). The full Euclidean group is con-
structed from T2 and the full orthogonal group O(2) which, in addition to translations and rotations, contains
flips.
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group elements of the special Euclidean group by (x ,φ) where x ∈ R2 and φ ∈ [0, 2π). In
order to work out the binary operation of SE(2) as well as the inverse of group elements in
this parametrization we switch to a representation in homogeneous coordinates where we
associate

(x ,φ) 7→





cos(φ) − sin(φ) x1

sin(φ) cos(φ) x2

0 0 1



 .

From the multiplication of such matrices





cos(φ) − sin(φ) x1

sin(φ) cos(φ) x2

0 0 1









cos(θ ) − sin(θ ) u1

sin(θ ) cos(θ ) u2

0 0 1





=





cos(φ + θ ) − sin(φ + θ ) x1 + u1 cos(φ)− u2 sin(φ)
sin(φ + θ ) cos(φ + θ ) x2 + u1 sin(φ) + u2 cos(φ)

0 0 1





we can read off the binary operation to be given by

(x ,φ)(u,θ ) = (x +ρφu, φ + θ ) , (4.1)

where the group action ρ of rotations on the plane is defined as

ρ : SO(2)×R2→ R2, (Rφ , x) 7→ Rφ x . (4.2)

Furthermore, we identify the inverse of a group element to be given by

(x ,φ)−1 = (−ρ−φ , −φ) . (4.3)

The key concept leading to the translation-equivariance of conventional CNNs is translational
weight sharing, implemented by convolution operations. A convolution effectively translates
the filter over the image or feature map and evaluates the Frobenius inner product at each
position, that is

y(x) :=
�

f ∗Ψ
�

(x)

=

∫

R2

f (u)Ψ(x − u)du

=

∫

R2

f (u)
�

TuΨ
�

(x)du .

(4.4)
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This suggests that the transformation group under which the network’s layers are equivariant
can be extended by generalizing the translation of filters over feature maps to the action of
a larger transformation group. Focusing on rigid motions in SE(2) we have the group action

E : SE(2)×R2→ R2,
�

(u,θ ), x
�

7→ E(u,θ ) x := Tuρθ x

which implies to extract pre-nonlinearity features in analogy to (4.4) via

y(x ,θ ) :=

∫

G
f (u)

�

E(u,θ )Ψ
�

(x) dλ((u,θ ))

=

∫

G
f (u) (ρθΨ) (x − u) dλ((u,θ ))

=
�

f ∗ρθΨ
�

(x) .

(4.5)

This convolution with several rotated versions of the same filter implements a rotational weight
sharing which leads to an improved sample complexity and to a generalization over orienta-
tions in the same way as the weight sharing over spatial positions in convolutional networks
does for translations. Compared to a conventional CNN which independently learns filters for
features in Λ orientations in a rotation-invariant recognition task, a corresponding rotation-
equivariant CNN which shares weights over filter orientations consumes Λ times less parame-
ters to extract the same representation.

The activations (4.5) resulting from the convolution with rotated filters do not only depend
on the spatial position of the filter but also on its orientation and are thus functions on the
transformation group applied, that is

y : SE(2)→ R, (x ,θ ) 7→ y(x ,θ ) . (4.6)

In principle it would be possible to interpret the additional orientation component as conven-
tional filter channels such that one ends up with Ĩ = ΛI channels. This would, however, discard
the internal structure of the activations such that a subsequent equivariant mapping under the
full transformation group SE(2) becomes impossible. In the following sections we will investi-
gate two different network designs which take the full group structure of the activations (4.6)
into account to ensure an equivariant mapping.
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4.1 Orientation pooling architecture

In convolutional networks the feature maps consist of several channels h ∈ {1, . . . , H} which
are mapped to the next layer’s channels i ∈ {1, . . . , I}. The convolution operation (4.5) is
adapted to the case of an image containing channels fh : R2→ R by

y(1)i (x ,θ ) :=
H
∑

h=1

�

fh ∗ρθΨ
(1)
ih

�

(x) . (4.7)

Here Ψih : R2→ R are the filter channels which are now also defined on continuous domain.
The group action ρ : SO(2) × F → F on images, filters or feature maps is induced by the
action (4.2) on the underlying domain via

ρθ f (x) := f (ρ−θ x) .

As usual, after the convolution step a bias β is added and a nonlinearity σ is applied, so that
we end up with feature maps given by

ζ
(1)
i (x ,θ ) = σ

�

y(1)i (x ,θ ) + β (1)i

�

. (4.8)

One possibility to process the feature maps on the group further is to perform a pooling oper-
ation over orientations, that is

ζ̂
(1)
i (x) = max

θ
ζ
(1)
i (x ,θ ) .

This eliminates the dependence on θ such that one can process the pooled feature maps in
subsequent layers l > 1 in the same way as the input image:

ζ̂
(l)
i (x) = max

θ
σ

� H
∑

h=1

�

ζ̂
(l−1)
h ∗ρθΨ

(l)
ih

�

(x) + β (l)i

�

The feature maps resulting from such an operation are invariant under local rotations of
patches in the input: by rotating a small patch at an arbitrary position in the input, the features
at the corresponding location would retain their values since only the maximum responses over
orientations are kept. A global rotation of the input image leads to a spatial displacement of
its patches on the one hand and to a rotation of their orientation on the other hand. By the
invariance w.r.t. the latter, the overall output will hence simply be rotated spatially and there-
fore transforms in an equivariant way with the input. This intuition can be shown rigorously
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by transforming the input ζ̂(l−1) to ρφζ̂
(l−1) which in the convolution step leads to

H
∑

h=1

�

ρφζ̂
(l−1)
h ∗ρθΨ

(l)
ih

�

(x)

=
H
∑

h=1

∫

R2

ρφζ̂
(l−1)
h (u)ρθΨ

(l)
ih (x − u) du

=
H
∑

h=1

∫

R2

ζ̂
(l−1)
h (ρ−φu)ρθΨ

(l)
ih (x − u) du .

Substituting ũ := ρ−φu with det
�

∂ ũ
∂ u

�

= det
�

R−φ
�

= 1 since R−φ ∈ SO(2) implies x − u =
x −ρφ ũ= ρφ(ρ−φ x − ũ). The convolution can hence be manipulated further to

H
∑

h=1

�

ρφζ̂
(l−1)
h ∗ρθΨ

(l)
ih

�

(x)

=
H
∑

h=1

∫

R2

ζ̂
(l−1)
h (ũ)ρθ−φΨ

(l)
ih (ρ−φ x − ũ) dũ

=
H
∑

h=1

�

ζ̂
(l−1)
h ∗ρθ−φΨ

(l)
ih

�

(ρ−φ x)

= ρφ y(l)i (x ,θ −φ)

which reveals that the rotation of the input leads to spatially rotated pre-nonlinearity activa-
tions which are in addition cyclically shifted over the orientation index. This transformation
behavior, acting on both the spatial position as well as on the orientation, is generic for oriented
patterns; see Figure 4.4 for the example of rotating vector fields.

The permutation of responses under rotation of the input is captured by the group action

R : SO(2)× {yi : SE(2)→ R} → {yi : SE(2)→ R}, (φ, yi(x ,θ )) 7→ ρφ yi(x ,θ −φ)

which operates on the space of activations before pooling over orientations. This allows to
write the equivariance of the convolution step as

y(l)i (x ,θ )
ζ̂(l−1)→ ρφζ̂(l−1)

−−−−−−−−−−−−−−→
H
∑

h=1

�

ρφζ̂
(l−1)
h ∗ρθΨ

(l)
ih

�

(x) = Rφ y(l)i (x ,θ ) .

The pooling over orientations after addition of a bias and application of a nonlinearity is also
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(a) Rotation of a scalar field. (b) Rotation of a vector field.

Figure 4.4: Action of rotations on non-oriented and oriented patterns, here a scalar field and a vec-
tor field. A rotation of a scalar field is mathematically expressed by the field evaluated at
the inversely rotated spatial position. That is, given a scalar field S : R2 → R and a rota-
tion matrix Rφ ∈ SO(2), the action of the rotation transforms the scalar field according to
S(x)→ S(R−1

φ
x). A rotation of a vector field, however, manifests twofold. On the one hand

it displaces the spatial position of each vector, on the other hand it rotates the orientation
of the displaced vectors themselves. Given a vector field V : R2 → R2, the action of the
rotation transforms it according to V (x)→ RφV (R−1

φ
x).

Image credit: M. E. Peskin and D. V. Schröder. An Introduction to Quantum Field Theory.
Westview Press. 1995.

equivariant:

max
θ∈Θ

σ
�

Rφ y(l)i (x ,θ ) + βi

�

= max
θ∈Θ

σ
�

ρφ y(l)i (x ,θ −φ) + βi

�

= max
θ∈Θ

ρφ ζ
(l)
i (x ,θ −φ)

= ρφ max
θ∈Θ

ζ
(l)
i (x ,θ −φ)

= ρφζ̂
(l)
i (x) .

(4.9)

In the second and third step we used that the bias, the nonlinearity and the maximum-operation
commute with the spatial rotation since they are independent of the spatial position. The last
step can be interpreted as pooling over the subgroup SO(2) ≤ SE(2) which was argued to be
invariant in (2.4). Note that the orientation-pooled feature maps transform by a mere spatial
rotation, similar to the scalar field in Figure 4.4. This is because the pooled features do not
carry any orientation information anymore.
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Figure 4.5: Transformation behavior of the responses of a hypothetical face detector which extracts
eye- and mouth-features in four orientations. A rotated face evokes the same responses
at a different spatial position in cyclically shifted orientation channels. Pooling over the
orientation channels therefore gives the same responses, spatially rotated with respect to
each other.

Together, the last calculations prove the equivariance of the proposed layer under rotations.
Equivariance with respect to translations follows directly from the convolution operation as
before. Again, we give an overview over the layers full transformation behavior under actions
of SE(2) in a commutative diagram:

ζ̂
(l−1)
h

Tuρφζ̂
(l−1)
h

y(l)i

TuRφ y(l)i

ζ̂
(l)
i

Tuρφζ̂
(l)
i

Tuρφ TuRφ Tuρφ

∑

h

�

· ∗ρθΨ
(l)
ih

�

∑

h

�

· ∗ρθΨ
(l)
ih

�

max
θ
σ
�

· + β (l)i

�

max
θ
σ
�

· + β (l)i

�

To enhance the intuition on the origin of the different group actions ρφ and Rφ in the space of
orientation-pooled feature maps and pre-nonlinearity activations we give a graphical realiza-
tion of the same commutative diagram in Figure 4.5. In this figure we consider a hypothetical

33



Figure 4.6: Ambiguous detections of the hypothetical face detector from Figure 4.5 under local rota-
tion of small patches of the input image, in this example one eye and the mouth. The
intermediate representation on the group captures the relative orientation of the features
with e.g. the two eyes occurring in different orientation channels for the deformed face.
After pooling over orientations this information is lost and both images result in the same
feature map. The network can thus not discriminate between the two input images. A
group-convolutional network learns filters directly on the group before pooling. The filters
on the group learn the relative orientation of the features: in this example a valid face would
have its eye-features in the same orientation channel as in the upper part of this figure or
in the bottom part of Figure 4.5. The responses of the deformed face in the bottom of this
figure do not reside in the same orientation channel such that a filter on the group would
not respond.

face detector which extracts eye- and mouth-features in four orientations and highlight the
transformation of the extracted features under rotation of the input.

While the proposed architecture is indeed equivariant under the Euclidean motion group there
is, however, a huge loss of information accompanied with the step of pooling over orientations.
In particular, the relative orientation between detected features is lost which may lead to sub-
optimal results. The problematic nature of the orientation pooling architecture is highlighted
in Figure 4.6 which again considers the hypothetical face detector introduced in Figure 4.5.
Here we feed in a deformed face with an rotated eye and mouth which should obviously not
be classified as a valid image of a face. While the pre-nonlinearity activations still have the
full information of the relative orientation of the features there is no chance to discriminate
between both inputs after pooling over orientations.
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4.2 Group-convolutional architecture

In the last section we found that pooling over orientations is inherently accompanied by a loss
of information on the relative alignment of features. We therefore investigate an alternative
layer design which is capable to capture the features’ relative orientations in an equivariant
way. This design utilizes group convolutions to process feature maps which are functions of
a group. It was proposed by Cohen and Welling [2016] for general transformation groups
and implemented for the group consisting of translations, rotations by multiples of π

2 and
reflections, that is for the subgroup Z2oD4 ≤ E(2) of the Euclidean group. We consider again
translations and an arbitrary number of orientations.

The first layer here is very similar to the layers of the orientation-pooling architecture but omits
the pooling step. Specifically, we have pre-nonliniarity activations

y(1)i (x ,θ ) :=
H
∑

h=1

�

fh ∗ρθΨ
(1)
ih

�

(x) (4.10)

which lead to feature maps

ζ
(1)
i (x ,θ ) := σ

�

y(1)i (x ,θ ) + β (1)i

�

.

Note that with this definition the feature maps are functions on the special Euclidean motion
group, i.e. we have ζi : SE(2) → R. The presence of this group structure allows to perform
group convolutions (2.1) in the following layers l > 1 with filters Ψih : SE(2) → R now
also being functions on the group. The advantage of group convolutions is that they allow
to propagate the full information contained in their input feature maps, depending on the
learned filterbanks.2 In particular, the filters on the group are able to detect the difference
between the two faces shown in Figure 4.6 since they can learn that eyes should occur in the
same orientation and hence in the same orientation-channel. Keeping the parameterization
by (x ,θ ), the group convolutions can be explicitly instantiated as

y(l)i (x ,θ ) =
H
∑

h=1

�

ζ
(l−1)
h þΨ(l)ih

�

(x ,θ ) (4.11)

=
H
∑

h=1

∫

SE(2)
ζ
(l−1)
h (u,φ) Ψ(l)ih

�

(u,φ)−1(x ,θ )
�

dλ(u,φ)

=
H
∑

h=1

∫ 2π

0

∫

R2

ζ
(l−1)
h (u,φ) Ψ(l)ih

�

ρ−φ(x − u),θ −φ
�

du dφ

2For example, the filter could coincide with the delta distribution which acts as identity under convolutions and
therefore preserves the feature maps.
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=
H
∑

h=1

∫ 2π

0

�

ζ
(l−1)
h ( · ,φ) ∗ ρφΨ

(l)
ih ( · ,θ −φ)

�

(x)dφ

=
H
∑

h=1

∫ 2π

0

�

ζ
(l−1)
h ( · ,φ) ∗

�

RφΨ
(l)
ih

�

( · ,θ )
�

(x)dφ ,

where the multiplication with the inverse group element was evaluated by making use of the
previously derived relations (4.1) and (4.3). The above equation reveals that the group con-
volution can be decomposed into spatial convolutions of feature maps sliced over orientation
channels ζh( · ,φ) with filter slices Ψih( · ,θ ) acted on by Rφ . Note that this is the same group
action under which the feature maps transform when the input image is rotated. In order to
make the mapping non-linear, we apply an activation function after adding a bias as before
and obtain

ζ
(l)
i (x ,θ ) = σ

�

y(l)i (x ,θ ) + β (l)i

�

.

Since these feature maps are again functions on the group they can be mapped further by
applying subsequent group-convolutional layers.

After the last group-convolutional layer we extract the desired information. For rotation-
invariant classification we pool over both spatial and orientation dimensions. Pooling over
orientations after the last layer is also done for rotation-equivariant segmentation where spatial
dimensions remain and the output rotates according to the rotation of the network’s input, i.e.
under the action ρ. If the orientation itself is of interest it can be kept as extra feature.

Each individual layer of the group-convolutional architecture is equivariant under joint trans-
lations and rotations. This is proven for the first layer in the last section and for the group-
convolutional layers in example 2.2.2. For the first layer the commutative diagram is given
by:

fh

Tuρφ fh

ζ
(1)
i

TuRφζ
(1)
i

Tuρφ TuRφ

σ
�

∑

h

�

· ∗ρθΨ
(1)
ih

�

+ β (1)i

�

σ
�

∑

h

�

· ∗ρθΨ
(1)
ih

�

+ β (1)i

�
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Figure 4.7: Visualization of the basic structure of the proposed rotation-equivariant network. The upper
part shows how the data is processed by the architecture while the bottom part concentrates
on the transformation of feature maps under rotation of the input. A detailed explanation
of the whole figure is given in the main text.

The subsequent group-convolutional layers transform according to:

ζ
(l−1)
h

TuRφζ
(l−1)
h

ζ
(l)
i

TuRφζ
(l)
i

TuRφ TuRφ

σ
�

∑

h

�

· þρθΨ
(l)
ih

�

+ β (l)i

�

σ
�

∑

h

�

· þρθΨ
(l)
ih

�

+ β (l)i

�

We give a visual intuition on the transformation properties of the feature maps in the network
in Figure 4.7. The upper part of the figure gives an overview over the basic structure of the
proposed network. For clarity, we display only a single group-convolutional layer and a single
feature channel. Filters which are related by rotations are highlighted in the same color, ro-
tated Greek letters represent the spatial orientations of the filters and the feature maps. Note
that we consider a subgroup of T2 o CΛ ≤ SE(2) with discrete orientations θλ , λ ∈ {1, . . . ,Λ}
and abbreviate the orientation component as subscript, i.e. Ψλ = Ψ( · ,θλ). In the first layer
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the input image on R2 is convolved with rotated versions of the same filter on R2, leading to
feature maps on T2oCΛ. The orientation dimension is visualized with an additional axis reach-
ing into the image plane. Group convolutions in the intermediate layers map these features
further by convolving them with filters on the group. Each orientation component of the result-
ing feature map results from spatially convolving all orientation channels of the input features
with the orientation channels of one filter on the group and summing their responses together.
The filters on the group leading to the different orientation channels of the output feature map
share weights and are related by the group action R. For example, the filter for calculating
ζ
(2)
1 contains the slice Ψ(2)1 , highlighted in red, in its first orientation component while the filter

for calculating ζ(2)2 contains the same filter slice in a rotated version in its second orientation
component. One can concatenate an arbitrary number of these group-convolutional layers.
In a classification setting, we finally pool over orientations and spatial dimensions in the last
equivariant layer, followed by fully connected layers.

The bottom part of Figure 4.7 gives a visualization of the layerwise rotation-equivariance. Ap-
plying a rotation ρφ to the input image results in a joint cyclic shift and rotation operation Rφ
on the feature maps ζ(l). This becomes intuitively clear when paying attention to the relative
orientation of the input and the first layer’s filters: The original input has the same relative
orientation to the first filter rotation as the rotated input with the second filter rotation. There-
fore, both give the same response ζ(1)1 but with a different spatial rotation and in a different
orientation channel. When these feature maps are mapped further by group-convolutional
layers, this structure is preserved: To see that this is the case, consider the relative orientation
between the output features of the first layer and the bottom filter on the group. This rela-
tive orientation again coincides with the relative orientation between the transformed output
features of the first layer and the second filter from the bottom. Consequently, both give the
same response but rotated with respect to each other and in a different orientation channel.
The orientation pooling after the last group-convolutional layer therefore gets the same input
in a rotated and cyclically shifted version. Since the shift over orientations is removed, the
resulting outputs will be connected by a spatial rotation.

As before we can analyze how the network’s equivariance is reflected in its hypothesis space.
In comparison to a conventional CNN the proposed architecture is additionally invariant under
rotations such that the hypothesis space is further constrained to

HSE(2) =
�

h
�

� h : F/SE(2)→ L
	

.

This implies that the network learns to classify orbits SE(2). f ∈ F/SE(2) consisting of all
images f ∈ F which are related by rotations and shifts. As a consequence, a pattern learned
in one specific orientation and position will be detected again correctly in any orientation at
arbitrary positions.
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5 Steerable Filter CNNs

An important point which we left open so far is the design of the network’s filters. Since
convolutional neural networks build on the concept of learning filters we need to find a suitable
parametrization. Our construction demands for filters whose responses can be computed both
accurately and economically for several filter orientations. Simultaneously the filters should
not be restricted in their expressive power, i.e. in the patterns they are able to learn. All of
these requirements are naturally met by learning linear combinations of a system of steerable
filters.

Another aspect to be addressed is the discrete nature of digitized signals. The rotationally
equivariant network architectures introduced in the last chapter made the assumptions that
the input images live on a continuous domain and considered the transformation group SE(2)
which contains continuous rotations. In practical applications, however, we need to work with
signals sampled on a pixel grid Z2 and with a finite number Λ ∈ N of sampled filter orienta-
tions. This means, we are interested in the subgroups (Z2,+)≤ T2 of translations and discrete
rotations in CΛ ≤ SO(2).1Unfortunately, the restriction of SE(2) to the pixel grid and discrete
rotations does in general not form a group structure itself since rotations by angles not being
multiples of π2 do not map the pixel grid onto itself such that the resulting algebraic structure
is not closed under the binary operation. This is one reason why related approaches, proposed
in Cohen and Welling [2016], Dieleman et al. [2016] and Cohen and Welling [2017], consider
only four filter orientations. In order to circumvent these issues we only restrict to Λ discretely
sampled orientations θλ ∈ Θ :=

�

0, . . . , 2πΛ−1
Λ

	

but keep the assumption of spatially continu-
ous translations. Together they form the subgroup T2oCΛ ≤ SE(2). Numerical experiments in
chapter 8 show that the artifacts resulting from a spatially discrete implementation are mea-
surable but that the gains of the equivariant construction are nonetheless significant.

In the next section we will first describe a reasonable construction of steerable filters for learn-
ing in CNNs. Subsequently we formulate the rotation-equivariant CNN introduced in the last
chapter in terms of these steerable filters.

1To be precise, CΛ is isomorphic to a subgroup of SO(2).
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5.1 Parametrization of steerable filters

A filter Ψ is called steerable in the sense of Freeman and Adelson [1991], when its rotation
by an arbitrary angle θ can be expressed as linear combination of versions of itself which
are rotated by a fixed set of typically equidistant basis angles α0, . . . ,αR−1. More formally, a
steerable filter Ψ : R2→ R satisfies

ρθΨ(x) =
R−1
∑

r=0

κr(θ )ραr
Ψ(x), (5.1)

for all angles θ ∈ (−π,π] and for angular coefficient functions κr . An important practical
consequence of the linearity of steerable filters is that steering and convolution commute.
Therefore, the response of each orientation can be synthesized from the responses with respect
to the basic directions f ∗ραr

Ψ; that is,

( f ∗ρθΨ) (x) =
R−1
∑

r=0

κr(θ )
�

f ∗ραr
Ψ
�

(x).

A family of steerable filters which is particularly easy to handle are circular harmonics; see
e.g. Hsu and Arsenault [1982] or Rosen and Shamir [1988]. They are defined by a sinusoidal
angular part multiplied with a radial function τ : R+ 7→ R, i.e.

ψk(r,φ) = τ(r) e
ikφ ,

where (r,φ) denote polar coordinates of x = (x1, x2) and k ∈ Z is the angular frequency. By
construction, ψk can be rotated by multiplication with a complex exponential,

ρθψk(x) = e−ikθψk(x),

and is thus steerable in the sense of Freeman and Adelson [1991] 2 with R= 1 and interpola-
tion functions κ0(θ ) = e−i kθ .

In our network, we utilize a system of circular harmonics ψ jk with j = 1, . . . , J , and k =
0, . . . , K j where the additional index j controls the radial part of ψ jk = τ j(r) eikφ . The left-
hand side of Figure 5.1 shows the real and imaginary parts of the atoms used in the experiments

2Circular harmonics can equivalently be interpreted as a pair ψRe
k (r,φ) = τ(r) cos(kφ) and ρ π

2
ψRe(r,φ) =

ψIm
k (r,φ) = −τ(r) sin(kφ) with R= 2 and κ0(θ ) = cos(kθ ) and κ1(θ ) = − sin(kθ ).
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Figure 5.1: Illustration of the circular harmonics ψ jk(r,φ) = τ j(r) eikφ sampled on a 9× 9 grid. The
steerable system is given by real and imaginary parts of a complex valued filter. Each row
shows a different radial part j, the angular frequencies are arranged in the columns. For
larger scales there are higher frequency filters not shown here.

where we chose Gaussian radial parts

τ j(r) = exp

�

−
(r −µ j)2

2σ2

�

.

The maximum angular frequencies K j are limited to the point where aliasing effects occur.
As a consequence, we let them grow linearly with the rings’ circumferences. We found this
system to be convenient for learning as the filters are approximately orthogonal and radially
localized.

The learned filters are then defined as linear combinations of the elementary filters, that is,

Ψ̃(x) =
J
∑

j=1

K j
∑

k=0

w jkψ jk(x), (5.2)

with weights w jk ∈ C. The complex phase of the weights allows to rotate the atomic filters
with respect to each other. Such a composed filter can subsequently be steered as a whole by
the steerability of the atoms via

ρθ Ψ̃(x) =
J
∑

j=1

K j
∑

k=0

w jke−i kθψ jk(x). (5.3)

While it is not immediately obvious that this formulation is steerable in the sense of Freeman
and Adelson [1991] as defined in (5.1), the combined filters are still rotated by taking a linear
combination of filters. Indeed, both approaches can be shown to be equivalent as they are
related by a unitary transformation of the expansion coefficients; see appendix B. The form
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Figure 5.2: Some of the filters learned in the first layer of a group-convolutional CNN. The first row
depicts the composed filters Ψi , the subsequent rows show their steered versions by the
angle indicated.

(5.3) is convenient for our network since it forms a natural basis for arbitrary angularly band-
limited steerable filters on the one hand and since it allows to reuse the atomic responses for
each combined filter on the other hand.

In practice we select a single orientation of the combined filters by taking their real part

Ψ(x) = Re Ψ̃(x)

and let

ρθΨ = Reρθ Ψ̃ .

Figure 5.2 shows an example of such filters learned in the first layer of a group-convolutional
CNN together with some of their steered versions.

In practice we sample the atomic filters ψ jk : Z2 → C on a grid. For conventional filters the
sampled version does not suffice to exactly rotate them by angles which do not map the pixel
grid onto itself. Instead some interpolation needs to be chosen for which there is, however,
no unique choice. Furthermore, any interpolation comes with its own artifacts which can be
severe on the length scale of pixels. Given that filters in convolutional networks typically have
very small support these artifacts may become a big issue. Steerable filters on the other hand
are rotated exactly by steering, even when sampled on a grid. This is, because steerability
(5.1) is defined locally: the filter values of the basis orientations at each single point fully
suffice to reconstruct the filter at this point in all orientations. Figure 5.3 shows the artifacts
resulting from rotating an image with either interpolation methods or by fitting a system of
steerable filters to it and rotating it analytically.
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(a) Original image (b) Nearest interpolation (c) Linear interpolation (d) Steerable filters

Figure 5.3: Comparison of different methods to rotate images or filters. In all cases the original image
is rotated by 30 degrees and then rotated back. This is what happens in CNNs which apply
rotated the filters in the forward pass and to rotate the gradients back during backpropa-
gation. One can see that the nearest interpolation suffers severe interpolation artifacts on
the length scale of pixels. The linear interpolation gives a visually more appealing result
which, however, tend to be smoother than the original image. Higher order interpolations
tend to give even smoother results. A different approach to rotate the image is shown in
the rightmost figure where we fitted a system of our steerable atomic filters to the original
image and rotated it analytically. This method suffers less artifacts and the rotated image
looks sharper.

5.2 Steerable filter formulation of the CNN

Given a system ψ jk of atomic steerable filters as defined in the last section we now formu-
late the proposed rotation-equivariant network architectures in terms of this basis. We will
concentrate on the group-convolutional design since it comprises the layers utilized in the
orientation-pooling architecture as its first layer.

Plugging steerable filters

Ψ
(1)
ih = Re

J
∑

j=1

K j
∑

k=0

w(1)ih jkψ jk

into the formula for the first layers pre-nonlinearity activations (4.10) we obtain

y(1)i (x ,θλ) =
H
∑

h=1

�

fh ∗ ρθλΨ
(1)
ih

�

(x)

=
H
∑

h=1

 

fh ∗ Re
J
∑

j=1

K j
∑

k=0

w(1)ih jke−ikθλψ jk

!

(x) (5.4)

=
H
∑

h=1

J
∑

j=1

K j
∑

k=0

Re
�

w(1)ih jke−ikθλ
�

fh ∗ψ jk

�

�

(x) (5.5)

with complex parameters w(1)ih jk ∈ C. In this setting the rotational weight sharing is reflected
by the independence of the weights from the angle θλ which comes into play only by the
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complex exponentials modulating the weights’ phases. A higher resolution in orientations can
be achieved by expanding the tensor containing these phase-factors. In analogy to the first
layer we make use of the steerable filters in the following layers l > 1 which on the group are
defined by

Ψ
(l)
ih (x ,θλ) = Re

J
∑

j=1

K j
∑

k=0

w(l)ih jkθλ
ψ jk(x).

Note that the additional orientation dimension is reflected by an additional index of the weight
tensor. Inserting these steerable filters in the pre-nonlinearity activations (4.11) of the group-
convolutional layers gives:

y(l)i (x ,θλ) =
H
∑

h=1

�

ζ
(l−1)
h þΨ(l)ih

�

(x ,θλ)

=
H
∑

h=1

∑

φ∈Θ

�

ζ
(l−1)
h ( · ,φ) ∗ ρφΨ

(l)
ih ( · ,θλ −φ)

�

(x)

=
H
∑

h=1

∑

φ∈Θ

 

ζ
(l−1)
h (·,φ) ∗ Re

J
∑

j=1

K j
∑

k=0

w(l)ih jk,θλ−φ
e−i kφψ jk

!

(x) (5.6)

=
H
∑

h=1

∑

φ∈Θ

J
∑

j=1

K j
∑

k=0

Re
�

w(l)ih jk,θλ−φ
e−i kφ

�

ζ
(l−1)
h (·,φ) ∗ψ jk

��

(x) (5.7)

The last two lines (5.4) and (5.5) as well as (5.6) and (5.7) of the steerable filter formulations
of the network’s layers are mathematically equivalent but differ in the order of the computation
of the linear combination and the convolution. While in the second last lines the bank of
rotated filters is explicitly built and afterwards convolved with the input channels, the last
lines suggest to first compute the responses of the input with respect to the atomic filters and
then linearly combine these. The single steps performed in these different implementations
are visualized in Figures 5.4 and 5.5. The advantage of the approach which first computes
the atomic responses before linearly combining them is that the number of convolutions to be
performed does not depend on the number of output channels or sampled filter orientations.
Since all combined filters are based on the same system of steerable filters each atomic response
is reused multiple times for each learned filter and orientation. A drawback is that the linear
combination of the atomic responses is more costly than a linear combination of filters since
the feature maps are typically larger.

As in conventional CNNs we apply pooling operations with local pooling kernels after a few
convolutional layers. In addition to spatial pooling we can here also pool over the orientation
coordinate. The pooling over translations is independent from the orientation index and is thus
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Figure 5.4: Visualization of an implementation of the first layer which explicitly builds the filter bank
by linearly combining atomic steerable filters before convolving them with the feature maps
as usual. This implementation follows the order of computation implied by the bracketing
in equation (5.4). The number of convolution operations to be performed grows linearly
with the number of output feature channels and sampled orientations.

equivalent to the case of conventional CNNs as discussed in section 3.2. Conversely, pooling
over orientation coordinates does not depend on the spatial position and is hence very similar
to translational pooling. A non-strided pooling step, modeled by a pooling operator Pang

eΘ
over

a pooling region eΘ :=
�2πλ
Λ

	Λ̃−1

λ=0 with Λ̃ ≤ Λ is rotationally equivariant since the spatial part
of the rotational group action commutes with the maximum operation:

�

Pang
eΘ

Rφζ
�

(x ,θ ) = max
θ̃∈θ eΘ

�

Rφζ
�

(x , θ̃ )

= max
θ̃∈θ eΘ

ζ(ρ−φ x , θ̃ −φ)

= ρφ max
θ̃∈(θ−φ)eΘ

ζ(x , θ̃ )

=
�

RφP
ang
eΘ
ζ
�

(x ,θ )

Given an s ∈ N dividing Λ we can then define a downsampling over orientations via

Dang
s ζ(x ,θλ) := ζ(x ,θsλ)

for λ= 0, . . . , Λs − 1. In analogy to relation 3.4 it is easy to show that

Dang
s Rθsλ

= RθλD
ang
s .
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(a) Input layer (b) Group-convolutional layers

Figure 5.5: Visualization of possible implementations of the first or of group-convolutional layers. In
both cases one can first convolve each channel of the input with every atomic filters to
obtain atomic responses. These can subsequently be linearly combined to obtain the output
feature maps. The implementations shown here follow the order of computation as implied
by the bracketing in equations (5.5) and (5.7) respectively. This design has the advantage
that only a fixed number of convolution operations has to be performed, independent of
the number of output feature maps and filter orientations. A downside of the approach is
that the linear combination of the atomic responses is more expensive in common operating
domains where the spatial extent of feature maps is way bigger than the one of the filters.

A strided pooling composed of these two steps is thus equivariant under arbitrary translations
and rotations in the subgroup CΛ/s ≤ CΛ . Which number of sampled orientations is sensible
depends on the size of the filter kernel. As the circumference of the largest ring fitting in the
kernel grows linearly with its size we recommend to choose the number of sampled orienta-
tions proportional to the filter size. This implies to sample down over orientations only in cases
where the kernel size of subsequent layers is reduced by a factor larger than two. For example,
when the first layer utilizes 11×11 filters while the group-convolutional layers use 5×5 filters
it makes sense to reduce the number of sampled orientations by half. When the kernel size
of all layers is approximately constant we do not do intermediate pooling over orientations at
all. As discussed before, the global pooling over orientations after the last rotation-equivariant
layer is rotationally invariant; see equation (4.9). Together with the equivariance of the input
layer and the group-convolutional layer which were proven in chapter 4 this makes all build-
ing blocks of the proposed network equivariant under T2 o CΛ when operating on continuous
signals.
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In the following subsections we will discuss the computational complexity of the two different
approaches for computing the responses as well as the reduced parameter cost by rotational
weight sharing. In appendix A we add a formulation of the group-convolutional layer in Fourier
space which makes use of the fact that the filter basis is fixed and that they are rotated by phase
manipulation to achieve an efficient implementation.

5.2.1 Computational complexity

In order to assess the computational expense of the two implementations quantitatively we
analyze their scaling with the relevant variables on the example of the input layer. Therefore,
we assume the convolution operations to be performed with "same" boundary conditions, that
is, with a padding such that the spatial extent of the output feature maps equals the size of the
input. We further assume square images with X 2 pixels and square convolution kernels with
s2 pixels and denote the absolute number of atomic filters by Q. Then, the complexity of the
convolutional part of the implementation combining atomic responses is given by O(HQs2X 2)
while the complexity of the subsequent linear combination reads O(IHQΛX 2). By contrast,
the implementation first building the filter bank consisting of rotated filters has a runtime of
O(IHQΛs2) for the linear combination and a complexity of O(HIΛs2X 2) for convolving with
the explicitly rotated filters. From that one can see that the convolutional parts differ in their
scaling by a factor of Q and IΛ. Since we usually have Q ≤ s2 in settings with non over-
parameterized filters and small kernel sizes in comparison to the number of output channels
and rotations, the approach of convolving with atomic filters is often cheaper than convolving
with explicitly rotated filters. On the contrary, the linear combinations differ in their scaling
by a factor of X 2 and s2 respectively. Here the approach of first combining the filters is less
expensive since one typically has X 2� s2. We implemented both approaches and found that it
is almost always more efficient to build the filter bank explicitly before convolving it, especially
for large images. The approach based on computing atomic responses may be more efficient
in settings with small image sizes together with smooth atomic filter bases, i.e. with small Q
as investigated by Jacobsen et al. [2016].

A further problem which can arise when implementing the approach based on computing
atomic responses in a naive way are memory issues. These arise when using the automatic
differentiation of the current generation of deep learning frameworks3 which stores all atomic
responses for backpropagating the gradients to the weights such that the memory consumption
grows by the factor Q of atomic filters. A more memory efficient way is to implement the layers
as custom operations which recompute the atomic responses from the feature maps when they
are needed.

3Tested in Theano, Tensorflow and Pytorch.
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5.2.2 Reduced parameter cost

By the weight sharing the parameter cost of the input layer is independent of the number of
sampled orientations Λ. This independence translates to the whole orientation-pooling archi-
tecture since it consists only of input-type layers. Put in comparison to a conventional CNN
which explicitly learns rotated filters in an rotation-invariant vision task this means that the
proposed layer utilizes by this factor less parameters and therefore has a lower sample com-
plexity. This argumentation is of course only valid in the range of sampled filter orientations
where the conventional network is not able to generalize over different rotations by, e.g. the
invariance to small deformations induced by spatial pooling.

In the group-convolutional layers we need to learn filters on the group which implies that the
parameter cost of these filters grows linearly with Λ. Again, the weight sharing makes the
equivariant network more parameter efficient since a conventional CNN needs to learn filters
on the (implicitly given) group in multiple orientations such that the parameter cost grows
with Λ2. All in all we see that a group-convolutional steerable filter CNN consumes by a factor
of Λ less parameters than a conventional CNN such that its parameter cost only grows linearly
with the number of sampled orientations.

Lets put this in analogy to the gain in parameter utilization by introducing translational weight
sharing when transitioning from MLPs to CNNs as discussed in section 3.2. There we found that
an MLP consumes O(N2) parameters when fully connecting each of O(N) output neurons to N
input pixels. When sharing weights over spatial position one reduces the number of parameters
in a similar way as for rotational weight sharing to linear scaling O(N) in spatial positions.
For translations it was, however, possible to reduce the number of parameters further to O(1)
by connecting each output neuron only to a local receptive field. A justification for using local
receptive fields is that large objects can be disassembled into a hierarchy of local patterns.
Unfortunately, this argument does not apply to rotations since there is no natural hierarchy in
orientations. The filters on the group should rather span over all Λ orientations because two
patterns may appear in arbitrary relative orientations.
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6 Generalized weight initialization

The training process of neural networks requires an appropriate initialization of the weights
in order to converge to a reasonable local minimum. Motivated by convergence issues of deep
architectures, Glorot and Bengio [2010] examined how the flow of signals through their layers
depends on the initial distribution of the weights. Assuming sigmoidal activation functions,
they proposed to choose the parameters’ scales such that the sigmoids neither saturate, nor
prevalently act in their linear regime. This can be ensured by demanding the variance of the
pre-nonlinearity activations and the backpropagated gradients to be constant over the layers.
The resulting Xavier initialization scheme indeed shows convincing convergence results and has
established as a standard for the chosen nonlinearities. A similar derivation, which was added
later by He et al. [2015], adapts these ideas to the nowadays more popular ReLU activations.
Our approach picks up these ideas but generalizes the results to CNNs learning filters as linear
combinations of a fixed basis of atomic filters.

For the derivation consider the activation of a single neuron in layer l,

ζ
(l)
i x = max

�

0, y(l)i x

�

, (6.1)

where we chose ReLU nonlinearities and switched to a full index notation of all variables. For
convenience we define the pre-nonlinearity activations with the bias already added:

y(l)i x =
∑

h

∑

x ′
Ψ
(l)
ihx ′ ζ

(l−1)
h,x−x ′ + β

(l)
i (6.2)

As above we consider composed filters

Ψ
(l)
ihx =

Q
∑

q=1

w(l)ihqψqx

which are built from Q real valued elementary filters and map H input-feature maps to I
output-feature maps. We keep the discussion general by not restricting the atoms to be steer-
able. Note that this setup includes the case He et al. considered for the choice of a Dirac basis
where ψq is zero for all but one pixel. In analogy to Glorot and Bengio [2010] and He et al.
[2015] we assume the activations and gradients to be i.i.d. and to be independent from the
weights. We let the weights themselves be mutually independent and have zero mean but
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do not constrict them to be identically distributed because of the inherent asymmetry coming
from the different atomic filters. Furthermore we initialize all biases to be zero.

In order to prevent vanishing or exploding gradients of the loss E we examine their variances’
dependence on the higher layers’ gradients and weights. The gradient with respect to the
activation of a particular neuron ζ(l)h0 x0

in layer l follows from (6.1) and (6.2) to be given by

∂ E
∂ ζ
(l)
h0 x0

=
∑

i

∑

x

∂ E
y(l+1)

i x

y(l+1)
i x

∂ ζ
(l)
h0 x0

=
∑

i

∑

x

∂ E
ζ
(l+1)
i x

Iy(l+1)
i x >0

∑

q

w(l+1)
ih0q ψq,x−x0

,

(6.3)

where the indicator function I stems from the derivative of the rectified linear unit. Like He
et al. [2015] we assume the factors occurring in (6.3) to be statistically independent. Observ-
ing that E

�

w(l)
�

and E
�

∂ E
∂ ζ(l)

�

vanish, and w.l.o.g. setting x0 = 0 this leads to
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The factor 1
2 in the last line goes back to the symmetric distribution of y(l) together with the

indicator function. Using the fact that the weights’ variances are initialized to only depend
on q and the assumption on identically distributed gradients both can be pulled out of the
sums:

Var
�

∂ E
∂ ζ(l)

�

= Var
�

∂ E
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2
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2
2 .
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It seems reasonable to allocate the contribution to the overall variance equally over the Q
summands. Demanding the gradients’ variance not to be amplified while propagating through
the network then leads to the initialization condition

Var
�

wq

�

=
2

IQ




ψq







2
2

. (6.4)

The calculation for the forward pass is similar to the case of backpropagation but considers the
variance Var

�

y(l)
�

of pre-nonlinearity activations instead of gradients. An exact calculation
depends on the expectation value E

�

ζ(l−1)
�

, which is certainly different from zero because of
the ReLU nonlinearity but otherwise unknown. We can, however, give an approximate result by
exploiting the central limit theorem. To this end, we note that the pre-nonlinearity activations
(6.2) are summed up from H

∑

q | suppψq| independent terms of finite variance which is a
relatively large number in typical networks. This allows to approximate the variance by the
asymptotic result implied by the central limit theorem:
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In the last step we made use of the independence of the weights from the previous layers’
feature maps and E[w] = 0. The symmetric distribution of weights leads to a symmetric distri-
bution of pre-nonlinearity activations which in conjunction with ReLU nonlinearities implies
E[ζ2] = 1

2 Var[y]. To see this, note that the symmetry of the distribution of pre-nonlinearity
activation leads on the one hand to

Var[y] = E[y2] =

∫

R
ỹ2 py( ỹ) d ỹ = 2

∫

R+
ỹ2 py( ỹ) d ỹ

and on the other hand to

E[ζ2] =

∫

R
ζ̃2 pζ(ζ̃) dζ̃

=
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R
ζ̃2
�

1
2
δ(0) +Θ(ζ̃)py(ζ̃)

�

dζ̃

=

∫

R+
ζ̃2 py(ζ̃) dζ̃ ,
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where δ denotes the delta distribution and Θ is the Heavyside step function. As before, we
drop all indices which the random variables are independent from to compute the sums. This
leads to

Var
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�

≈ Var
�

y(l−1)
� H

2

∑
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2
2 ,

which in turn suggests a weight initialization according to
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2
2

(6.5)

to ensure that the activations’ variances are not amplified.

The results (6.4) and (6.5) differ by the factor of the number of output- or input-feature maps
of a layer. As discussed by He et al. [2015] this is not a big problem because these factors cancel
out for all intermediate layers. Our initialization scheme recovers the results obtained earlier
by He et al. [2015], which can be seen by inserting a Dirac filter basis which is effectively used
in conventional CNNs.

We next note that the filters are combined of products w(l)q ψ
(l)
q which implies that the factor





ψq







2
2 in (6.4) and (6.5) counterbalances different energies of the basis filters. A convenient

way to initialize the network is hence to normalize all filters to unit norm and subsequently
initialize the weights uniformly by either Var

�

wq

�

= 2
IQ or Var

�

wq

�

= 2
HQ .

An additional complication arises in our network construction where steerability is only pre-
served when the relative amplitude of the circular harmonics’ real and imaginary parts is not
changed. While these steerable filter pairs have equal norms in continuous space this is not
necessarily true for their sampled counterparts which rules out an independent normalization.
As a steerability consistent way of normalizing conjugate filter pairs we propose to adequately
normalize the corresponding complex filters from which they originate. The proper scale fol-
lows from ‖ψ‖2 =

Æ

‖Re [ψ]‖2 + ‖Im [ψ]‖2 for ψ ∈ C to be ‖ψ‖2 = 1 for DC filters whose
imaginary part vanishes and ‖ψ‖2 =

p
2 for non-DC filters.

We emphasize that using normalization layers like batch normalization does not obviate the
need for a proper weight initialization. This is because such layers only scale the activations
as a whole while equations (6.4) and (6.5) indicate that the relative scale of the summands
contributing to each activation matter.
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7 Prior and related work

A priori knowledge about transformation-invariance of images can be exploited in manifold
ways. In this chapter we review and analyze different approaches leveraging such knowledge
and put them in comparison to the proposed Steerable Filter networks.

Data augmentation: A commonly utilized technique is data augmentation. The basic idea of
this approach is to enrich the training set by its transformed samples. For example, Krizhevsky
et al. [2012] augment by adding horizontal flips, Dieleman et al. [2015] add rotated versions of
the image, and in Laptev et al. [2016] data is augmented by affine transformations. To analyze
data augmentation from a group theoretic standpoint consider again a dataset {( fi , li)}Ni=1

consisting of N images fi ∈ F and corresponding labels li as introduced in section 3.1. We
further assume the transformation group G acting on the images to augment the dataset to
be given. Each image fi is then transformed into random samples from its orbit G. fi which
enlarges the dataset by a factor depending on the specific group. This allows to train larger
models and is easily applicable without modifying the network architectures. On the flipside
the equivariance to the transformation is not guaranteed but needs to be learned explicitly by
the network. In contrast to the proposed equivariant/invariant network the hypothesis space is
not restricted: instead of learning a mapping from the quotient space F/G which assigns labels
to whole orbits, the decision boundaries need to explicitly model the structure of the orbits.
This demands a high learning capacity which makes the network prone to overfitting.

General approaches and transformations: More recent work thus focuses on incorporating
equivariances to various transformations directly into the network’s architecture. One way to
do this is to make each of the network’s layers individually invariant to local transformations
in a similar way as in our orientation-pooling architecture. For example, Kanazawa et al.
[2014] expand the input of each layer over a Gauss pyramid, convolve each level with the
same filters and pool the resulting activation over the scales. This way they end up with a
locally scale invariance network. An example from the field of speech representation is the
work of Zhang et al. [2015] who propose an architecture that is invariant to vocal tract length
perturbations. Sohn and Lee [2012] build a transformation invariant restricted Boltzmann
machine by applying several transformations on the inputs and restricting the hidden units
to choose the one minimizing the energy. Similarly to the orientation-pooling architecture,
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these approaches loose the information of the relative pose of the features associated with the
transformation which may lead to suboptimal results.

Instead of a full pooling over the whole transformation group after each layer it is possible to
learn to which part of the group a layer should be invariant. An example is the work of Gens
and Domingos [2014] who deal with general transformations leading to feature maps defined
in symmetry spaces of arbitrary dimensionality. By endowing the pooling process in symmetry
space with additional structure they manage to restrict to these transformations only which
are sensible in regard to the task at hand.

For the case of invariance w.r.t. Abelian symmetry groups Henriques and Vedaldi [2016] de-
vise warped convolutions which resample the input according to the given symmetry to apply
standard convolution operations on the warped images. This approach is bound to abelian
symmetry groups since the standard convolutions on the warped space correspond to the
group convolution of the N -dimensional translation group which is abelian by construction.
An example application is the resampling on a log-polar grid which leads to joint equivariance
under rotations and dilations. It is, however, not possible to extend the symmetry group by
translations since these do not commute with rotations. The Spatial Transformer networks
of Jaderberg et al. [2015] introduce trainable modules estimating transformation parameters
determining a sampling grid with which their input is resampled. The set of transformations
accessible this way includes global rotations of the resampled area. In this setting there is no
guarantee to obtain an equivariant representation.

Rotation-equivariant CNNs: In particular, there has recently been a considerable interest
in rotation-equivariant CNNs. The work of Dieleman et al. [2016] introduces four opera-
tions which are easily included into existing networks and enrich both the batch- and feature
dimension with transformed versions of their content. In [Cohen and Welling, 2016], the
feature maps resulting from transformed filters are treated as functions of the corresponding
symmetry-group which allows to use group-convolutional layers. Both approaches are math-
ematically equivalent1 but the transformation of filters is computationally and memory wise
cheaper than transforming feature maps. As the computational cost of group convolutions is
coupled to the size of the group, Cohen and Welling [2017] propose an alternative way to
obtain an equivariant mapping based on steerable representations. The filterbanks applied to
these representations are expanded in a basis of intertwiners which are equivariant linear maps
between representations. This setup includes group convolutions as a special case for "regular
representations" but is capable to work with other, more resource-economic representations.
Besides translations and rotations, the aforementioned works also incorporate reflections, i.e.
they operate on the dihedral group. All of them are currently only implemented for rotations

1Personal correspondence with Taco Cohen.
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by multiples of π/2, i.e. for four orientations.

In [Laptev et al., 2016], several rotated versions of the same image are sent through a conven-
tional CNN. The resulting features are subsequently pooled over the orientation dimension
before being classified by a fully connected network. The approach can easily be extended
to other transformations. On the downside, the equivariance is only w.r.t. global transforma-
tions. This demands the authors to do segmentation of images with locally rotated patterns
in a patch-wise manner. By contrast, our network applies filters which are locally rotated in
several orientations and is therefore able to deal with locally rotated patterns.

Marcos et al. [2016b] also perform convolutions with rotated versions of a each filter followed
by a global pooling over orientations which leads to an invariant architecture. Their architec-
ture consists, however, only of one convolutional layer. In [Marcos et al., 2016a] these ideas
were extended to deep networks which additionally propagate the orientation of the maxi-
mum response. The magnitude and orientation of these responses are interpreted as vectors
in polar coordinates such that the feature maps can be thought of as vector fields. Subsequent
layers therefore apply filters which themselves are defined as vector fields. In contrast to our
approach, the parameter cost does not grow with the sampled orientations. One can view
this approach as being intermediate between our orientation pooling architecture which pools
over orientations and looses the full information on the maximum responses orientation and
our group-convolutional architecture which keeps all information on any orientation. In both
approaches the authors base the filter rotation on bicubic interpolation, which allows for fine
resolutions with respect to the orientation but causes artifacts.

Worrall et al. [2016] achieve continuous resolution in orientations by working with complex
valued steerable filters and feature maps. However, this requires the angular frequencies of the
feature maps to be disentangled which results in severe constraints on the network topology
and filters.

Rotation-equivariant feature extraction can also be achieved by using group-convolutional
scattering transforms [Sifre and Mallat, 2013]. A fundamental difference to our work is that
the filter banks are fixed rather than learned and are not steerable.
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8 Experiments

We evaluate the proposed network architectures on two datasets exhibiting rotational sym-
metries: The rotated MNIST dataset and the ISBI 2012 EM segmentation challenge. On the
rotated MNIST dataset we first investigate specific network properties like its accuracy for dif-
ferent numbers of sampled orientations and sizes of the training dataset as well as the quality
of the approximate equivariance for discretely sampled images. We further compare the rota-
tional generalization capabilities of conventional CNNs and the proposed group-convolutional
architecture for different data augmentation techniques. The gains of the proposed weight ini-
tialization scheme are evaluated in comparison to the standard He-initialization. With the in-
sights gained in these experiments we train final orientation-pooling and group-convolutional
networks on mnist-rot. For the ISBI 2012 challenge we build a U-Net model to investigate the
segmentation capabilities of the proposed layer design. On both datasets we improve signifi-
cantly upon previous state-of-the-art results.

8.1 Rotated MNIST

A standard benchmark for rotation-equivariant/invariant models which is evaluated in most
papers in the field is the rotated MNIST dataset1 (mnist-rot). The dataset contains the hand-
written digits of the classical MNIST dataset, rotated to random orientations in [0,2π). It is
split in 12000 training and 50000 test images; model selection is done by training on 10000
images and validating on the 2000 remaining samples in the training set. Figure 8.1 shows a
few images from the the dataset. Note that the intra-class variability of mnist-rot is higher than
in the original MNIST dataset while simultaneously the size of the training set is substantially
smaller than the 60000 training samples provided by MNIST.

For our initial experiments on the dependence on sampled orientations and the networks’
generalization capabilities we utilize the group-convolutional architecture given in Table 8.1
as baseline. It consists of one steerable input layer which maps the input images to the group,
five following group-convolutional layers and three fully connected layers. After every two
steerable filter layers we perform a spatial 2× 2 max-pooling. The orientation dimension and

1http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/MnistVariations (accessed
Sep. 27, 2017).
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Figure 8.1: Samples of the rotated MNIST dataset with labels 6, 5, 2, 3, 9, 0, 6, 1, 8. Note the visual
ambiguity between sixes and nines.

Operation Filter size Feature channels I

Steerable input layer 7× 7 16
Steerable group convolution 5× 5 24
Spatial max pooling 2× 2

Steerable group convolution 5× 5 32
Steerable group convolution 5× 5 32
Spatial max pooling 2× 2

Steerable group convolution 5× 5 48
Steerable group convolution 5× 5 64
Global spatial pooling
Global orientation pooling

Fully connected 64
Fully connected 64
Fully connected + Softmax 10

Table 8.1: Architecture of the group-convolutional Steerable Filter CNN used in the experiments on
the resolution of sampled orientations and on the rotational generalization capabilities. The
number of channels denotes the number I of independent filters. Each of these feature
channels carries Λ orientation dependent responses.

the remaining spatial dimensions are pooled out globally after the last convolutional layer.
The number of feature channels stated in the tables refers to the number of learned filters I of
the corresponding layer. As these filters are themselves applied with respect to Λ orientations
we end up with IΛ responses, e.g. 16 ·16= 256 effective responses in the first layer. Note that
the extraction of this comparatively large number of responses is possible without overfitting
because the rotational weight sharing leads to an increased parameter utilization (in the sense
of [Cohen and Welling, 2017]) by a factor of Λ. We trained the networks using standard
techniques: Adam optimizer [Kingma and Ba, 2015], batch normalization [Ioffe and Szegedy,
2015], dropout with probability 0.3 in the fully connected layers [Srivastava et al., 2014] and
a mild elastic net regularization. The batch normalization on the group does not interfere
with the equivariance when the responses are normalized by averaging over both spatial and
orientation dimensions. We set the initial learning rate to 0.015 and decayed it exponentially
with a rate of 0.8 per epoch starting from epoch 15.

The number of sampled orientations Λ is a parameter specific to our network, so we explore
its influence on the accuracy. We are further interested in the network’s sample complexity,

57



Figure 8.2: Test error versus number of sampled filter orientations for different training subsets from
mnist-rot. Shaded regions highlight the standard deviations over several runs. The accuracy
improves significantly with increasing angular resolution until it saturates at around 12 to
16 orientations for all training set sizes.

i.e. the dependence on the size of the training set. The results are reported in Figure 8.2. All
data points are averaged over 12 runs with different seeds. As expected, the test error and
its standard deviation decrease with the size of the training data set (note the logarithmic
ordinate). We observe that the accuracy improves significantly when increasing the number
of orientations until it saturates at around 12 to 16 angles, independently of the size of the
training set. This saturation can be explained by the fact that the higher angular resolution
counterbalances with an increased demand for parameters for larger groups. Up to this point,
the gain of adding more sampled orientations is considerable. For example, in almost all cases,
increasing the angular resolution from 2 to 4 sampled orientations provides a higher gain in
accuracy than sticking with 2 orientations and doubling the number of training samples. We
want to emphasize that the possibility of going beyond the four sampled orientations of [Diele-
man et al., 2016, Cohen and Welling, 2016, 2017] leads to a significant gain in accuracy.

In order to test how well the networks generalize learned patterns over orientations we con-
duct an experiment where we train the networks on unrotated digits and record the accuracy
over the orientation of rotated digits. Specifically, we take the the first 12000 samples of
the conventional MNIST dataset as training samples to train a conventional CNN as well as a
group-convolutional CNN with Λ = 16 using either no augmentation, augmentation by rota-

58



(a) Conventional CNN (b) Group-convolutional network

Figure 8.3: Rotational generalization capabilities of a conventional CNN and a group-convolutional net-
work using different data augmentation strategies. In this experiment we train on unrotated
MNIST digits and evaluate the test error depending on the orientation of the digits in a test
dataset.

tions which are multiples of π2 or augmentation by continuous rotations2. As test set we take
the remaining 58000 samples and record the test errors’ dependence on the orientation of this
dataset. To obtain a fair comparison between the networks we experiment with CNNs with the
same number of parameters or the same number of channels like the group-convolutional net-
work and tune their hyperparameters independently from the group-convolutional network.
Since both conventional CNNs show the same behavior we only report the accuracies of the
network with the same number of channels which performs slightly better. The results of the
experiment are plotted in Figure 8.3. One can see that, lacking rotational equivariance, the
conventional CNN does not generalize well over orientations. While obtaining a high accu-
racy for small rotations of the test set, the accuracy drops rapidly to almost random guessing
for larger angles. The accuracy increases slightly for rotations of 180 degrees since some of
the numbers, for example the digits 0 or 8, are approximately invariant under such rotations.
When augmenting the training samples by rotations by multiples of π2 the average accuracy
over orientations increases significantly. As to be expected by the symmetrization induced
by the augmentation the test error becomes π

2 -periodic. However, the accuracy still oscil-
lates strongly between 98.5% and about 80%. When augmenting with orientations which are
densely sampled from [0,2π), the accuracy becomes approximately constant over all orienta-
tions. The downside of both augmentation techniques is that the detection performance drops

2The augmentation by continuous orientations as well as the rotation of the test dataset are done by bicubic
interpolation.
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(a) No data augmentation.

(b) Augmentation with rotations by multiples of π2 .

(c) Augmentation with densely sampled orientations.

Figure 8.4: Direct comparison of the rotational generalization capabilities of a CNN and a group-
convolutional network. While augmentation diminishes the gap between both approaches
the enhanced sample complexity of the equivariant network still leads to a significantly
better result.
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Operation Filter Size Feature Channels I

Steerable input layer 9× 9 24
Steerable group convolution 7× 7 32
Spatial max pooling 2× 2

Steerable group convolution 7× 7 36
Steerable group convolution 7× 7 36
Spatial max pooling 2× 2

Steerable group convolution 7× 7 64
Steerable group convolution 5× 5 96
Global spatial pooling
Global orientation pooling

Fully connected 96
Fully connected 96
Fully connected + Softmax 10

Table 8.2: Architecture of the group-convolutional Steerable Filter CNN used with Λ = 16 sampled
orientations in the final experiments on mnist-rot.

for small angles. This is the case because the network needs to learn to detect the augmented
samples additionally which demands an increased learning capacity. The group-convolutional
network on the other hand generalizes way better over orientations. Even without augmen-
tation the accuracy does not drop below 96%. In continuous space we would expect the test
error curve to be 2π

Λ -periodic because of the rotational equivariance. The deviations from this
behavior can be attributed to the sampling effects of using digitized images. Augmentation
with π

2 -rotations does not influence the accuracy of the group-convolutional network since we
chose Λ= 16 being a multiple of the 4 augmented orientations such that the augmented sam-
ples lie on the orbit on which the network is invariant anyway. When choosing the number
of sampled orientations not to be a multiple of 4 this is not longer the case and the network
accuracy should increase. Augmentation by continuous rotation angles again renders the test
error approximately constant over orientations. Note that we do not observe a drop in accu-
racy when using augmentation in a group-convolutional network. This implies that the cost of
learning rotated versions of each digit is negligible for the approximately rotation-equivariant
architecture. The augmentation by continuous rotations mainly acts as a regularization pre-
venting the filters to overfit on the pixel grid. Figure 8.4 shows a different arrangement of the
plots which emphasizes the difference of the two networks’ accuracies for the same augmenta-
tion technique. In all cases the rotation-equivariant networks perform significantly better than
the conventional CNNs because of the weight sharing and reduced parameter cost.

Based on the results of these experiments we keep the number of sampled orientations fixed
to Λ = 16 and tune the network architecture further. We achieved the best results using
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Network Test Error (%)

Larochelle et al. [2007] 10.4 ± 0.27
Sohn and Lee [2012] 4.2
Schmidt and Roth [2012] 4.0
Cohen and Welling [2016] – (O-pool) 3.21 ± 0.0012
Cohen and Welling [2016] – (G-conv) 2.28 ± 0.0004
Worrall et al. [2016] 1.69
Ours – (O-pool + CoeffInit) 1.293 ± 0.028
Laptev et al. [2016] 1.2
Marcos et al. [2016a] 1.09
Marcos et al. [2016a] – (test time augmentation) 1.01
Ours – (G-conv + HeInit) 0.957 ± 0.025
Ours – (G-conv + CoeffInit) 0.880 ± 0.029
Ours – (G-conv + CoeffInit + data augmentation) 0.714 ± 0.022

Table 8.3: Test errors on the rotated MNIST dataset.

the slightly larger network given in Table 8.2. In particular, we find that increasing the size
of the filter masks improves the results which are reported in Table 8.3. Using He’s weight
initialization and no data augmentation, we obtain a test error of 0.957% which already ex-
ceeds the previous state-of-the-art. The adapted initialization scheme for the filter coefficients
significantly improves the test error to 0.880%. When additionally augmenting the dataset
with continuous rotations during training time we are able to decrease the error further to
0.714%. To summarize, our approach reduces the best previously published error by a factor
of 29%.

In order to evaluate the benefit of using the group-convolutional network rather than the
orientation-pooling architecture we ran a further experiment where we pooled over the ori-
entation dimension after every layer. As discussed in section 4.1 this leads to layer-wise local
rotation-invariance which is inherently accompanied with the loss of information on the rela-
tive orientation of features. The resulting test error of 1.293% reflects this issue and substan-
tiates the gain of utilizing group convolutions.

8.2 ISBI 2012 2D EM segmentation challenge

In a second experiment we evaluate the performance of our model on the ISBI 2012 electron
microscopy segmentation challenge [Arganda-Carreras et al., 2015]. Goal of the challenge is
to predict the locations of the cell boundaries in the Drosophila ventral nerve cord from EM
images which is a key step for investigating the connectome of the brain. The dataset consists
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(a) Raw EM image. (b) Groud truth membrane segmen-
tation.

(c) Predicted membrane probability
map.

Figure 8.5: Training sample of the ISBI 2012 EM segmentation challenge consisting of a raw EM image
and the corresponding ground truth membrane segmentation mask. The shown patches are
cropped from slice 30 of the training data set which we used for validation. Our network’s
prediction is shown on the right. It can be seen that the network learned to confidently de-
tect and ignore vesicles (small dark bubbles) and mitochondria (large dark blob on the top)
which is only possible with a large field of view extracting high level semantic information.

of 30 training and test slices of size 512 × 512 px with a binary segmentation ground truth
provided for the training set. Figure 8.5 shows an exemplary raw EM image from the training
set with the corresponding ground truth segmentation mask. An important property of the
dataset is that the images have no preferred orientation which makes it suitable for evaluating
rotation-equivariant networks.

We build on an established pipeline introduced in [Beier et al., 2017]where a crucial step is the
boundary prediction via a conventional CNN. In the present experiment, we replace their net-
work by a Steerable Filter CNN consisting of group convolution layers arranged in a U-net fash-
ion [Ronneberger et al., 2015]. The network architecture is visualized in Figure 8.6. It is build
as a symmetric encoder-decoder network with additional skip-connections between stages of
the same resolution. This allows to extract semantic information from a large field of view
while at the same time preserving precise spatial localization. We further adopt two modifica-
tions from [Quan et al., 2016]: we do not concatenate the skipped feature maps but add them
to the decoder features upsampled from the previous stage, and we use intermediate residual
blocks, here of depth 1. The images fed into the network are cropped regions of 256×256 pix-
els which are padded to 320×320 pixels by reflecting a region of 32 pixels around the border
to alleviate boundary artifacts. After padding, the images are augmented by random elas-
tic deformations, reflections and rotations by multiples of π2 . As discussed before, rotational
augmentation is beneficial only when the network is not equivariant w.r.t. the additional ori-
entations. We therefore sampled Λ = 17 orientations which is mutually prime with the four
augmented orientations. This way the augmented images do not fall into a subgroup w.r.t.
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Figure 8.6: Network architecture used to predict the membrane probability map for the ISBI 2012 EM
segmentation challenge. The topology is inspired by the U-Net [Ronneberger et al., 2015]
and FusionNet [Quan et al., 2016] but uses the proposed steerable group convolution layers
withΛ= 17 orientations. To mitigate boundary artifacts we feed reflect-padded images into
the network.
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Figure 8.7: Visualization of the postprocessing pipeline introduced in Beier et al. [2017]. An overseg-
mentation is generated by running a watershed algorithm on the thresholded and distance-
transformed probability maps generated by our Steerable Filter Network (a,i). The edges
of the segments’ region adjacency graph are weighted by attractive or repulsive potentials
(a,ii). In the lifted version of the Multicut not only next neighbors but also longer range in-
teractions are considered. We further run the 3d version of the algorithm which assembles
information from different slices (b). Finally, the superpixels are merged by optimizing the
lifted Multicut objective (c).
Image credit: Beier et al. Multicut brings automated neurite segmentation closer to human
performance. Nature Methods, 14(2):101–102, 2017

which the network is equivariant/invariant and therefore give a different training signal in
comparison to that of an unrotated image. No test time augmentation or model averaging is
used. On the highest resolution level we learn I = 12 filters. Together with the orientation
channels this corresponds to IΛ = 204 effective channels. The number of filters is doubled
when going to the second and third level and is afterwards kept constant since we did not
observe further gains in performance when adding more channels. After the decoder we max-
pool over orientation channels to obtain locally rotation-invariant features and crop out a patch
of 256× 256 pixels centrally which correspond to the unpadded input. Two subsequent 1× 1
convolution layers map these features pixel-wise to the desired probability map. All group-
convolutional layers utilize kernels of size 7× 7 pixel. The input layer applies 11× 11 pixel
kernels. The network is optimized by minimizing the spatially averaged binary cross-entropy
loss between predictions and the ground truth segmentation masks. As on the rotated MNIST
dataset we regularize the convolutional weights with an elastic net penalty with hyperparam-
eters λL1 = λL2 set to 10−7 for the steerable layers and to 10−8 for the 1×1 convolution layers
respectively. Here we chose a higher dropout probability of p = 0.4 both in the steerable as
well as in the 1× 1 convolution layers. The learning rate is decayed exponentially by a factor
of 0.85 per epoch starting from an initial rate of 5 · 10−2.
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Figure 8.8: Final boundary predictions after the lifted Multicut postprocessing, overlaid over the raw
data of test slice 27.

After predicting the membrane boundaries we run the postprocessing3 introduced by Beier
et al. [2017] whose steps are visualized in Figure 8.7. In a first step it generates an over-
segmentation of both the samples in the training and the test set by applying a watershed
transformation on the distance-transformed predictions. The resulting superpixels are then
merged by a lifted Multicut algorithm. To do so, a region adjacency graph of the superpixels
is build and a random forest predicts attractive or repulsive potentials on the edges of this

3The postprocessing of Beier et al. [2017] is used in all top-scoring competition entries.
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Group V Rand V Info

human values 0.99785 0.99900
Ours 0.98680 0.99144
HVCL@UNIST – Quan et al. [2016] 0.98365 0.99130
CASIA_MIRA 0.98356 0.99063
IAL MC/LMC – Beier et al. [2017] 0.98261 0.98946
PolyMtl – Drozdzal et al. [2016] 0.98058 0.98816

Table 8.4: Top entries of the leaderboard of the ISBI 2012 EM segmentation challenge, accessed on
October 5, 2017. Higher values mean better accuracy.

graph based on the local appearance. An ILP-solver then cuts edges of the graph to obtain
minimal energy under the constraint that the cuts are globally consistent. This constraint en-
sures for example that two superpixels can not be cut directly while being connected over a
third one. An advantage of using the Multicut algorithm is that it incorporates knowledge of
the 3d structure instead of inferring isolated predictions for each EM slice alone. The resulting
instance segmentation can then be transformed back to membrane labels which are our final
predictions. An overlay of the final predictions on test slice 27 over the raw data is shown in
Figure 8.8.

Segmentation predictions are evaluated by the challenge hosters and ranked according to the
foreground-restricted Rand score V Rand. The Rand score is a measure operating on instance
labels which are extracted from the predicted boundary probability map by a thresholding
followed by finding connected components. It is a statistics summarizing how often a pair of
two pixels falls into the same or different segments in the ground truth and prediction. This
measure is suitable for connectomics since it is highly sensible for holes in the predicted mem-
branes which erroneously connect two different neurons while it tolerates small shifts of the
boundaries. As secondary evaluation metric the information score V Info is used. For a detailed
explanation of these metrics see [Arganda-Carreras et al., 2015]. The current leaderboard 4

in Table 8.4 shows that our approach significantly improves upon the state-of-the-art results,
and in particular upon those of Beier et al. [2017].

4The full leaderboard is available at http://brainiac2.mit.edu/isbi_challenge/
leaders-board-new.
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9 Conclusions and Outlook

We have developed a convolutional network architecture which is equivariant under joint
translations and rotations. It is suitable for isotropic datasets in which patterns do not occur
in a predominant orientation. By sharing weights over filter rotations the network becomes
more parameter-efficient than a conventional CNN while at the same time generalizing learned
patterns over orientations. The learned filters in the network are designed such that they are
steerable. This approach guarantees an exact rotation of the learned kernels which prevents
interpolation artifacts and can as linear operation easily be implemented in existing deep learn-
ing frameworks. Layerwise equivariance is obtained either by pooling over orientations or by
using group convolutions. In principle, the proposed network allows for an arbitrarily fine-
grained angular resolution. The experimental results reveal that sampling more than four
orientations improves the accuracy considerably. We have further empirically shown that the
network indeed generalizes over orientations even for sampled signals where the equivariance
is not exact. In comparison with a conventional CNN the proposed network performs signifi-
cantly better, independently of the utilized data augmentation. A weight initialization scheme
which is adapted to networks which learn expansion coefficients of general filter bases led to
a further boost in accuracy. All in all, the proposed CNN significantly improves upon the latest
published results on both mnist-rot and the ISBI 2012 2D EM segmentation challenge.

The proposed architecture can be extended in several respects. An interesting direction of
research is to investigate how the choice of the atomic filter basis affects the results. It was
shown by Jacobsen et al. [2016] that a smooth filter basis can have a regulatory effect and
can improve the network accuracy, especially for small datasets. One could automatize the
process of finding a suitable basis by parameterizing the atomic filter themselves and pruning
over their expansion coefficients such that the network is biased to utilize fewer but smoother
filters. A second extension which could readily be implemented is the generalization to the
full Euclidean group E(2) which additionally incorporates filter reflections. Doing so would
reduce the parameter cost further by a factor of two. Another symmetry which will certainly
become an important tool for isotropic volumetric data is E(3) which rotates the filters in
three dimensional space. The reduced parameter cost of equivariant networks allows to train
larger models which consequently consume more memory than conventional CNNs with the
same number of parameters. It is therefore necessary to investigate approaches to reduce the
networks’ memory footprint. Cohen and Welling [2017] proposed an equivariant architec-
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ture which alleviates the memory issues. This network operates with four filter orientations
but could be combined with our steerable filter approach to achieve a higher resolution w.r.t.
sampled orientations.
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Appendix



A Fourier space implementation

Here we will give a formulation of the proposed group-convolutional steerable filter layers
in Fourier space. The mathematical structure of the layers allows to take advantage of some
tricks which reduce the computational complexity of the calculation. Here we denote a Fourier
transform over index x by F(x) and switch to a notation where spatial and orientation coor-
dinates are explicitly written as tensor indices. The pre-nonlinearity responses can then be
written as
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where � stands for an element-wise multiplication and % is the modulo operator. In the last
step we made use of the DFT shift theorem
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which allows to reduce the cost of the forward convolution of the input feature map by a
factor of Q. This way the Fourier transform of the phase-modulated feature maps can be ex-
tracted from the Fourier transform of the non-modulated feature maps by a cyclic shift over
the orientation index. Further, the Fourier transform of the fixed atomic filter basis can be
precomputed. In principle it is possible to learn the weights directly in Fourier space which
would save another transform. By Parseval’s theorem
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one can see that a weight decay (`2 regularization) of such weights in Fourier space is equiva-
lent to a weight decay on the untransformed parameters. The complexity of this formulation
scales like O

�

(I +H)ΛX 2 log(ΛX 2)
�

for the Fourier transform part and O
�

IHQΛX 2
�

for the
linear operation in Fourier space. For smooth filter bases with Q ≤ s2 this computation may
be more efficient than the two implementations in real space.
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B Steerability of the composed filters

The proposed architecture applies filters of the form

Ψ̃(x) =
J
∑

j=1

K j
∑

k=0

w jkψ jk(x)

which are rotated by the steerability of the atoms:

ρθ Ψ̃(x) =
J
∑

j=1

K j
∑

k=0

w jke−ikθψ jk(x).

We show that Ψ̃ is equivalent to a steerable filter in the sense of Freeman and Adelson [1991],
i.e. it satisfies the condition

ρθ Ψ̃(x) =
R−1
∑

r=0

κr(θ )ραr
Ψ̃(x)

for appropriately chosen expansion coefficients κr(θ ) and R≥ K + 1. To this end we demand
the two expansions to be equal, i.e.

ρθ Ψ̃(x) =
J
∑

j=1

K j
∑

k=0

w jkρθψ jk(x)

=
J
∑

j=1

K j
∑

k=0

w jke−ikθψ jk(x)

!
=

R−1
∑

r=0

κr(θ )
J
∑

j=1

K j
∑

k=0

w jkραr
ψ jk(x)

=
J
∑

j=1

K j
∑

k=0

w jk

R−1
∑

r=0

κr(θ )e
−ikαrψ jk(x).
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The condition for steerability in the sense of Freeman and Adelson [1991] is thus that there is
a solution of the system of linear equations

e−ikθ =
R−1
∑

r=0

κr(θ )e
−ikαr

for all k = 0, . . . , K with K =max j K j and arbitrary rotation angles θ , or, equivalently,











1 1 · · · 1
e−iα1 e−iα2 · · · e−iαR

...
...

...
e−iKα1 e−iKα2 · · · e−iKαR































κ1(θ )
κ2(θ )

...

κR−1(θ )





















=











1
e−iθ

...
e−iKθ











.

Denoting the matrix by A and the right hand side by b(θ ) and using the unitarity A†A= I we
get

κ(θ ) = A† b(θ ).

Here we need R≥ K+1 distinct sampled angles αr because otherwise the rank of A†A is smaller
than K + 1.
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